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Abstract

Functional lung imaging modalities, such as hyperpolarized gas MRI, facilitate the visual-
ization and quantification of regional lung ventilation. The ventilation defect percentage
(VDP) is a highly-sensitive biomarker for quantifying small changes in lung function, de-
rived from spatially co-registered functional hyperpolarized Xenon-129 (129Xe)-MRI and
structural proton (1H)-MRI. However, manual-editing associated with segmentation-based
workflows represents a time-consuming obstacle to delivering functional lung MRI results
to clinicians. End-to-end deep learning (DL), which predicts final outputs without inter-
mediary steps, frequently demonstrates improved performance on computer vision tasks;
however, intermediary steps can no longer be interrogated. In this work, we developed
the first end-to-end, uncertainty-aware DL framework for directly predicting VDP and its
associated confidence. The direct prediction of VDP can potentially provide clinicians with
important clinical data faster than segmentation-based methods.
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1. Introduction

Pulmonary imaging represents a key component in the clinical workflow for many patients
with respiratory diseases, aiding in the diagnosis, monitoring, and treatment of these pa-
tients. Hyperpolarized gas MRI is a functional lung imaging modality that provides re-
gional ventilation information with high spatial and temporal resolution (Stewart et al.,
2021). Spatially co-registered functional hyperpolarized 129Xe-MRI and structural proton
(1H)-MRI scans facilitate the computation of biomarkers, such as the ventilation defect per-
centage (VDP); the VDP gives a percentage of defective lung region in comparison to the
overall lung parenchymal volume (Stewart et al., 2021). To compute VDP, the segmentation
of the ventilated lung and the lung cavity is required.

End-to-end deep learning (DL), which directly predicts the final output without inter-
mediary steps, has demonstrated improved performance on computer vision tasks (Donahue
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et al., 2020). We hypothesized that directly predicting VDP, without manual editing and
segmentation steps, may improve the speed, accuracy and reliability of the predictions.
However, end-to-end DL approaches inherently lack interpretability. Therefore, to improve
trust in end-to-end DL, techniques can be employed which characterize the uncertainty of
predictions, providing additional information above that of just the black-box prediction.
Monte-Carlo (MC) dropout has been proposed as a method to determine the epistemic
uncertainty of DL models by generating parameter space distributions of prediction un-
certainty (Gal and Ghahramani, 2016). In this work, we develop an uncertainty-aware,
dual-channel CNN-based framework to directly predict a key functional lung imaging met-
ric, namely, VDP, from multi-modal 129Xe-MRI and 1H-MRI volumetric scans.

2. Methods

The dataset contained a total of 574 corresponding 1H-MRI and 129Xe-MRI scans from 47
healthy participants and 527 patients with a range of pulmonary pathologies. Patient data
used in this work was pooled retrospectively from prospective clinical imaging studies and
clinical referral cases. All participants underwent 3D volumetric 129Xe-MRI and 1H-MRI
acquired in the coronal plane at approximately functional residual capacity + inhaled bag
volume with full lung coverage at 1.5T (Stewart et al., 2018).

Ground-truth VDP values are calculated from the segmentation of the ventilated lung in
129Xe-MRI scans and the lung cavity estimations (LCEs) derived from the similar-breath
structural 1H-MRI scan. LCEs, which segment the lung cavity in the spatial domain of
129Xe-MRI, were semi-automatically generated using several approaches (Astley et al.,
2022a) (Hughes et al., 2018). 129Xe-MRI ventilated lung segmentations were generated
from one of three independent methods, namely, SFCM (Hughes et al., 2018), linear-binning
or CNN-based segmentation (Astley et al., 2022b). LCEs and 129Xe-MRI ventilated lung
segmentations were subsequently manually edited by a wide selection of expert observers.

A dual-channel 3D CNN with a DenseNet-based (Huang et al., 2017) architecture was
developed to predict a VDP value from paired 1H-MRI and 129Xe-MRI scans. Structural
and functional imaging modalities were concatenated in a channel-wise fashion. All scans
were normalized prior to network input and resized to 256x256x20 voxels. During network
training, data augmentation was employed to minimize overfitting and improve robustness;
affine and elastic rotation and scaling augmentations were employed at a probability of 0.1
and 0.5, respectively. The network was trained with a PReLU activation function, AdamW
optimization (a=5x10−5), and a smooth L1 loss (b=0.7) function. A batch size of 1 and
a dropout rate of 0.15 was used. A data split of 80:10:10% was utilized, resulting in the
following allocations: training (n=458), validation (n=58) and testing (n=58).

Epistemic uncertainty was determined via MC dropout and represents an Bayesian
approximation of the Gaussian process. Posterior distributions, representing the epistemic
uncertainty of the network, were constructed from 20 MC dropout iterations. K-means
clustering was performed to classify these distributions into relative confidence classes.

To evaluate VDP predictions, the MAE was used as the primary metric. Normality was
determined via Shapiro-Wilks tests and the appropriate parametric or non-parametric test
was conducted to compare groups. A p-value <0.05 was considered statistically significant.
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3. Results

A comparison between end-to-end DL predicted VDP values and those derived from a con-
ventional segmentation-based workflow indicated no significant difference in VDP values,
achieving a median (range) MAE VDP of 1.01% (0.002, 7.58) VDP across 58 testing cases
(p=0.3677). A minimal Bland-Altman bias of -0.18 and a Pearson correlation of 0.94 was
observed in the end-to-end DL VDP values; however, a few patients exhibited large VDP dif-
ferences. Example readouts for six participants in the dataset are shown in Figure 1. Details
are available on GitHub (https://github.com/POLARIS-Sheffield/Direct-VDP-Prediction).

Based on 20 MC dropout repeats, four confidence groups were constructed (very con-
fident, confident, unconfident and very unconfident); significant differences in MAE were
observed between the confident and unconfident metacategories (p=0.039).

4. Discussion

This novel dual-channel, end-to-end DL network exhibited no statistically significant dif-
ferences compared to conventional segmentation-based workflows. A minimal bias was
exhibited in Bland-Altman analysis, as well as a high correlation between segmentation-
derived and end-to-end DL VDP values. The proposed end-to-end DL approach facilitates
a more streamlined ventilation analysis workflow, using uncertainty-based confidence groups
to stratify patients requiring manual intervention. The direct prediction of VDP can po-
tentially provide clinicians with important clinical data faster than segmentation-based
methods, allowing for the possibility of real-time, on-scanner, instant analysis.

One limitation of the uncertainty quantification technique deployed in our study is that
some proportion of the quantified uncertainty is potentially due to differences in the raw
VDP value; for example, patients with large VDPs may have larger uncertainty.

Figure 1: Example readouts with 129Xe-MRI and 1H-MRI scans, segmentation-derived and
end-to-end DL VDP values, confidence intervals and confidence classes.
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