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Abstract

A common approach to anomaly detection is to model normality and adopt the1

difference from normality as an anomaly measure. One approach to modeling2

normality is to introduce latent variables that are inferred from observed variables.3

Variational autoencoders are one such state of the art approach for incorporating la-4

tent variables. In this paper, we leverage the stochastic nature of the latent variables5

learned by variational autoencoders, as each point in the latent space is sampled6

from probability distributions parameterized during the learning process. We define7

the expected latent representation and the reconstruction error of the expected8

latent representation, which we adopt to improve anomaly detection via variational9

autoencoders. Results from evaluations on benchmark datasets produce superior10

results to single sample approximations of the expected reconstruction error, while11

producing competitive results to comparable anomaly detection techniques.12

1 Introduction13

Anomalies can be thought of as unusual or unexpected behavior in a system. Anomaly detection is14

important, as failure to properly identify anomalies can be costly, resulting in a loss of trust, revenue,15

or life. However, the nature of anomalies are that they are unusual, and typically rare, so there may16

be many examples of normal behavior but few examples of anomalies.17

A common task in anomaly detection is to identify anomalous behavior by its contrast to predefined18

normal behavior [3]. In this scenario a set of normal examples are used as a training set, and a set of19

normal and anomalous examples used as a test set. The goal is to learn a model of normality using20

the training set, expecting to identify anomalous examples in the test set via differences from the21

normal model, and by extension anomalies in new data. The degree of difference from normality is22

used as an anomaly measure.23

Reconstruction models attempt to reproduce each input at their output, subject to some internal24

representation constraint that prevents simple duplication. If properly trained, a reconstruction model25

should reproduce normal data accurately, but struggle to reproduce anomalous data. The error in26

reconstructing the input can be used as an anomaly measure.27

Variational autoencoders (VAEs) are one such approach that incorporates reconstruction error as28

part of its training objective. Variational autoencoders are stochastic by design and this stochastic29

process is present during the training, testing, and sampling. Although critical to training and30

sampling, a stochastic element in testing hinders anomaly detection as it introduces variability in31

the reconstruction error. Computing the reconstruction error of an example relies on sampling from32

the approximate posterior for that example, before feeding the sample to the generative model to33
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approximate the expected reconstruction error. Generally, one sample is taken for each example to34

reduce computational requirements. This sampling process is at odds with the anomaly detection task35

as it creates blurry models of normality, which can in turn make it difficult to pick out anomalies.36

The contribution of this paper is to define the expected latent representation and then the reconstruction37

error of the expected latent representation as a measure that allows improved anomaly detection38

in variational autoencoders. We do this by taking advantage of the parameters of the approximate39

posteriors that define the latent representation of each data example, given a fully trained variational40

autoencoder. Our approach removes variation in the latent representation that is introduced from41

the sampling process, helps distinguish between latent representations of different examples with42

overlapping approximate posteriors, and provides a clear view of what we expect to see in the43

latent space for a given example. The result is an improvement in anomaly detection via variational44

autoencoders in comparison to single sample approximations of the expected reconstruction error,45

while producing competitive results to comparable anomaly detection techniques when evaluated on46

benchmark datasets.47

2 Background48

Latent variable models are probabilistic models that attempt to explain observed variables in terms49

of latent variables. Latent variables are hidden variables that are not directly observed but instead50

inferred from observed variables. Latent variable models make the assumption that given an input51

x there is an underlying latent variable z that can help explain x or reveal something useful about52

x [9]. Applications of latent variable models include dimensionality reduction, clustering, density53

estimation, and sample generation [9].54

Two advantages of latent variable models are:55

1. Some phenomena cannot be naturally observed; latent variables are useful for capturing this56

hidden information.57

2. Given prior knowledge about the data, we can leverage it by incorporating it in the model as58

latent variables or constraints on latent variables.59

It is typical to use the joint distribution of the observed latent variable x and a latent variable z to60

define the marginal likelihood of x. Formally, given x ∈ Rn and z ∈ Rn, the marginal distribution61

over the observed variables is:62

pθ(x) =

∫
pθ(x, z)dz (1)

63

=

∫
pθ(x|z)pθ(z)dz (2)

where pθ(x) is the marginal likelihood of x, pθ(x, z) is the joint distribution of x and z, and pθ(z)64

is the prior distribution of the latent variable z. However, the solution to this equation is generally65

intractable and an approximate solution is required.66

Variational Autoencoders are a stochastic variational inference and learning algorithm that performs67

approximate inference in latent variable models where the marginal likelihood and the true posterior68

density are intractable [7, 8].69

To make the intractable problem tractable, variational autoencoders introduce a parametric inference70

model qφ(z|x), where φ are the variational parameters of the inference model [8, 9]. The variational71

parameters are optimized such that:72

qφ(z|x) ≈ pθ(z|x) (3)

where qφ(z|x) is the approximate posterior and pθ(z|x) is the true posterior.73

The log marginal likelihood of x(i) can then be written as:74

log pθ(x
(i)) = DKL

(
qφ(z|x(i))‖pθ(z|x(i))

)
+ L

(
θ,φ;x(i)

)
(4)

where the first term is the Kullback-Leibler divergence (DKL) of the approximate posterior and75

the true posterior, and the second term is the evidence lower bound of the log marginal likelihood.76
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Although we cannot solve this equation it its entirety, variational autoencoders estimate the lower77

bound of the log marginal likelihood L
(
θ,φ;x(i)

)
, otherwise known as the variational lower bound78

or the evidence lower bound (ELBO).79

The ELBO can be written as:80

L
(
θ,φ;x(i)

)
= −DKL

(
qφ(z|x(i))‖pθ(z)

)
+ Eqφ(z|x(i))

[
log pθ(x

(i)|z)
]

(5)

where the first term is the negative DKL of the approximate posterior qφ(z|x(i)) and the prior pθ(z).81

The second term is the expected value of the log probability density of x(i) under the generative82

model. This is interpreted as the expected negative reconstruction error from the perspective of83

autoencoder techniques. The first term can be integrated analytically but the second term requires84

estimation by sampling:85

L̃
(
θ,φ;x(i)

)
= −DKL

(
qφ(z|x(i))‖pθ(z)

)
+

1

L

l∑
l=1

(
log pθ

(
x(i)|z(i,l)

))
(6)

where z(i,l) is a sample, and L is the number of samples. In practice only one sample is taken to86

approximate the expected negative reconstruction error to reduce the computational complexity. The87

ELBO is formulated such that:88

log pθ

(
x(i)
)
≥ L

(
θ,φ;x(i)

)
' L̃

(
θ,φ;x(i)

)
(7)

where log pθ
(
x(i)
)

is the log marginal likelihood of input x(i), φ are the variational parameters, and89

θ are the generative model parameters.90

In practice, the prior pθ(z) is commonly Gaussian as the DKL

(
qφ(z|x(i))‖pθ(z)

)
has a closed form91

solution given a Gaussian prior, and sampling of z can be accomplished via a reparameterization92

trick.93

Variational autoencoders make the assumption that data is generated via a random process involving94

an unobserved continuous random variable z. The random variable z is defined as:95

z v qφ(z|x(i)) (8)

where z has the probability distribution of the approximate posterior qφ(z|x(i)). The approximate96

posterior qφ(z|x(i)) is commonly defined by a multivariate Gaussian distribution with diagonal97

covariance:98

qφ(z|x(i)) = N (z;µ(i),σ2(i)I) (9)
The Gaussian distribution is then parameterized by an encoder or recognition network:99

(µ(i), logσ(i)) = EncoderNetworkφ(x
(i)) (10)

where the encoder network learns the parameters µ(i) and logσ(i) for each datapoint x(i). When100

parameterized by a neural network, φ includes the parameters of the recognition network, such as the101

weights and biases.102

Sampling can be achieved by using the reparameterization trick with a noise variable defined by a103

Gaussian distribution with 0 mean and unit variance I , such that:104

ε ∼ N (0, I) (11)

where z is sampled as follows:105

z = µ+ σ � ε. (12)
and � is the element-wise product.106

3 Expected Latent Representation107

We take advantage of the parameters learned by the recognition network to define the expected108

latent representation. Given that z is defined by a multivariate Gaussian distribution with diagonal109

covariance we define the expected value of z for datapoint x(i) as:110

Ezvqφ(z|x(i))[z] = µ
(i) (13)
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where we have fixed parameters φ. We can think of this as the expected latent representation for x(i)111

given the fixed weights and biases of the recognition network, where µ(i) represents the expected112

value of the latent variable z for x(i) or the expected position of the x(i) in the latent space. Due113

to indentifiability problems in latent variable models [2] the expected latent representation will be114

different for different parameters φ.115

The expected latent representation has several advantages for anomaly detection. First, it summarizes116

the distribution responsible for the latent representation, providing a clear picture of what to expect in117

the latent space for a specific input. Second, it avoids extreme values that can be generated from the118

sampling process as samples may happen to be drawn from the extremes. Third, the expected latent119

representation is deterministic as µ(i) is the same for each x(i) given fixed φ, in contrast to z which120

is stochastic and generates a different z each time x(i) is evaluated. Although sampling is critical121

during training and useful for generating new examples, it is problematic for anomaly detection since122

it adds noise to the models of normality, making it harder to pick out anomalies.123

3.1 Reconstruction Error of Expected Latent Representation124

Anomaly detection via variational autoencoders involves approximating the reconstruction error of an125

example by taking a sample from the approximate posterior and feeding it to the generative network126

to estimate the expected reconstruction error. However, once we have a trained network with fixed127

weights and biases we do not need to use a sample. Instead, we take the expected latent representation128

µ(i) and extend it to reconstruction error to compute the reconstruction error of the expected latent129

representation.130

Given a fully trained network with fixed weights and biases, we define the negative reconstruction131

error of the expected latent representation as:132

log pθ(x
(i)|z = µ(i)) (14)

or to simplify the notation:133

log pθ(x
(i)|µ(i)) (15)

We use the negative reconstruction error of the expected latent representation to approximate the134

negative expected reconstruction error:135

Eqφ(z|x(i))[log pθ(x
(i)|z)] ≈ log pθ(x

(i)|µ(i)) (16)

From another perspective, if we were to take enough samples from the approximate posterior for x(i),136

eventually the average value will approach µ(i), and subsequently the negative reconstruction error137

of that average value will approach the negative reconstruction error produced by µ(i).138

3.2 Variational Lower Bound via Reconstruction Error of Expected Latent Representation139

Given a fully trained network with fixed weights and biases, we approximate the variational lower140

bound of the marginal likelihood of x(i) as:141

L̃ED
(
θ,φ;x(i)

)
= −DKL

(
qφ(z|x(i))‖pθ(z)

)
+ log pθ(x

(i)|µ(i)) (17)

We adopt Equation 17 as an anomaly detection measure, using it to detect anomalies once the142

variational autoencoder has been fully trained using Equation 6. We refer to this method of training143

and testing as the Expected Latent Representation Decoder Variational Autoencoder (ED-VAE).144

3.3 Additional Benefits of Expected Latent Representation145

The expected latent representation has the advantage of mitigating negative effects from overlapping146

approximate posteriors. Figure 1 provides an illustrative example of why overlapping approximate147

posteriors can cause difficulties for anomaly detection. We visualize the probability density functions148

of three different Gaussian distributions denoted as N1, N2, and N3. The amount of overlap between149

these three distributions is fairly characteristic of the typical behavior of approximate posteriors,150

depending on the amount of posterior collapse. If we consider that the generative model is fed the151
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Figure 1: Overlapping Approximate Posteriors

latent representation sampled from these approximate posteriors to reconstruct the original input, then152

we know the latent representation must contain some sort of discriminative information. However, if153

we take a random sample from these three distributions we could generate samples like z1, z2, and154

z3, where the latent representations would cause discrimination issues as they could fall in any order155

on the x-axis. Instead, we can use the expected latent representation µ1, µ2, and µ3 in place of the156

random samples, eliminating the discrimination issue.157

The expected latent representation also has the advantage of removing variation in the latent represen-158

tation introduced by the sampling process, changing this from a stochastic process to a deterministic159

one. This is beneficial for anomaly detection as it has the effect of removing variation from the160

reconstruction error, providing a clear view of normal and anomalous behavior. Additionally, this161

provides consistency in evaluating potential anomalies.162

The expected latent representation also avoids relying on a single sample that may produce a latent163

representation at the edges of the distribution defined by the approximate posterior. This avoids164

extreme values that could adversely impact anomaly detection.165

In the end, these three considerations help create a stable representation of normality, making it easier166

detect differences from the normal model.167

4 Experiments168

To empirically evaluate our proposed approach we used common benchmark datasets, comparing the169

performance of ED-VAE to variational autoencoders and comparable models. Additional experiments170

can be found in the Appendix.171

4.1 Experimental Setup172

Training was performed on a set of normal examples, while the test set was a mixture of normal and173

anomalous examples. To create a more realistic evaluation for an anomaly detection scenario, we174

sampled the anomalies so that a certain ratio p = 0.2 of the test set were anomalies. In other words,175

for each test set 20% percent of the test set are anomalies. Keeping the ratio of anomalies to normal176

examples the same between datasets provided the added benefit of simplifying comparisons between177

the respective performance of each dataset as the PR-AUC that represents random performance178

is constant. In this case, a model demonstrates random performance with PR-AUC of 0.2 where179

p = 0.2.180

We evaluated each of our proposed methods on the MNIST [10] and Fashion-MNIST [13] datasets,181

both common benchmarks for evaluating anomaly detection techniques. For each individual class,182

we treated that class as normal and the remaining classes as anomalous.183

Hyperparameters (e.g. # of latent dimensions, filter size, kernel, stride, and learning rate) were184

chosen via grid based search using a validation set with normal and anomalous examples. We did185
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not exhaustively optimize the hyperparameters due to the large number of possible hyperparameter186

configurations and the heavy compute requirements.187

For both the MNIST and Fashion-MNIST dataset the encoder of the VAE included two convolutional188

layers with a filter size of 32, a 3x3 kernel, a stride of 2, a fully connected layer of size 1568, and 32189

latent dimensions. The decoder reversed the operations of the encoder using convolutional transpose190

layers [5, 14]. All intermediate activation functions were ReLU, the decoder output activation191

functions were sigmoid, and the activation functions for µ and logσ were linear. The network192

structure of the encoder and decoder is fairly rudimentary, to simplify performance comparisons with193

competing models.194

We chose Principal Component Analysis (PCA), Kernal PCA (KPCA), Deep Structured Energy Based195

Models (DSEBM) [15], Autoencoders (AE), and Variational Autoencoders (VAE) as comparable196

models. The AE was structured similarly to the VAE, but the sampling layer was replaced with an197

encoded layer. Each comparable model had the same number of latent or encoded dimensions as the198

variational autoencoder.199

We evaluated each model for 10 repetitions and report the mean and SEM for each class, and the200

mean for each dataset. The anomalies were re-sampled for each of the repetitions. AUC and PR-AUC201

were chosen as performance measures and the anomalies were treated as the positive class.202

Training was performed to a maximum of 1000 epochs with early stopping and a patience of 20203

epochs, using the ELBO as a stopping criteria. We split each training set into training and validation204

sets (80/20), with the validation set used for the early stopping. We used the Adam optimizer with a205

learning rate of 0.0001 and a batch size of 128.206

We provide the source code for the main experiments at https://github.com/anon12a/ed-vae/,207

which were executed on Google Colab with an approximate compute time of 6 hours per dataset.208

4.2 Results209

Table 1 reports the AUC for the MNIST and Fashion-MNIST datasets and Table 2 reports the PR-210

AUC, where ED-VAE outperformed VAE from the perspective of AUC and PR-AUC for the majority211

of classes.1 Additionally, ED-VAE outperformed the comparable models for the vast majority of our212

evaluations based on AUC, and also outperformed the comparable models for the majority of our213

evaluations based on PR-AUC. When it did not, its performance was only slightly worse or similar.214

Additional results can be found in the supplementary material of the Appendix.215

5 Discussion216

Reconstruction error plays an important role in anomaly detection via variational autoencoders;217

it is sometimes adopted as the sole metric for discovering anomalies. However, computing the218

reconstruction error of an example relies on sampling from the approximate posterior of a given219

example before feeding the sample into the encoder to approximate the expected reconstruction error.220

This sampling process can be at odds with anomaly detection task, as it creates blurry models of221

normality, which can in turn make it harder to pick out anomalies. Our results strongly suggest that222

we can improve the anomaly detection process in variational autoencoders by replacing sample-based223

estimates with the reconstruction error of the expected latent representation.224

There are a few important considerations for this approach:225

How much the reconstruction error of the expected latent representation improves anomaly detection226

in variational autoencoder depends on the variance parameter of the approximate posteriors. If the227

variance is small then the sample will likely be close to the mean, compared to approximate posteriors228

with large variance where a random sample could be further from the mean. The closer the samples229

are to the mean, the closer the reconstruction of the expected latent representation is to the expected230

reconstruction error.231

1At first glance the PR-AUC (and AUC for the MNIST dataset) of class 5 seems unusual as PCA performed
better than ED-VAE in both benchmark datasets. We initially suspected this might be a bug in the code given
that it is specifically class 5 for both datasets, but our investigations revealed that this was not the case. This
footnote will be removed from the final submission and is only included for the benefit of the reviewers.
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Table 1: Performance evaluation of ED-VAE and comparable models based on AUC. ED-VAE almost
always outperforms VAE and other comparable models.

dataset class pca kpca dsebm ae vae ed-vae

0 99.2±0.0 99.0±0.0 53.7±7.8 96.9±0.1 99.7±0.0 99.8±0.0
1 99.9±0.0 99.8±0.0 98.2±0.3 98.7±0.0 99.9±0.0 99.9±0.0
2 92.4±0.2 89.7±0.3 51.8±4.2 78.1±0.2 93.0±0.4 95.3±0.4
3 95.2±0.1 93.9±0.2 50.8±1.2 85.8±0.3 94.6±0.4 95.8±0.3
4 94.3±0.1 94.6±0.2 69.3±2.1 88.2±0.3 95.0±0.2 96.3±0.3

MNIST 5 97.4±0.1 95.0±0.1 55.7±0.8 72.5±0.4 95.8±0.2 96.7±0.2
6 98.4±0.1 97.3±0.1 58.5±4.2 86.8±0.2 98.9±0.1 99.3±0.1
7 97.1±0.1 96.4±0.2 75.7±0.9 91.2±0.3 96.5±0.2 97.3±0.2
8 85.5±0.5 85.4±0.5 46.4±3.2 78.0±0.8 89.5±0.4 91.1±0.5
9 96.4±0.1 95.4±0.1 66.3±1.7 88.0±0.2 97.6±0.1 98.3±0.1

avg 95.6 94.7 62.6 86.4 96.0 97.0
0 89.8±0.2 90.6±0.2 87.3±0.6 89.7±0.4 90.7±0.2 91.1±0.2
1 98.5±0.1 98.2±0.1 78.4±4.2 98.0±0.2 98.6±0.1 98.7±0.1
2 88.7±0.3 89.1±0.2 83.3±0.4 86.7±0.4 88.4±0.3 89.1±0.2
3 91.9±0.2 92.6±0.4 91.3±0.5 90.5±0.5 92.4±0.3 92.8±0.3

Fashion- 4 88.5±0.4 88.5±0.4 87.5±0.6 88.7±0.3 90.0±0.4 90.9±0.4
MNIST 5 88.6±0.3 88.8±0.3 87.2±0.3 87.6±0.2 89.3±0.3 89.5±0.2

6 81.3±0.4 82.1±0.3 75.6±0.6 77.6±0.5 82.3±0.4 83.1±0.4
7 98.4±0.1 98.4±0.1 95.3±1.8 98.1±0.1 98.2±0.1 98.5±0.1
8 83.7±0.2 84.0±0.3 79.6±1.1 82.1±0.7 83.5±0.4 84.8±0.4
9 97.1±0.2 96.6±0.2 97.3±0.2 97.1±0.2 96.3±0.3 97.1±0.2

avg 90.7 90.9 86.3 89.6 91 91.6

Table 2: Performance evaluation of ED-VAE and comparable models based on PR-AUC. ED-VAE
outperforms VAE and other comparable models for most classes and helps close the gap between
VAE and comparable models when that is not the case.

dataset class pca kpca dsebm ae vae ed-vae

0 96.3±0.1 95.6±0.2 31.9±9.1 88.4±0.4 98.8±0.1 99.1±0.1
1 99.5±0.0 99.2±0.0 93.6±1.0 95.5±0.2 99.6±0.0 99.6±0.0
2 80.9±0.4 74.4±0.5 27.8±3.4 49.9±0.5 84.7±0.7 88.3±0.7
3 80.8±0.4 80.0±0.5 25.4±0.9 61.4±0.8 86.0±0.7 88.4±0.6
4 87.6±0.3 86.4±0.3 44.6±2.2 66.7±0.6 89.5±0.4 91.2±0.5

MNIST 5 90.8±0.3 83.7±0.4 30.1±0.7 44.4±0.5 88.5±0.4 90.0±0.4
6 94.8±0.1 91.3±0.2 32.1±3.0 54.7±0.4 96.2±0.3 97.3±0.2
7 91.3±0.3 89.5±0.4 58.7±0.9 75.2±0.5 91.3±0.4 92.5±0.3
8 69.9±0.6 68.2±0.6 21.4±2.3 46.1±2.1 80.9±0.6 84.5±0.5
9 87.9±0.2 83.2±0.3 43.5±1.5 62.2±0.6 92.0±0.3 93.7±0.2

avg 88.0 85.1 40.9 64.4 90.8 92.5
0 69.9±0.4 73.1±0.5 67.4±1.2 71.2±0.5 72.2±0.5 72.2±0.6
1 94.0±0.2 93.4±0.2 63.9±5.3 91.9±0.7 94.4±0.2 94.8±0.2
2 70.8±0.4 75.1±0.3 62.5±0.7 69.4±1.0 74.2±0.3 74.9±0.4
3 79.3±0.6 82.9±0.6 81.6±0.7 80.2±0.8 82.4±0.6 82.8±0.6

Fashion- 4 76.2±0.5 76.3±0.6 71.2±1.6 74.0±0.5 78.6±0.6 80.0±0.5
MNIST 5 82.5±0.3 81.1±0.2 76.6±0.5 76.3±0.3 81.6±0.3 81.1±0.2

6 59.9±0.7 62.4±0.7 47.0±1.5 50.9±0.7 64.0±0.7 64.5±0.7
7 96.3±0.1 96.1±0.1 91.2±2.7 94.7±0.1 95.8±0.2 96.3±0.1
8 61.4±0.4 65.8±0.4 46.5±1.8 52.7±1.3 59.3±0.7 60.8±0.7
9 93.2±0.4 91.3±0.4 91.1±0.6 91.8±0.9 91.1±0.4 92.0±0.4

avg 78.4 79.8 69.9 75.3 79.4 79.9
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Success of the reconstruction error of the expected latent representation can be impacted by the232

amount of overlap between approximate posteriors, which occurs frequently with posterior collapse.233

Posterior collapse occurs when the approximate posterior of a latent variable (or dimensions of a234

latent variable) closely matches the prior. The closer the approximate posterior is to the prior the more235

posterior collapse. In the extreme the approximate posterior is identical to the prior, leading to an236

uninformative latent variable given an uninformative prior. Using the expected latent representation237

rather than sampling from the approximate posterior reduces the chances of overlap from posterior238

collapse causing discrimination issues. Although two approximate posteriors with similar means239

and similar variances can easily overlap for the majority of their probability density functions, their240

means are a distinguishing factor.241

Approximating the expected reconstruction error is a stochastic process. Using the expected latent242

representation of a datapoint to approximate the expected reconstruction error creates a deterministic243

process where the reconstruction error will be same for any given datapoint that passes through a244

fully trained variational autoencoder with fixed weights and biases. This removes variation caused245

by single sample or multiple sample approximations of the expected reconstruction error where the246

reconstruction error will be different for each sample. This is a significant advantage for the anomaly247

detection task as we are generally not interested in approaches that label a datapoint an anomaly or248

normal depending on variation due to sampling.249

An alternative to approximating the expected reconstruction error via a single sample is to sample250

multiple times per datapoint and compute the average reconstruction error to approximate the expected251

reconstruction error. This is computationally expensive depending on the number of samples and the252

number of examples. Sampling has a computational complexity of n× l where n is the number of253

examples and l is the number of samples per example. This can become prohibitively expensive: if254

n = 10000 with l = 1000 samples per datapoint, it would require 1000000 computations to compute255

a relatively good approximation of the expected reconstruction error. This becomes even more256

expensive in complex models with additional layers of latent variables, such as the recently proposed257

N-VAE [12]. The reconstruction error of the expected latent representation offers a computationally258

efficient method of approximating the expected reconstruction error in fully trained models.259

Similar Results Between ED-VAE and VAE Similar results between ED-VAE and VAE are260

probably the result of similar reconstruction error. There are several reasons this might happen261

for a given example. One might be that the sampling process was lucky and the sample taken to262

approximate the expected reconstruction error was close to the reconstruction error of the expected263

latent representation. A more likely scenario is that the approximate posteriors for the test examples264

have variances that approach zero, resulting in expected latent representations that are almost265

identical to samples taken using the associated approximate posterior. This can occur when there266

is almost no posterior collapse in the approximate posterior for one or multiple latent dimensions267

as those dimensions are relatively more important to producing accurate reconstructions, causing268

reconstruction error to outweigh the regulation effect of DKL

(
qφ(z|x(i))‖pθ(z)

)
.269

6 Related Work270

Several approaches have been proposed for anomaly detection via variational autoencoders. An271

and Cho [1] propose reconstruction probability for anomaly detection. Soelch et al. [11] briefly272

evaluate different measurements of likelihood produced via variational autoencoders as measures of273

normality for on-line anomaly detection in time series data. Choi et al. [4] explore several measures274

of likelihood produced by variational autoencoders, making comparisons to an ensemble-based275

out-of-distribution detection technique that they propose where out-of-distribution examples are276

detected via the Watanabe Akaike Information Criterion.277

Our approach differs from these approaches by changing anomaly detection via variational autoen-278

coders from a stochastic process to a deterministic process. This creates stable representations of279

normality that make it easier to detect differences from the normal model, leading to improved280

anomaly detection. An advantage of our proposed approach is it can be implemented using any281

variation of variational autoencoders, as long as the approximate posterior is parameterized during282

training and testing. Additionally, given the previous statement, our approach can be adopted to any283

variational autoencoder based anomaly detection approach that uses sampling to compute an anomaly284

detection measure.285
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It is also worth noting that although µ(i) is commonly used by practitioners for downstream tasks286

unrelated to anomaly detection (e.g. dimensionality reduction followed by clustering), this is done287

without any discussion of what µ(i) represents from a theoretical perspective. Thinking of µ(i) as the288

expected latent representation of x(i) given fixed parameters φ, provides a conceptual framework for289

adopting the expected latent representation for downstream tasks, while also providing justification290

for adopting the expected latent representation to improve the anomaly detection task.291

7 Conclusions292

We defined the concept of the expected latent representation to improve anomaly detection in293

variational autoencoders, by taking advantage of the parameters of the approximate posteriors that294

define the latent representation of each datapoint, given a trained variational autoencoder. This295

removes variation in the latent representation that is introduced from the sampling process. It also296

helps distinguish latent representations of different examples that may have overlapping approximate297

posteriors with similar means and variances. This provides a clear view of what we expect to see in298

the latent space for a given example rather than relying on a single sample that may produce a latent299

representation at the edges of the distribution defined by the approximate posterior.300

Additionally, we proposed a computationally efficient method for approximating the expected re-301

construction error given a trained variational autoencoder, as an alternative to the current practice of302

approximating the expected reconstruction error via single or multiple samples. This is accomplished303

by extending the concept of the expected latent representation to reconstruction error, by feeding304

the expected latent representation to the decoder/generative model of the variational autoencoder to305

produce the reconstruction error of the expected latent representation. This is valuable for anomaly306

detection as it removes a source of variation from the reconstruction error, allowing for easier307

discrimination between normal and anomalous examples.308

Finally, we performed a comprehensive evaluation of the variational lower bound approximated via309

the reconstruction error of the expected latent representation, as an anomaly detection measure, and310

empirically demonstrated that it produced superior results for anomaly detection, when compared to311

traditional sampling techniques. This strongly suggests that there is value in taking this approach for312

anomaly detection via variational autoencoders.313
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A Appendix386

The following is supplementary material that expands on our evaluation of the reconstruction error387

of the expected latent representation. We evaluated the reconstruction error of the expected latent388

representation as an anomaly detection measure on its own rather than as part of the variational lower389

bound approximated via the expected latent representation.390

A.1 Multiple Samples391

We compared the performance of the reconstruction error of the expected latent representation to392

single sample and multiple sample approximations of the expected reconstruction error on the MNIST393

(Figure 2) and the fashion-MNIST dataset (Figure 3). We also included the performance of the best394

and worst performing sample drawn from the multiple sample approximation. The models were395

trained using the same procedure laid out previously and were evaluated for 20 repetitions. We report396

the mean and SEM of the AUC and PR-AUC for each class. 100 samples were drawn for each397

datapoint x(i) for the multiple sample approximation as initial tests indicated little or no difference398

in performance after 100 samples. The reconstruction error of the expected latent representation399

performed better than the single sample approximation while also performing the same or better than400

the multiple sample approximation, for the majority of the evaluations. It is worth noting that the401

worst performing sample from the multiple sample approximation performed as poorly as the single402

sample approximation, which strongly suggests single sample approximations should not be used for403

anomaly detection, even though this is a commonly adopted strategy.404

Figure 2: Performance comparison of the reconstruction error of the expected latent representation
(ed), single sample approximation (s), multiple sample approximation (ms), best sample (b), and
worst sample (w) for the MNIST dataset.
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Figure 3: Performance comparison of the reconstruction error of the expected latent representation
(ed), single sample approximation (s), multiple sample approximation (ms), best sample (b), and
worst sample (w) for the Fashion-MNIST dataset.

A.2 Posterior Collapse405

Approaches that are robust to the negative impacts of posterior collapse on anomaly detection are406

valuable tools for improving anomaly detection with variational autoencoders as posterior collapse407

is a common problem with variational autoencoders. Although numerous variations of variational408

autoencoders have been proposed to limit posterior collapse this is still an ongoing area of research.409

We evaluated the effect of posterior collapse on the reconstruction error of the expected latent410

representation and the single sample approximation of the reconstruction error. We artificially411

forced the posterior to collapse by adopting the objective function of β-VAE [6] (see Equation 18)412

for training. We also modified Equation 18 to use the reconstruction error of the expected latent413

representation (see Equation 19), adopting it as an anomaly detection measure once we have a fully414

trained model.415

L̃β
(
θ,φ;x(i)

)
= −βDKL

(
qφ(z|x(i))‖pθ(z)

)
+

1

L

l∑
l=1

(
log pθ

(
x(i)|z(i,l)

))
(18)

416

L̃β−ED
(
θ,φ;x(i)

)
= −βDKL

(
qφ(z|x(i))‖pθ(z)

)
+ log pθ(x

(i)|µ(i)) (19)

We evaluated β values from 0 to 1.5 at intervals of 0.1. Equation 6 is equivalent to to Equation 18417

when β = 1, as is the case for Equation 17 and Equation 19. Each model was trained using the same418

procedure laid out previously and were evaluated for 10 repetitions. We report the mean AUC and PR-419

AUC for each class for each beta value. Figure 4 and Figure 5 report the results for the MNIST dataset420

and Figure 6 and Figure 7 report the results for the Fashion-MNIST dataset. Increasing the value of β421

increases the regularization power of DKL

(
qφ(z|x(i))‖pθ(z)

)
, thus increasing posterior collapse by422

encouraging the approximate posterior to be closer to the prior. In general, the performance gained423

from adopting the reconstruction error of the expected latent representation increased up to a point424

where artificially collapsing the posterior no longer had a meaningful effect. This strongly supports425

our argument that ED-VAE is more effective when there is more posterior collapse. It also follows426

that it is more effective when there is more overlap between the approximate posteriors, as there is427

more overlap with more posterior collapse.428

A.3 Reconstruction Error429

We compared the performance of the reconstruction error of ED-VAE and VAE on the MNIST430

and Fashion-MNIST dataset (Table 3). The experimental setup is identical to the experiments that431

produced the results in Table 1 and Table 2, where we compared ED-VAE to comparable models.432

The reconstruction error is pulled directly from that evaluation. ED-VAE outperformed VAE for the433

majority of classes.434
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Figure 4: Performance evaluation of the effect of posterior collapse on the reconstruction error of the
expected latent representation on the MNIST dataset. Performance is measured via AUC. Classes are
ordered from left to right with the Class 0 in the top left. The row immediately below visualizes the
difference between the reconstruction error of ED-VAE and VAE. In general, the difference increases
between ED-VAE and VAE with ED-VAE outperforming VAE, up until a point where artificially
collapsing the posterior no longer has a meaningful effect.

Figure 5: Performance evaluation of the impact of posterior collapse on the reconstruction error of
the expected latent representation on the MNIST dataset. Performance is measured via PR-AUC.
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Figure 6: Performance evaluation of the impact of posterior collapse on the reconstruction error of
the expected latent representation on the Fashion-MNIST dataset. Performance is measured via AUC.

Figure 7: Performance evaluation of the impact of posterior collapse on the reconstruction error
of the expected latent representation on the Fashion-MNIST dataset. Performance is measured via
PR-AUC.
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Table 3: Performance evaluation of the reconstruction error of ED-VAE and VAE where the per-
formance is measured by AUC and PR-AUC. The reconstruction error of the expected latent repre-
sentation performed better for the majority of the classes for both the MNIST and Fashion-MNIST
dataset.

auc pr-auc

dataset class vae ed-vae vae ed-vae

0 99.7±0.0 99.8±0.0 98.8±0.1 99.1±0.1
1 99.9±0.0 99.9±0.0 99.7±0.0 99.6±0.0
2 92.7±0.4 95.6±0.3 84.2±0.7 88.6±0.7
3 94.2±0.3 95.7±0.3 85.8±0.6 88.5±0.5
4 94.7±0.3 96.4±0.4 89.8±0.5 91.7±0.6

MNIST 5 95.9±0.2 96.9±0.2 89.4±0.3 91.0±0.4
6 99.1±0.1 99.4±0.1 96.7±0.3 97.7±0.2
7 96.0±0.2 97.0±0.2 90.9±0.3 92.1±0.3
8 89.5±0.4 91.1±0.6 81.8±0.6 85.6±0.5
9 97.8±0.1 98.6±0.0 92.9±0.2 94.6±0.1

avg 96.0 97.0 91.0 92.9
0 89.6±0.2 90.1±0.2 68.7±0.6 68.4±0.6
1 98.2±0.1 98.5±0.1 93.7±0.2 94.3±0.2
2 87.8±0.3 88.6±0.2 72.2±0.4 72.8±0.5
3 91.6±0.2 92.1±0.2 80.1±0.6 80.6±0.5

Fashion- 4 90.1±0.4 91.2±0.4 78.1±0.6 79.3±0.6
MNIST 5 88.5±0.3 88.5±0.2 81.0±0.3 80.3±0.2

6 82.0±0.5 82.7±0.4 63.1±0.7 63.5±0.7
7 97.7±0.1 98.1±0.1 95.0±0.3 95.7±0.2
8 81.3±0.3 82.7±0.4 55.0±0.6 56.5±0.7
9 95.9±0.3 96.9±0.2 90.5±0.5 91.5±0.4

avg 90.3 91 77.7 78.3
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