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Abstract

Saturated post-hoc optimization is a powerful method for
computing admissible heuristics for optimal classical plan-
ning. The approach solves a linear program (LP) for each
state encountered during the search, which is computationally
demanding. In this paper, we theoretically and empirically an-5

alyze to which extent we can reuse an LP solution of one state
for another. We introduce a novel sensitivity analysis that can
exactly characterize the set of states for which a unique LP
solution is optimal. Furthermore, we identify two properties
of the underlying LPs that affect reusability. Finally, we intro-10

duce an algorithm that optimizes LP solutions to generalize
well to other states. Our new algorithms significantly reduce
the number of necessary LP computations.

Introduction
The objective of optimal classical planning is to find a15

cheapest sequence of actions that achieves some goal. One
of the main methods for optimal planning is A∗ search (Hart,
Nilsson, and Raphael 1968) with an admissible heuristic
(Pearl 1984). Currently, the strongest admissible heuristics
are based on cost partitioning (Katz and Domshlak 2010).20

In practice, cost partitions are often optimized using linear
programs (LPs).

Saturated post-hoc optimization (Pommerening, Röger,
and Helmert 2013; Seipp, Keller, and Helmert 2021) is a
prominent example for this. It partitions costs according to a25

weighted sum of saturated cost functions. In each state en-
countered during the search these weights are optimized by
an LP which incurs significant computational costs. Höft,
Speck, and Seipp (2023) introduce methods to drastically
reduce the number of solved LPs without compromising the30

quality of the heuristic. Their approach uses the concept of
sensitivity analysis from Operations Research, which deter-
mines how changes to an LP affect its optimal solutions.
In the context of (saturated) post-hoc optimization, the LPs
computing cost partitions for two different states s and s′35

only differ in the bounds for some constraints. With sensi-
tivity analysis one can often avoid computing a cost partition
for s′ by cheaply adapting the cost partition for s to s′.

In the work by Höft, Speck, and Seipp (2023), sensitivity
analysis approximates the set of states where a cost parti-40

tion can be adapted. Here, we go beyond that and develop a
method that can characterize this set exactly.

We show that two properties of the underlying LP influ-
ence the relationship between a LP solution and the desired
planning heuristic: degeneracy, where multiple solutions de- 45

scribe the same heuristic and non-uniqueness, where multi-
ple heuristics are optimal. In the first case, improving the
constraint formulation of the LP can reduce degeneracy; in
the second, improving the columns of the LP can reduce
non-uniqueness. 50

In the presence of multiple equally good solutions, we
would like to break ties in favor of solutions that generalize
to more states. Therefore, we introduce an algorithm which
favors LP solutions that correspond to more versatile cost
partitions, increasing reusability. Our empirical evaluation 55

shows that our new methods help to drastically reduce the
number of LP computations required for the saturated post-
hoc optimization heuristic.

Background
We consider SAS+ planning tasks (Bäckström and Nebel 60

1995) with operator costs. The details of planning tasks are
not important for this paper, the only relevant part is that
a planning task induces a weighted transition system. A
weighted transition system T = ⟨S,L, T, cost, s0, S∗⟩ con-
sists of a finite set of states S, a finite set of labels L, a 65

finite set of labeled transitions T : s ℓ−→ s′ with s, s′ ∈ S
and ℓ ∈ L, a cost function cost : L → R ∪ {−∞,∞} that
assigns a cost to each label, an initial state s0 ∈ S, and a set
of goal states S∗ ⊆ S. We also write s ∈ T for s ∈ S. A
sequence of transitions leading from a state s to a goal state 70

is called an s-plan and an s0-plan is called a plan. A plan is
optimal if it has minimal cumulative cost.

Heuristic search (Bonet and Geffner 2001) is a com-
mon way of solving planning tasks optimally. A heuris-
tic function h: S → R ∪ {−∞,∞} estimates the cost 75

of the cheapest s-plan for each state s. It is admissible
if it never overestimates the true cost of a cheapest s-
plan h∗

T (s). Strong representatives of admissible heuris-
tics are abstraction heuristics (Edelkamp 2001; Helmert,
Haslum, and Hoffmann 2007; Katz and Domshlak 2010; 80

Seipp and Helmert 2018) which simplify the transition sys-
tem of a planning task with a surjective abstraction func-
tion α : S → Sα, yielding an abstract transition system
T α : ⟨Sα, L, Tα, cost, α(s0), Sα

∗ ⟩, where Tα = {α(s) ℓ−→



α(s′) | s ℓ−→ s′ ∈ T} and Sα
∗ = {α(s) | s ∈ S∗}.85

The preferable way of combining several heuristics ad-
missibly is cost partitioning (Katz and Domshlak 2010;
Pommerening et al. 2015). A cost partition C in a tran-
sition system T is a tuple of cost functions C =
⟨cost1, . . . , costn⟩, such that

∑n
i=1 costi(ℓ) ≤ cost(ℓ) for90

all labels ℓ ∈ L. Evaluating a tuple of admissible heuristics
H = ⟨h1, . . . , hn⟩ for state s under C yields the admissible
estimate hC(s) =

∑n
i=1 hi(costi, s), where each heuristic

hi is evaluated under cost function costi.
A strong heuristic based on cost partitioning is saturated

post-hoc optimization (SPhO) (Pommerening, Röger, and
Helmert 2013; Seipp, Keller, and Helmert 2021), which is
defined as follows. Given a transition system T and a tu-
ple of abstraction heuristics H for T , the heuristic value
hSPhO(s) for a state s is the objective value of the follow-
ing linear program.

SPhO-LP(s): Minimize
∑
ℓ∈L

cost(ℓ) · Yℓ subject to95 ∑
ℓ∈L

mscfh(ℓ) · Yℓ ≥ h(s) for all h ∈ H

Yℓ ≥ 0 for all ℓ ∈ L

Here, mscf is the minimum saturated cost function defined
as mscf(ℓ) = sup

a
ℓ−→b∈T

(h∗
T (a)⊖ h∗

T (b)), where the ⊖ op-
erator is defined as regular subtraction for finite values. For
infinite values, we use x⊖ y = −∞ iff x = −∞ or y = ∞,
and x⊖ y = ∞ iff x = ∞ ≠ y or x ̸= −∞ = y.100

Linear programs (Thie and Keough 2008), such
as SPhO-LP, can be written in the canonical form
maxx∈Rn{c⊤x | Ax ≤ b, x ≥ 0} where x is the vector
of decision variables, c ∈ Rn is a vector of objective coeffi-
cients, A ∈ Rm×n is the coefficient matrix, and b ∈ Rm is105

a vector of bounds. To solve a linear program with the sim-
plex algorithm (Bradley, Hax, and Magnanti 1977), m slack
variables are introduced to transform all constraints from in-
equalities to equalities. The simplex algorithm defines solu-
tions by iterating over bases. A basis is a valid partitioning110

of variables and slack variables into m basic and n non-basic
variables. We indicate the indices of the basic variables as B
and the indices of the non-basic variables as N . A partition-
ing into basic and non-basic variables is valid if the matrix
B formed by the m columns of A associated with the ba-115

sic variables is invertible. Each basis defines a unique LP
solution by setting the non-basic decision variables to zero:
xN = 0, and the basic decision variables to xB = B−1b.
The objective value is then obtained as c⊤BxB.

Exact Sensitivity Analysis120

Höft, Speck, and Seipp (2023) establish that performing sen-
sitivity analysis (Gal 1986) on the SPhO-LP can determine
whether the computed cost partition for a state s can be
cheaply adapted to another state s′ without compromising
the quality of the heuristic. They introduce four approaches,125

however, all of these approaches are approximations, so they
may fail to recognize that a previously computed cost par-
tition, can be reused for a newly encountered state. The
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Figure 1: Number of LP solver calls for the SPhO heuris-
tic with exact and 100%-rule-based sensitivity analysis over
PDBs for systematic patterns of size 1 and 2.

strongest among them is called “100% rule” and is guaran-
teed to require at most as many LP computations as any of 130

the other methods (Note that despite its name, the 100% rule
also is an approximation.)

A natural question is whether one can go beyond an ap-
proximate sensitivity analysis, and if so, to what extent it re-
duces the number of LP optimizations. To perform such an 135

exact sensitivity analysis, we build on the established result
that a basis remains optimal under changes in its constraint
bounds ∆b if and only if all components in the basis header
x∗
B remain greater than or equal to zero i.e, x∗

B +∆x∗
B ≥ 0

(Bazaraa, Jarvis, and Sherali 2009). The effects on the basis 140

header from changing the constraint bounds b by ∆b are cap-
tured by the columns of the solution tableau matrix B−1, as
∆xB = B−1∆b (Vanderbei 2020). Therefore, it holds that
xB +∆xB = xB +B−1∆b. And thus, changing the bounds
b of an optimally solved LP by ∆b will preserve optimality 145

of the current solution as long as xB +B−1∆b ≥ 0.
Based on this result, we define the following algorithm

that maintains a set of basis headers and solution tableau
matrices ⟨x,B−1⟩: When we encounter a state s during the
search, we check whether one of the stored entries satis- 150

fies xB + B−1∆b ≥ 0. If so, we can use it to efficiently
compute the heuristic value hSPhO(s). Otherwise, we solve
SPhO-LP(s) and add its basis header and solution tableau
matrix to our collection. We refer to Höft, Speck, and Seipp
(2023) for the algorithm details, as our sensitivity analysis 155

can be used in the same setting. We call this approach the
exact sensitivity analysis for the hSPhO heuristic, since it al-
lows us to compute hSPhO while reusing a previous basis, for
exactly those states s where this is possible.

Figure 1 compares the number of LP solver calls required 160

to compute the hSPhO heuristic by exact sensitivity analysis
and the 100% rule. This comparison is based on systematic
pattern databases up to size 2 (Pommerening, Röger, and
Helmert 2013).1 Overall, we observe a significant increase

1Höft, Speck, and Seipp (2023) group abstractions with the
same minimum saturated cost functions in a single constraint while



in the reusability of cost partitions when using exact sensi-165

tivity analysis. It increases the average percentage of evalu-
ations that do not require re-optimizing the LP from 79% to
85%. However, this advantage comes at the cost of slower
evaluation and higher memory consumption, which is why
some tasks can only be solved using the 100% rule.170

Alternative LP Solutions
All sensitivity analysis methods evaluate the reusability of a
basis, not the reusability of the solution defined by the basis.
There is a difference between these two cases, because mul-
tiple bases can define the same solution coefficients xB. This175

means that there can be multiple LP solutions that yield the
same cost partition. A necessary condition for this case is
degeneracy. An LP solution is degenerate if the basis defin-
ing it has basic variables of value zero (Bazaraa, Jarvis, and
Sherali 2009).180

Proposition 1. If an LP solution is degenerate there can be
alternative solutions with the same solution coefficients.

There is also the opposite case of alternative solutions that
describe a different cost partition, which is captured by the
notion of LP solution uniqueness (Bazaraa, Jarvis, and Sher-185

ali 2009).

Proposition 2. If an LP solution is non-unique there can be
alternative solutions with different solution coefficients.

So far, the topic of alternative optimal solutions for LP-
based heuristics has not been discussed in the planning lit-190

erature, because it is irrelevant when optimizing the LP for
every state. However, when reusing LP solutions between
different states, alternative solutions are of high interest, as
their reusability can be very different. With the definitions
of degeneracy and uniqueness, we can establish a precise re-195

lationship between sensitivity analysis and cost partitioning.

Proposition 3. Given an LP solution sol for SPhO-LP(s)
inducing cost partition C, sensitivity analysis can determine
the exact set of states for which C is optimal iff sol is non-
degenerate and unique.200

Proof. Since sol is non-degenerate and unique, there are no
other solutions for SPhO-LP(s). Therefore, there are also no
other cost partitions besides C for s that yield hSPhO(s). As
a consequence, sol is reusable for exactly those states s′ for
which C is optimal.205

We analyze the extent of degeneracy and uniqueness on
SPhO LP solutions in Figure 2. It shows that the LPs com-
puted for hSPhO over different sets of pattern database (PDB)
heuristics (Edelkamp 2001) have many alternative solutions.
The number of degenerate solutions is highest for systematic210

patterns of sizes 1 and 2 (Pommerening, Röger, and Helmert
2013). Removing patterns of size 1 from the collection de-
creases the average number of degenerate solutions slightly.
A possible explanation for this is that the size-1 patterns
are subsets of the size-2 patterns, which can lead to redun-215

dant constraints. Considering only size-1 patterns has much

Figure 1 uses one constraint per abstraction. We analyze abstraction
grouping below.
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Figure 2: Average percentage of degenerate and non-unique
solutions for the SPhO heuristic over different PDB sets.

fewer degenerate solutions than the other two variants and
even gives rise to some non-degenerate unique solutions.

Degeneracy and Non-Uniqueness
While a non-degenerate and unique LP solution describes a 220

single optimal basis, degenerate or non-unique LP solutions
imply that there are multiple optimal bases. The existence of
multiple optimal bases can affect the reusability of a com-
puted LP solution, since sensitivity analysis is defined for a
specific optimal basis. 225

Example 1. Consider three states: s0, s1, and s2. Further,
assume that the SPhO LP for state s0 yields two optimal
bases, x1 and x2, and performing a sensitivity analysis on xi

allows us to efficiently compute the heuristic value for state
si. LP solvers can provide only one of these optimal bases at 230

a time. So regardless of which basis (x1 or x2) the solver re-
turns, an additional LP computation becomes necessary to
derive the heuristic values for both states s2 and s3. How-
ever, if we can reformulate the LP in a way that does not
affect the computed heuristic value and at the same time re- 235

duces the space of optimal bases, ideally resulting in a single
optimal basis (non-degeneracy and uniqueness), it becomes
more likely that we can avoid the need for such additional
LP computations.

It is therefore interesting to study whether we can refor- 240

mulate the SPhO-LP to reduce the number of optimal bases
by reducing degeneracy or non-uniqueness. Although it is
generally not easy to predict whether a given LP will en-
counter degenerate solutions, there are two known criteria.
Duplicated columns can lead to degenerate solutions and 245

duplicated rows can lead to non-unique solutions (Bazaraa,
Jarvis, and Sherali 2009).

For the SPhO heuristic, this means that abstractions with
the same minimum saturated cost function can affect de-
generacy, and labels that have the same minimum satu- 250

rated cost under all abstractions can affect non-uniqueness.
Both observations are not new. Pommerening, Röger, and
Helmert (2013) proposed to group duplicate labels, while
Höft, Speck, and Seipp (2023) introduced abstraction group-
ing. Our analysis of optimal bases gives a novel explanation 255

of why these techniques can reduce the number of required



Algorithm 1 Greedily increase heuristic weights.
1: procedure INCREASEWEIGHTS(H, rem, s)
2: for h ∈ H with h(s) = 0, in random order do
3: ∆w = minℓ∈L

{
rem(ℓ)

mscfh(ℓ)

∣∣∣mscfh(ℓ) > 0
}

4: wh += ∆w
5: for ℓ ∈ L do
6: rem(ℓ) −= mscfh(ℓ) ·∆w

LP computations. Table 1 also shows empirical evidence that
abstraction and label grouping is beneficial.

Finding Versatile Cost Partitions
As we discussed above, there can be multiple cost partitions260

C that yield the same heuristic value hC(s) = hSPhO(s) for
a given state s. Therefore, instead of accepting the arbitrary
cost partition C that the LP solver finds for state s, we hy-
pothesize that it is beneficial to optimize C to obtain a more
versatile cost partition C ′. Such an optimized cost partition265

needs to preserve the estimate for s, i.e., hC′
(s) = hC(s),

but apart from this requirement we can change it to make it
optimal for more other states s′ than the unoptimized C.

To obtain more versatile cost partitions, we turn to the
dual of the SPhO-LP (Seipp, Keller, and Helmert 2021):

Dual SPhO-LP(s): Maximize
∑

h∈H h(s) · wh s.t.∑
h∈H

mscfh(ℓ) · wh ≤ cost(ℓ) for all ℓ ∈ L

wh ≥ 0 for all h ∈ H.

Intuitively, this LP maximizes a weight wh for each ab-270

straction heuristic h ∈ H. In the resulting cost partition C,
each heuristic h ∈ H is assigned the cost function costh,
where costh(ℓ) = mscfh(ℓ) · wh. The value hSPhO(s) can
then be computed as hSPhO(s) = hC(s) =

∑
h∈H wh ·h(s).

When inspecting the SPhO-LP in dual form, it becomes275

apparent that the LP solver only optimizes the weights wh

for heuristics with a non-zero estimate h(s). All heuristics h
with h(s) = 0 do not factor into the optimization and their
weights can be set arbitrarily by the LP solver. Therefore, we
can increase the versatility of a cost partition C by increas-280

ing the weights wh for heuristics h with h(s) = 0 to obtain
cost partition C ′. This will preserve the estimate for s, but
possibly increase the estimates for other states s′, making it
more likely that C ′ is optimal for s′ than C. Additionally, in-
creasing the weights can make the sensitivity analysis more285

versatile. This is the case, since the new basis can only re-
quire fewer changes to be adapted for a new state s′.

We define a greedy procedure for increasing weights
in Algorithm 1. It expects the remaining costs for all la-
bels ℓ ∈ L, which we compute as rem(ℓ) = cost(ℓ) −290 ∑

h∈H mscfh(ℓ) · wh. Then the procedure iterates over the
heuristics h with h(s) = 0 in a random order and increases
the weight wh as long as the remaining label costs allow for
an increase.

If the INCREASEWEIGHTS procedure found a higher295

weight for at least one heuristic, we want to feed this so-

Base W+ GL GH GHL GHL-W+

Base – 45 89 58 83 87
W+ 81 – 89 44 76 63
GL 116 102 – 85 28 40
GH 233 215 236 – 60 63
GHL 261 258 199 76 – 13
GHL-W+ 276 256 222 96 34 –

Coverage 682 832 787 832 790 832

Table 1: Top: Per-task comparison of the number of LP
solver calls by exact sensitivity analysis with different ex-
tensions. Cell (x, y) holds the number of tasks for which al-
gorithm x needs fewer LP solver calls than algorithm y. The
extensions are INCREASEWEIGHTS (W+) and grouping la-
bels (GL), heuristics (GH), or both (GHL). Bottom: Number
of solved tasks by the different methods.

lution back into the LP solver, so that its sensitivity anal-
ysis can benefit from the change. We do so by solving the
same SPhO-LP again, but warm-starting it with the opti-
mized weights. Re-solving the LP is cheap as long as the LP 300

solver detects that the provided solution is already optimal.
If negative costs occur in the minimum saturated cost

functions and the provided solution is degenerate or non-
unique, the simplex algorithm may fail to detect its optimal-
ity, reject it and searches its own solution again (Bazaraa, 305

Jarvis, and Sherali 2009). In our experimental analysis of
SPhO with INCREASEWEIGHTS, we therefore skip the pro-
cedure when we detect negative saturated costs. This hap-
pens for roughly 30% of our benchmark tasks.

The number of times the INCREASEWEIGHTS procedure 310

finds a weight to increase differs a lot between planning do-
mains and even between tasks from the same domain. In the
Petri-Net-Alignment domain, for example, weights are in-
creased between 0% and 21% of the time after finding an
LP solution. As Table 1 shows, using INCREASEWEIGHTS 315

usually decreases the number of LP solver calls. It is also
raises the number of solved tasks from 682 to 832 for plain
exact sensitivity analysis and from 790 to 832 if we group
heuristics and labels.

Conclusions 320

This paper focuses on the reusability of LP solutions com-
puted for determining heuristic values for saturated post-hoc
optimization. We introduced an exact sensitivity analysis ap-
proach that improves over existing approximations and em-
pirically showed that it drastically reduces the required LP 325

solver calls compared to the previous state of the art. Fur-
thermore, we showed the importance of considering multi-
ple alternative LP solutions and their potential to generalize
to other states. Based on this insight, we proposed a novel
greedy approach to optimize cost partitions for increased 330

versatility, resulting in an even greater reduction in the num-
ber of LP computations required.

An interesting avenue for future work is to explore meth-
ods that not only aim to increase the versatility of a given LP
solution, but also directly optimize for its reusability. 335
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