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Abstract

Diet plays a critical role in human health, yet001
tailoring dietary reasoning to individual health002
conditions remains a major challenge. Nutri-003
tion Question Answering (QA) has emerged004
as a popular method for addressing this prob-005
lem. However, current research faces two006
critical limitations. On one hand, the ab-007
sence of datasets involving user-specific med-008
ical information severely limits personaliza-009
tion. This challenge is further compounded010
by the wide variability in individual health011
needs. On the other hand, while large lan-012
guage models (LLMs), a popular solution for013
this task, demonstrate strong reasoning abil-014
ities, they struggle with the domain-specific015
complexities of personalized healthy dietary016
reasoning, and existing benchmarks fail to cap-017
ture these challenges. To address these gaps,018
we introduce the Nutritional Graph Question019
Answering (NGQA) benchmark, the first graph020
question answering dataset designed for per-021
sonalized nutritional health reasoning. NGQA022
leverages data from the National Health and Nu-023
trition Examination Survey (NHANES) and the024
Food and Nutrient Database for Dietary Studies025
(FNDDS) to evaluate whether a food is healthy026
for a specific user, supported by explanations027
of the key contributing nutrients. The bench-028
mark incorporates three question complexity029
settings and evaluates reasoning across three030
downstream tasks. Extensive experiments with031
LLM backbones and baseline models demon-032
strate that the NGQA benchmark effectively033
challenges existing models. In sum, NGQA034
addresses a critical real-world problem while035
advancing GraphQA research with a novel036
domain-specific benchmark. Our codebase and037
dataset are available here.038

1 Introduction039

Diet is a cornerstone of human health, playing a040

pivotal role in both maintaining well-being and041

preventing disease. Despite the well-documented042
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Question: Based on the information provided, please report the 

nutrient tags to judge if food Danish pastry with fruit is healthy or 

unhealthy to the user.

containshas 

Answer: high calorie, high sodium.

Figure 1: An Overview of NGQA Benchmark (a) along
with a data showcase: (b) an example of the knowledge
graph used for a standard level question and (c) the
question and the answer of that question under the multi-
label classification task (-ML) settings.

benefits of balanced nutrition, unhealthy eating 043

habits remain alarmingly prevalent in modern so- 044

ciety (WHO, 2021). In the United States alone, 045

approximately 42.4% of adults are classified as 046

obese (CDC, 2020a), and in 2017, poor dietary 047

habits contributed to over 11 million deaths and a 048

substantial number of disability-adjusted life-years 049

(DALYs), often linked to factors such as excessive 050

sodium intake (Afshin et al., 2019; WHO, 2023). 051

These statistics underscore an urgent need to pro- 052

mote healthier eating habits on a societal scale. 053

However, nutritional health requires complex do- 054

main knowledge, and there is no one-size-fits-all 055

solution for healthy diets, as the nutritional needs 056

of individuals can vary widely based on their health 057

conditions. For example, a diet suitable for some- 058

one with a high body mass index (BMI) may differ 059

drastically from that of an individual with a low 060

BMI. Likewise, while individuals recovering from 061

opioid misuse may benefit from a high-protein diet, 062

such dietary choices can be harmful to those manag- 063

ing chronic kidney disease (Mahboub et al., 2021). 064
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Why this benchmark matters: Numerous ef-065

forts have sought to address the challenges in per-066

sonalized nutritional health, with Nutrition Ques-067

tion Answering (QA) emerging as a popular task068

(Min et al., 2022; Bondevik et al., 2024). Recent ad-069

vancements in large language models (LLMs) have070

demonstrated significant potential in this domain,071

offering sophisticated reasoning capabilities to ana-072

lyze and interpret nutritional information (Mavro-073

matis and Karypis, 2024). However, these efforts074

remain constrained by two major limitations. First,075

to the best of our knowledge, no existing bench-076

mark truly personalizes answers based on users’077

specific health conditions, primarily due to the078

inaccessibility of individual medical data (Bölz079

et al., 2023). This lack of user-specific datasets080

has severely hindered the development of effective081

solutions. Second, while LLMs exhibit impressive082

reasoning capabilities in general domains, the med-083

ical and nutritional intricacies of this task impose084

severe limitations on their effectiveness (Mialon085

et al., 2023). Current benchmarks fail to capture086

the domain-specific complexities of personalized087

health-aware dietary reasoning, making it difficult088

to evaluate, let alone improve, these models in089

meaningful ways.090

To address these critical gaps and advance the091

understanding of healthy diet personalization, we092

propose the Nutritional Graph Question Answering093

(NGQA) benchmark. This is the first benchmark094

in the personalized nutritional health domain to095

evaluate whether a specific food is healthy for a096

user, supported by detailed reasoning of the key097

contributing nutrients. By recognizing the intri-098

cate interplay between a user’s medical conditions,099

dietary behaviors and the nutrition of foods, we100

frame this task as a knowledge graph question an-101

swering problem. Specifically, using data from102

National Health and Nutrition Examination Sur-103

vey (NHANES) and Food and Nutrient Database104

for Dietary Studies (FNDDS), we construct the105

NGQA benchmark and categorize questions into106

three complexity settings: sparse, standard, and107

complex. Each question type is further evaluated108

through three downstream tasks, binary classifi-109

cation (-B), multi-label classification (-ML), and110

text generation (-TG), to explore distinct reasoning111

aspects (Figure-1 (a)). We conduct extensive exper-112

iments using various LLM backbones and baseline113

models to ensure the benchmark is both appropri-114

ately challenging and meaningful for advancing115

the field. Our contributions can be summarized as116

follows: 117

• Novel Benchmark for Personalized Nutri- 118

tion. We present NGQA, the first benchmark 119

to incorporate users’ medical information in a 120

nutritional question answering task, address- 121

ing a significant reasearch gap in the domain 122

of personalized healthy diet research. 123

• Advancing the GraphQA Ecosystem. 124

NGQA introduces a domain-specific bench- 125

mark and extends GraphQA benchmarks 126

beyond datasets like WebQSP and Expla- 127

Graphs in general domain. This addition 128

broadens the scope of GraphQA research, 129

enabling a more comprehensive evaluation 130

of GraphQA models’ capabilities beyond 131

general reasoning tasks. 132

• Comprehensive Resource and Evaluation. 133

Through extensive experiments, NGQA pro- 134

vides a challenging benchmark, a complete 135

codebase supporting the full pipeline from 136

data preprocessing to model evaluation, and 137

extensibility for integrating new models. This 138

comprehensive resource helps advance re- 139

search in both personalized nutritional health 140

and the broader GraphQA field. 141

2 Related Work 142

Question Answering in Nutritional Health Do- 143

main. Question answering has become an essential 144

tool in the nutritional and health domain, offer- 145

ing a flexible framework for applications such as 146

food recommendation (Min et al., 2022; Bonde- 147

vik et al., 2024). Knowledge graphs (KGs) have 148

been widely used to model relationships between 149

foods, ingredients, and health, supporting tasks 150

like ingredient substitution and adaptive dietary 151

recommendations (Haussmann et al., 2019; Chen 152

et al., 2021; Fatemi et al., 2023a; Xu et al., 2024). 153

Recent approaches incorporate health metrics into 154

QA systems, focusing on recipe recommendations 155

and nutritional ontologies (Li et al., 2023; Senevi- 156

ratne et al., 2021). However, existing methods lack 157

true personalization, as highlighted by (Bölz et al., 158

2023), due to the absence of user-specific medical 159

data. Our work fills this gap by introducing the 160

first GraphQA benchmark for personalized nutri- 161

tional health, enabling models to provide tailored 162

nutritional reasoning and explanations. 163
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Figure 2: The NGQA benchmark construction process. Each stage shown in the figure is detailed in Section 3.For
example, "User Data Collection" block, is introduced in Section 3.1 under the paragraph titled User Data Collection.

Graph Retrieval Augmented Generation.164

Knowledge Graph Question Answering (KGQA)165

has progressed from early semantic parsing and166

retrieval-based methods to advanced techniques167

leveraging large language models (LLMs) and168

graph neural networks (GNNs) for reasoning and169

retrieval (Jiang et al., 2023; Kim et al., 2023;170

Gao et al., 2024). Building on this progress,171

Graph-Retrieval Augmented Generation (Graph-172

RAG) has emerged as a widely studied method,173

offering more precise, context- and structure-aware174

reasoning compared to traditional text-based RAG175

methods (Lewis et al., 2020; Lazaridou et al., 2022;176

Guo et al., 2024; Wen et al., 2023). Despite the177

development of various LLM-powered models,178

benchmarks for the Graph-RAG task remain scarce179

and lack standardization. Early benchmarks focus180

primarily on general graph tasks such as shortest181

paths and node degree (Fatemi et al., 2023b; Wang182

et al., 2024), while (He et al., 2024) introduces183

a GraphQA benchmark for complex reasoning184

using general-purpose datasets. Building on their185

framework, we develop the first domain-specific186

benchmark in nutritional health domain, bridging187

the gap between general GraphQA research188

and personalized health-aware reasoning. More189

detailed literature is available in Appendix-A.190

3 NGQA Benchmark191

3.1 Data Collection192

Data Source. Using data from the National Health193

and Nutrition Examination Survey (NHANES) and194

the Food and Nutrient Database for Dietary Studies195

(FNDDS), we construct the first GraphQA bench-196

mark designed to address personalized healthy nu-197

trition intake questions. This benchmark integrates198

detailed user health profiles, dietary behaviors,199

and comprehensive food nutritional information,200

enabling a fine-grained analysis of how individ- 201

ual health conditions interact with food nutrition. 202

By representing these relationships through graph 203

structures, the benchmark supports answering com- 204

plex nutritional questions while capturing the intri- 205

cate interplay between users’ medical conditions 206

and dietary choices. The following sections pro- 207

vide a detailed discussion of these datasets and their 208

integration into our benchmark. 209

User Data Collection. The NHANES dataset 210

forms the foundation of our work for collecting 211

user data. We extract medical information, dietary 212

habits, and food intake records to construct the 213

graph. Specifically, NHANES provides laboratory 214

reports detailing body metrics like Body Mass In- 215

dex (BMI) and blood pressure, along with biochem- 216

ical markers such as blood urea nitrogen. It also 217

includes questionnaire responses on prescription 218

drug usage, adherence to special diets, and over- 219

all health status. Additionally, NHANES records 220

users’ food intake history and dietary behaviors, 221

such as the frequency of adding salt at the table. 222

Our study incorporates 54 distinct dietary habits, 223

with detailed data processing methods provided in 224

Appendix-B. This comprehensive dataset serves as 225

the backbone of our graph, capturing user health 226

conditions and dietary patterns with granular detail. 227

Food Data Collection. Nutritional information 228

for food items is sourced from FNDDS. FNDDS 229

connects NHANES food codes to detailed nutri- 230

tional data cataloged in the What We Eat in Amer- 231

ica (WWEIA) database. Using FNDDS, we asso- 232

ciate each food item in NHANES with its full nu- 233

tritional composition. Additionally, FNDDS links 234

food items to ingredient information and classifies 235

them into broader food categories. For example, a 236

food item like "apple" is linked to its nutrient values 237

(e.g., sugars, vitamins) and assigned to the category 238
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"fruits." These associations enrich the graph by pro-239

viding node-level data for food, ingredients, and240

categories.241

Tagging Scheme. To evaluate whether a food242

is specifically healthy for a user based on their243

personal health conditions, we propose a tagging244

scheme that assigns nutrition-related tags to both245

users and foods. This systematic framework aligns246

food nutritional properties with user health needs,247

enabling robust assessments of food suitability.248

For food tagging, we build upon established249

guidelines and introduce newly applied standards.250

Prior works have utilized recommendations from251

the World Health Organization (WHO) and the252

Food Standards Agency (FSA) (Wang et al., 2021),253

while we extend this by incorporating the more de-254

tailed EU Nutrition & Health Claims Regulation255

(Commission, 2006) and the Codex Alimentarius256

Commission (CAC) (Alimentarius, 1985, 1997).257

These standards define precise thresholds for nutri-258

ent claims. For instance, the EU regulation permits259

labeling a food as "low sodium" only if it contains260

no more than 0.12 g of sodium per 100 g (Commis-261

sion, 2006). Foods meeting such criteria are tagged262

with corresponding labels like "low_sodium" or263

"high_protein", reflecting their nutritional proper-264

ties.265

On the user side, health tags are derived from266

the NHANES dataset, which includes laboratory267

results and self-reported health information. For268

example, users with high blood pressure, as defined269

by American Heart Association (AHA) thresholds270

or similar guidelines, are tagged with "hyperten-271

sion," indicating that a low-sodium diet would be272

beneficial (Grillo et al., 2019; Smyth et al., 2014).273

By linking health and food tags, our scheme ef-274

fectively represents personalized dietary needs and275

captures the interplay between medical conditions276

and nutritional requirements. The detailed stan-277

dards and additional tags for other nutrients and278

health conditions are described in Appendix-B. By279

integrating this methodology into our graph-based280

benchmark, we provide a framework for advanc-281

ing personalized dietary reasoning and evaluating282

models in this domain.283

3.2 Data Annotation284

Real-world data is inherently messy and incom-285

plete, and the datasets we use are no exception.286

Spanning from 2003 to 2020, NHANES provides287

data for approximately 100,000 users and over 2288

million food records. While this dataset offers289

an invaluable resource for studying nutrition and 290

health, it includes inconsistencies, ambiguities, and 291

irrelevant entries. To establish a scientifically ro- 292

bust and meaningful benchmark, precise data anno- 293

tation is essential. This involves not only cleaning 294

and filtering the data but also carefully defining 295

and validating annotations to accurately capture 296

real-world relationships between health conditions, 297

dietary behaviors, and food options. Our annota- 298

tion process refines both user and food datasets 299

to ensure relevance, accuracy, and applicability to 300

real-life scenarios. 301

User Filtering. Annotating user data requires 302

careful consideration of the complex interactions 303

between nutrition and health. For instance, elevated 304

blood urea nitrogen (BUN) levels may indicate kid- 305

ney dysfunction, warranting a low-protein diet, but 306

could also result from insufficient water intake. To 307

maintain scientific rigor and practical relevance, 308

we focus on annotating four prevalent health sta- 309

tuses—obesity, hypertension, opioid misuse, and 310

diabetes—that are directly influenced by dietary in- 311

terventions. Additionally, we annotate nine special 312

diets reported by users, reflecting health-related di- 313

etary practices. Further details on the definitions 314

and implications of these health statuses and diets 315

are provided in the Appendix-B. To ensure consis- 316

tency and relevance, we exclude users under 18, 317

focusing solely on adult dietary patterns. 318

Food Filtering. For food annotation, we identify 319

practical entries in the FNDDS database that align 320

with real-world dietary reasoning. While FNDDS 321

supports comprehensive nutritional analysis, it in- 322

cludes many entries unsuitable for practical use, 323

such as raw ingredients or standalone additives. To 324

address this, we restrict our focus to the "mixed 325

dishes" category, as it represents combined recipes 326

closest to real-life diets. Additionally, we include 327

other relevant categories, such as bakery products 328

and desserts (definitions of FNDDS categories are 329

available in the Appendix-I). Finally, we apply a 330

keyword-based deduplication method to remove 331

highly similar entries. 332

Multi-step Annotation. Using the previously 333

defined standards and tagging schemes, our anno- 334

tation process systematically establishes "match" 335

or "contradict" relationships between user health 336

conditions and food nutritional profiles. For exam- 337

ple, the tag "high_calorie" contradicts the condition 338

"obesity", while "low_sodium" matches with "hy- 339

pertension". To ensure accuracy and reliability, we 340

adopt a multi-step annotation process. After ini- 341
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Figure 3: The illustration of different question levels and task levels.

tial filtering and tagging, large language models342

(LLMs) perform an initial sanity check to iden-343

tify inconsistencies or anomalies in the annotations.344

Subsequently, three human annotators with domain345

expertise review and cross-validate the results to346

eliminate remaining inaccuracies. By combining347

automated checks with human validation, our rigor-348

ous annotation strategy captures the real-life com-349

plexities of personalized nutrition while maintain-350

ing high standards of quality and reliability.351

4 Task Definition and Evaluation352

4.1 Question Setting353

With the annotated data in place, we designed three354

distinct types of questions, i.e., sparse, standard,355

and complex, to capture varying levels of difficulty356

and emulate real-world scenarios in personalized357

nutrition reasoning. This stratification ensures that358

our benchmark accommodates a wide range of re-359

search and application needs, spanning from con-360

trolled, idealized setups to challenging, real-life361

cases, as illustrated in Figure-3 (a).362

Sparse questions address scenarios with min-363

imal available information. In this setting, each364

food has only one nutrition tag linked to a sin-365

gle user health condition. This setup reflects real-366

world cases where labels are scarce or data is in-367

complete, challenging models to reason effectively368

with limited information. Although sparse ques-369

tions may appear simple to human observers, the370

unique link between the user and the food signifi-371

cantly increases the difficulty of subgraph retrieval, 372

making models vulnerable to interference from ir- 373

relevant nodes. 374

Standard questions represent the balanced and 375

idealized scenarios in our benchmark. In this 376

category, foods are linked to multiple nutrition 377

tags, which either match or contradict several user 378

health conditions. This configuration reflects con- 379

trolled cases where the relationship between dietary 380

choices and health outcomes is clear-cut, enabling 381

a focused evaluation of model performance. Stan- 382

dard questions serve as a foundation for benchmark- 383

ing in structured and well-defined environments. 384

Complex questions are designed to replicate the 385

intricacies of real-life nutritional decision-making. 386

Foods in this category may simultaneously have 387

tags that both match with and contradict a user’s 388

health conditions. For instance, a food may be low 389

in sodium (beneficial for hypertension) but also 390

high in sugar (problematic for diabetes). These 391

scenarios require models to navigate conflicting in- 392

formation, prioritize user health needs, and perform 393

nuanced trade-off reasoning. This category closely 394

mirrors the ambiguous and multifaceted challenges 395

of real-world dietary decisions. 396

The benchmark’s statistical breakdown is pre- 397

sented in Table-1. To further evaluate the com- 398

plexity and informativeness of the questions, we 399

introduce the Signal-to-Noise Ratio (SNR). SNR 400

measures the ratio of nodes or tags relevant to the 401

answer (signal) against the total nodes or tags in the 402
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Question Level # Records Avg. # Nodes Avg. # Edges

Sparse 8,490 25.84 24.86
Standard 3,622 28.16 28.98
Complex 1,690 30.94 34.04

Table 1: Statistics of the Benchmark by Question Level.

Question Level Avg. Node SNR Avg. Tag SNR

Sparse 16.37 19.30
Standard 24.68 49.39
Complex 31.57 76.32

Table 2: Signal-to-Noise Ratio (SNR) by Question
Level.

graph (noise). As shown in Table-2, sparse ques-403

tions exhibit the lowest SNR, reflecting the limited404

resources available for these tasks. Conversely,405

complex questions, despite containing conflicting406

information, achieve the highest SNR, underscor-407

ing the rich contextual information necessary for408

accurate reasoning. More statistics of the bench-409

mark are available in Appendix-E.410

4.2 Task Setting411

To enhance the generality and versatility of our412

benchmark, we design three distinct downstream413

task types, each centered on the same domain ques-414

tion but requiring different forms of output, as il-415

lustrated in Figure-3 (b). This diversity ensures the416

benchmark accommodates a wide range of method-417

ologies and research focuses while fostering inno-418

vation in addressing personalized nutrition chal-419

lenges. The tasks are defined as follows:420

Binary Classification (-B): This task requires a421

simple "yes" or "no" response, indicating whether422

a specific food is suitable for a user based on423

their health profile. It emphasizes straightforward424

decision-making, reflecting applications like auto-425

mated diet advisories or recommendation systems.426

Multi-Label Classification (-ML): In this task,427

models must retrieve the nutritional tags associated428

with a food and determine which match with or429

contradict the user’s health conditions. By demand-430

ing richer output, this task evaluates the model’s431

ability to leverage graph information and identify432

nuanced relationships.433

Text Generation (-TG): The output is a nat-434

ural language explanation detailing why a food435

is healthy or unhealthy for a user. This task as-436

sesses a model’s capability for interpretable and437

user-friendly reasoning, which is crucial for real-438

world applications such as personalized dietary as-439

sistant chatbots.440

4.3 Evaluation Metrics 441

To evaluate model performance, we adopt task- 442

specific metrics tailored to each type. For classifi- 443

cation tasks, we use standard metrics like accuracy, 444

recall, precision, and F1 score for comprehensive 445

performance assessment. Multi-label classification 446

tasks extend these metrics to their weighted ver- 447

sions, accounting for the distribution of multiple la- 448

bels across samples. Text generation tasks are eval- 449

uated with widely used metrics such as ROUGE, 450

BLEU, and BERT scores, which collectively as- 451

sess relevance, and semantic similarity to reference 452

texts. The definition of ground truths are available 453

in Appendix-B. This multifaceted design supports 454

diverse model architectures and evaluation strate- 455

gies, providing a robust foundation for advancing 456

personalized nutrition research. By bridging the 457

gap between controlled research environments and 458

the complexities of real-world applications, our 459

benchmark fosters innovation and opens new av- 460

enues for addressing healthy dietary reasoning. 461

5 Experiments 462

5.1 Experiment Settings 463

In this section, we conduct extensive experiments 464

to evaluate existing Graph-RAG models’ reasoning 465

capability on the proposed benchmark. For base- 466

line models, we select five most classical baselines: 467

KAPING (Baek et al., 2023), CoT-Zero (Kojima 468

et al., 2022), CoT-BAG (Wang et al., 2024), ToG 469

(Sun et al., 2024), and a naive plain Graph-RAG 470

pipeline (implementation details in Appendix-C). 471

For the main experiments, we choose GPT-4o-mini 472

as the LLM backbone, we also conduct additional 473

experiments on a series of other classic LLM back- 474

bones in Appendix-D. Note that we didn’t select 475

the most advanced LLM backbones or the most so- 476

phisticated fine-tuned baselines because we argue 477

our contributions focus primarily on the proposed 478

benchmark with the novel tasks for this specific 479

domain, and the experiment results along with the 480

hallucination analyses have demonstrated our tasks 481

are properly designed where the classic baselines 482

can be adequately challenged while maintaining ef- 483

ficiency. In following sections, we will go through 484

the experiment results for each task. 485

5.2 Binary Classification Task 486

Table-3 (a) presents the performance of baseline 487

models on the binary classification task, which eval- 488

uates the models’ ability to provide a decisive "yes" 489
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Question Level Method a) Binary Classification (-B) b) Multi-label Classification (-ML) c) Text Generation (-TG)

Accuracy Recall Precision F1 Accuracy Recall Precision F1 ROUGE-1 ROUGE-2 ROUGE-L BLEU BERT

Sparse

Plain 0.5973 0.1634 1.0000 0.2810 0.1798 0.9943 0.2109 0.3442 0.5385 0.4775 0.5385 0.2838 0.9370
KAPING 0.5347 0.0541 0.7246 0.1006 0.1753 0.9915 0.2075 0.3394 0.5234 0.4600 0.5234 0.2674 0.9353
CoT-Zero 0.6604 0.2951 0.9983 0.4555 0.2032 0.9958 0.2435 0.3842 0.5463 0.4842 0.5462 0.2889 0.9388
CoT-BAG 0.6038 0.1769 1.0000 0.3006 0.2134 0.9966 0.2520 0.3945 0.5481 0.4886 0.5480 0.2930 0.9385

ToG 0.7729 0.5383 0.9817 0.6953 0.2439 0.9128 0.2986 0.4333 0.6254 0.5710 0.6251 0.3612 0.9465

Standard

Plain 0.5762 0.1989 1.0000 0.3317 0.4909 0.9980 0.4901 0.6528 0.7219 0.6321 0.6941 0.4840 0.9618
KAPING 0.5022 0.0637 0.9313 0.1192 0.4593 0.9956 0.4624 0.6272 0.7087 0.6237 0.6764 0.4617 0.9599
CoT-Zero 0.6565 0.3507 1.0000 0.5193 0.5390 0.9967 0.5447 0.6963 0.7329 0.6443 0.7049 0.4939 0.9630
CoT-BAG 0.5900 0.2249 1.0000 0.3673 0.5599 0.9982 0.5611 0.7091 0.7333 0.6456 0.7032 0.4951 0.9630

ToG 0.8628 0.7411 0.9993 0.8511 0.6189 0.8843 0.6793 0.7464 0.8182 0.7632 0.7817 0.6112 0.9716

Complex

Plain 0.6598 0.0636 0.9750 0.1194 0.7185 0.9721 0.7374 0.8358 0.7356 0.6510 0.7001 0.4949 0.9599
KAPING 0.6574 0.0571 0.9722 0.1079 0.6883 0.9758 0.7129 0.8093 0.7394 0.6634 0.7016 0.4839 0.9602
CoT-Zero 0.6627 0.0718 0.9778 0.1337 0.7453 0.9735 0.7679 0.8557 0.7478 0.6599 0.7103 0.5048 0.9615
CoT-BAG 0.6627 0.0701 1.0000 0.1311 0.7546 0.9631 0.7801 0.8587 0.7467 0.6622 0.7080 0.5049 0.9611

ToG 0.7473 0.3964 0.8100 0.5323 0.6153 0.6989 0.8119 0.7303 0.7729 0.6915 0.7366 0.5313 0.9639

Table 3: Experimental results based on five baseline methods on the three tasks with the three question levels using
the GPT-4o-mini. The best performance of each group is bolded.

Figure 4: Efficiency analysis of the five baseline meth-
ods across three tasks.

or "no" response based on summarized reasoning.490

The results reveal a notable conservatism in model491

behavior, as evidenced by the low recall scores.492

This likely stems from the sensitive nature of med-493

ical questions, where LLMs try to avoid offering494

simple "yes" answers without explanations unless495

their confidence is exceptionally high. Despite this496

challenge, the experiments yield two important in-497

sights into how external domain knowledge can498

support LLMs in this scenario. First, increasing499

the number of links in the graph (e.g., from Sparse500

to Standard questions) consistently improves re-501

call across all baselines. This indicates that richer502

external knowledge provides LLMs with greater503

context and reassurance, enabling them to produce504

more confident positive answers. Second, ToG505

significantly outperforms other baselines, show-506

ing performance gains unique to this task. We at-507

tribute this improvement to ToG’s effective pruning508

mechanism, which removes irrelevant nodes and509

increases the SNR. By reducing noise and focus-510

ing on relevant information, ToG enhances LLMs’511

ability to make confident and accurate decisions.512

5.3 Multi-label and Text Generation Task513

Table-3 (b) and (c) present the performance of base-514

line models on the multi-label classification (ML)515

Figure 5: Retrieval quality of ToG vs. Plain across three
types of questions on recall, precision and F1.

and text generation (TG) tasks. The ML task evalu- 516

ates models’ ability to retrieve nutrition tags asso- 517

ciated with foods and user health conditions, while 518

the TG task tests their capacity to generate natural 519

language explanations, offering a more compre- 520

hensive and realistic evaluation. The results reveal 521

similar patterns across tasks: while baselines are 522

competent at identifying nutrition tags from the 523

graph, the primary challenge lies in correctly iden- 524

tifying the relevant tags based on user health condi- 525

tions, as indicated by the overall high recall scores 526

in the ML task. 527

Both tasks are most challenging on sparse ques- 528

tion sets due to their low-resource nature. Con- 529

versely, models achieve the best performance on 530

complex question sets, which may appear coun- 531

terintuitive. However, as shown in Table-2, com- 532

plex questions have a higher Signal-to-Noise Ratio 533

(SNR), providing models with a clearer signal that 534

offsets their logical complexity. Additionally, the 535

ToG model performs similarly on the standard and 536

complex question sets due to its pruning process, 537

which increases SNR by removing irrelevant nodes. 538

While effective, this process can also discard valu- 539

able information, leading to lower performance on 540

complex questions. This trade-off contrasts with 541

ToG’s success in binary classification task and high- 542
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Question

Based on the nutrients the food provides and the 
user with obesity and opioid misuse, please answer 
whether the food "Taco, corn tortilla, beef, 
cheese" is healthy for the user and why?  

Factual Hallucination – Lack of Domain Knowledge

It depends on the user’s dietary needs; it may be 
unhealthy because the food is high in carbohydrate. 

Direct

Contextual Hallucination – Missing User’s Needs

No, because the food is high in sodium and high in 
cholesterol. It’s not good for the health. 

KAPING

Yes, because the food is high in protein and low in
carbohydrates, an appropriate food in the context.

ToG

Correct – Focus on What User’s Conditions Require

Figure 6: A case study of error analysis.

lights the comprehensiveness of our benchmark,543

which challenges models across diverse scenarios544

to uncover their strengths and weaknesses.545

5.4 Efficiency and Retrieval Quality546

Beyond model performance, efficiency is a critical547

consideration in Graph-RAG systems. To evaluate548

this, we conduct an efficiency analysis of baseline549

models on our benchmark, as shown in Figure-4.550

As can be seen, the binary classification task ex-551

hibits the fastest runtime, as it requires the shortest552

output. In contrast, the multi-label classification553

and text generation tasks involve longer outputs,554

leading to slower performance. Due to ToG’s re-555

liance on multiple LLM calls during the retrieval556

process, its runtime is significantly slower com-557

pared to other methods. Additionally, the quality558

of subgraph retrieval plays a crucial role in down-559

stream reasoning. To assess this, we perform a560

retrieval quality analysis using ToG as a case study,561

comparing it against a plain Graph-RAG pipeline,562

as illustrated in Figure-5. As shown, the retrieval563

scores of ToG align with its performance in the564

main experiments, confirming our assumption that565

fluctuations in ToG’s performance are rooted in566

its pruning process during the subgraph retrieval567

phase.568

5.5 Error Analysis569

In this section, we analyze the types of hallucina-570

tions observed in our experiments using a specific571

example, and demonstrate the importance of exter-572

nal domain knowledge in mitigating these errors.573

Traditional LLM-enhanced methods are well-574

known for their susceptibility to hallucination er-575

rors, particularly in domain-specific tasks like nu-576

tritional health (Mialon et al., 2023). Figure-6 illus- 577

trates an example where we evaluate whether the 578

food "Taco, corn tortilla, beef, cheese" is a healthy 579

option for a user who is obese and recovering from 580

opioid misuse. Our analysis identifies two main 581

types of hallucinations. The first is Factual Hal- 582

lucination, where the model produces incorrect or 583

irrelevant information, often due to reliance on gen- 584

eral knowledge not explicitly included in the graph. 585

These errors are common when LLMs perform 586

direct inference without external knowledge and 587

occasionally occur when retrieved graphs contain 588

noise. For example, the model incorrectly deemed 589

the taco unsuitable, overlooking the fact that corn 590

tortillas are relatively low in carbohydrates. 591

The second type is Contextual Hallucination, 592

where the model fails to prioritize tags that directly 593

relate to the user’s health profile, focusing instead 594

on less relevant attributes. This issue is less pro- 595

nounced in ToG due to its ability to retrieve com- 596

pact, focused subgraphs, unlike simpler methods 597

like KAPING and CoT-Zero, which lack effective 598

pruning. In this case, the taco’s high sodium and 599

cholesterol overshadowed its alignment with the 600

user’s specific health needs for a low-carb, high- 601

protein diet, leading to a less optimal assessment. 602

In summary, these hallucinations highlight the 603

importance of our domain-specific benchmark in 604

establishing a rigorous framework to evaluate and 605

improve LLMs, advancing both the nutritional 606

health domain and Graph-RAG research while fos- 607

tering the development of more robust and general- 608

izable models (More examples in Appendix-H). 609

6 Conclusion 610

In this work, we introduce the Nutritional Graph 611

Question Answering (NGQA) benchmark, the first 612

dataset designed to address the critical challenges 613

of personalized nutritional health reasoning. By 614

leveraging user-specific medical data and framing 615

the problem as a knowledge graph question answer- 616

ing task, NGQA bridges the gap between general- 617

purpose benchmarks and domain-specific applica- 618

tions. Our benchmark not only advances the scope 619

of GraphQA research by incorporating complex, 620

real-world nutritional scenarios but also provides 621

a comprehensive resource for evaluating and im- 622

proving models in this domain. We believe NGQA 623

lays the foundation for future research in person- 624

alized diet and health-aware reasoning, fostering 625

innovation in both nutritional health and GraphQA. 626
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Limitation627

In this section, we discuss the limitations of this628

work and outline directions for future research.629

First, the benchmark includes a limited number630

of health conditions, though more are available.631

For example, osteoporosis suggests a high-calcium632

diet, a renal diet indicates low protein intake, and633

high low-density lipoprotein (LDL) levels may call634

for a low-cholesterol diet. As noted in the pa-635

per, we prioritized conditions most prevalent in636

the United States and most relevant to dietary inter-637

ventions, but expanding to include additional con-638

ditions could enhance coverage and utility. Second,639

while we focus on the interplay between dietary be-640

haviors and medical conditions, other factors, such641

as food insecurity, remain unexplored. NHANES642

offers extensive socioeconomic data, presenting op-643

portunities to extend the benchmark to account for644

broader determinants of dietary decision-making.645

Third, for simplicity, complex questions are re-646

duced to binary classification by counting "match"647

and "contradict" tags. However, real-life dietary648

decisions require nuanced trade-offs and reasoning649

that go beyond this approach. More sophisticated650

evaluation methods could better reflect practical651

scenarios. Lastly, the benchmark could benefit652

from additional tasks. For example, the existing653

graphs support questions like, "What alternative654

foods could meet a user’s dietary preferences and655

medical needs?" Incorporating such tasks would656

broaden the benchmark’s scope and encourage fur-657

ther innovation. Despite these limitations, this658

work establishes a robust baseline as a pioneering659

effort in personalized nutrition reasoning. We defer660

these challenges to future work, envisioning the661

benchmark as a foundation for ongoing advance-662

ments in this critical domain.663

Ethics and Privacy Statement664

Safeguarding privacy and adhering to ethical prin-665

ciples are paramount when working with sensi-666

tive health-related data. The National Health and667

Nutrition Examination Survey (NHANES) serves668

as a benchmark in this regard, strictly complying669

with confidentiality protocols mandated by pub-670

lic legislation. These robust privacy measures671

enable us to achieve our research goals while672

remaining fully aligned with the survey’s estab-673

lished guidelines. Notably, the NHANES dataset674

is anonymized, with personally identifiable infor-675

mation (PII)—such as social security numbers and676

physical addresses—removed. Despite the absence 677

of PII, the dataset retains its utility for detailed 678

analyses, allowing us to investigate the relationship 679

between users’ medical data and health-aware food 680

recommendations as presented in this study. Ad- 681

ditionally, in practical applications, the generated 682

recommendations and interpretations are treated as 683

personal medical records, ensuring sustained pri- 684

vacy protection. By adhering to these principles, 685

our research maintains the highest levels of ethical 686

responsibility and data privacy. 687
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A Additional Related Work895

A.1 Prior Works in Nutrition Personalization896

With growing awareness of the importance of di-897

etary health, various studies have sought to incor-898

porate health metrics into applications such as food899

recommendation systems. These approaches can900

be grouped into three primary categories. First,901

some research emphasizes single indicators like902

calorie or fat content, as highlighted in works by903

Ge et al. (Ge et al., 2015) and Shirai et al. (Shirai904

et al., 2021), though such metrics often fail to rep-905

resent the multifaceted nature of a balanced diet.906

Second, simulated health data has been utilized, as907

demonstrated by Wang et al. (Wang et al., 2021),908

but these methods often diverge from real-world909

data distributions. Finally, recent studies have ap-910

plied global health guidelines to develop composite911

health scores, such as those by Bolz et al. (Bölz912

et al., 2023) and Zhang et al. (Zhang et al., 2024a).913

However, foods deemed healthy by general stan-914

dards can still negatively affect certain individuals915

(Yue et al., 2021), highlighting the absence of a916

universal solution. The primary challenge remains917

the scarcity of accurate user health data, a gap our918

benchmark uniquely addresses.919

A.2 Knowledge Graph Question Answering920

Knowledge Graph Question Answering (KGQA)921

has undergone significant advancements, evolving922

from early approaches such as semantic parsing and923

retrieval-based methods. Initial models translated924

natural language queries into structured formats925

like SPARQL for execution on knowledge graphs926

(Sun et al., 2019; Zhang et al., 2022). Many of927

these methods employed pre-trained models like928

BERT for query encoding and used frameworks929

such as GNNs or LSTMs for retrieving entities930

and subgraphs (Yasunaga et al., 2021; Taunk et al.,931

2023).932

More recent progress integrates large language933

models (LLMs) to improve both retrieval efficiency934

and reasoning ability. Approaches like Jiang et935

al. (Jiang et al., 2023) and Wang et al. (Wang936

et al., 2023) utilize LLMs to transform queries937

into formats such as SQL or SPARQL, enhanc-938

ing retrieval accuracy. Others, such as Kim et939

al. (Kim et al., 2023) and Gao et al. (Gao et al.,940

2024), focus on reasoning over retrieved subgraphs941

or triples, tackling multi-hop reasoning tasks in942

KGQA. However, most benchmarks in this field943

are designed for general-purpose datasets and fail944

to address domain-specific complexities, such as 945

the challenges unique to nutritional health reason- 946

ing. 947

A.3 Graph-Retrieval Augmented Generation 948

Graph-Retrieval Augmented Generation (Graph- 949

RAG) extends the Retrieval-Augmented Genera- 950

tion (RAG) framework (Lewis et al., 2020) by 951

enriching large language models with structured 952

knowledge retrieval. While traditional RAG re- 953

trieves unstructured text, Graph-RAG leverages 954

GNNs to retrieve structured subgraphs encoded 955

as triples, improving reasoning precision and min- 956

imizing redundancy (Guo et al., 2024; Wen et al., 957

2023; Lazaridou et al., 2022). 958

Existing Graph-RAG benchmarks primarily eval- 959

uate basic graph reasoning tasks, such as shortest 960

paths, node degree, and edge existence (Fatemi 961

et al., 2023b; Wang et al., 2024). Although these 962

benchmarks provide insights into foundational rea- 963

soning, they lack domain specificity. Recent work 964

by He et al. (He et al., 2024) introduced bench- 965

marks targeting advanced reasoning in general 966

graph contexts, but domain-specific benchmarks 967

for applications such as nutrition remain underde- 968

veloped. By adapting the principles of Graph-RAG, 969

our work introduces the first benchmark designed 970

to tackle personalized health-aware reasoning, ad- 971

dressing this critical gap in the literature. 972

B Benchmark Details 973

B.1 Data Source Description 974

NHANES. National Health and Nutrition Exam- 975

ination Survey (NHANES) is a publicly avail- 976

able dataset collected by the U.S. Centers for Dis- 977

ease Control and Prevention (CDC) to assess the 978

health and nutritional status of the U.S. population 979

through interviews, physical examinations, and lab- 980

oratory tests. Data is released every two years and 981

encompasses five main categories: Demograph- 982

ics, Dietary Data, Examination Data, Laboratory 983

Data, and Questionnaire Data. These comprehen- 984

sive datasets provide a wealth of information on 985

health indicators, dietary behaviors, and medical 986

conditions. 987

FNDDS and WWEIA. The Food and Nutrient 988

Database for Dietary Studies (FNDDS) is a com- 989

prehensive resource developed by the U.S. Depart- 990

ment of Agriculture (USDA) to facilitate dietary 991

intake analysis by providing detailed nutritional in- 992

formation for foods and beverages consumed in the 993
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United States. It serves as the backbone for analyz-994

ing dietary recall data collected through the What995

We Eat in America (WWEIA) program, which is a996

component of NHANES. WWEIA captures dietary997

intake data through 24-hour dietary recall inter-998

views, linking reported food and beverage items to999

their corresponding nutrient profiles in FNDDS. To-1000

gether, FNDDS and WWEIA enable researchers to1001

study dietary patterns, nutrient intake, and their re-1002

lationship to health outcomes, making them critical1003

tools for advancing nutrition research and public1004

health policy.1005

B.2 Dietary Habit Processing Details1006

Dietary habit data was sourced from various1007

NHANES tables, including the Diet Behavior and1008

Consumer Behavior datasets, which capture user-1009

reported behaviors and preferences related to food1010

choices, preparation methods, and consumption1011

patterns. Traditional processing approaches proved1012

insufficient for the complexity and diversity of1013

these features. To address this, a thorough man-1014

ual review was conducted by a team of four re-1015

searchers. Key features indicative of dietary habits,1016

such as awareness of healthy eating practices or1017

frequency of consuming processed or frozen foods,1018

were identified and categorized. Users were then1019

grouped into high and low habit categories based on1020

their responses, with the top 10% and bottom 10%1021

assigned corresponding habit tags. For instance,1022

users reporting the highest milk consumption were1023

tagged with "drink lots of milk," while those with1024

minimal consumption were labeled as "drink little1025

or no milk." This process generated 54 distinct di-1026

etary habit tags, which were incorporated as nodes1027

in the graph. These habit nodes provide critical1028

insights into user behaviors, enabling a nuanced1029

understanding of the relationship between dietary1030

patterns and health outcomes.1031

B.3 Full Mappings of Nutrition Tags1032

In this section, we discuss the overall mapping re-1033

lationship between health indicators and nutrition.1034

In total, we involve nutrition tags for 16 different1035

nutrients focusing on various health aspects, includ-1036

ing 7 for macro-nutrients (calories, carbohydrates,1037

protein, saturated fat, cholesterol, sugar, and dietary1038

fiber) and 9 for micro-nutrients (sodium, potassium,1039

phosphorus, iron, calcium, folic acid, and vitamin1040

C, D, and B12). A detailed table of thresholds1041

can be seen in Table-4. As discussed in the paper,1042

these thresholds are derived from existing standards1043

Nutrients Low Threshold High Threshold NRV

Calories (kcal) 40 225 2000
Carbohydrates (g) 55 75 -
Protein (g) 10 15 50
Saturated Fat (g) 1.5 5 20
Cholesterol (mg) 20 40 300
Sugar (g) 5 22.5 -
Dietary Fiber (g) 3 6 -

Sodium (mg) 120 200 2000
Potassium (mg) 0 525 3500
Phosphorus (mg) 0 105 700
Iron (mg) 0 3.3 22
Calcium (mg) 0 150 1000
Folic Acid (µg) 0 60 400
Vitamin C (mg) 0 15 100
Vitamin D (µg) 0 2.25 15
Vitamin B12 (µg) 0 0.36 2.4

Table 4: Nutrient Reference Values (NRV) and thresh-
olds (per 100g of food) used based on the nutritional
standards.

Health Indicator High Threshold Low Threshold

BMI 30 18.5
Waist Circumference (cm) 102 (88) -
Blood Pressure (mmHg) 140 90
Osteoporosis - -

Blood Urea Nitrogen (mmol/L) 7.1 -
Low-Density Lipoprotein (mmol/L) 3.3 -
Red Blood Cell (million cells/uL) - 4
Glucose (mmol/L) 7 -
Glycohemoglobin (%) 6.5 -
Hemoglobin (g/dL) - 13.2 (11.6)

Table 5: Health Indicators with Corresponding High
and Low Thresholds. Parentheses indicate sex-specific:
male (female) thresholds where applicable.

and legislation, from World Health Organization 1044

(WHO), Food Standards Agency (FSA)m EU Nu- 1045

trition & Health Claims Regulation (Commission, 1046

2006) and the Codex Alimentarius Commission 1047

(CAC) (Alimentarius, 1985, 1997). An even more 1048

detailed standards are listed in Appendix-I. Fol- 1049

lowing the similar practice, we also extract the 1050

thresholds for health conditions, as shown in Table- 1051

5, Since we have the thresholds for both nutrition 1052

and health, we demonstrate the full mapping re- 1053

lationship can be seen in Table-6. Note that the 1054

special diet data can be retrieved from NHANES 1055

data, which directly indicates a user needs certain 1056

nutrients. 1057

However, as we emphasize in the paper, the in- 1058

teractions between nutrition and health are com- 1059

plex and multi-facet. To maintain scientific rigor 1060

and practical relevance, we focus on annotating 1061

four prevalent health statues, of which diet has 1062

been proved to be beneficial for intervention. Their 1063

mapping to nutrition tags can be seen in Table-7. 1064

The definition of these major health statues are 1065

discussed in the next section. 1066
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Nutrient Category Tag Name Source Health Indicators

Macro-nutrients

High Calories Low BMI; Low waist circumference; Weight gain/Muscle building diet
Low Calories High BMI; High waist circumference; Weight loss diet
Low Carb Low carbohydrate diet; High BMI; High waist circumference
High Protein Opioid misuse; Weight gain/Muscle building diet; High protein diet
Low Protein High blood urea nitrogen; Renal/Kidney diet
Low Saturated Fat High low-density lipoprotein; Low fat/Low cholesterol diet
Low Sugar Opioid misuse; Diabetic Diet; Low sugar Diet
Low Cholesterol High low-density lipoprotein; Low fat/Low cholesterol diet
High Fiber High low-density lipoprotein; Opioid misuse; Diabetic Diet

Micro-nutrients

Low Sodium High blood pressure; Renal/Kidney diet; Low salt diet
High Potassium High blood pressure
Low Phosphorus Renal/Kidney diet
High Iron Low red blood cell/Low hemoglobin
High Calcium Osteoporosis/brittle bones
High Folic Acid Low red blood cell count
High Vitamin C Low red blood cell/Low hemoglobin; Osteoporosis/brittle bones
High Vitamin D Osteoporosis/brittle bones
High Vitamin B12 Low red blood cell count

Table 6: Nutrient Categories, Tag Names, and Associated Source Health Indicators. Nutrient categories are organized
to consolidate related tags and their respective health indicators for clarity.

Health Indicator Associated Tags

Obesity Low Calorie
Opioid Misuse High Protein; Low Sugar; Low Sodium
Hypertension Low Sodium
Diabetes Low Sugar; Low Carb
Weight Loss/Low Calorie Diet Low Calorie
Low Fat/Low Cholesterol Diet Low Cholesterol; Low Saturated Fat
Low Salt/Low Sodium Diet Low Sodium
Sugar-Free/Low Sugar Diet Low Sugar
Diabetic Diet Low Sugar; Low Carb
Weight Gain/Muscle Building Diet High Calorie; High Protein
Low Carbohydrate Diet Low Carb
High Protein Diet High Protein
Renal/Kidney Diet Low Protein

Table 7: Health Indicators and Their Associated Nutri-
tional Tags. Each indicator is linked to relevant tags
reflecting dietary requirements.

B.4 The Definition of Health Conditions1067

In the paper, we focus on annotating the four preva-1068

lent health statuses—obesity, hypertension, opioid1069

misuse, and diabetes—that are directly influenced1070

by dietary interventions. Among them, WHO and1071

American Heart Association (AHA) provide clear1072

and well-known definitions for obesity and hyper-1073

tension. We mark a user obesity if the BMI is 301074

or greater, and we mark a user hypertension if the1075

average of 4 test of systolic pressure is 140 mm1076

Hg or higher or diastolic pressure is 90 mm Hg1077

or higher. This is classified as stage-2 hyperten-1078

sion and require medical control. For Diabetes,1079

NHANES provides specific questionnaire for di-1080

abetic users, and we also mark a user diabetic if1081

the user’s Glucose (mmol/L) level is over 7.0 AND1082

Glycohemoglobin (%) is over 6.5.1083

Opioid misuse, on the other hand, is a tricky1084

health condition to be defined. However we argue 1085

this health condition is of vital importance, as the 1086

opioid crisis has been one of the most critical so- 1087

ciety concerns in the United States. Opioids are a 1088

category of drugs that include the illegal substance 1089

heroin, synthetic opioids such as fentanyl, and pre- 1090

scription painkillers like oxycodone (NIDA, 2024). 1091

While primarily used for pain management, opioids 1092

can induce euphoria, making them prone to misuse 1093

(Dennett, 2021; Rigg and Ibañez, 2010; Rosenblum 1094

et al., 2008). For instance, in 2019, 10.1 million 1095

Americans reported opioid misuse, and in 2021, 1096

there were an estimated 108,000 drug overdose 1097

deaths in the United States, 90% of which were 1098

linked to opioids (CDC, 2020b; Tanz et al., 2022). 1099

In this work, we follow prior work (Zhang et al., 1100

2024b) to define misuse by the following criteria: 1101

(1) records of illicit opioid drug use, like heroin, 1102

within a year, or (2) records of prescription opioid 1103

medication use for over 90 days, which is a thresh- 1104

old commonly employed in the medical domain 1105

(Gu et al., 2022). 1106

NHANES dataset provides illicit drug usage 1107

data, and we can track down the opioid prescrip- 1108

tion medicine usage data using the Multum Lexicon 1109

Therapeutic Classification Scheme, a 3-level nested 1110

category system that assigns a therapeutic classifi- 1111

cation to each drug and each ingredient of the drug. 1112

Category codes used to identify prescription opioid 1113

use were: Level 1: 57 = central nervous system 1114

agents; Level 2: 58 = Analgesics; Level 3: 60 = 1115
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narcotic analgesics, or 191 = narcotic analgesics1116

combinations (Detail in Appendix-I).1117

B.5 Definitions of Ground Truth1118

In this section, we outline how ground truths are1119

determined for each task. For the multi-label classi-1120

fication task, the process is straightforward. As1121

discussed earlier, nutrition tags are created and1122

linked to users’ health conditions based on pre-1123

defined standards. The ground truths for this task1124

are simply the lists of nutrition tags relevant to each1125

user’s health profile.1126

For the binary classification task, we use the1127

relationship between the user’s condition and the1128

food’s nutrition tags. A "Yes" label is assigned1129

if the relationship is a "match," and "No" is as-1130

signed if the relationship is a "contradict." In the1131

case of complex question settings, where multiple1132

"match" and "contradict" links exist, we calculate1133

the count of each. A question is marked as "Yes" if1134

the number of "match" links exceeds the number1135

of "contradict" links.1136

For the text generation task, we generate refer-1137

ence texts using a combined approach. First, the1138

overall healthiness of the food is determined us-1139

ing the binary classification result ("Yes" or "No").1140

This is followed by a natural language explanation1141

that lists the relevant nutrition tags. For example, a1142

reference text might read: "Yes, because the food1143

is low in calories and high in protein." This method1144

ensures that the reference text provides a clear and1145

natural explanation for the decision.1146

C Implementation Details1147

In this section, we discuss the implementation de-1148

tails of the baseline models. Specially how we set1149

the hyper-parameters and how we make adaption1150

to our task. All codes all provided in the codebase1151

mentioned in the abstract.1152

Plain refers to a naive GraphRAG pipeline. Un-1153

like approaches that directly input natural language1154

text or tabular data, we transform the user and food1155

information from the knowledge graph structure1156

into multiple triples, each consisting of an entity, a1157

relationship, and another entity, then concatenate1158

them before feeding into the LLMs.1159

KAPING answers questions based on a sub-1160

graph composed of the entities mentioned in the1161

query and their neighboring nodes. Following1162

the methodology described in the original pa-1163

per, we first extract the entities present in the1164

query—specifically the user and food—from the 1165

provided knowledge graph. Then, we include their 1166

respective neighboring nodes to construct a sub- 1167

graph via retrieval. This subgraph is subsequently 1168

transformed into triples and concatenated before 1169

feeding into the LLMs. Note that in the original im- 1170

plementation, the authors also used top-k filtering 1171

to prune the retrieval results. However, since we 1172

don’t have any other entities in the question, this 1173

pruning based on embedding similarities with the 1174

question doesn’t generate any reasonable results. 1175

We skip this step in our implementation. 1176

CoT-Zero is a two-stage prompting stategy. In 1177

the first stage, "Let’s think step by step" is ap- 1178

pended after the question to guide the model to- 1179

wards producing a reasoning path. In the second 1180

stage, the reasoning path is fed to the model to 1181

extract the final answer. However, our initial ex- 1182

periments showed that we can combine these two 1183

steps, by having both "Let’s think step by step" and 1184

final output requirements in one prompt, while still 1185

achieving the same performance. This allows us 1186

to save computational and API resources, avoid- 1187

ing potential inconsistencies and information loss 1188

that arise when feeding the reasoning output into a 1189

second step. This is because with the one-step ap- 1190

proach, the model can make a final decision based 1191

on both the original graph, and its own reasoning 1192

path, whereas in the second-step approach, the orig- 1193

inal graph is not available to the model. 1194

CoT-BAG is designed to improve the graph rea- 1195

soning capabilities of LLMs by first encouraing the 1196

model to "build" an implicit graph representation 1197

of the problem, and then using chain-of-thought 1198

reasoning to solve it. For this approach, a single 1199

prompt is sufficient to guide the model through 1200

both the graph construction and reasoning, by com- 1201

bining both "Let’s construct a graph from the given 1202

nodes and edges" and "Let’s think step by step to 1203

arrive at the final answer". Adapting CoT-BaG to 1204

our benchmark requires creating a textual descrip- 1205

tion of the graph triples, in the following format: 1206

"The graph contains an edge between node [source] 1207

and node [target] with attribute [relationship], an 1208

edge between..." to include in the input prompt, 1209

alongside the question, and output requirements. 1210

ToG introduces a strategy that iteratively 1211

searches and prunes reasoning paths on a knowl- 1212

edge graph starting from entities mentioned in the 1213

query to identify suitable paths. However, the open- 1214

source ToG codebase is implemented based on 1215

Wikidata and Freebase databases, making it incom- 1216
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Question Level Method a) Binary Classification (-B) b) Multi-label Classification (-ML) c) Text Generation (-TG)

Accuracy Recall Precision F1 Accuracy Recall Precision F1 ROUGE-1 ROUGE-2 ROUGE-L BLEU BERT

Sparse

Plain 0.6161 0.2413 0.8619 0.3770 0.2190 0.8958 0.2365 0.3666 0.5645 0.4999 0.5642 0.3092 0.9375
KAPING 0.5329 0.0732 0.6268 0.1310 0.1951 0.8885 0.2194 0.3468 0.5374 0.4678 0.5370 0.2759 0.9346
CoT-Zero 0.6049 0.2885 0.7255 0.4128 0.3633 0.7636 0.4265 0.5263 0.5593 0.5016 0.5589 0.3424 0.8871
CoT-BAG 0.6060 0.2875 0.7307 0.4126 0.4204 0.7430 0.4724 0.5589 0.5479 0.4888 0.5474 0.3325 0.8849

ToG 0.8483 0.6959 0.9844 0.8154 0.3227 0.9561 0.3168 0.4672 0.7216 0.6793 0.7215 0.4997 0.9582

Standard

Plain 0.5903 0.2584 0.8871 0.4002 0.5651 0.9224 0.5665 0.6932 0.7746 0.7074 0.7344 0.5513 0.9656
KAPING 0.4809 0.0480 0.6216 0.0891 0.4830 0.8954 0.5064 0.6391 0.7203 0.6368 0.6835 0.4748 0.9594
CoT-Zero 0.6576 0.3528 1.0000 0.5216 0.5373 0.9963 0.5429 0.6948 0.7333 0.6446 0.7058 0.4940 0.9507
CoT-BAG 0.5872 0.2197 1.0000 0.3603 0.5585 0.9984 0.5599 0.7084 0.5479 0.4888 0.5474 0.3325 0.8849

ToG 0.8647 0.7443 1.0000 0.8534 0.8242 0.9238 0.8437 0.8745 0.8870 0.8292 0.8227 0.6959 0.9775

Complex

Plain 0.6249 0.0424 0.3562 0.0758 0.6790 0.8679 0.7695 0.8108 0.7608 0.6814 0.7136 0.5102 0.9604
KAPING 0.6302 0.0473 0.4143 0.0849 0.6549 0.8501 0.7522 0.7915 0.7446 0.6644 0.7032 0.4910 0.9587
CoT-Zero 0.6639 0.0750 0.9787 0.1394 0.7466 0.9729 0.7693 0.8562 0.7474 0.6597 0.7107 0.5053 0.9475
CoT-BAG 0.6621 0.0685 1.0000 0.1282 0.7533 0.9628 0.7783 0.8577 0.7468 0.6620 0.7076 0.5051 0.9470

ToG 0.7219 0.2936 0.8295 0.4337 0.6871 0.7160 0.8952 0.7846 0.8177 0.7424 0.7651 0.5978 0.9692

Table 8: Experimental results based on five baseline methods on the three tasks with the three question levels using
the Llama-3.1-70B-instruct. The best performance of each group is bolded.

Question Level Method a) Binary Classification (-B) b) Multi-label Classification (-ML) c) Text Generation (-TG)

Accuracy Recall Precision F1 Accuracy Recall Precision F1 ROUGE-1 ROUGE-2 ROUGE-L BLEU BERT

Sparse

Plain 0.5363 0.0384 0.9573 0.0739 0.1965 0.8102 0.2720 0.3770 0.4572 0.3806 0.4556 0.2137 0.9200
KAPING 0.5370 0.0399 0.9588 0.0766 0.1960 0.8120 0.2713 0.3769 0.4565 0.3798 0.4548 0.2135 0.9199
CoT-Zero 0.5324 0.0301 0.9535 0.0583 0.2535 0.8273 0.3934 0.4664 0.4350 0.3575 0.4334 0.1992 0.8728
CoT-BAG 0.5885 0.2983 0.6607 0.4110 0.2698 0.8720 0.3523 0.4693 0.4498 0.3767 0.4485 0.2116 0.8777

ToG 0.6336 0.4025 0.7109 0.5140 0.2100 0.7045 0.2493 0.3563 0.4480 0.3441 0.4432 0.1940 0.9074

Standard

Plain 0.5268 0.1054 1.0000 0.1907 0.4599 0.8212 0.5386 0.6216 0.6260 0.5178 0.6067 0.3607 0.9380
KAPING 0.5245 0.1007 1.0000 0.1830 0.4606 0.8214 0.5396 0.6228 0.6272 0.5192 0.6076 0.3623 0.9387
CoT-Zero 0.4917 0.0391 1.0000 0.0753 0.5280 0.8426 0.6216 0.6881 0.5854 0.5708 0.4747 0.3213 0.9120
CoT-BAG 0.5953 0.3100 0.8049 0.4476 0.5654 0.8577 0.6222 0.7073 0.6147 0.5128 0.5968 0.3504 0.9184

ToG 0.8385 0.7630 0.9178 0.8333 0.5151 0.7613 0.5774 0.6378 0.6302 0.5061 0.5985 0.3526 0.9284

Complex

Plain 0.6627 0.0799 0.8909 0.1467 0.5991 0.7924 0.7511 0.7482 0.6636 0.5725 0.6432 0.3953 0.9402
KAPING 0.6645 0.0865 0.8833 0.1575 0.5998 0.7884 0.7518 0.7458 0.6637 0.5713 0.6452 0.3934 0.9400
CoT-Zero 0.6467 0.0277 0.9444 0.0539 0.6352 0.7831 0.8071 0.7761 0.6300 0.5339 0.6149 0.3574 0.9184
CoT-BAG 0.6556 0.2186 0.5654 0.3153 0.6295 0.7686 0.7996 0.7712 0.6506 0.5619 0.6321 0.3829 0.9223

ToG 0.7710 0.7732 0.6565 0.7101 0.5224 0.6157 0.7529 0.6408 0.6296 0.5114 0.5981 0.3500 0.9267

Table 9: Experimental results based on five baseline methods on the three tasks with the three question levels using
the GPT-3.5-turbo. The best performance of each group is bolded.

patible with private datasets. To evaluate ToG on1217

our benchmark, we reimplemented it following the1218

original methodology. Furthermore, we adapted1219

ToG to better suit the characteristics of our bench-1220

mark with the following adjustments: 1). Adjusting1221

the width parameter to 5: ToG’s original width pa-1222

rameter is set to 3, which retains three reasoning1223

paths during pruning. However, answering ques-1224

tions in our benchmark sometimes requires more1225

than three reasoning paths. By setting the width1226

parameter to 5, ToG preserves five reasoning paths1227

at each pruning step and generates answers based1228

on these paths. 2). Delaying pruning until the1229

second iteration: In ToG’s first iteration, the in-1230

formation gathered is often insufficient to evaluate1231

the importance of each reasoning path. Pruning1232

too early risks discarding paths that may be critical1233

for answering the query. Delaying pruning allows1234

ToG to collect more comprehensive information1235

before making pruning decisions. These modifi-1236

cations ensure that ToG is better aligned with the1237

requirements and complexities of our benchmark,1238

enabling more effective performance evaluation.1239

D Additional Experiments 1240

To further demonstrate the performance of different 1241

LLM backbones on our benchmark, we conducted 1242

additional tests using Llama-3.1-70b-Instruct and 1243

GPT-3.5-Turbo as backbones for various baselines. 1244

As shown in Table-8 and Table-9, the performance 1245

trends of Llama-3.1-70b-Instruct align closely with 1246

those of GPT-4o-mini, although Llama-3.1-70b- 1247

Instruct generally yields better results. This is con- 1248

sistent with its stronger reasoning capabilities. 1249

Additionally, ToG exhibited a noticeable per- 1250

formance degradation when GPT-3.5-Turbo was 1251

used as the backbone, particularly when addressing 1252

standard and complex questions. This decline is 1253

primarily due to GPT-3.5-Turbo’s relatively weaker 1254

reasoning abilities, which often lead to the retrieval 1255

of suboptimal information. Such information pro- 1256

vides minimal support—or even introduces neg- 1257

ative impacts—on subsequent answer generation. 1258

These two sets of experiments highlight the strin- 1259

gent reasoning requirements imposed by our bench- 1260

mark on the tested models. 1261
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Diet Type Obesity Hypertension Opioid Misuse Diabetes

Weight Loss/Low Calorie Diet 2,253 647 222 267
Low Fat/Low Cholesterol Diet 448 247 76 116
Low Salt/Low Sodium Diet 442 350 86 115
Sugar-Free/Low Sugar Diet 170 89 20 78
Diabetic Diet 692 432 126 647
Weight Gain/Muscle Building Diet 3 20 12 1
Low Carbohydrate Diet 244 69 25 57
High Protein Diet 47 12 9 8
Renal/Kidney Diet 25 24 13 7

Table 10: Adoption of Diet Types Across Health Conditions. Each entry represents the number of users with a
specific condition following a corresponding diet type.

Status # Users

Weight Loss/Low Calorie Diet 4,693
Low Fat/Low Cholesterol Diet 1,196
Low Salt/Low Sodium Diet 1,037
Sugar-Free/Low Sugar Diet 417
Diabetic Diet 1,403
Weight Gain/Muscle Building Diet 274
Low Carbohydrate Diet 489
High Protein Diet 146
Renal/Kidney Diet 59
Obesity 18,271
Hypertension 10,257
Opioid Misuse 2,822
Diabetes 3,837

Table 11: Distribution of Users Across Health Condi-
tions and Special Diets.

E Additional Statistics1262

In addition to the basic statistics provided above,1263

we also provide an in detailed benchmark dis-1264

cussing the user distribution on health conditions1265

and the overlap between the four major conditions1266

and the special diets.1267

Spanning from 2003 to 2020, the latest available1268

NHANES data includes a total of 95,872 unique1269

users. Table-11 illustrates the distribution of health1270

conditions across this population, highlighting the1271

significant prevalence of obesity (18,271 users) and1272

hypertension (10,257 users). These numbers em-1273

phasize the widespread impact of these conditions1274

on public health and underscore the urgent need for1275

dietary interventions. However, the stark contrast1276

between the prevalence of these conditions and the1277

adoption of relevant dietary interventions—such as1278

low-calorie diets (4,693 users) or low-sodium di-1279

ets (1,037 users)—reveals a significant gap. While 1280

conditions like obesity and hypertension demand 1281

immediate dietary action, far fewer individuals en- 1282

gage in corresponding interventions. This disparity 1283

highlights the critical need for personalized dietary 1284

reasoning to encourage healthier eating habits tai- 1285

lored to individual health conditions. 1286

A similar trend emerges in Table-10, which ex- 1287

amines the alignment between specific health con- 1288

ditions and diet types. While there is some adoption 1289

of relevant dietary actions, such as weight loss di- 1290

ets (2,253 for obesity, 647 for hypertension) and 1291

low-sodium diets (442 for obesity, 350 for hyper- 1292

tension), these numbers remain disproportionately 1293

low relative to the overall prevalence of these con- 1294

ditions. The gap is even more pronounced for 1295

diabetes, where fewer than half of diagnosed in- 1296

dividuals (647 users) follow diabetic diets out of 1297

3,837 diagnosed users. Specialized interventions, 1298

such as renal/kidney or muscle-building diets, see 1299

minimal adoption across all conditions, suggest- 1300

ing a lack of accessibility or awareness for these 1301

targeted approaches. These patterns reinforce the 1302

need for tailored, actionable dietary recommenda- 1303

tions to address the divide between health condition 1304

prevalence and effective dietary responses, ensur- 1305

ing broader access to appropriate and impactful 1306

interventions. 1307

F Prompt Design 1308

In this section, we will demonstrate our carefully 1309

designed prompts for the three task settings and 1310

selected baselines. The principle of our prompt 1311

design is to let LLMs become familiar with nutri- 1312

tional domain knowledge while avoiding providing 1313

explicit guidance. 1314
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Figure 7: The paradigm of prompt for final output.

Figure 8: The prompt used in ToG.

When querying LLMs for the final output, the1315

paradigm of our prompt is shown as Figure-7.1316

The system prompt is fixed while the user prompt1317

consists of four flexible parts: question, method1318

prompt, textualized graph, and task prompt. The1319

question and task prompt will be automatically ad-1320

justed according to the experiment settings. The 1321

method prompt can be customized to the meth- 1322

ods proposed by the benchmark users, e.g., adding 1323

"Let’s think step by step." for CoT-Zero and adding 1324

"Let’s construct a graph from the given nodes and 1325

edges" for CoT-BAG. We encourage benchmark 1326

users to further explore the potential of method 1327

prompts. The textualized graph is by default gener- 1328

ated by concatenating the triplets in the retrieved 1329

knowledge graph. Benchmark users can also cus- 1330

tomize their own textualization method. 1331

Additionally, the prompt we used to prune the 1332

relations and entities when testing ToG is shown in 1333

Figure-8. 1334

G Case Study 1335

We present 7 case studies across 3 Tasks (Bi- 1336

nary Classification, Multi-label Classification, Text 1337

Generation), 3 Question Levels (Sparse, Standard, 1338

Complex) and 5 Baselines (Plain, KAPING, CoT- 1339

Zero, CoT-BaG, ToG). This section provides in- 1340
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sights into how the prompts are structured across1341

different baselines and the reasoning path behind1342

the LLM’s final answer, as detailed in Tables 12-18.1343

The case studies provide critical insights into the1344

strengths and limitations of each baseline, while1345

emphasizing the challenges posed by personal-1346

ized dietary reasoning, highlighting our bench-1347

mark’s role in advancing the development of ro-1348

bust, domain-specific AI models for personalized1349

health-aware nutrition reasoning.1350

H Addtional Error Analysis1351

Our experiments showed that in the specific task of1352

health-aware nutrition reasoning, LLMs are prone1353

to two main types of errors: contextual hallucina-1354

tion and factual hallucination. To understand these1355

shortcomings, we perform an error analysis focus-1356

ing on the Text Quality Evaluation task, using 31357

methods (KAPING, CoT-Zero, ToG) as a repre-1358

sentative setting. We prompt the models to also1359

include the reasonings behind their final answer,1360

which then go through a human review process,1361

revealing 2 types of reasoning failures: Contextual1362

Hallucination and Factual Hallucination. Note that1363

we do not check for KG topology errors, as our KG1364

generation process ensures there are no structural1365

problems in the knowledge base that would affect1366

the model’s information retrieval and processing1367

performance. Exemplary demonstrations of these1368

2 error types are shown in Table-19 and Table-20.1369

I Standards and Regulation1370

In this section, we provide the standards and reg-1371

ulations used in this paper and attach their links1372

of original document in footnote. There in general1373

three categories: 1) The FNDDS category code 11374

used for filtering food candidates (Figure-9). 2) Nu-1375

trition claim regulations from WHO, FSA2, CAC34,1376

and EU legislation5. used for defining nutrition1377

thresholds (Figure-10 and Figure-11) . Note that1378

since there are discrepancies in the regulation. We1379

adopt a stricter measure and make it sure it fits1380

NHANES data. The Vitamins and Minerals high1381

thresholds are calculated from the Daily Nutritional1382

Reference Value (NRV), where CAC defines if a1383

food (per 100g) contains over 15% of NRV, it can1384

1Full documention of FNDDS at here
2FSA Guideline
3Guidelines on Nutrition Labeling
4Guidelines for Use of Nutrition and Health Claims
5EU Nutrition & Health Claims Regulation legislation

(EC)

claim itself a source of such nutrient. The Codex 1385

Alimentarius, or "Food Code" is a collection of 1386

standards, guidelines and codes of practice adopted 1387

by the Codex Alimentarius Commission. The Com- 1388

mission, also known as CAC, is the central part 1389

of the Joint FAO/WHO Food Standards Program 1390

and was established by FAO and WHO to protect 1391

consumer health and promote fair practices in food 1392

trade. 3) The Multum Lexicon Therapeutic Classifi- 1393

cation Scheme6, used to define opioid prescription 1394

medicines and later mark opioid misuse (Figure- 1395

12). 1396

6Full document of Multum Lexicon Therapeutic Classifi-
cation Scheme at here
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Configurations Task: Binary Classification

Question: Complex

Model: GPT-4o-mini

Method: Plain

Prompt [Question] Based on the nutrients the food provides and the user needs, please answer whether
the food "Black beans and brown rice" is healthy for the user? Please answer with yes or no.

[Method prompt] Below are the extra information you use to answer the question, note that you
should not use your general knowledge and the answer is among this information.

[Textualized graph] (Black beans and brown rice belongs to Bean, pea, legume dishes), (Black
beans and brown rice has Black beans, from dried, fat added), (Black beans and brown rice
has Rice, brown, cooked, no added fat), (Black beans and brown rice belongs to low_carb),
(Black beans and brown rice belongs to low_sugar), (Black beans and brown rice belongs to
high_sodium), (Black beans and brown rice belongs to low_protein), (Black beans and brown
rice belongs to low_cholesterol), (Black beans and brown rice belongs to low_saturated_fat),
(user has Eats lots of fish), (user has Adds little to no salt at table), (user has Eats little to no
fast food), (user has Eats few to no ready to eat meals), (user has Takes more supplements),
(user has Uses lots of salt in preparation), (user has Ate more food than usual), (user has Ate
less food than usual), (user has Eats gluten free diet), (user has Eats high protein diet), (user
has diabetes), (user has Low carbohydrate diet), (user has High protein diet), (diabetes match
low_sugar), (diabetes match low_carb), (Low carbohydrate diet match low_carb), (High protein
diet contradict low_protein)

[Note prompt] Important Note: Your output will strictly be Yes or No with no other words.

True Answer No

LLM Answer No

LLM Reasoning While black beans and brown rice provide some beneficial nutrients, they are low in protein,
which contradicts the user’s high protein diet requirement. Additionally, the dish is high
in sodium, which may not be suitable for someone managing diabetes and following a low
carbohydrate and low sugar diet. Therefore, it does not align well with the user’s nutritional
needs.

Observation Factual hallucination: Although the model is able to correctly determine that the food is unhealthy
to the user because it is low in protein compared to the user’s High protein diet requirement,
upon inspecting its reasonings, it is found that the model mistakenly deduces that high_sodium
food tag is unsuitable for a low carb and low sugar diet, which is not correct.

Table 12: Case Study 1
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Configurations Task: Multi-label Classification

Question: Standard

Model: Llama-3.1-70b-instruct

Method: KAPING

Prompt [Question] Based on the nutrients the food provides and the user needs, please answer what
nutrient tags are used to determine whether the food "Nachos, cheese only" is healthy or
unhealthy for the user?

[Method prompt] Below are the extra information you use to answer the question, note that you
should not use your general knowledge and the answer is among this information.

[Textualized graph] (Nachos, cheese only belongs to Nachos), (Nachos, cheese only has Cheese
sauce), (Nachos, cheese only has Snacks, tortilla chips, plain, white corn, salted), (Nachos,
cheese only has Fast foods, nachos, with cheese), (Nachos, cheese only belongs to low_carb),
(Nachos, cheese only belongs to low_sugar), (Nachos, cheese only belongs to high_sodium),
(Nachos, cheese only belongs to high_calorie), (Nachos, cheese only belongs to low_protein),
(Nachos, cheese only belongs to low_cholesterol), (user has Drinks little or no milk), (user has
Eats little or no shellfish), (user has Adds little to no salt at table), (user has Drinks Alcohol more
than average), (user has Eats many ready to eat meals), (user has Drinks lots of water), (user has
Ate more food than usual), (user has Ate less food than usual), (user has Eats gluten free diet),
(user has obesity), (user has High protein diet), (obesity contradict high_calorie), (High protein
diet contradict low_protein)

[Note prompt] Important Note: Your output must be strictly, with no extra words, separated
by comma, a list of nutrients with high or low before the nutrients among these options: carb,
protein, sugar, sodium, cholesterol, saturated_fat, calorie. For example, the output is: high_carb,
low_protein, high_sugar. You should only include the nutrient tags that connect the food with
the user.

True Answer high_calorie, low_protein

LLM Answer high_calorie, high_sodium, low_protein

LLM Reasoning It is stated that "Nachos, cheese only belongs to high_calorie" and "high_sodium." Additionally,
it is mentioned that "Nachos, cheese only belongs to low_protein."
Given the user’s condition of obesity and High protein diet requirements, consuming high-calorie
food would contradict their health goal of obesity. Furthermore, a high-protein diet requirement
contradicts the fact that “Nachos, cheese only belongs to low_protein”. User’s habit of adding
little to no salt at table contradicts the fact that “Nachos, cheese only belong to high_sodium”.

Notes The model includes information about the user’s habit of adding little to no salt at the table and
concludes that high_sodium is a food tag that is important in determining the food’s healthiness,
which is irrelevant information in this case because it is supposed to focus on the user’s health
and diet only - Factual Hallucination.

Table 13: Case Study 2
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Configurations Task: Text Generation

Question: Complex

Model: GPT-4o-mini

Method: CoT-Zero

Prompt [Question] Based on the nutrients the food provides and the user needs, please answer whether
the food "Turkey with gravy" is healthy for the user? Please answer with a short sentence
explaining why.

[Method prompt] Below are the extra information you use to answer the question, note that you
should not use your general knowledge and the answer is among this information. Let’s think
step by step to determine the healthiness of the food, by extracting the nutritional properties of
the food from the given graph, then comparing them to the nutrition requirements of the health
status, dietary need and habits of the user. A food is unhealthy only if it has certain properties
that are unsuitable to the user’s health and diet. Do not be too strict with your criteria, only
focus on a few main nutritional tags that strongly indicate its healthiness or unhealthiness to the
particular diet or health status the user has. Some nutritional tags might not be as important in
determining healthiness.

[Textualized graph] (Turkey with gravy belongs to Poultry mixed dishes), (Turkey with gravy
has Turkey, whole, meat only, cooked, roasted), (Turkey with gravy has Salt, table, iodized),
(Turkey with gravy has Gravy, chicken, canned or bottled, ready-to-serve), (Turkey with gravy
belongs to low_carb), (Turkey with gravy belongs to low_sugar), (Turkey with gravy belongs
to high_sodium), (Turkey with gravy belongs to high_protein), (Turkey with gravy belongs to
high_cholesterol), (Turkey with gravy belongs to low_saturated_fat), (user has Eats little or no
shellfish), (user has Drinks Alcohol less than average), (user has Eats little to no frozen food),
(user has Eats few to no meals outside home), (user has Eats few to no ready to eat meals),
(user has Takes few or no supplements), (user has Uses little to no salt in preparation), (user
has Ate more food than usual), (user has Ate less food than usual), (user has Eats weight loss
diet), (user has Eats low fat diet), (user has Eats high fiber diet), (user has opioid_misuse), (user
has diabetes), (user has Low fat/Low cholesterol diet), (user has Low salt/Low sodium diet),
(user has Diabetic diet), (opioid_misuse match high_protein), (opioid_misuse match low_sugar),
(opioid_misuse contradict high_sodium), (diabetes match low_sugar), (diabetes match low_carb),
(Low fat/Low cholesterol diet contradict high_cholesterol), (Low fat/Low cholesterol diet match
low_saturated_fat), (Low salt/Low sodium diet contradict high_sodium), (Diabetic diet match
low_sugar), (Diabetic diet match low_carb)

[Note prompt] Important Note: Your output must be a Yes or No followed by strictly a list of
nutrients with high or low as prefix among these options: carb, protein, sugar, sodium, cholesterol,
saturated fat, calorie. For example, the output is: Yes, because the food is high in carb, low in
protein, high in sugar.

True Answer Yes, because the food is low in carb, low in sugar, low in saturated_fat, high in protein.

LLM Answer No, because the food is high in sodium, high in cholesterol.

LLM Reasoning Turkey with gravy is high in sodium, which contradicts the user’s low salt/low sodium diet. It is
also high in cholesterol, which contradicts the user’s low fat/low cholesterol diet.

Notes The model fails to recognize there are far more good properties about this food item than bad
ones.

Table 14: Case Study 3
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Configurations Task: Multi-label Classification

Question: Sparse

Model: GPT-3.5-turbo

Method: CoT-BaG

Prompt [Question] Based on the nutrients the food provides and the user needs, please answer whether
the food "Sesame chicken" is healthy for the user? Please answer with a short sentence
explaining why.

[Method prompt] Below are the extra information you use to answer the question, note that you
should not use your general knowledge and the answer is among this information. You will be
given the textual description of a directed graph. Let’s first construct a graph with the given nodes
and edges. Then determine the healthiness of the food by traversing the graph and determining
the nutritional properties of the food, then compare them to the health status, dietary need and
habits of the user. Do not be too strict with your criteria, only focus on a few main nutritional
tags that strongly indicate its healthiness or unhealthiness to the particular diet or health status
the user has. Some nutritional tags might not be as important in determining healthiness.

[Textualized graph] Here is the description of the graph: This is the list of edges: an edge between
node "Sesame chicken" and "Stir-fry and soy-based sauce mixtures" with attribute "belongs
to", an edge between node "Sesame chicken" and "Restaurant, Chinese, sesame chicken" with
attribute "has", an edge between node "Sesame chicken" and "low_carb" with attribute "belongs
to", an edge between node "Sesame chicken" and "high_sodium" with attribute "belongs to",
an edge between node "Sesame chicken" and "high_calorie" with attribute "belongs to", an
edge between node "Sesame chicken" and "high_cholesterol" with attribute "belongs to", an
edge between node "user" and "Eats little or no shellfish" with attribute "has", an edge between
node "user" and "Eats little or no fish" with attribute "has", an edge between node "user" and
"Adds little to no salt at table" with attribute "has", an edge between node "user" and "Heavy
cigarette smoker" with attribute "has", an edge between node "user" and "Drinks Alcohol more
than average" with attribute "has", an edge between node "user" and "Eats lots of frozen food"
with attribute "has", an edge between node "user" and "Eats few to no ready to eat meals" with
attribute "has", an edge between node "user" and "Takes few or no supplements" with attribute
"has", an edge between node "user" and "Drinks lots of water" with attribute "has", an edge
between node "user" and "Eats organic food less often" with attribute "has", an edge between
node "user" and "Claims to have a poor diet" with attribute "has", an edge between node "user"
and "Ate more food than usual" with attribute "has", an edge between node "user" and "obesity"
with attribute "has", an edge between node "user" and "hypertension" with attribute "has", an
edge between node "obesity" and "high_calorie" with attribute "contradict", an edge between
node "hypertension" and "high_sodium" with attribute "contradict".

[Note prompt] Important Note: Your output must be a Yes or No followed by strictly a list of
nutrients with high or low as prefix among these options: carb, protein, sugar, sodium, cholesterol,
saturated fat, calorie. For example, the output is: Yes, because the food is high in carb, low in
protein, high in sugar.

True Answer No, because the food is high in sodium, high in calorie.

LLM Answer No, because the food is high in sodium, high in calorie, high in cholesterol.

LLM Reasoning Sesame chicken typically contains a lot of sodium due to the soy-based sauce, high calories from
frying, and cholesterol from the meat and sauce. These nutritional properties may not align well
with the user’s dietary needs, especially if they have hypertension or obesity.

Notes Although the model is able to identify two important food tags that contribute to the food’s
unhealthiness, upon inspecting its reasonings, it is unclear whether the model deduces this answer
from the graph information, or from its general knowledge of the food’s ingredients.

Table 15: Case Study 4
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Configurations Task: Text Generation

Question: Standard

Model: GPT-4o-mini

Method: ToG

Prompt [Question] Based on the nutrients the food provides and the user needs, please answer whether
the food "Vegetable rice soup, canned, prepared with water or ready-to-serve" is healthy for
the user? Please answer with a short sentence explaining why.

[Method prompt] Below are the extra information you use to answer the question, note that you
should not use your general knowledge and the answer is among this information. You will be
given the textual description of a directed graph.

[Textualized graph] Note: Bolded triples are those that appear in ToG’s retrieved subgraph.
(Vegetable rice soup, canned, prepared with water or ready-to-serve belongs to Soups), (Vegetable
rice soup, canned, prepared with water or ready-to-serve has Soup, minestrone, canned, chunky,
ready-to-serve), (Vegetable rice soup, canned, prepared with water or ready-to-serve belongs
to low_carb), (Vegetable rice soup, canned, prepared with water or ready-to-serve belongs to
low_sugar), (Vegetable rice soup, canned, prepared with water or ready-to-serve belongs to
high_sodium), (Vegetable rice soup, canned, prepared with water or ready-to-serve belongs to
low_protein), (Vegetable rice soup, canned, prepared with water or ready-to-serve belongs
to low_cholesterol), (Vegetable rice soup, canned, prepared with water or ready-to-serve
belongs to low_saturated_fat), (user has Drinks lots of milk), (user has Eats little or no
shellfish), (user has Eats little or no fish), (user has Adds little to no salt at table), (user has
Eats few to no meals outside home), (user has Eats few to no ready to eat meals), (user has
Takes more supplements), (user has Claims to have a good diet), (user has Ate more food than
usual), (user has Ate less food than usual), (user has Eats weight loss diet), (user has Eats high
protein diet), (user has Low fat/Low cholesterol diet), (user has Low carbohydrate diet),
(Low fat/Low cholesterol diet match low_cholesterol), (Low fat/Low cholesterol diet match
low_saturated_fat), (Low carbohydrate diet match low_carb)

[Note prompt] Important Note: Your output must be a Yes or No followed by strictly a list of
nutrients with high or low as prefix among these options: carb, protein, sugar, sodium, cholesterol,
saturated fat, calorie. For example, the output is: Yes, because the food is high in carb, low in
protein, high in sugar.

True Answer Yes, because the food is low in carb, low in cholesterol, low in saturated_fat.

LLM Answer Yes, because the food is low in carb, low in cholesterol, low in saturated fat.

LLM Reasoning The user has a Low fat/Low cholesterol diet and a Low carbohydrate diet. The given food,
Vegetable rice soup, matches the user’s dietary requirements as it belongs to low_cholesterol,
low_saturated_fat, and low_carb categories. Therefore, the food is suitable for the user’s needs.

Observation ToG’s retrieved subgraph contains all the necessary triples, no more no less, to determine that
the food is healthy to the user’s diet requirements.

Table 16: Case Study 5
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Configurations Task: Text Generation

Question: Complex

Model: Llama-3.1-70B-instruct

Method: ToG

Prompt [Question] Based on the nutrients the food provides and the user needs, please answer whether
the food "Pie, custard, individual size or tart" is healthy for the user? Please answer with a
short sentence explaining why.

[Method prompt] Below are the extra information you use to answer the question, note that you
should not use your general knowledge and the answer is among this information. You will be
given the textual description of a directed graph.

[Textualized graph] Note: Bolded triples are those that appear in ToG’s retrieved subgraph.
(Pie, custard, individual size or tart belongs to Cakes and pies), (Pie, custard, individual size or
tart has Sugars, granulated), (Pie, custard, individual size or tart has Vanilla extract, imitation,
no alcohol), (Pie, custard, individual size or tart has Cornstarch), (Pie, custard, individual size
or tart has Egg, whole, raw, fresh), (Pie, custard, individual size or tart has Wheat flour, white,
all-purpose, enriched, bleached), (Pie, custard, individual size or tart has Shortening, vegetable,
household, composite), (Pie, custard, individual size or tart has Salt, table, iodized), (Pie, custard,
individual size or tart has Milk, nonfat, fluid, without added vitamin A and vitamin D (fat free or
skim)), (Pie, custard, individual size or tart has Beverages, water, tap, municipal), (Pie, custard,
individual size or tart belongs to low_carb), (Pie, custard, individual size or tart belongs to
high_sodium), (Pie, custard, individual size or tart belongs to low_protein), (Pie, custard,
individual size or tart belongs to high_cholesterol), (Pie, custard, individual size or tart
belongs to low_saturated_fat), (user has Drinks lots of milk), (user has Uses tobacco often),
(user has Drinks Alcohol more than average), (user has Rarely or never check nutrition labels),
(user has Takes few or no supplements), (user has Uses lots of salt in preparation), (user has
Claims to have a poor diet), (user has Ate more food than usual), (user has Ate less food than
usual), (user has Eats weight loss diet), (user has obesity), (user has opioid_misuse), (user
has hypertension), (user has diabetes), (user has Low fat/Low cholesterol diet), (obesity
need low_calorie), (opioid_misuse contradict low_protein), (opioid_misuse need low_sugar),
(opioid_misuse contradict high_sodium), (hypertension contradict high_sodium), (diabetes
need low_sugar), (diabetes match low_carb), (Low fat/Low cholesterol diet contradict
high_cholesterol), (Low fat/Low cholesterol diet match low_saturated_fat)

[Note prompt] Important Note: Your output must be a Yes or No followed by strictly a list of
nutrients with high or low as prefix among these options: carb, protein, sugar, sodium, cholesterol,
saturated fat, calorie. For example, the output is: Yes, because the food is high in carb, low in
protein, high in sugar.

True Answer No, because the food is high in sodium, high in cholesterol, low in protein.

LLM Answer No, because the food is low in carb, low in protein, high in cholesterol.

LLM Reasoning The user has diabetes, and a low-carb diet is suitable for diabetes management. Therefore, the
food being low in carb is a positive aspect. However, the user also has opioid misuse, which
contradicts with the food being low in protein. Protein is essential for overall health and recovery.
Additionally, the user follows a Low fat/Low cholesterol diet. The food being high in cholesterol
contradicts this requirement.

Observation ToG’s retrieved subgraph doesn’t contain the important triple “(hypertension contradict
high_sodium)”, hence it fails to include this information in the reasoning process. Instead,
it incorrectly includes the food tag low_carb into the final answer, despite successfully identify-
ing that this is a positive aspect of the food.

Table 17: Case Study 6
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Configurations Task: Multi-label Classification

Question: Complex

Model: Llama-3.1-70B-instruct

Method: ToG

Prompt [Question] Based on the nutrients the food provides and the user needs, please answer what
nutrient tags are used to determine whether the food "Lasagna with cheese and meat sauce,
reduced fat and sodium (diet frozen meal)" is healthy or unhealthy for the user?

[Method prompt] Below are the extra information you use to answer the question, note that you
should not use your general knowledge and the answer is among this information. You will be
given the textual description of a directed graph.

[Textualized graph] Note: Bolded triples are those that appear in ToG’s retrieved subgraph.
(Lasagna with cheese and meat sauce, reduced fat and sodium (diet frozen meal) belongs to Pasta
mixed dishes, excludes macaroni and cheese), (Lasagna with cheese and meat sauce, reduced
fat and sodium (diet frozen meal) belongs to low_carb), (Lasagna with cheese and meat
sauce, reduced fat and sodium (diet frozen meal) belongs to low_sugar), (Lasagna with
cheese and meat sauce, reduced fat and sodium (diet frozen meal) belongs to high_sodium),
(Lasagna with cheese and meat sauce, reduced fat and sodium (diet frozen meal) belongs to
low_protein), (Lasagna with cheese and meat sauce, reduced fat and sodium (diet frozen
meal) belongs to low_cholesterol), (Lasagna with cheese and meat sauce, reduced fat and
sodium (diet frozen meal) belongs to low_saturated_fat), (user has Eats lots of shellfish),
(user has Eats lots of fish), (user has Eats little to no frozen food), (user has Eats few to
no meals outside home), (user has Eats few to no ready to eat meals), (user has Takes few
or no supplements), (user has Uses lots of salt in preparation), (user has Claims to have a
poor diet), (user has Ate more food than usual), (user has Ate less food than usual), (user has
Eats weight loss diet), (user has obesity), (user has opioid_misuse), (user has hypertension),
(user has diabetes), (user has Low fat/Low cholesterol diet), (obesity need low_calorie),
(opioid_misuse contradict low_protein), (opioid_misuse match low_sugar), (opioid_misuse con-
tradict high_sodium), (hypertension contradict high_sodium), (diabetes match low_sugar),
(diabetes match low_carb), (Low fat/Low cholesterol diet match low_cholesterol), (Low
fat/Low cholesterol diet match low_saturated_fat)

[Note prompt] Important Note: Your output must be separated by comma, a list of nutrients with
high or low before the nutrients among these options: carb, protein, sugar, sodium, cholesterol,
saturated_fat, calorie. For example, the output is: high_carb, low_protein, high_sugar. Provide
reasonings for your output.

True Answer low_carb, low_sugar, high_sodium, low_cholesterol, low_saturated_fat, low_protein

LLM Answer high_sodium, low_sugar, low_cholesterol, low_carb

LLM Reasoning - high_sodium: Although the meal is labeled as "reduced sodium", it still belongs to the
high_sodium category. This is a concern for the user who has hypertension, as high sodium
intake can exacerbate this condition. - low_sugar: The meal belongs to the low_sugar category,
which is good for the user who has opioid_misuse. - low_cholesterol: The user has Low fat/Low
cholesterol diet, which matches low_cholesterol of the food. - low_carb: The food is low in carb,
which is suitable for the user who has diabetes.

Observation The model is able to correctly identify 4 out of 6 important tags in this case. Although it is
missing half of the tags, one good thing to note is that ToG is able to pick out both the matches
(low_cholesterol, low_sugar, low_carb) and the contradictions (high_sodium).

Table 18: Case Study 7
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Question Based on the nutrients the food provides and the user needs, please answer whether the food
"Cheese pastry puffs" is healthy for the user? Please answer with a short sentence explaining
why.

User Profile Eats lots of shellfish, Eats lots of fish, Light cigarette smoker, Drinks alcohol less than average,
Eats little to no fast food, Eats little to no frozen food, Often checks nutrition labels, Takes more
supplements, Uses little to no salt in preparation, Drinks little water, Eats weight-gain diet, Has
hypertension

Food Profile low_carb, low_sugar, high_sodium, high_calorie, low_protein, high_cholesterol,
high_saturated_fat

True Answer No, because the food is high in sodium.

KAPING - Answer: No, because the food is high in sodium, high in calorie, high in saturated fat, high in
cholesterol.

- Reasoning: Although the user often checks nutrition labels and eats little to no fast food or
frozen meals (factual hallucination - irrelevant information), their hypertension contradicts with
the high sodium content found in Cheese pastry puffs. Moreover, being a light smoker might
increase cardiovascular risks; consuming foods high in calorie, saturated fat, and cholesterol like
Cheese pastry puffs will not help. (contextual hallucination - unaware of user’s needs)

CoT-Zero - Answer: No, because the food is high in sodium, low in protein, high in cholesterol, high in
saturated fat, high in calorie.

- Reasoning: The presence of ’high_sodium’ category contradicts with ’hypertension’, as
excessive sodium can worsen hypertension. High saturated fat, calorie and cholesterol from
Cheese and Margarine are also concerns for heart health. Low protein likely won’t support muscle
maintenance or satisfaction between meals. (factual hallucination - irrelevant information)

ToG - Answer: No, because the food is high in sodium.

- Reasoning: Cheese pastry puffs is not healthy because it is high in sodium, and the user has
hypertension.

Table 19: Error Analysis 1
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Question Based on the nutrients the food provides and the user needs, please answer whether the food
"Shepherd’s pie with lamb" is healthy for the user? Please answer with a short sentence
explaining why.

User Profile Drinks lots of milk, Eats little to no shellfish, Eats little to no fish, Drinks alcohol more than
average, Eats lots of fast food, Eats few to no ready-to-eat meals, Rarely or never checks nutrition
labels, Takes more supplements, Claims to have a poor diet, Has obesity, Has diabetes.

Food Profile low_carb, low_sugar, high_sodium, low_protein, low_cholesterol, low_saturated_fat

True Answer Yes, because the food is low in carb, low in sugar.

KAPING - Answer: No, because the food is high in sodium, low in protein.

- Reasoning: While Shepherd’s pie with lamb contains some nutritious ingredients like vegeta-
bles and lean meat, its high sodium content can be detrimental for someone with obesity and
diabetes, as it may contribute to hypertension and other health issues. Additionally, the low
protein content may not be sufficient for satiety and muscle maintenance. (contextual & factual
hallucinations - using external knowledge to make assumptions about user’s health & include
irrelevant information)

CoT-Zero - Answer: No, because the food is high in sodium, low in cholesterol, low in saturated fat.

- Reasoning: Given the user’s obesity and diabetes, a diet low in calories, sugar, and carbohy-
drates is essential. While Shepherd’s pie with lamb is low in sugar and carbs, its high sodium
content may pose a risk for those with diabetes and obesity, making it less suitable for the user’s
health needs. (contextual hallucination)

ToG - Answer: Yes, because the food is low in sugar, low in carb.

- Reasoning: Given that the user has diabetes, Shepherd’s pie with lamb is healthy because it is
low_sugar and low_carb.

Table 20: Error Analysis 2

Figure 9: FNDDS Category Code - Mixed Dishes.
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Figure 10: Guidelines for use of nutrition and health claims.
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Figure 11: Daily nutrition value from Codex Alimentarius.
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Figure 12: Multum Lexicon Therapeutic Classification Scheme - Part of Level 3.
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