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Abstract

Across changes in their sensory environment or input statistics, cortical neurons
display a homeostasis of firing rates [2, 10, 8, 7]. We present a normative expla-
nation of such firing-rate homeostasis grounded in the infomax principle [6]. We
further demonstrate how homeostatic coding, coupled with Bayesian theories of
neural representation [11] can explain stimulus-specific adaptation effects widely
observed in the nervous system (e.g., in V1 [2]). This can be achieved by divisive
normalisation with adaptive weights [3, 12].

Consider a neuron acting as a feature detector. If the feature becomes more prevalent, the neuron
responds more often and has a higher average firing rate. Prolonged exposure to such an environment
causes the neuron to adapt by responding less vigorously [2, 10, 8]. If such adaptation returns the
average firing rate to its value prior to environmental shift, it is termed firing rate homeostasis. This
paper uses efficient coding theory to give a general normative account of firing rate homeostasis. We
show that homeostasis optimises a trade-off between the information conveyed by the neural response
and the metabolic cost of the response. We apply this result to Bayesian theories of representation,
showing that this can lead to stimulus specific adaptation effects observed in V1 [2].

1 Problem statement and framework

We consider a population of N neurons, responding to the (possibly high-dimensional) stimulus s,
with marginal distribution Z(s) that can vary across environments. Assuming rate coding in time bins
of a fixed duration, we denote the population spike counts in a coding interval by n = (n1, . . . , nN ).
Neural tuning curves, hi(s), are factorised into a representational curve, Ωi(s), and a gain, gi:

hi(s) = giΩi(s) = gain × representational curve

Approximating the spike counts as continuous, we adopt a Gaussian noise model with unit Fano
factor: conditional on s, ni are independent with ni|s ∼ N (hi(s), hi(s)).

We suggest that neurons adapt their gains to maximise an objective function, L0(g), that trades off
the metabolic cost of neural activity with the information conveyed by the responses [5, 4]:

L0(g) = 2µI(s,n)−
N∑
i=1

E[ni] = Information − Metabolic cost

Here, I(s,n) is the mutual information between the stimulus and response, the second term penalises
the average population spike count, and µ > 0 controls the information-energy trade-off.

Note that Ωi can be complex functions of the stimulus (e.g. multimodal, discontinuous), representing
any general computation. Adjusting gains does not restrict the computations which can be performed
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by downstream populations, as adjustments in gains can be compensated for by reciprocal adjustments
in readout weights. Thus, our framework applies to populations located deep in the sensory processing
pathway. This makes our treatment more general than other efficient coding frameworks (e.g. [4]),
which place tight constraints on the shape and configuration of the tuning curves.

2 Information-energy trade-off leads to homeostasis

Analytic maximisation of mutual information is intractable. We make two approximations to derive a
closed form expression for the optimal gains (see App. A.1 for details). For the Gaussian noise model,
the conditional entropy is given by 2H[n|s] =

∑N
j=1 ln(gi) + const. in g. The marginal entropy,

H[n], however, is intractable, and we replace it by an upper bound, namely the entropy of a Gaussian
with the same covariance:

2H[n] ≤ ln(det(2πeCov[n])). (1)

I(s,n) = H[n]−H[n|s], so 2I(n, s) ≤ ln (det (I + P diag(g ⊙ ω))) + const. in g, where

P ≡ diag(ω)−1Cov[Ω(s)]diag(ω)−1 = diag(CV) ρdiag(CV), (2)

ω ≡ E[Ω(s)], ρ ≡ Corr[Ω(s)] = Corr[h(s)]. (3)

and ⊙ denotes element-wise product, Corr[·] denotes the Pearson correlation matrix, and CVi is the
coefficient of variation of Ωi(s). Up to an additive constant, we obtain the upper bound

L0(g) ≤ L(g) := µ ln (det (I + P diag(g ⊙ ω)))−
N∑
i=1

giωi, (4)

We subsequently optimise L (see App. A.2 for details). dL
dgi

= µ
gi
(I + (P diag(g ⊙ ω))−1)−1

ii − ωi.
Under the condition

µCV2
i ≫ [ρ−1]ii, (5)

a first-order Neumann expansion in (P diag(g ⊙ ω))−1 yields dL
dgi

≈ µ
gi
(1− [P −1]ii

ωigi
)− ωi. Setting

this to zero and reusing Eq. (5) yields the following first-order approximation for the optimal gains

gi ≈ g
(1)
i ≡ µ

ωi

(
1− [ρ−1]ii

µCV2
i

)
. (6)

The corresponding zeroth-order solution, g(0)i ≡ µ/ωi, gives exact homeostasis, as under these gains

average rate of neuron i = E[hi(s)] = g
(0)
i ωi = µ

which is constant, both between neurons and across environments (as specified by Z(s)). Since
[ρ−1]ii ≥ 0, g(1)i ≤ g

(0)
i . Averaging the factor in parentheses in Eq. 6 over neurons, we additionally

define ḡ(1)i = µ
ωi

(
1− 1

N

∑
j(µCV

2
j )

−1[ρ−1]jj

)
, which yields uniform mean rates across neurons

and, as long as
∑

j(µCV
2
j )

−1[ρ−1]jj is constant across environments, homeostasis of firing rates.

3 Validation of results

In our first-order expansion above, we used the condition (5). How likely is this to hold in the cortex?

• We see from the solution that µ scales the average spike count of the neurons over the
rate coding time-interval. Typical cortical firing rates are 10 Hz [1], so assuming a coding
interval of 0.1 sec., we obtain µ ≈ 1. Taking our model neurons to represent a cluster of m
cortical neurons with identical tuning, µ is further scaled up by m.

• ρ is the signal correlation matrix of neurons. Stringer et al. [9] have found that in V1, the
eigenvalues of ρ obey a power law decay of approximately 1/n. This leads to an average the
average of [ρ−1]ii of approximately ln(N)/2. Even for large values of N = O(108) this
remains bounded above by 10

2



• The coefficient of variation CV can be seen as a measure of sparseness of responses.
Consider the toy-model Ωi(s) ∼ Bern(pi) (for an Ωi(s) with two output levels: 0 and
1). In this case, CV2

i = (1 − pi)/pi, which is large for small pi. At pi = 0.1 we obtain
CV2

i = 9. Values of pi in this range have been observed in empirical studies [1].

This makes it clear when we should expect homeostasis – when firing rates are high but selective,
and signal correlation structure corresponds to a high-dimensional geometry, as e.g. observed in [9].
When these conditions are violated, homeostasis deviates from optimally.

We numerically compare the performance of the zeroth-order homeostatic code g(0)i = µ/ωi, the
first order correction, g(1)i , and the homeostatic approximation to the latter, ḡ(1)i , against gains gopti
which have been numerically optimised by performing simple gradient ascent on the objective L(g),
initialised as g(1)i . An environment is specified by ρ, ωi, and CVi (via Z(S)). We consider a sequence
of environments parameterised by ϵ ∈ [0, 1]. In environment ϵ, ωj(ϵ) = 4 − ϵ cos(2πj/N); this
can be thought of as an environmental shift in which some stimuli become up to 25% more or less
prevalent. We took N = 100, µ = 10, and CVi(ϵ) = 3 for all environments and neurons.

ρ(ϵ) is obtained by normalising a positive-definite covariance matrix Σ(ϵ) which has a 1/n eigen-
spectrum, in line with the findings of [9]. The orthonormal eigen-bases of the end points Σ(0) and
Σ(1) are sampled randomly and independently, and we smoothly interpolate between these to obtain
the eigen-bases for Σ(ϵ), ϵ ∈ (0, 1). (see App. A.3 for details).

To compare the performance of each approximate solution, gapp(ϵ), we use the measure

C(ϵ) =
L(gapp(ϵ); ϵ)− L(gopt(0); ϵ)

L(gopt(ϵ); ϵ)− L(gopt(0); ϵ)

which can be interpreted as the improvement in L(·; ϵ) achieved by the adaptive gapp(ϵ) over the
unadapted optimal gains in the original environment gopt(0), relative to the same improvement
obtained by the optimally adaptive gains. C(ϵ) for different approximations are plotted in Fig. 1.
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Figure 1: Left: Profiles of rates unmodulated by gains, ω, for the ϵ = 0 (red) and ϵ = 1 (cyan)
environments. Right: C(ϵ) as a function of ϵ (averaged across 50 realisations of ρ(ϵ)) for the three
approximations g(0)(ϵ) (blue), g(1)(ϵ) (orange), and ḡ(1)(ϵ) (green). Here, N = 100, µ = 10, and
CVi(ϵ) = 3 (for all neurons and environments).

We first note that the first order approximation (6) performs essentially as well as numerical opti-
misation of L. The homeostatic correction ḡ(1)(ϵ) also performs close to optimally for ϵ ≥ 0.1.
Moreover, as soon as ϵ exceeds about 0.2, exact homeostasis g(0) is superior to no adaptation. Finally,
we also computed the mean relative errors 1

N

∑
j |g

app
j − goptj |/goptj of the approximate solutions.

These were approximately constant in ϵ to 3 significant figures, and took the values 0.0294, 0.000291,
0.00615, for g(0), g(1), and ḡ(1), respectively.
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4 Bayes-ratio coding

In this section, we neglect correction terms and work with the homeostatic approximation g(0)i =
µ/ωi, which yields hi(s) = µΩi(s)/E[Ωi(S)]. So far we have been silent on the computation
encoded by the representational curves Ω(s). Here, we apply the homeostatic code to a form of
Bayesian encoding, the distributed distributional code (DDC) [11]. In a DDC, which is based on
an internal generative model of stimuli with latent variables z, Ωi(s) is the posterior expectation
(given the observed s) of a so-called kernel function ki(z). We make an ideal-observer assumption,
wherein the internal generative model generates the true stimulus distribution, Z(s). In this case,
the homeostatic adaptation yields hi(s) = µE[ki(z)|s]

E[ki(z)]
. For the special case ki(z) = δ(zi − z), this

yields Bayes-ratio coding:

hi(s) = µ
Π(zi|s)
π(zi)

= µ
f(s|zi)

Z(s)
, (7)

where Π and π denote the posterior and prior distributions over z, and f(s|z) is the generative model’s
likelihood. As shown in App. A.4, Bayes-ratio coding can be achieved via divisive normalisation, a
canonical cortical operation [3], with adaptive normalisation weights proportional to the prior π(zi)
(allowed to vary across environments) and feedforward inputs given by the likelihood function.

Additionally, Bayes-ratio coding can be used to explain certain stimulus-specific adaptation effects. It
is typical of stimulus specific adaptation in V1 [2] that orientation tuning curves display a repulsion
and suppression around the over-represented orientation of the adaptor stimulus. To model the
findings of [2] with Bayes-ratio coding, we took stimulus and latent variable spaces to be the
orientation space [−90, 90), and the likelihood f(s|zi) = ψ(s− zi; 10) where ψ(·; k) a von Mises
density with precision k, where zi are uniformly spaced over [−90, 90). We consider a uniform
pre-adaptation prior πpre, and a post-adaptation prior πpost(z) = 0.6

180 + 0.4ψ(z; 2) representing
an adaptor stimulus at z = 0◦. The pre- and post-adaptation tuning curves are plotted in figure 2,
and exhibit the suppression and repulsion of the adapted tuning curves around the over-represented
stimulus. This result generalises to a homeostatic DDC with finite-width unimodal kernel functions.
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Figure 2: Left: The tuning curves pre- (blue) and post-adaptation (red). Right: The displacement
of the preferred orientation of neurons (in degrees) as a function of the pre-adaptation preferred
orientation, demonstrating the repulsion of tuning curves from the adaptor orientation.

5 Conclusion

We developed a theory of optimal gain modulation for combatting noise in neural representations.
We demonstrated that, when mean neural firing rates are not too small and responses are sufficiently
sparse with a high-dimensional geometry, the trade-off between coding fidelity and metabolic cost
is optimised by gains that react to shifts in environmental stimulus statistics to yield firing rate
homeostasis. Lastly, we demonstrated that, when applied to Bayesian DDCs as an example of neural
representation, homeostasis leads to characteristic suppression and repulsion of tuning curves as
observed in V1. In future research, we will extend our analysis to the more realistic case of Poisson
spiking noise (i.e. ni|S ∼ Poisson(hi(S))), and investigate the extent to which homeostasis deviates
from optimally as the condition µCVi ≫ [ρ−1]ii ceases to hold.
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A Appendix

A.1 Upper bound on L0

Recall that ni|s ∼ N(hi(s), hi(s)). In this case,

H[ni|s] =
∫
H[N(hi(s), hi(s))]Z(s)ds

=

∫
1

2
ln(2πehi(s))Z(s)ds

=
1

2
ln(2πe) +

1

2
ln(gi) +

1

2
E[ln(Ωi(s))]

H[n|s] =
N∑
j=1

H[nj |s] (8)

=
N

2
ln(2πe) +

1

2

N∑
j=1

ln(gi) +

N∑
j=1

1

2
E [ln(Ωj(s))] (9)

We now use the fact that the entropy of any continuous distribution can be upper bounded by the
entropy of a Gaussian with with the same covariance. The entropy of a N(µ,Σ) random variable is
H[N(µ,Σ)] = N

2 ln(2πe) + 1
2 ln(det(Σ)). It therefore suffices to find the covariance of n. We use

the decomposition Cov(n) = E[Cov(n|s)] + Cov(E[n|s]) and compute
Cov(n|s) = diag(Var(n|s))

= diag(h(s))

E[Cov(n|s)] = diag(E[h(s)])
= diag(g ⊙ ω)

= diag(g)diag(ω)

Cov(E[n|s]) = Cov(h(s))

= diag(g)Cov(Ω(s))diag(g)

Thus
Cov(n) = diag(g)diag(ω) + diag(g)Cov(Ω(s))diag(g)

= diag(g)diag(ω)[I + diag(ω)−1Cov(Ω(s))diag(ω)−1diag(ω)diag(g)]

= diag(g)diag(ω)[I + Pdiag(ω ⊙ g)]

ln(det(Cov(n))) = ln(det(diag(g))) + ln(det(diag(ω))) + ln(det(I + Pdiag(ω ⊙ g)))

=

N∑
i=1

ln(gi) +

N∑
i=1

ln(ωi) + ln (det (I + P diag(ω ⊙ g)))

where P = diag(ω)−1Cov(Ω(s))diag(ω)−1. Putting this together, we obtain:

H[n] ≤ N

2
ln(2πe) +

1

2

N∑
j=1

ln(gi) +
1

2

N∑
i=1

ln(ωi) +
1

2
ln (det (I + Pdiag(ω ⊙ g))) (10)

Finally, substituting Eqs. (9) and (10 in the definition for the mutual information, we obtain the upper
bound

I(n, s) = H[n]−H[n|s]

≤ 1

2

N∑
i=1

ln(ωi)− E [ln(Ωj(s))] +
1

2
ln (det (I + Pdiag(ω ⊙ g)))

= −1

2

N∑
i=1

E
[
ln

(
Ωi(s)

ωi

)]
+

1

2
ln (det (I + Pdiag(ω ⊙ g))) ,

or 2I(n, s) ≤ ln (det (I + Pdiag(ω ⊙ g))) + const. in g.
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A.2 Approximate maximisation of L

We now consider optimising

L(g) = µ ln (det (I + Pdiag(ω ⊙ g)))−
N∑
i=1

giωi

Taking the derivative with respect to gi, we obtain

dL
dgi

=
µ

gi
(I + (Pdiag(ω ⊙ g))−1)−1

ii − ωi

To obtain an approximate solution for this we use a first order Neumann expansion for (I +
(Pdiag(ω ⊙ g))−1)−1. This requires that (Pdiag(ω ⊙ g))−1 has a small norm, i.e. Pdiag(ω ⊙ g)
is large in norm. The Neumann expansion gives:

(I + (Pdiag(ω ⊙ g))−1)−1 ≈ 1− diag(ω ⊙ g)−1P−1

Plugging this in, we obtain
dL
dgi

≈ µ

gi
(1− [P−1]ii

ωigi
)− ωi (11)

Setting equation (11) to zero, and solving to find the approximate maximiser of L(g), we get:

gi =
µ

2ωi

(
1 +

√
1− 4[P−1]ii

µ

)
(12)

We further approximate by taking a first order Taylor expansion of the square root to obtain equation
(6):

gi ≈
µ

ωi

(
1− ρ−1

ii

µCV2
i

)
where ρ is the correlation matrix Corr(Ω(s)) and CVi is the coefficient of variation,

√
Var(Ωi(s))

ωi

The expansions employed in this argument require that (Pdiag(ω ⊙ g))−1 is small in norm, and that
ρ−1
ii ≪ µCV2

i . Note that (Pdiag(ω ⊙ g))ij = CViρijCVjgjωj . But we know that gj = O(µ/ωj)

and therefore gjωj = O(µ). Accordingly, we obtain that (Pdiag(ω ⊙ g))−1 = O
(

ρ−1

µCV2

)
. This

means that the condition for truncating the Neumann expansion is indeed Eq. (5).

A.3 Specification of environment for ϵ

To generate ρ(ϵ), we first generate a covariance matrix Σ(ϵ), and let ρ(ϵ) be the corresponding
correlation matrix. The procedure for generating Σ(ϵ) is as follows.

We randomly and independently sample two N × N random Gaussian matrices A0, A1 ∼
NN×N (0, IN×N ) and obtain symmetric matrices S0 = A0 + AT

0 and S1 = A1 + AT
1 . As is

well known, the eigen-basis (represented by an orthogonal matrix) of such a random Gaussian matrix
is distributed uniformly (i.e., according to the corresponding Haar measure) over the orthogonal
group O(N).

Now let S(ϵ) = (1 − ϵ)S0 + ϵS1. Almost surely these matrices have a non-degenerate spectrum,
and hence a unique representation as S(ϵ) = U(ϵ)Λ(ϵ)U(ϵ)T where Λ(ϵ) is diagonal with strictly
decreasing eigenvalues and U(ϵ) is orthogonal. Moreover, U(ϵ) depends continuously on ϵ.

Finally, we define Σ(ϵ) = U(ϵ)DU(ϵ)T , where D = diag(1, 1/2, 1/3, . . . , 1/N).

A.4 Bayes-ratio coding and divisive normalisation

Given a collection of feed-forward inputs, Fi(s), divisive normalisation computes the response (and
thus the tuning curve) of neuron i as

hi(s) = γ
Fi(s)

n

σn +
∑

j wjFj(s)n
(13)
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where wj are a collection of normalisation weights, and γ, σ ≥ 0 and n ≥ 1 are constants.

Bayes-ratio coding can be achieved naturally by a divisive normalisation model in which n = 1 and
the feed-forward inputs are given by the generative model’s likelihood function f(s|zi). We then
choose the normalisation weights wi to encode prior probabilities, wi = π(zi)δzi, where the volume
element δzi is chosen such that the latent variable space is the disjoint union of volumes of size δzi

each containing their corresponding sample point zi. Then we have:∑
j

wjFj(s) =
∑
j

f(s|z(j))π(z(j))δz(j)

≈
∫
f(s|z)π(z)dz

= Z(s)

hence

hi(s) = µ
Fi(s)

σ +
∑N

j=1 wjFj(s)

≈ µ
f(s|zi)

σ + Z(s)

Taking the limit as σ → 0, we obtain Eq. 7:

hi(s) = µ
f(s|zi)

Z(s)
.

Therefore, provided σ is small compared to Z(s), divisive normalisation can be used to approximate
Bayes-ratio coding. Not only does this show that implementing Bayes-ratio coding is biologically
plausible, this framework gives a normative interpretation to both the feedforward inputs (as the
generative model likelihoods) and the normalisation weights (as the prior probabilities).
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