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ABSTRACT

Traffic forecasting, a crucial application of spatio-temporal graph (STG) learning,
has traditionally relied on deterministic models for accurate point estimations.
Yet, these models fall short of quantifying future uncertainties. Recently, many
probabilistic methods, especially variants of diffusion models, have been proposed
to fill this gap. However, existing diffusion methods typically deal with individual
sensors separately when generating future time series, resulting in limited usage
of spatial information in the probabilistic learning process. In this work, we pro-
pose SpecSTG, a novel spectral diffusion framework, to better leverage spatial de-
pendencies and systematic patterns inherent in traffic data. More specifically, our
method generates the Fourier representation of future time series, transforming the
learning process into the spectral domain enriched with spatial information. Ad-
ditionally, our approach incorporates a fast spectral graph convolution designed
for Fourier input, alleviating the computational burden associated with existing
models. Compared with state-of-the-arts, SpecSTG achieves up to 8% improve-
ments on point estimations and up to 0.78% improvements on quantifying future
uncertainties. Furthermore, SpecSTG’s training and validation speed is 3.33× of
the most efficient existing diffusion method for STG forecasting. The source code
for SpecSTG is available at https://github.com/lequanlin/SpecSTG.

1 INTRODUCTION

Traffic forecasting on road networks is an essential application domain of spatio-temporal graph
(STG) learning (Yuan & Li, 2021; Jin et al., 2023a;b). As a crucial component of the Intelligence
Transportation System (ITS), accurate and informative prediction of future traffic dynamics pro-
vides essential guidelines to traffic authorities in decision-making (Lana et al., 2018; Boukerche
et al., 2020). Since traffic data, such as vehicle speed and traffic flow, are collected from sensors in
the continuous space of road networks, they present strong spatio-temporal dependencies, especially
at neighbouring locations and time windows (Guo et al., 2019). This naturally leads to their repre-
sentation as STGs: the traffic network is modelled as a graph, in which nodes are sensors and edges
are decided with some criteria such as geographic distances. Hence, temporal records are stored as
graph signals, while spatial information is encapsulated in the graph structure. In Figure 1(a), we
provide a visualized example of traffic STG.

STG traffic forecasting aims at predicting future values at all sensors based on past time series and
spatial connections in the traffic network. This task has traditionally relied on deterministic models
such as DCRNN (Li et al., 2018) and GMAN (Zheng et al., 2020) to produce accurate point esti-
mations. Nevertheless, these models may fall short in identifying unexpected variations that lead to
consequential change in traffic regulations (Pal et al., 2021; Wen et al., 2023; Hu et al., 2023). This
limitation can be overcome by probabilistic methods, which alternatively approximate the distribu-
tion of future time series, thus leading to more uncertainty-aware predictions. For example, Figure
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Figure 1: Illustrations: (a) an example of traffic STG; (b) traffic flow forecasting in future 60 minutes
with GMAN (deterministic) and SpecSTG (probabilistic) on PEMS04.

Figure 2: A comparison of SpecSTG and two other existing methods. SpecSTG adopts a spectral
diffusion process that generates the graph Fourier representation of future time series, thus better
leveraging spatial information in learning and prediction.

1(b) shows the results of deterministic and probabilistic models on the PEMS04 traffic flow forecast-
ing task (Guo et al., 2019). The deterministic model can only provide point estimations (red), while
the probabilistic model is capable of generating both point estimations and the forecasting interval
(blue) which captures some abrupt fluctuations in traffic flow (black box).

Among all the probabilistic models applicable to STG traffic forecasting, we specifically focus on
diffusion models (Yang et al., 2023; Ho et al., 2020; Lin et al., 2023). Classic diffusion models for
time series forecasting, such as TimeGrad (Rasul et al., 2021a), generally follow a forward-backward
training process: the generative target (i.e., future time series) is first turned into white noise and then
recovered by a learnable backward kernel. The backward kernel is a conditional distribution which is
similar to traditional diffusion models except for the inclusion of encoded past temporal information
in its conditions. For prediction, samples from the distribution of future time series are generated
by denoising white noise with the learned backward kernel. Since such methods are incapable
of handling spatial information in STGs, diffusion models for STG forecasting, such as DiffSTG
(Wen et al., 2023) and GCRDD (Li et al., 2023), incorporate graph structure in the backward kernel
condition. More specifically, the backward kernel is usually approximated by a denoising network,
which takes graph structure and other conditions as input to predict noises injected in the forward
process. More related works are discussed in Appendix A.

Our work considers two limitations of existing diffusion methods for STG forecasting. (Limitation
#1) Although these methods emphasize on the importance of spatial information in STG forecast-
ing, they only use spatial information in the backward kernel condition. Consequently, the involve-
ment of spatial information in the overall forward-backward diffusion learning process is limited.
(Limitation #2) The denoising network of existing methods usually relies substantially on graph
convolution to encode spatial information. This often introduces a complexity of O(N2), quadratic
in the number of sensors N in a traffic STG (see Subsection 4.1 for more details). Thus the compu-
tational cost is high especially for large traffic networks, leading to slow training and sampling.

In this work, we propose a novel spectral diffusion framework (SpecSTG), which adopts the graph
Fourier representation of time series as the generative target. According to the spectral graph the-
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ory, the graph Fourier representation is a measurement of variations in graph signals guided by the
graph structure (Chung, 1997; Kreuzer et al., 2021). In the context of STGs, we may treat time
points as features, thereby the graph Fourier representation can be considered as a new time series
of systematic fluctuations enriched by spatial information. Hence, Limitation #1 is resolved by
generating the Fourier representation rather than the original time series, transforming the entire dif-
fusion process into the spectral domain. This effectively leverages the graph structure to construct a
more comprehensive diffusion base with additional systematic and spatial patterns. Besides, with no
loss of information, the generated data can be converted back to the original domain via the inverse
Fourier transform for prediction. Limitation #2 is mitigated by replacing the graph convolution
with a light-complexity alternative, which only works for the Fourier input (details in Subsection
4.1). An overview of SpecSTG can be found in Figure 2. We also provide illustrations of TimeGrad
and GCRDD for comparison. The contributions of this paper are three-fold:

(1) To our best knowledge, this is the first work that explores probabilistic STG forecasting on
the graph spectral domain.

(2) SpecSTG achieves up to 8% improvements on point estimations and up to 0.78% improve-
ments on generating compatible forecasting intervals.

(3) SpecSTG’s training and validation speed is 3.33× of the most efficient existing diffusion
method for STG forecasting. Additionally, SpecSTG significantly accelerates the sampling
process, particularly for large sample sizes.

2 PRELIMINARIES

2.1 SPATIO-TEMPORAL GRAPHS (STGS) & STG FORECASTING

STGs can be considered as a multidimensional graph representation of entities in a system with
time series as graph signals. In traffic forecasting, we model sensors as nodes and then create
edges based on some spatial relationships such as geographic distances. The average traffic records
in observation periods are modelled as graph signals. For a traffic network with N sensors, the
corresponding STG can be denoted as G{V, E ,A}, where V is the set of nodes/sensors, E is the set
of edges, and A ∈ RN×N is the adjacency matrix. A is assumed to be undirected and can be either
weighted or unweighted. The graph signals are denoted as XG = {x1,x2, ...,xt, ...|xt ∈ RN×Dx},
where Dx is the number of variables. In traffic forecasting, it is common that only one variable such
as speed or flow is of interest (Li et al., 2018; Guo et al., 2019), thus we usually have Dx = 1.

The objective of STG traffic forecasting is to predict a future time series window Xf =
{xt0+1,xt0+2, ...,xt0+f} given the past context window Xc = {xt0−c+1,xt0−c+2, ...,xt0}, where
f and c are the length of future and past windows. We denote the combination of past and future
time series as X = {xt0−c+1,xt0−c+2, ...,xt0+f}. Normally, the target distribution of generative
models depends on the sampling methods: one-shot methods produce all future predictions together
from the distribution q(Xf |Xc,A) (Wen et al., 2023; Liu et al., 2023), while autoregressive methods
generate samples from q(xt|Xt0−c+1:t−1,A) for t = t0 + 1, t0 + 2, ..., t0 + f successively, where
Xt0−c+1:t−1 = {xt0−c+1, ...,xt−1} (Li et al., 2023). Autoregressive methods often capture the
sequential information in consecutive time points more closely. However, they are associated with
higher time costs because of the non-parallel step-by-step sampling process. Our method, SpecSTG,
is formulated within the autoregressive framework but is equipped with a specially designed spectral
graph convolution to mitigate computational inefficiency.

2.2 DENOISING DIFFUSION PROBABILISTIC MODEL

Denoising diffusion probabilistic models (DDPMs) learn how to generate samples from the target
distribution via a pair of forward-backward Markov chains (Ho et al., 2020; Yang et al., 2023).
Assuming that x0 ∼ q(x0) is the original data, for diffusion step k = 0, 1, ...,K, the forward chain
injects Gaussian noises to xk until q(xK) :=

∫
q(xK |x0)q(x0)dx0 ≈ N (xK ;0, I). As a special

property, given a noise schedule β = {β1, β2, ..., βK}, we may directly compute the disturbed data
at step k as xk =

√
α̃kx

0 +
√
1− α̃kϵ, where α̃k =

∏k
i=1(1 − βi) and ϵ ∼ N (0, I). Next,

the backward chain denoises from xK to recover pθ(x0) through a probabilistic backward kernel

3



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

pθ(x
k−1|xk), where θ denotes all learnable parameters. In practice, the backward kernel is usually

optimized with a denoising network ϵθ by minimizing the loss function

LDDPM (θ) = Ek,x0,ϵ

∥∥ϵ− ϵθ
(
xk, k

)∥∥2 , (1)

where ϵ ∼ N (0, I) represents the noises injected in the forward diffusion steps.

3 STG FOURIER TRANSFORM

Given a traffic STG G{V, E ,A} with N sensors, the normalized graph Laplacian is computed as
L = IN − D− 1

2AD− 1
2 , where IN ∈ RN×N is the identity matrix, and D ∈ RN×N is the

diagonal degree matrix. We denote the eigen-decomposition of the graph Laplacian as L = UΛU⊺,
where U ∈ RN×N and Λ ∈ RN×N are the corresponding eigenvector and eigenvalue matrices,
respectively. Considering the univariate graph signal XG = {x1,x2, ...,xt, ...|xt ∈ RN}, the
Fourier transform for each time point t is given by x̃t = U⊺xt, known as the Fourier representation
of xt in the spectral domain. The Fourier reconstruction is xt = Ux̃t. The orthonormal U ensures
a lossless reconstruction for the temporal information. We may compute in matrix form for all time
points as X̃ = U⊺X and X = UX̃ . In Appendix B, we also discuss how to naturally extend the
method to multivariate traffic STGs with xt ∈ RN×Dx , Dx ≥ 2.

The graph Fourier transform can be understood as a projection of graph signals onto the spectral do-
main spanned by the eigenvector basis of graph Laplacian. The operator U brings rich positional in-
formation for graph signals and offers a platform to investigate the variations among signals through
a global perspective on the graph. In particular, when the input is a traffic STG, the Fourier rep-
resentation measures how graph signals (time series) fluctuate across the network. This effectively
integrates spatial connectivity into time series, leading to a spatial-aware forecasting paradigm.

4 THE PROPOSED METHOD

SpecSTG assumes that the Fourier representation of future time series follows the distribution

q(X̃0
f |X̃0

c ,A) ≈
t0+f∏

t=t0+1

pθ(x̃
0
t |h̃t−1,A), (2)

where X̃0
c and X̃0

f are the noise-free Fourier representations of past and future time series, respec-
tively. h̃t−1 represents past spatio-temporal condition encoded by a spectral recurrent encoder. For
each time point t = t0 + 1, ..., t0 + f , the diffusion process will learn the corresponding backward
kernel pθ(x̃k−1

t |x̃k
t , h̃t−1,A) with k = 1, ...,K. The objective function of SpecSTG is given by

L(θ) = Et,k,x̃0
t ,ϵt

∥∥∥ϵt − ϵθ

(
x̃k
t , k, h̃t−1,A

)∥∥∥2 , (3)

where t denotes future time points, k denotes diffusion steps, x̃k
t is the disturbed data at time point

t and step k, and ϵt ∼ N (0, I). It is worth noting that t may also start with t0 − c + 1 instead of
t0 + 1 to facilitate the learning of autoregressive dependencies by considering both past and future
instances. Lastly, we employ a graph-modified WaveNet architecture (van den Oord et al., 2016)
for the denoising network ϵθ(·), which is specially designed for Fourier input. In the rest of this
section, we will focus on details of SpecSTG components, training, and inference. The visualization
of SpecSTG architecture can be found in Figure 2.

4.1 LIGHT-COMPLEXITY SPECTRAL GRAPH CONVOLUTION

Diffusion models for STG forecasting usually rely on graph convolution to encode spatial infor-
mation in the condition of backward kernel (Li et al., 2023; Wen et al., 2023; Liu et al., 2023).
Straightforwardly, we adopt the spectral convolution, which typically transforms graph signals to
the spectral domain and then processes the data via frequency filtering before they are converted
back to the original domain (Defferrard et al., 2016; Kipf & Welling, 2016). However, with Spec-
STG, the Fourier representation is already formed as input, so the transform is no longer required in
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the convolution. In addition, to ensure that the model pipeline flows in the spectral domain through-
out the diffusion learning process, we do not apply reconstruction either.

We choose the Chebyshev convolution (Defferrard et al., 2016), whose filters are formed with
Chebyshev polynomials to accelerate computation as ChebConv(X) = U

∑J−1
j=0 ϕjTj(Λ̃)U⊺X ,

for polynomial degrees up to J − 1, where Tj(Λ̃) ∈ RN×N is the j-th order Chebyshev polynomial
evaluated at Λ̃ = 2Λ/λmax−IN with ϕj being a learnable coefficient. With Fourier representation
X̃ = U⊺X as input, we define the modified spectral graph convolution as

SpecConv(X̃) :=

J−1∑
j=0

ϕjTj(Λ̃)X̃. (4)

Remark 1 (Complexity Analysis). Our spectral convolution has only O(N) complexity, contrast-
ing to the O(N2) complexity of the classic Chebyshev convolution. This significant improvement
endows SpecSTG with the advantage of time efficiency over methods using Chebyshev convolu-
tion, such as GCRDD. Other methods such as DiffSTG may use the graph convolution in (Kipf &
Welling, 2016) as GCNConv(X) = AX , whose complexity is O(|E|) where |E| is the number of
edges. As we see in Section 5.1, |E| is often much larger than N in traffic STGs.

4.2 SPECTRAL RECURRENT ENCODER & DENOISING NETWORK

We design SG-GRU as the spectral version of Graph GRU (Seo et al., 2018) to encode past time
series and spatial information in graph Fourier domain as follows. For t = t0 − c+ 1, ..., t0:

z = σ(SpecConv(x̃0
t )Wz1+ SpecConv(h̃t−1)Wz2)

r = σ(SpecConv(x̃0
t )Wr1+ SpecConv(h̃t−1)Wr2)

ζ = tanh(SpecConv(x̃0
t )Wζ1+ SpecConv(r ⊙ h̃t)Wζ2)

h̃t+1 = z ⊙ h̃t+(1− z)⊙ ζ,

where h̃0 ∈ RDh is a vector of zeors with Dh being the hidden size, Wz1 ,Wr1 ,Wζ1 ∈ R1×Dh ,
Wz2 ,Wr2 ,Wζ2 ∈ RDh×Dh are learnable weights included in θ, and σ is the sigmoid activation
function. z and r are known as update gate and reset gate. ζ is the candidate state storing current
information to be updated in the hidden state. In the implementation, we may also input time features
Γ = {γt0−c+1, ...,γt0+f} such as day of week and week of month by concatenating them with X̃ .

Then, in reminiscent of TimeGrad, we design Spectral Graph WaveNet (SG-Wave) as the ϵθ of
SpecSTG (see details in Appendix C, Figure 5). Besides, we replace some Conv1d layers with fully
connected linear layers for efficient training and sampling. The network takes disturbed data x̃k

t ,
diffusion step k, hidden condition h̃t−1, and graph adjacency A as inputs, and aims at predicting
the noise ϵt ∼ N (0, I) at step k for time point t.

4.3 TRAINING AND INFERENCE

We compute the Fourier representation of all training data before the training process. Next, we
input randomly sampled {X̃c, X̃f} to SG-GRUθ to obtain hidden states h̃ = {h̃t0 , ..., h̃t0+f−1}.
During training, with a pre-specified noise schedule {β1, β2, ..., βK}, we randomly sample noise
ϵt ∼ N (0, I) and step k ∼ Uniform(0,K) to compute disturbed data x̃k

t for t = t0 + 1, t0 +
2, ..., t0 + f . Finally, we take a gradient step on the objective function in Equation (3). The training
algorithm is provided in Appendix D, Algorithm 1. With the denoising network, we can generate
samples and make predictions for the forecasting task. The generation process adopts autoregressive
sampling, which means we generate samples for each time point one by one. For example, after we
generate samples for t = t0 + 1, we feed the sample mean back to the SG-GRU module to compute
h̃t0+1, and then use it to generate samples for t = t0 + 2. Lastly, we convert the predictions back
to the original domain via Fourier reconstruction. The sampling and prediction algorithm for a
one-time point x0

t is presented in Appendix D, Algorithm 2.
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Table 1: The results of traffic forecasting experiments in a future window of 60 minutes. Average
RMSE, MAE, CRPS, and their point values at 15/30/60 minutes are reported. Lower values indicate
better forecasting performance. The best results are marked in bold and the second best results are
underlined. Improvements of SpecSTG on existing methods are shown in percentage.

RMSE MAE CRPS
Models Avg. 15min 30min 60min Avg. 15min 30min 60min Avg. 15min 30min 60min

PEMS04F

DeepVAR 50.59 43.90 48.76 60.46 37.74 32.97 36.72 45.87 0.2094 0.1997 0.2108 0.2209
TransNVP 82.74 68.26 81.70 99.81 61.85 53.06 62.25 73.49 0.2359 0.2008 0.2377 0.2819
TimeGrad 35.58 33.22 35.24 38.95 21.70 20.26 21.56 24.04 0.0801 0.0747 0.0795 0.0887
GCRDD 36.28 31.94 45.31 41.99 22.16 19.48 21.87 26.18 0.0779 0.0689 0.0768 0.0982
DiffSTG 37.62 34.99 36.68 43.04 24.90 22.53 24.65 29.24 0.0904 0.0815 0.0894 0.1077
PriSTI 33.74 33.56 33.71 37.31 22.46 21.65 22.32 25.19 0.0772 0.0751 0.0764 0.0870

SpecSTG 33.15 30.07 32.81 37.29 21.53 19.29 21.39 23.29 0.0766 0.0683 0.0761 0.0866
Improve. 1.75% 5.86% 2.67% 0.54% 0.78% 0.98% 0.79% 3.12% 0.78% 0.87% 0.39% 0.46%

PEMS08F

DeepVAR 41.43 35.83 39.88 49.41 27.86 23.19 27.03 34.89 0.1291 0.1219 0.1269 0.1412
TransNVP 67.69 60.48 68.48 76.16 51.37 49.08 52.31 58.38 0.1802 0.1601 0.1822 0.2073
TimeGrad 33.09 30.17 32.53 37.51 20.47 18.24 20.06 24.24 0.0705 0.0618 0.0695 0.0843
GCRDD 28.83 23.91 28.10 35.68 18.72 15.52 18.35 23.99 0.0626 0.0517 0.0617 0.0833
DiffSTG 28.26 25.04 27.54 34.32 18.99 16.66 18.63 23.68 0.0692 0.0609 0.0679 0.0872
PriSTI 26.35 24.58 26.93 29.91 17.30 15.98 17.32 20.67 0.0576 0.0539 0.0581 0.0688

SpecSTG 25.59 22.23 24.77 29.90 17.06 14.93 16.70 20.25 0.0572 0.0500 0.0558 0.0680
Improve. 2.88% 7.03% 8.02% 0.03% 1.39% 3.80% 3.58% 2.03% 0.69% 3.29% 3.96% 1.16%

PEMS04S

DeepVAR 6.23 5.72 6.11 6.93 2.76 2.52 2.72 3.13 0.0490 0.0450 0.0488 0.0549
TransNVP 6.25 5.73 6.27 6.98 3.36 3.12 3.39 3.74 0.0408 0.0382 0.0412 0.0446
TimeGrad 5.92 5.62 5.91 6.35 2.38 2.19 2.37 2.66 0.0307 0.0282 0.0308 0.0345
GCRDD 4.33 3.10 4.30 5.63 1.94 1.51 1.97 2.58 0.0245 0.0189 0.0248 0.0329
DiffSTG 4.46 3.24 4.46 5.72 2.15 1.66 2.20 2.83 0.0264 0.0206 0.0267 0.0340
PriSTI 4.42 3.31 4.67 5.60 1.96 1.54 1.99 2.62 0.0252 0.0198 0.0258 0.0329

SpecSTG 4.06 3.01 4.09 5.15 1.93 1.50 1.97 2.51 0.0245 0.0192 0.0253 0.0319
Improve. 6.24% 2.90% 4.88% 8.04% 0.52% 0.66% 0.00% 2.71% 0.00% - - 3.04%

PEMS08S

DeepVAR 5.73 5.55 5.70 6.05 2.56 2.42 2.57 2.79 0.0544 0.0534 0.0543 0.0558
TransNVP 5.41 5.12 5.54 5.74 2.76 2.64 2.83 2.91 0.0349 0.0334 0.0358 0.0368
TimeGrad 4.98 4.93 4.97 5.03 1.98 1.95 1.97 2.12 0.0267 0.0262 0.0268 0.0272
GCRDD 3.75 2.74 3.77 4.89 1.72 1.35 1.75 2.32 0.0223 0.0171 0.0226 0.0301
DiffSTG 3.97 3.20 4.07 4.82 2.36 1.91 2.43 3.04 0.0325 0.0259 0.0335 0.0423
PriSTI 4.22 3.02 4.39 5.20 1.70 1.29 1.80 2.15 0.0217 0.0162 0.0230 0.0272

SpecSTG 3.45 2.58 3.46 4.36 1.63 1.27 1.67 2.02 0.0217 0.0170 0.0219 0.0268
Improve. 8.00% 5.84% 8.22% 9.54% 4.12% 1.55% 4.57% 4.72% 0.00% - 0.10% 1.47%

5 EXPERIMENTS

5.1 EXPERIMENT DETAILS

We validate our model on two traffic datasets, PEMS04 and PEMS08 (Guo et al., 2019), collected
by the California Transportation Agencies’ (CalTrans) Performance Measurement System (PEMS)
(Chen et al., 2001). Six probabilistic baselines are considered in our experiments, including four
diffusion methods: TimeGrad (Rasul et al., 2021a), GCRDD (Li et al., 2023), DiffSTG (Wen et al.,
2023), and PriSTI (Liu et al., 2023); and two non-diffusion methods, DeepVAR (Salinas et al., 2020)
and TransNVP (Rasul et al., 2021b). All baselines are state-of-the-art diffusion models proposed in
recent years. More experiment details can be found in Appendix E

5.2 EXPERIMENT RESULTS

Table 1 presents the results of our traffic forecasting experiments, where the prediction task involves
forecasting future time series for a 60-minute horizon based on observations from the past 60 min-
utes. The table includes numerical values for the average RMSE, MAE, and CRPS over the entire
forecast window (all metrics are smaller the better, details can be found in Appendix E). Addition-
ally, it provides corresponding point evaluations assessed at 15, 30, and 60 minutes such that we can
evaluate the short and long-term forecasting performance of the models.

Analysis of deterministic results SpecSTG consistently achieves top-tier deterministic results
across various tasks. In comparison to the second-best model, SpecSTG exhibits an 8.00% im-
provement in average RMSE for PEMS08S and a 6.24% improvement for PEMS04S. Similarly, the
average MAE sees enhancements of 4.12% for PEMS08S and 1.39% for PEMS08F. In addition, our
method shows proficiency in both short and long-term deterministic forecasting. Particularly, the
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Figure 3: Forecasting visualizations of TimeGrad (green), GCRDD (blue), and SpecSTG (red). (a)
and (b) are results on speed data (PEMS04S), while (c) presents results on flow data (PEMS04F).

RMSE improvement of SpecSTG achieves 7.03% on PEMS08F for short-term 15-minute forecast-
ing and 9.54% on PEMS08S for long-term 60-minute forecasting. We also observe improvements
in MAE for most results in the table, especially for traffic flow tasks. The superior deterministic
performance stems from SpecSTG’s unique probabilistic learning process in the spectral domain,
leveraging rich global spatial information, which is an acknowledged crucial component in deter-
ministic traffic forecasting (Yu et al., 2018; Fang et al., 2019).

Analysis of probabilistic results Regarding the probabilistic metric CRPS, SpecSTG demonstrates
an advantage in traffic flow forecasting but not in vehicle speed forecasting. The average CRPS is
improved by 0.78% and 0.69% with SpecSTG on PEMS04F and PEMS08F, respectively. However,
little improvement is observed on PEMS04S and PEMS08S. Since speed and flow datasets share
the same graph structure (e.g., PEMS04S and PEMS04F), we suggest that the inferior probabilistic
performance is related to the time series data. A possible explanation is that flow data is often asso-
ciated with higher variations, thus the systematic variations measured by the Fourier representation
are more informative than the speed data. For instance, the standard deviations of data in PEMS08S
and PEMS08F are 6.65 and 146.22, respectively. We will further investigate this observation with
forecasting visualizations in Subsection 6.1.

6 DISCUSSIONS

In this section, we will visualize SpecSTG’s forecasting outcomes compare with two baseline dif-
fusion models. In addition, we will provide analyses on time efficiency and sensitivity to hyperpa-
rameters to further show the advantage of SpecSTG. More supplementary discussions can be found
in Appendices F and G.

6.1 FORECASTING VISUALIZATIONS

Recall that in Subsection 5.2, SpecSTG performs better in probabilistic forecasting on traffic flow
data than speed data. Here we further explore this observation by visualizing the forecasting out-
comes of TimeGrad, GCRDD, and SpecSTG on PEMS04S and PMES04F (Figure 3). The figure
displays the mean and 95% confidence interval (adjusted by time) of estimated future distributions.
Our primary objective is to assess whether the forecasting intervals produced by various methods
are compatible with the actual future time series. An appropriate interval should capture the future
variations while remaining sufficiently narrow to provide meaningful insights.
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In traffic speed forecasting, SpecSTG’s mean estimation is closer to future time series, but the inter-
vals generated by TimeGrad and GCRDD sometimes better fit the variations in future values. Upon
closer examination of the data patterns, we observe that this impact is particularly pronounced in
windows with very small variations (Figure 3(a)). In contrast, distributions estimated by SpecSTG
at sensors with larger variations Figure 3(b)) exhibit a better ability to capture future uncertainty
compared to TimeGrad and GCRDD. This matches our previous hypothesis in Subsection 5.2 that
STG forecasting with larger variations benefits more from the spectral diffusion process. Be-
cause more systematic fluctuations exist in such data, and thus more information can be captured by
the Fourier representation, and eventually learned by the diffusion process.

Analogously, in traffic flow forecasting on PEMS04F, a dataset characterized by high systematic
variation, SpecSTG demonstrates promising performance by generating both more accurate deter-
ministic predictions and more compatible distributions (Figure 3(c)). This observation reflects the
experiment results that SpecSTG achieves outstanding performance with PEMS04F in terms of all
metrics.

6.2 TIME EFFICIENCY

In Figure 4, we compare the training, validation, and sampling time of SpecSTG with three diffusion
models for STG forecasting, including GCRDD, DiffSTG, and PriSTI. The training and validation
of SpecSTG are clearly faster than other diffusion baselines. Particularly, SpecSTG’s training plus
validation time is 3.33× of GCRDD, the most efficient method among other existing state-of-the-
arts. The validation time of DiffSTG is significantly high because it requires sampling and prediction
during validation. To show sampling efficiency, we plot the sampling time per observation (i.e., a
future window of 60 minutes) when diffusion steps K = 50, 100, 200. We set the batch size of
one-shot methods, DiffSTG and PriSTI, as 8 and 16, and report the best results. For autoregres-
sive methods, SpecSTG shows a notable time advantage over GCRDD in sampling. Besides, their
sampling time does not vary much with the number of samples S. By contrast, the time cost of
one-shot methods increases rapidly with the increase of S. Although DiffSTG and PriSTI are more
efficient when S is small, a small number of samples often cannot present a clear picture of future
data distribution.

Figure 4: Time efficiency of training, validation, and sampling.

7 CONCLUDING REMARK

In this paper, we proposed SpecSTG, a spectral diffusion approach for fast probabilistic spatio-
temporal traffic forecasting. Our method transforms the entire diffusion learning process to the
spectral domain by generating the Fourier representation of future time series instead of the original
data. Although we have introduced the autoregressive architecture of SpecSTG, the idea of spectral
diffusion can be straightforwardly applied to one-shot methods as well by altering the generative
target and graph convolution. Hence, SpecSTG can be regarded as an effective framework for STG
forecasting. Experiment results confirm the superior performance of SpecSTG, demonstrating more
efficient training and sampling compared to state-of-the-art diffusion methods. Nevertheless, we
highlight that SpecSTG may fall short of predicting compatible future distributions when the data
have low variations, diminishing the efficacy of spectral measurements of systematic fluctuations.
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A RELATED WORKS

Generative Diffusion Models The initial idea of diffusion models was introduced by (Sohl-
Dickstein et al., 2015). Then, some improvements proposed by (Ho et al., 2020) endowed them
with remarkable practical value, contributing to their conspicuous popularity nowadays. In recent
years, diffusion models have demonstrated their power over many existing generative techniques in
various real-world applications such as image synthesis (Austin et al., 2021; Dhariwal & Nichol,
2021; Ho et al., 2022a), video generation (Harvey et al., 2022; Ho et al., 2022b; Yang et al., 2022),
natural language processing (Li et al., 2022a; Nikolay et al., 2022; Yu et al., 2022), and time series
prediction (Rasul et al., 2021a; Li et al., 2022b; Alcaraz & Strodthoff, 2023).

Diffusion Models for Time Series and STGs Pioneering diffusion models for time series such as
TimeGrad (Rasul et al., 2021a) and TimeDiff (Shen & Kwok, 2023) were originally tailored for
multivariate time series forecasting, utilizing sensors as variables but only exploring general depen-
dencies without incorporating graph structural information. Recently, several diffusion models were
proposed specifically for STG forecasting. DiffSTG (Wen et al., 2023) incorporates graph struc-
ture into the backward kernel with a graph-modified Unet (Ronneberger et al., 2015) architecture.
GCRDD (Li et al., 2023), designed in reminiscent of TimeGrad, adopts a graph-enhanced recurrent
encoder to produce hidden states from past time series as conditions. Additionally, USTD (Hu et al.,
2023) introduces a pre-trained encoder that better captures deterministic patterns via an unsuper-
vised reconstruction task. DVGNN (Liang et al., 2023) is a deterministic model but with a diffusion
module to generate dynamic adjacency matrices in its pre-training process. Furthermore, PriSTI
(Liu et al., 2023) was initially developed from CSDI (Tashiro et al., 2021) for STG imputation, but
with potential for forecasting tasks by masking future data as missing values. We highlight that
SpecSTG’s novelty lies in its unique spectral diffusion framework that generates graph Fourier rep-
resentation of future time series, which leverages systematic fluctuations in time series data guided
by graph structure to boost forecasting accuracy.

Spectral diffusion on graphs and time series The idea of spectral diffusion has been applied in
generating graph structure and classic time series. GSDM (Luo et al., 2023) explores the genera-
tion of spectral graph structure, i.e., the eigenvalues of graph adjacency matrices, to enhance graph
generation quality. Besides, research has shown that generating classic time series in the Fourier
domain facilitates diffusion models to better capture the training distribution (Crabbé et al., 2024).
Our method, SpecSTG, is the first endeavour to investigate spectral diffusion in generating graph
signals and spatio-temporal data.
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B GENERALIZED FOURIER TRANSFORM

The Fourier transform can be naturally generalized to multivariate traffic STGs. Assume that we
have a traffic STG with graph signals XG = {x1,x2, ...,xt, ...|xt ∈ RN×Dx}, where Dx is the
number of variables. The graph is a univariate STG when Dx = 1, and a multivariate STG when
Dx ≥ 2. For a sampled past-future window X = {xt0−c+1, ...,xt0+f} ∈ RN×Dx×(c+f), we first
split it according to its variables and rewrite it as X = {x′

1, ...,x
′
d, ...,x

′
Dx

|x′
d ∈ RN×(c+f)}. Then,

with the Fourier operator U , we conduct the transform on each variable matrix x′
d as

x̃′
d = U⊺x′

d.

Hence, the Fourier representation of the sampled window X is X̃ = {x̃′
1, ..., x̃

′
d, ..., x̃

′
Dx

} ∈
RN×Dx×(c+f). To convert the Fourier representation of a single variable matrix back to the original
domain, we may apply Fourier reconstruction as

x′
d = Ux̃′

d,

so X = {Ux̃′
1, ...,Ux̃′

d, ...,Ux̃′
Dx

} ∈ RN×Dx×(c+f).

C STRUCTURE OF SG-WAVE

Figure 5: The denoising network ϵθ is a modified WaveNet structure. For computational details
please refer to (Rasul et al., 2021a) and (Van den Oord et al., 2016).
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D TRAINING & INFERENCE ALGORITHMS

Algorithm 1 SpecSTG training

Input: The distribution of training data after Fourier transform: q({X̃c, X̃f}); hidden states: h̃;
number of diffusion steps: K; noise schedule {β1, β2, ..., βK}, graph: G(V, E ,A).
Output: Optimized denoising network ϵθ.

1: Sample {X̃c, X̃f} ∼ q({X̃c, X̃f})
2: while Not Convergence do
3: for t = t0 + 1, t0 + 2, ..., t0 + f do
4: k ∼ Uniform(1,K), ϵt ∼ N (0, I)
5: Compute x̃k

t =
√
α̃kx̃

0
t +

√
1− α̃kϵt

6: end for
7: Take gradient step on and do gradient descent for θ

∇θEt,k,x̃0
t ,ϵt

∥∥∥ϵt − ϵθ

(
x̃k
t , k, h̃t−1,A

)∥∥∥2
8: end while

Algorithm 2 SpecSTG sampling and prediction for x0
t

Input: Hidden state: h̃t−1; Fourier operator U ; number of samples: S; variance hyperparameter:
σk.
Output: Prediction x̂0

t .
1: Randomly generate S samples {x̃K

t,s}Ss=1 ∼ N (0, I) and do the follows in parallel for all s.
2: for k = K,K − 1, ..., 1 do
3: e = 0 if k = 1 else e ∼ N (0, I)

4: Compute and update x̃k−1
t,s as

1√
1− βk

(
x̃k
t,s−

βk√
1− α̃k

ϵθ(x̃
k
t,s, k, h̃t−1,A)

)
+ σke

5: end for
6: Take average on S samples x̃0

t = 1
S

∑S
s=1 x̃

0
t,s

7: Compute predictions x̂0
t = Ux̃0

t
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E MORE EXPERIMENT DETAILS

E.1 DATASETS

PEMS04 comprises traffic records from 307 sensors in California’s District 04 from Jan 1st to Feb
28th, 2018, while PEMS08 includes data from 170 sensors in District 08 from July 1st to 31st August
2018. Our experiments focus on traffic flow and speed available in both datasets, denoted as “F”
and “S” respectively. For instance, “PEMS04F” denotes traffic flow records in the PEMS04 dataset.
Each time point covers 5 minutes, with the corresponding value representing the average records
during that interval. The speed data are continuous, allowing us to introduce random Gaussian
noises. Although traffic flow (i.e., the number of vehicles) is a discrete variable, we still treat it
as continuous considering the fact that it contains numerous unique values. More details about the
datasets can be found in Table 2.

Table 2: Dataset details.
Dataset Type #Nodes #Edges #Time points

PEMS04F Flow 307 680 16992PEMS04S Speed

PEMS08F Flow 170 548 17856PEMS08S Speed

E.2 IMPLEMENTATION DETAILS

We implement SpecSTG on a single NVIDIA 4090 GPU with 24GB of memory. The model is
trained with the Adam optimizer with a learning rate schedule from 5e − 4 to 1e − 2. The maxi-
mum number of epochs is 300 for flow data and 50 for speed data with batch size 64. Validation
loss is used for model selection. The hyperparameters specific to diffusion models are set as fol-
lows. We use the quadratic scheme for noise level βk starting from β1 = 1e − 4 and tune βK in
[0.1, 0.2, 0.3, 0.4]. The number of diffusion steps K is selected from [50, 100, 200]. The maximum
polynomial order in SpecConv is set as 2. The hidden size Dh is tuned in [64, 96]. In SG-Wave,
the number of residual blocks M = 8 and the residual channel Dr = 8. Finally, the number of
samples S is set as 100 for all models. For all experiments, we split datasets with 60%/20%/20%
train/validation/test proportions and apply Z-score normalization before the Fourier transform. The
graph structure is constructed depending on the distance between sensors following (Guo et al.,
2019).

E.3 METRICS

We use three metrics to evaluate the performance of SpecSTG, including two deterministic metrics,
Root Mean Squred Error (RMSE) and Mean Absolute Error (MAE), and one probabilistic metric,
Continuous Ranked Probability Score (CRPS). RMSE and MAE are adopted to measure the distance
between predictions and the ground truth. We use the mean of generated samples as predictions to
calculate RMSE and MAE. Given predictions X̂f at time t0 (after the Fourier reconstruction) and
ground truth Xf of one future window, the formulas can be written as

RMSE(X̂f ,Xf ) =

√√√√ 1

f

t0+f∑
t=t0+1

(xt − x̂t)2, (5)

MAE(X̂f ,Xf ) =
1

f

t0+f∑
t=t0+1

|xt − x̂t|. (6)

The final results reported in our experiments are the averages from all available predictive win-
dows in the test set. CRPS is a probabilistic metric that measures the compatibility of the learned
probabilistic distribution at each observation (Matheson & Winkler, 1976). Given the cumulative
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distribution function (CDF) F of the distribution estimated at observation x, CRPS is defined as

CRPS(F−1, x) =

∫ 1

0

2
(
κ− Ix<F−1(κ)

)(
x− F−1(κ)

)
dκ, (7)

where κ ∈ [0, 1], F−1 is the quantile function, and Ix<F−1(κ) is an indicator function which equals
to 1 when x < F−1(κ) and 0 otherwise. To calculate the integral, we use 100 samples generated at
each time point and sensor/node to approximate the corresponding distribution and calculate CRPS
following the way defined in (Tashiro et al., 2021). For each future window, we may compute the

normalized CRPS at time point t = t0 + 1, ..., t0 + f as
∑

n CRPS(F−1
t,n ,xt,n)∑

n |xt,n| , where n = 1, ..., N

denotes each sensor/node, and xt,n is the value of sensor/node n at time t. Likewise, the “CRPS

Avg.” is computed as
∑

t,n CRPS(F−1
t,n ,xt,n)∑

t,n |xt,n| . We do not adopt CRPSsum (Rasul et al., 2021a) as
a metric because sensors are not regarded as features in our experiments. The results reported for
CRPS are also averages over all available predictive windows in the test set.

F COMPARISON WITH DETERMINISTIC BASELINES

Table 3 presents a comparison between SpecSTG and deterministic methods. Notably, SpecSTG
outperforms most classic deterministic approaches, including traditional statistical models like VAR
and graph neural networks such as DCRNN and ASTGCN. However, GMAN consistently demon-
strates superior performance, particularly in long-term forecasting. Here are two plausible expla-
nations. Firstly, being a deterministic model, GMAN is trained with MAE loss, strengthening the
generation of accurate deterministic predictions compared to SpecSTG, which optimizes an implicit
probabilistic objective. Secondly, GMAN’s sophisticated encoder-decoder architecture and multiple
spatio-temporal attention blocks effectively integrate spatial and temporal information, while Spec-
STG relies on a single graph-modified GRU encoder for processing spatio-temporal patterns. This
observation could guide future work to enhance our model.

Table 3: Comparison between SpecSTG and classic deterministic models on PEMS04F and
PEMS08F. Partial results are retrieved from (Shao et al., 2022). Best results are marked in bold,
and second best results are underlined.

RMSE MAE
Model 15min 30min 60min 15min 30min 60min

PEMS04F

HA 42.69 49.37 67.43 28.92 33.73 46.97
VAR 34.30 36.58 40.28 21.94 23.72 26.76
FC-LSTM 33.37 39.1 50.73 21.42 25.83 36.41
STGCN 30.76 34.43 41.11 19.35 21.85 26.97
DCRNN 31.94 36.15 44.81 20.34 23.21 29.24
ASTGCN 31.43 34.34 40.02 20.15 22.09 26.03
GMAN 29.32 30.77 30.21 18.28 18.75 19.95
SpecSTG 30.17 32.81 37.29 19.29 21.39 23.29

PEMS08F

HA 34.96 40.89 56.74 23.52 27.67 39.28
VAR 29.73 30.30 38.97 19.52 22.25 26.17
FC-LSTM 26.27 34.53 47.03 17.38 21.22 30.69
STGCN 25.03 27.27 34.21 15.30 17.69 25.46
DCRNN 25.48 27.63 34.21 15.64 17.88 22.51
ASTGCN 25.09 28.17 33.68 16.48 18.66 22.83
GMAN 22.88 24.02 25.96 13.80 14.62 15.72
SpecSTG 22.23 24.77 29.90 14.93 16.70 20.25

G SENSITIVITY ANALYSIS ON HYPERPARAMETERS

In this sensitivity analysis, we focus on the combination of two very important diffusion hyperpa-
rameters: the number of diffusion steps, K, and the end of noise schedule, βK . Theoretically, the
choices of K and βK are relevant to each other. Since the noise level gradually increases from
β1 = 1e− 4 to βK in K diffusion steps, these two hyperparameters control the changing speed and
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level of noises in the diffusion process, which is essential for the white noise assumption of diffusion
models. The same as the implementation of SpecSTG in our experiments, we set the search spaces
of βK and K as [0.1, 0.2, 0.3, 0.4] and [50, 100, 200], respectively. In Figure 6, we use heatmaps
to show the change in model performance in terms of RMSE, MAE, and CRPS on PEMS04S with
different hyperparameter combinations. We observe that SpecSTG typically performs better with a
larger βK (for instance 0.3 or 0.4). The best results appear when βK = 0.3 and K = 50. It is also
worth noting that the forecasting performance of SpecSTG does not vary dramatically with differ-
ent hyperparameter combinations. This means our method is not very sensitive to hyperparameter
selection, alleviating the burden of hyperparameter tuning.

Figure 6: Sensitivity analysis of SpecSTG on key hyperparameters: diffusion steps K and the end
of beta schedule βK .
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