
Under review as a conference paper at ICLR 2023

MIXTURE OF QUANTIZED EXPERTS (MOQE):
COMPLEMENTARY EFFECT OF
LOW-BIT QUANTIZATION AND ROBUSTNESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Mixture of Experts (MoE) models could achieve state-of-the-art quality on
various language tasks, including machine translation task, thanks to the efficient
model scaling capability with expert parallelism (Fedus et al., 2021). However,
it has brought a fundamental issue of larger memory consumption at deployment
time. Furthermore, this results in significant inference speed degradation at auto-
regressive decoding steps due to the increased memory transfers. In this paper,
we propose Mixture of Quantized Experts (MoQE) which is a simple weight-only
quantization method applying ultra low-bit down to 2-bit quantizations only to
expert weights for mitigating the increased memory and latency issues of MoE
models. We show that low-bit quantization together with the MoE architecture
delivers a reliable model performance while reducing the memory size signifi-
cantly even without any additional training. Especially, expert layers in MoE
models are much more robust to the quantization than conventional feedforward
networks (FFN) layers. In our comprehensive analysis, we show that MoE models
with 2-bit and 80% sparse expert weights can deliver better model performance
than the dense model trained on the same dataset. We present how quantization
of different parts of models affects the performance with various experiments us-
ing a large MoE model (5.3 B). As a result of low-bit quantization, we show the
model size can be reduced by 79.6% of the original half precision floating point
(fp16) MoE model. This cuts down the model size of 5.3B parameters from 8.4x
of the dense model to only 1.7x of the dense model after 2-bit quantization. It
still preserves 1.88% higher accuracy than the dense model. Combined with an
optimized GPU runtime implementation, it also achieves 2.7X speed-up which is
even slightly faster than the FLOPs equivalent dense model.

1 INTRODUCTION

Large Language Models (LLMs) have shown their effectiveness on various language tasks by in-
creasing the number of trainable parameters together with the framework of pre-training a model
on a large scale data and using it to different downstream tasks (Devlin et al., 2018; Radford et al.,
2018; Liu et al., 2019; Raffel et al., 2020). With the advancement of distributed large scale training
methods (Shazeer et al., 2018; Rasley et al., 2020; Ren et al., 2021; Baines et al., 2021) and large
scale data collection (Raffel et al., 2020; Hoffmann et al., 2022), the models get even larger and
break state-of-the-art performance with the increased model capacity (Brown et al., 2020; Rae et al.,
2021; Zoph et al., 2022; Zhang et al., 2022; Smith et al., 2022; Chowdhery et al., 2022). However,
the cost of training these models increases whenever more parameters are added, and this may not
be sustainable.

As a solution to address this issue, sparsely activated models (Shazeer et al., 2017) are more widely
adopted and show significant efficiency improvements in terms of model size scaling while enabling
up to trillions of parameters to be trained more efficiently and achieving better model accuracy
(Lepikhin et al., 2020; Fedus et al., 2021; Kim et al., 2021; Artetxe et al., 2021). Mixture-of-Experts
(MoE) models are one type of sparsely activated models replacing a single layer in a model with
a group of parallel layers which are called experts combined with a gate layer. For a given
input, the gate layer selects a subset of the experts from the group, and use them for processing

1

Under review as a conference paper at ICLR 2023

the input. By limiting the number of subset layers for a given input to one or two, the theoretical
FLOPs stays almost constant even if we add hundreds of parallel layers into the MoE group. Thus
far, most studies have shown that it is effective to increase the capacity of the models by replacing
feedforward networks (FFN) of Transformer (Vaswani et al., 2017) blocks with MoE layer consists
of multiple FFN layers together with a gating network (Lepikhin et al., 2020; Fedus et al., 2021;
Kim et al., 2021; Artetxe et al., 2021). One of the most unique and critical components of MoE
models is the gating network which decides how to conditionally select experts for each input, and
there have been various studies to improve it to achieve a better training convergence ((Lewis et al.,
2021; Roller et al., 2021; Zuo et al., 2021; Clark et al., 2022; Liu et al., 2022; Zhou et al., 2022) and
they are well surveyed in Fedus et al. (2022).

In spite of the progress on the training of MoE models, there have been only a few handfuls of
studies related to MoE model inference. Rajbhandari et al. (2022) designs a more efficient MoE
architecture and distributed runtime to achieve 7.3X inference speed-up. Kudugunta et al. (2021)
uses task specific information to reduce the size of the model at deployment time by only loading
task specific experts. Kim et al. (2021) prunes some experts at deployment time to reduce the model
size by trading-off model performance. Zoph et al. (2022) uses knowledge distillation technique
to distill a large MoE model into a smaller dense model to reduce the memory consumption and
improve the throughput. Even with all the proposed techniques, there has not been a solution to
accelerate the inference of MoE models while maintaining the accuracy.

Quantization is a type of model acceleration and compression techniques by estimating a floating
point number into a smaller precision number. There are various studies that show quantization is
effective to accelerate neural network model inference (Rodriguez et al., 2018; Stock et al., 2019;
Choukroun et al., 2019; Gholami et al., 2022). Especially, it has been known to be very effective in
natural language generation such as machine translation ((Kim et al., 2019; Aji & Heafield, 2020;
Fan et al., 2021)) and natural language understanding (Kim & Awadalla, 2020) tasks. However,
there has not been an in-depth study about how quantization works with large MoE models.

Recently, Dettmers et al. (2022); Yao et al. (2022) have studied how quantization works on large
scale language models. Dettmers et al. (2022) looks at outlier features in the activations of large
language models, and proposes to decompose them while performing matrix multiplications. In our
quantization method, this is not needed because it is a weight-only quantization and outliers in acti-
vations cannot affect the performance. And, the weights are dequantized back to fp16 while matrix
multiplication is done. This also makes our approach not require a special low-bit instructions. And,
we show that this can be applied to lower bits than 8-bit for large MoE models. ZeroQuant (Yao
et al., 2022) presents a series of techniques including knowledge distillation (Kim & Rush, 2016) for
achieving a higher quality quantization. Our focus is to exploit the intrinsic characteristics of MoE
layers based on our investigation, and we show that a simple quantization algorithm can achieve
significantly higher efficiency and maintain the quality at the same time.

Our contributions in this paper are as below.

• We present extensive studies about how applying low-bit (down to 2-bits) quantization
to different layers of MoE transformer models affects the model accuracy together with
comparisons to the corresponding dense model with the same embedding size.

• We show that expert weights are highly robust to the quantization, therefore they can be
quantized to 3-bit without additional training or calibration data and to 2-bit with Quan-
tization Aware Training (QAT) which results in 79.6% reduction in memory size. Com-
bined with a runtime optimization, we show that the method boosts the inference speed
significantly more than 2.7X faster. We leverage the memory bounded characteristic of
auto-regressive decoders, so reduced memory bottleneck improves the overall efficiency
even with additional dequantization steps in our procedure. Based on the observations, we
propose a new framework named Mixture of Quantized Experts (MoQE) which is a simple
weight-only quantization method only applied to MoE expert weights.

• Finally, we show an emerging sparsity of more than 80% in the expert weights to be zero
from 2-bit quantization. The expert weight matrices are sparse and very low-precision at
the same time, while still outperforming the dense counterpart trained on the same dataset.

2

Under review as a conference paper at ICLR 2023

2 BACKGROUND - CHALLENGES OF DEPLOYING MOE MODELS

In the widely used MoE architecture, even with a constant or only sub-linearly higher theoretical
FLOPs by using top-1 or top-2 gating, the increased model size with additional experts has a serious
negative impact on the inference performance in various aspects.

2.1 INCREASED MEMORY FOOTPRINT

First of all, due to the increased model size, the model requires much more accelerator memory.
With modern accelerators like GPUs, the accelerator memory size is limited. So, more accelerators
are required to handle 1 model which causes communication problem described next. Also, the
model takes up more memory, so the batch size is limited to be small which prevents the optimal
utilization of processing cores.

2.2 SLOWER INFERENCE SPEED

Increased communication overhead. In the distributed training and inference set-up for large scale
models, it is natural to use many GPUs or accelerators for a single model. The model weights can
be distributed across different accelerators with various techniques (Ren et al., 2021) and expert
parallelism (Fedus et al., 2021). However, in Liu et al. (2022), it is shown that the communica-
tion overhead with expert parallelism at training time could take up to more than half of the entire
end-to-end time depending on the number of GPUs and clusters. This could affect inference effi-
ciency even more severely because inference usually needs fewer FLOPs numbers than training, and
communication bottleneck will stand out more. Therefore, it is desirable to use as few numbers of
accelerators as possible to avoid this overhead.

Memory bandwidth bottleneck with MoE layers. The increase in the model size not only causes
communication overhead, but also brings a significant inference speed impact on the modern pro-
cessor architectures. While performing beam search decoding, the size of activation (an individual
token) is relatively small and the decoding operation is memory bandwidth bounded. This means
transferring model weight matrices in a memory hierarchy is a huge bottleneck. With the increased
number of experts, the burden of memory transfer increases even more, and directly impacts the
inference speed.

Inference speed measurement. Table 1 shows an actual speed difference measured with dense
and MoE models on an NVIDIA’s V100 GPU. Two models are encoder and decoder based on the
transformer architecture (Vaswani et al., 2017), and have exactly the same model settings except for
the number of experts. The speed measurements are done on the translation task from German to
English using auto-regressive beam search with beam size of five. Both models are evaluated on
the same PyTorch 1 with half-precision floating point (fp16). The MoE model uses top-1 gating
which assigns only one expert for a given input token which provides the same theoretical FLOPs
as the corresponding dense model (with the same embedding size). Due to the excessive memory
transfer caused by the increased number of experts, the actual inference speed decreases by 60% of
the original dense model’s speed as shown in the table.

Table 1: Inference speed measurements and model sizes of dense and MoE models. Both models
run with batch size of 24 and the throughput is measured with the number of sentences processed
for one second.

Model Throughput Model size % of MoE weights
(sentences/second) (fp16) in GB

Dense 14.02 1.18 -
MoE (32 experts) 5.37 9.91 92.8 %
Difference 0.38X 8.38X -

To overcome these challenges, we focus on reducing the model size utilizing quantization. Espe-
cially, increased model size and latency are mostly from the expert FFN weights which contribute

1https://github.com/pytorch/pytorch

3

Under review as a conference paper at ICLR 2023

92.8 % of all weights in this specific model setting, so the FFN weights are our main target for the
optimization. With an emerged sparsity in expert weights from the low-bit quantization, we also
explore a further sparsification opportunity with a simple magnitude pruning technique.

3 QUANTIZATION METHODS FOR MOE LAYERS

There are multiple design choices to quantize model weights. In this section, we analyze the nu-
merical characteristics of different layers in a large MoE model, and describe the decisions we have
made to most effectively quantize the MoE layers.

3.1 NUMERICAL DISTRIBUTION OF MODEL WEIGHTS

While quantizing matrices, it is desired not to have outliers, but to have smoothly distributed numer-
ical values. Outliers usually skew the range to be quantized and scaling factors get too large. Figure
1 shows weight distribution box plots of linear layers in the MoE model’s FFN blocks. Following
the widely used practice, an MoE layer is in every other layer (Lepikhin et al., 2020; Fedus et al.,
2021; Kim et al., 2021). Even number layers {0, 2, ...} are expert FFN layers and odd number layers
{1, 3, ...} are normal dense FFN layers. First, all of them are centered around zero. However, dense
FFN layers have a much larger range than MoE FFN layers. This indicates that dense FFN layers
have more outliers than MoE FFN layers. This phenomenon is more prevalent in the second linear
layers sometimes reaching down to −8.0 which is shown in Figure 1b. Figure 2 shows example his-
tograms of an expert FFN weight and a dense FFN weight. As can be seen in Figure 2b, the example
dense FFN layer suffers from outliers seriously. However, expert FFN weights in Figure 2a show
smooth distribution without any major outliers. We observe the similar pattern all across different
layers and different experts. In Appendix C, we additionally include the statistics of overall layers.
This statistical observation indicates that MoE FFN layers would be well suited for the quantization.

Based on the observation, the FFN weights are following a normal distribution with a mean value
near zero. Therefore, we use symmetric quantization without needing to shift the zero point. Even
for the dense FFN layers, the means and the standard deviations are around zero except for the
outliers which can be seen in the box plot of Figure 1. This symmetric quantization also gives an
advantage to quantize many weight values near center to zero which could result in a sparse model
weight.

0 2 4 6 8 10 12
Layers

−2

−1

0

1

2

B
o
x

p
lo

t

(a) FFN linear 1 weight distribution across layers

0 2 4 6 8 10 12
Layers

−8

−6

−4

−2

0

2

B
o
x

p
lo

t

(b) FFN linear 2 weight distribution across layers

Figure 1: FFN weight distribution across layers. Even number layers {0, 2, ...} are expert FFN
layers and odd number layers {1, 3, ...} are normal dense FFN layers. (a) shows the first linear layer
in FFN and (b) shows the second linear layer in FFN.

3.2 QUANTIZATION ALGORITHMS

3.2.1 QUANTIZATION TECHNIQUES

We try two quantization techniques, they are (i) linear quantization which is mapping quantized
integer values and the original float value uniformly and (ii) log-based quantization from Aji &
Heafield (2020) which maps integer and float ranges in a log scale. In both cases, we choose channel-
wise quantization over matrix-wise quantization based on the experiment in Appendix A.

4

Under review as a conference paper at ICLR 2023

(a) Example expert weight distribution
(layer 6, FFN 2, expert 15)

(b) Example FFN weight distribution
(layer 7, FFN 2)

Figure 2: A comparison of example weight distributions from MoE and dense FFN layers.

Linear quantization with absolute maximum. The first technique is linear quantization which,
given a matrix A and b bits, it encodes A as follows:

sj =
2×max(|A:,j |)

2b − 1

Q:,j = int(
A:,j

sj
)

where s is the scaling factor which can be chosen per channel as shown or per the whole tensor. At
inference time, the quantized Q is dequantized back to A

′
with the scaling factor s as follows:

A
′

:,j = Q:,j × sj

Log-scale quantization. The second technique is log-scale quantization where 1 bit is kept for the
sign and (b− 1) bits are used to encode the log-scaled values. Given a matrix A, the quantization
formula is as follows:

P = sign(A)

T = clip(
|A|
s

, 1, 21−2b−1)

Q = ⌈log2(
2

3
T)⌉

where s can be chosen in two ways, either (i) the absolute maximum or (ii) the optimal value to min-
imize the mean squared error (MSE) between the quantized and original values which is described
in Aji & Heafield (2020). We use the second algorithm which we observe a better accuracy with the
quantization. At inference time, the quantized weight values are dequantized based on the formula
as follows:

A
′
= P × s× 2Q

Comparison of quantization techniques. Figure 3 shows the comparison between two quantization
techniques with low bits applied on expert FFN layers and dense FFN layers. For dense FFN layers,
log-scale quantization performs slightly better, but both do not work well on 2-bit resulting in almost
zero evaluation scores. For expert FFN layers, both techniques work similarly for 3 and 4 bits, but
log-scale quantization loses the accuracy seriously with 2-bit. This is because there are only 4 bins
for the integer values to quantize with 2-bit quantization and one of them is zero. Log-scale tries to
split values near zero in a more fine-grained way, but this actually hurts the performance compared to
having enough zeros with linear quantization. Based on this experiment, we use linear quantization
for compressing MoE FFN layers.

3.2.2 ROBUSTNESS OF EXPERT LAYERS TO QUANTIZATION

To better understand how applying quantization on different parts of an MoE model affects the
accuracy, we conduct a set of experiments with various quantization bits. We divide an MoE model

5

Under review as a conference paper at ICLR 2023

2 3 4 5 6 7 8
Quantization bits

0
5

10
15
20
25
30
35
40

B
L

E
U

(D
E

-E
N

) Linear

Log-scale

(a) Expert FFNs

2 3 4 5 6 7 8
Quantization bits

0
5

10
15
20
25
30
35
40

B
L

E
U

(D
E

-E
N

)

Linear

Log-scale

(b) Dense FFNs

Figure 3: Linear quantization vs log-scale with optimal s quantization.

into four parts: (i) expert FFNs, (ii) dense FFN layers, (iii) self-attention layers and (iv) cross-
attention layers. Based on the observation that linear quantization works better with lower bits, we
use it for this set of experiments.

Figure 4 shows evaluation BLEU scores when quantizing different parts of the MoE model. We ob-
serve that quantizing expert FFN layers to 2-bit does not seriously impact the overall model quality.
However, quantizing other parts of the model into 2-bit hurts the output quality significantly. Quan-
tized cross-attention and self-attention blocks still can maintain the quality with 3-bit quantization,
but their performance gets impacted with 2-bit quantization. On the other hand, dense FFN layers
get significant impact with lower bit quantization of 2-bit and 3-bit. With 3-bit quantization, the
model score drops 23 % of original score, and 2-bit quantization on dense FFN layers gives almost
zero score. We also include the same study on a dense model in Appendix B, the similar pattern
with 2 and 3 bit quantization is observed.

2 3 4 5 6 7 8
Quantization bits

0
5

10
15
20
25
30
35
40

B
L

E
U

(D
E

-E
N

)

Expert

Dense FFN

Self-attention

Cross-attention

Figure 4: Quantization impact on different MoE model parts (channel-wise linear quantiztation
without any additional training).

3.3 MIXTURE OF QUANTIZED EXPERTS (MOQE)

Based on the experiments from the previous parts of this section, we propose a very simple, highly
effective and accurate quantization recipe for MoE models.

• Apply weight-only quantization while keeping activations in fp16.
• Quantize expert FFN layers only.
• Use channel-wise and symmetric quantization.
• Choose one of either two quantization methods depending on the quantization precision

1. (3-bit or higher bit): Directly quatize trained MoE models without additional calibra-
tion.

2. (2-bit): Fine-tune the model with Quantization Aware Training (QAT) which the de-
scribtion follows.

Sparse experts with quantization aware training QAT is a well-known method used to recover
the accuracy loss from the quantization (Gholami et al., 2022). In our case, to quantize to 2-bit
precision, we can continue training the model with the original training data while applying
quantization only on the forward pass computation as presented in (Wu et al., 2020; Bengio

6

Under review as a conference paper at ICLR 2023

et al., 2013) for recovering the accuracy loss. As we use symmetric quantization with 2-bit, zero
numerical value is always included. Due to the normal distribution of expert weights centered
around zero, many weight values naturally turn into zeros. This procedure results in sparse expert
matrices.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Task. We use multilingual machine translation task for our experiments with two different dataset
which are 20 language directions and 10 language directions respectively. We also evaluate the
proposed method on a different task presented in Appendix D. We use sacrebleu 2 on the detokenized
output to measure the accuracy of the models. A single NVIDIA PCIE V100 running inside a
docker container running Ubuntu 20.04 and CUDA 11.6 is used for all experiments, and all code
is compiled with nvcc and gcc/g++ 9.3. We measure end-to-end runtime of the inference for the
evaluation dataset.

Datasets. We use two different datasets described below. For the larger dataset setting, we use inter-
nally collected dataset consists of 6 different languages which are German (de), French (fr), Italian
(it), Spanish (es), Dutch (nl) and English (en). They are crawled from web, and each language pair
has at least several hundred million sentences. We use 128,000 sub-words vocabulary built with
sentencepiece3 library. The number of training sentences is included in Appendix G.
For the smaller dataset setting, we use WMT-10 benchmark dataset widely used for public bench-
marks (Wang et al., 2020; Kim et al., 2021). There are 32.5 million sentence pairs for English-centric
20 language pairs including French (fr), Czech(cs), German (de), Finnish (fi), Latvian (lt), Estonian
(et), Romanian (ro), Hindi (hi), Turkish(tr) and Gujarati (gu).

Model architecture. For all the experiments with large dataset, we use 24 transformer (Vaswani
et al., 2017) encoder layers and 12 transformer decoder layers following the deeper encoder and shal-
lower decoder practice (Kim et al., 2019; Kasai et al., 2021) to be more efficient at auto-regressive
decoding. The embedding dimension is 1, 024 and FFN hidden dimension is 4, 096. For the po-
sitional information encoding to the hidden state, we use Transformer with Untied Positional En-
coding (TUPE) proposed in Ke et al. (2021) instead of the conventional sinusoidal positional em-
bedding. Another design choice is the location of layer normalization. For the training stability,
we use pre-layer normalization proposed in Xiong et al. (2020) instead of the original post-layer
normalization from (Vaswani et al., 2017). We train MoE and dense models for the comparison.
The model architecture choices mentioned here are common for both models. The only difference
between dense and MoE models is the number of experts. We use 32 experts for the MoE model
trained with the larger web data. We use beam search decoding with beam size of 5. For the experi-
ments with smaller dataset, we use 12 transformer encoder layers and 6 transformer decoder layers.
The embedding dimension is 768 and FFN hidden dimension is 3, 072. In this setting, we use MoE
layers with 128 experts at every other layer.

MoE architecture. For the MoE model specific settings, we use top-1 learned gating from Fedus
et al. (2021) and use an MoE layer at every other layer which are even numbered layers (Lepikhin
et al., 2020; Fedus et al., 2021; Kim et al., 2021). During the training of MoE models, we use
jittering noise and balancing loss (ratio of 0.01) suggested in Lepikhin et al. (2020); Fedus et al.
(2021) to more uniformly distribute expert utilization. To prevent overfitting and better regularize
the model, we use gating dropout (0.2) (Liu et al., 2022) as well.

4.2 MOQE PERFORMANCE RESULTS

We apply MoQE quantization recipe to an MoE model and compare the performance with several
dense models in Table 2. This experiment is done on the larger web dataset. The baseline is a dense
model trained on the same dataset as the MoE model. Throughput, memory size and sparsity are all
measured with the fp16 precision model. As additional comparison points, the dense model is also

2https://github.com/mjpost/sacrebleu
3https://github.com/google/sentencepiece

7

Under review as a conference paper at ICLR 2023

Table 2: The model performance comparison. All the models are trained on same data up to the
convergence with 200,000 update steps. The baseline is the FLOPs equivalent dense model’s BLEU
score and speed.

Model type Precision Average BLEU Throughput Size Sparsity %(difference %) (X times) (X times)
Dense (baseline) fp16 45.06 (0) 1X 1X 3.8e-5

Dense int8 45.04 (-0.02) Not optimized 0.88X 1.28
int4 44.84 (-0.47) Not optimized 0.82X 21.31

MoE 5.3B (32 experts)

fp16 46.35 (+2.87) 0.38X 8.38X 3.8e-5
int8 46.34 (+2.85) 1.00X 4.57X 1.24
int4 46.18 (+2.49) 1.03X 2.67X 20.68
int3 46.01 (+2.11) Not optimized 2.19X 42.15
int2 45.90 (+1.88) Not optimized 1.71X 79.10QAT

quantized to 8-bit and 4-bit only on the even numbered FFN layers which is the best configuration
for quantizing the dense model described in Appendix B. For the MoE model, various quantization
settings ranging from 8-bit to 2-bit are measured together with the original fp16 performance. For 2-
bit quantization, additional QAT is applied. Finally, we applied magnitude based pruning approach
to the 2-bit quantized model to acquire a sparser model.

First of all, the MoE model achieves 2.87% improvement on the BLEU score while increasing the
model size to 8.38X of the original dense model. When 4-bit post-training quantization is applied,
it still maintains 2.11% higher BLEU score than the original dense model. And, it could achieve
even faster speed than the dense model which is 2.7X speed-up from the fp16 MoE model. This
also reduces the memory consumption significantly from 8.38X to 2.67X compared to the dense
model. With 2-bit QAT, the MoE model can still maintain 1.88% higher quality than the original
dense model, but the model size is now only 1.71X of the original dense model. Also, the matrices
are sparse up to 79.1% of the values are zeros.

Figure 5 shows the sparsity distribution of different layers. The second linear layers after the non-
linear activation layers show higher sparsity compared to the first linear layers. Some layers could
reach up to 85% sparsity. We include a further investigation of sparsity with magnitude based
pruning approach in Appendix I.

Figure 5: Sparsity distribution of 2-bit quantized MoE layers.

4.3 ROBUSTNESS COMPARISON BETWEEN MOE AND DENSE MODELS

We compare robustness against low-bit quantization between MoE and dense models using the post-
training quantization without any QAT. For the dense model, quantization with different bits is
applied to the even numbered FFN layers. Appendix B shows this is the best layer selection for the
dense model. We use two different datasets to verify the proposed quantization method works in
different model settings.

8

Under review as a conference paper at ICLR 2023

2 3 4 5 6 7 8
Quantization bits

0
5

10
15
20
25
30
35
40
45

B
L

E
U

av
er

ag
e

(1
0

la
n

gu
ag

e
p

ai
rs

)

MoE model - expert weights

Dense model - even number layer FFNs

Figure 6: Quantization performance comparison between MoE and dense models. 10 different
language pair scores are averaged.

Figure 6 presents the experiment with the model trained with the larger dataset. It shows the average
BLEU scores with different quantization precision for both MoE and dense models. The MoE model
can maintain accuracy within -0.3 down to 3-bit and -1.82 for 2-bit. On the other hand, the dense
model can preserve the accuracy only down to 4-bit, but starts to lose significant accuracy more than
2 BLEU scores when it goes down to 3-bits. In case of 2-bits, dense model loses most of capability
by -42.96 BLEU scores. Table 9 shows the score differences by quantization for both MoE and
dense models on 10 different language pairs translations.

Figure 7 presents the experiment with the model trained with the smaller dataset. In this setting,
each individual expert is smaller, but there are 4 times more experts in one MoE layer. And, they are
trained with smaller dataset, so they do not have equivalent knowledge as the previous model trained
on the larger dataset. As can be seen in the Figure, the quantization performance shows a similar
pattern. The MoE model preserves accuracy even when it is quantized to 2 or 3 bits. However, dense
model quickly loses the performance when it is quantized down to lower than 4-bit. Again, the MoE
model is much more robust to quantization than the dense model.

2 3 4 5 6 7 8
Quantization bits

3

6

9

12

15

18

21

24

B
L

E
U

av
er

ag
e

(1
0

la
n

gu
ag

e
p

ai
rs

)

MoE model - expert weights

Dense model - even number layer FFNs

Figure 7: Quantization performance comparison between MoE and dense models. 20 different
WMT language pairs are averaged.

5 CONCLUSION AND FUTURE WORKS

This paper shows how much MoE models are robust to the low-bit quantization with various ex-
periments. By analyzing component-wise sensitivity and various quantization design choices, we
present an efficient and effective way to reduce the model size which results in 4.9X model size
reduction. With an optimized runtime, 4-bit quantized model can run 2.71X faster than the fp16
model. We also show 2-bit quantization could achieve more than 79% sparsity in the expert weights.
The results naturally bring interesting future research directions. The discovered robustness of ex-
pert layers can guide a better way to train MoE models. If we can better control the splitting of
latent space, better MoE models can be acquired. Analyzing the interactions between expert FFN
layers and the other common layers in the model could guide a way to build a composable model.
Especially, as presented in Appendix E, we observe that quantization sometimes improves the accu-
racy on tasks in a specific situation. Another important direction will be studying how to accelerate
sparse expert computation on modern hardware with software/hardware co-design. This will even-
tually make MoE models much more efficient in both training and inference.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Alham Fikri Aji and Kenneth Heafield. Compressing neural machine translation models with 4-bit
precision. In NGT, 2020.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victo-
ria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, et al. Efficient large scale language
modeling with mixtures of experts. arXiv preprint arXiv:2112.10684, 2021.

Mandeep Baines, Shruti Bhosale, Vittorio Caggiano, Naman Goyal, Siddharth Goyal, Myle Ott,
Benjamin Lefaudeux, Vitaliy Liptchinsky, Mike Rabbat, Sam Sheiffer, et al. Fairscale: A general
purpose modular pytorch library for high performance and large scale training, 2021.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yoni Choukroun, Eli Kravchik, and Pavel Kisilev. Low-bit quantization of neural networks for
efficient inference. 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), pp. 3009–3018, 2019.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoff-
mann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling
laws for routed language models. In International Conference on Machine Learning, pp. 4057–
4086. PMLR, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale. ArXiv, abs/2208.07339, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Rémi Gribonval, Hervé Jégou,
and Armand Joulin. Training with quantization noise for extreme model compression. ArXiv,
abs/2004.07320, 2021.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning.
arXiv preprint arXiv:2209.01667, 2022.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. ArXiv, abs/2103.13630,
2022.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, and Noah A. Smith. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine translation. In ICLR, 2021.

Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language pre-training. ArXiv,
abs/2006.15595, 2021.

10

Under review as a conference paper at ICLR 2023

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

Young Jin Kim and Hany Hassan Awadalla. Fastformers: Highly efficient transformer models for
natural language understanding. arXiv preprint arXiv:2010.13382, 2020.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Hassan, Alham Fikri Aji, Kenneth Heafield, Ro-
man Grundkiewicz, and Nikolay Bogoychev. From research to production and back: Ludicrously
fast neural machine translation. In Proceedings of the 3rd Workshop on Neural Generation and
Translation, pp. 280–288, 2019.

Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andres Felipe Cruz Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and Hany Hassan Awadalla. Scalable and effi-
cient moe training for multitask multilingual models. arXiv preprint arXiv:2109.10465, 2021.

Sneha Kudugunta, Yanping Huang, Ankur Bapna, Maxim Krikun, Dmitry Lepikhin, Minh-Thang
Luong, and Orhan Firat. Beyond distillation: Task-level mixture-of-experts for efficient inference.
In EMNLP, 2021.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In ICML, 2021.

Rui Liu, Young Jin Kim, Alexandre Muzio, and Hany Hassan. Gating dropout: Communication-
efficient regularization for sparsely activated transformers. In International Conference on Ma-
chine Learning, pp. 13782–13792. PMLR, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In ICML, 2022.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2020.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyang Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model training.
In USENIX Annual Technical Conference, 2021.

Andres Rodriguez, Eden Segal, Etay Meiri, Evarist Fomenko, Young Jin Kim, Haihao Shen, and
Barukh Ziv. Lower numerical precision deep learning inference and training. 2018.

11

Under review as a conference paper at ICLR 2023

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.
Advances in Neural Information Processing Systems, 34:17555–17566, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Noam M. Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanan-
takool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi,
and Blake A. Hechtman. Mesh-tensorflow: Deep learning for supercomputers. ArXiv,
abs/1811.02084, 2018.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deep-
speed and megatron to train megatron-turing nlg 530b, a large-scale generative language model.
arXiv preprint arXiv:2201.11990, 2022.

Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé Jégou. And the bit
goes down: Revisiting the quantization of neural networks. arXiv preprint arXiv:1907.05686,
2019.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Yiren Wang, ChengXiang Zhai, and Hany Hassan Awadalla. Multi-task learning for multilingual
neural machine translation. arXiv preprint arXiv:2010.02523, 2020.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quan-
tization for deep learning inference: Principles and empirical evaluation. arXiv preprint
arXiv:2004.09602, 2020.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architec-
ture. In ICML, 2020.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. ArXiv,
abs/2206.01861, 2022.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Yan-Quan Zhou, Tao Lei, Han-Chu Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M. Dai,
Zhifeng Chen, Quoc V. Le, and James Laudon. Mixture-of-experts with expert choice routing.
ArXiv, abs/2202.09368, 2022.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. Designing effective sparse expert models. arXiv preprint arXiv:2202.08906,
2022.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Tuo Zhao,
and Jianfeng Gao. Taming sparsely activated transformer with stochastic experts. arXiv preprint
arXiv:2110.04260, 2021.

12

Under review as a conference paper at ICLR 2023

A CHANNEL-WISE VS MATRIX-WISE QUANTIZATION

Scaling factors are calculated by the quantization algorithm and stored in half precision floating-
point (fp16) numbers to dequantize the matrices with. These factors can be chosen on the channel
scale or the whole matrix scale. As shown in figure 8, channel-wise quantization gives quite higher
scores than tensor-wise especially for low precision. Additional parameters to store channel-wise
scaling factors is small, because only one value is needed for a channel and less than 1% of to-
tal parameters in a matrix. Therefore, we use channel-wise quantization for all the quantization
experiments.

2 3 4 5 6 7 8
Quantization bits

33
34
35
36
37
38
39
40
41

B
L

E
U

(D
E

-E
N

)

Channel-wise quantization

Matrix-wise quantization

Figure 8: Linear quantization of expert FFNs with channel-wise and matrix-wise scaling factors.

B QUANTIZATION OF DIFFERENT LAYERS IN A DENSE MODEL

In the paper, we compare a dense model and an MoE model in terms of quantization robustness. To
make a fair comparison, we consider quantizing only half of the dense transformer blocks’ FFNs,
because we quantize expert weights only which exist only in every other block (even numbered).
We compare three different configurations - (1) quantizing even numbered blocks’ FFNs only, (2)
quantizing odd numbered blocks’ FFNs only and (3) quantizing all FFN layers. As can be seen
in Figure B, quantizing even numbered blocks’ FFNs affects the accuracy the least, and quantizing
all FFN layers give the worst result. Based on this experiment, we quantize only even numbered
transformer blocks’ FFNs for the dense model in all the experiments and comparisons.

2 3 4 5 6 7 8
Quantization bits

0
5

10
15
20
25
30
35
40

B
L

E
U

av
er

ag
e

(1
0

la
n

gu
ag

e
p

ai
rs

)

Even number layers

Odd number layers

All layers

Figure 9: Quantization impact of different layers in a dense model.

C SKEWNESS OF WEIGHT MATRICES IN MOE AND DENSE MODELS

In the analysis of model weight distribution in Section 3, we observe that dense models’ FFN layers
tend to have more outliers than MoEs’ expert FFN layers. We measure the skewness of weight
distribution of those in Table 3.

13

Under review as a conference paper at ICLR 2023

Table 3: Expert vs non-expert FFN layers parameters distribution skewness

Parameter skew
encoder expert 15 FFN fc1 layer 0 -0.002
encoder expert 15 FFN fc2 layer 0 -0.190
encoder expert 15 FFN fc1 layer 6 -0.002
encoder expert 15 FFN fc2 layer 6 -0.002

encoder non-expert FFN fc1 layer 1 -0.019
encoder non-expert FFN fc2 layer 1 -10.729
encoder non-expert FFN fc1 layer 7 0.003
encoder non-expert FFN fc2 layer 7 -1.574

encoder expert FFN fc1 mean 0.00
encoder expert FFN fc2 mean -0.63
decoder expert FFN fc1 mean 0.00
decoder expert FFN fc2 mean 0.48

encoder non-expert FFN fc1 mean 0.00
encoder non-expert FFN fc2 mean -1.84
decoder non-expert FFN fc1 mean 0.00
decoder non-expert FFN fc2 mean -0.09

D ABSTRACTIVE SUMMARIZATION TASK PERFORMANCE

To validate the quantization performs well on a different task and a model, we evaluate a 10.1 B MoE
(64 experts) model’s quantization performance on an abstractive summarization task called XSUM
(Narayan et al., 2018). Table 4 shows that the MoE model performs well with low-bit quantizations
such as 2-bits and 3-bits.

Table 4: The ROUGE score differences in percentage (%) after applying post-training quantization
on XSUM evaluation.

Quantization Bits R1 R2 RL
8-bit +0.17 +0.13 +0.26
4-bit -0.10 -0.26 -0.34
3-bit -0.21 -0.82 -0.28
2-bit -1.61 -5.94 -2.37

E BETTER GENERALIZATION WITH EXPERT QUANTIZATION

We observe an interesting phenomenon that quantization actually improves the score of evaluation
on a different domain dataset. We trained an MoE model with 64 experts (10.1B) on 50 different
language translations (98 English-centric language pairs). When we evaluate this model on a differ-
ent domain subset 6 languages (German, Spanish, French, Italian, Dutch, English), the evaluation
BLEU score increases until we quantize the experts down to 3-bits without any additional QAT or
calibrations. With 3-bit quantization, the score increases more than 6.42% on non-English to En-
glish and 6.96% on English to the others. Especially, from English to Italian and from Italian to
English scores increase more than 10% which quite significant. The results are summarized in Table
5. We are analyzing what could be the reason for this phenomenon, but we think this is related to
how MoE models learn representations. MoE layers might learn very specific knowledge with its
increased capacity, but the shared layers learn more generic knowledge. By blurring the representa-
tion from the MoE layers, the model becomes more general task capable. This is one of our future
research areas.

14

Under review as a conference paper at ICLR 2023

Table 5: The BLEU score differences in percentage (%) after quantization on different language
pairs.

Quantization Bits de-en es-en fr-en it-en nl-en Average (xx-English)
fp16 40.43 47.83 46.46 39.67 43.13 43.50
8-bit -0.01 -0.08 +0.17 +0.25 +0.06 +0.08
4-bit -0.04 +5.60 +2.83 +7.72 +5.39 +4.30
3-bit -0.47 +9.22 +4.02 +11.97 +7.38 +6.42
2-bit -7.59 -0.30 -7.52 -4.45 -4.34 -4.84

en-de en-es en-fr en-it en-nl Average (English-xx)
fp16 36.74 40.98 45.99 29.13 38.72 38.31
8-bit -0.03 +0.13 -0.19 +0.06 +0.29 +0.05
4-bit +0.88 +6.86 +3.55 +6.52 +2.59 +4.08
3-bit +0.25 +9.65 +5.24 +16.09 +3.57 +6.96
2-bit -19.58 -9.11 -6.99 -2.22 -14.68 -10.52

F ADDITIONAL SPARSITY DISTRIBUTION

We include sparsity distribution across different layers in a dense model quantized with 4-bit. As
can be seen in Figure 10, the sparsity is overall low. Second linear layers in FFN show slightly
higher sparsity, but all of them are smaller than 30%.

Figure 10: Sparsity distribution of 4-bit quantized dense layers.

G MACHINE TRANSLATION DATASET SUMMARY

Table 6 shows the number of parallel sentences used to train dense and MoE models. All languages
have at least 300 million sentences and the differences in the number among languages are less than
two times.

Table 6: The number of parallel sentences including backtranslation data.

Language Number of parallel sentences (million)
xx → English English → xx

DE (German) 505 411
ES (Spanish) 448 407
FR (French) 448 376
IT (Italian) 447 303
NL (Dutch) 302 378

15

Under review as a conference paper at ICLR 2023

H QUANTIZATION AWARE TRAINING (QAT)

For the QAT with straight through estimator, we use the hyper-parameters as in Table 7. Figure 11
shows the validation loss curve of one training run with 2-bit expert quantization.

Table 7: Expert vs non-expert FFN layers parameters distribution skewness

Parameter Name Value
Start learning rate 0.001

Warm-up steps 1000
Effective batch size 1.5M tokens

Optimizer Adam
Betas (Adam) (0.9, 0.999)

Weight decay (Adam) 0
Gradient clipping 0.1

Training steps 60,000

0 10000 20000 30000 40000 50000 60000
Steps

3.37

3.38

3.39

3.40

V
a
li

d
a
ti

o
n

lo
ss

(c
ro

ss
e
n
tr

o
p
y
)

Figure 11: Validation loss curve for QAT.

I MAGNITUDE PRUNING EXPERIMENTS

Inspired by the emerged sparsity in expert layers, we apply a simple magnitude based pruning to the
MoE model we experiment with. We apply different threshold values from 0.00001 to 0.5. We make
all the weight values less than the threshold to be zero. We apply 2 to 8 bit quantization together.
Figure 12 shows how model performance varies with the achieved sparsity. Even with sparsity level
of 90%, the model preserves a certain level of task capability. Compared to Gale et al. (2019), this
shows much higher performance with the same sparsity. This could be another example showing the
robustness of expert weights.

J DETAILED BLEU SCORE DIFFERENCES WITH QUANTIZATION APPLIED TO
THE MODEL TRAINED ON PUBLIC WMT DATASET

Table 8 shows individual BLEU score changes with various quantization bits for MoE and dense
models trained on public WMT dataset.

16

Under review as a conference paper at ICLR 2023

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sparsity

0

5

10

15

20

25

30

35

40

45

B
L

E
U

(D
E

-E
N

)

Figure 12: Sparsity of MoE layers vs. BLEU scores with magnitude pruning.

Table 8: The BLEU score differences in percentage (%) after quantization on different language
pairs in WMT dataset. The rows with fp16 show the baseline BLEU scores.

Bits Model en-cs en-de en-et en-fi en-fr en-gu en-hi en-lv en-ro en-tr Avg.(en-xx)
fp16 Dense 23.89 31.46 17.80 18.75 28.54 10.34 11.98 22.29 27.22 15.81 20.81

(BLEU) MoE 26.09 34.36 18.27 22.17 31.34 13.04 12.16 23.26 27.95 16.89 22.55

8-bit Dense -0.39 -0.09 -0.32 0.60 0.01 -0.80 0.61 -0.26 0.17 -0.09 -0.05
MoE 0.01 -0.15 0.64 -0.33 0.19 0.86 0.02 -0.04 -0.15 -0.03 0.05

4-bit Dense -1.11 -1.91 -3.15 -1.50 1.03 -7.08 -4.44 -2.38 -1.65 -1.89 -1.90
MoE -0.30 -0.62 0.30 -0.62 -0.13 -0.97 1.53 -0.81 -0.82 -0.22 -0.36

3-bit Dense -10.87 -7.86 -12.87 -11.70 -3.96 -32.03 -24.76 -11.16 -7.05 -12.74 -11.24
MoE -0.84 -1.06 -1.79 -1.97 0.35 -2.80 -0.70 -1.98 -1.05 -1.64 -1.21

2-bit Dense -97.44 -86.29 -91.79 -91.02 -85.75 -98.26 -96.48 -94.14 -87.30 -95.02 -91.21
MoE -8.84 -9.15 -17.06 -13.24 -5.62 -25.24 -16.38 -16.11 -11.04 -14.48 -12.34

Bits Model cs-en de-en et-en fi-en fr-en gu-en hi-en lv-en ro-en tr-en Avg.(xx-en)
fp16 Dense 29.48 35.62 23.43 23.91 31.89 16.54 14.97 26.25 35.68 18.52 25.63

(BLEU) MoE 31.25 38.21 23.67 25.64 32.59 19.55 15.89 25.22 34.80 20.27 26.71

8-bit Dense 0.02 -0.02 0.10 -0.33 -0.15 -0.37 -0.40 0.33 -0.34 0.14 -0.09
MoE 0.07 0.12 0.08 0.06 -0.10 0.14 -0.49 -0.03 0.05 -0.17 0.00

4-bit Dense -0.24 -0.78 -3.74 -1.72 -1.69 -4.58 -0.56 -1.97 -0.15 -1.84 -1.53
MoE 0.44 0.01 -1.00 0.25 -0.03 0.07 1.06 -0.98 0.67 -0.56 0.01

3-bit Dense -7.25 -7.11 -10.44 -10.36 -6.44 -18.67 -16.68 -11.52 -7.39 -10.39 -9.68
MoE -0.86 -0.14 -2.04 -1.10 1.02 -2.55 1.11 -2.11 -1.45 -2.91 -1.01

2-bit Dense -81.78 -74.17 -83.08 -85.13 -72.44 -94.23 -89.54 -81.50 -80.54 -85.70 -81.33
MoE -6.12 -7.69 -16.78 -11.29 -2.16 -20.14 -16.42 -15.82 -12.34 -17.61 -11.54

K DETAILED BLEU SCORE DIFFERENCES WITH QUANTIZATION APPLIED TO
5.3B MODEL.

Table 9 shows individual BLEU score changes with various quantization bits for MoE and dense
models measured with the internal validation dataset. Table 10 shows the same model’s evaluation
performance on two WMT public dataset.

17

Under review as a conference paper at ICLR 2023

Table 9: The BLEU score differences in percentage (%) after quantization on different language
pairs. The rows with fp16 show the baseline BLEU scores.

Quantization Bits Model de-en es-en fr-en it-en nl-en Avg. (xx-English)
fp16 Dense 40.31 53.09 49.13 44.03 46.23 46.56

(Baseline BLEU) MoE 41.49 53.79 50.26 46.97 47.53 48.01
8-bit Dense -0.03 -0.08 -0.02 0.01 -0.05 -0.04

(% difference) MoE -0.10 -0.06 0.00 -0.02 0.03 -0.03
4-bit Dense -0.78 0.29 -0.23 -0.93 -0.20 -0.37

(% difference) MoE -0.50 -0.11 -0.10 -0.39 -0.02 -0.22
3-bit Dense -6.36 -2.51 -4.24 -5.93 -2.67 -4.34

(% difference) MoE -0.92 0.26 -0.26 -1.26 0.29 -0.38
2-bit Dense -95.44 -94.42 -95.51 -95.10 -93.31 -94.76

(% difference) MoE -4.35 -1.00 -2.64 -7.01 -0.70 -3.14
en-de en-es en-fr en-it en-nl Avg. (English-xx)

fp16 Dense 38.74 46.44 50.82 40.09 41.69 43.55
(Baseline BLEU) MoE 39.90 47.47 52.45 41.25 42.36 44.69

8-bit Dense -0.04 -0.07 0.02 -0.05 0.09 -0.01
(% difference) MoE 0.05 -0.01 -0.03 0.00 0.00 0.00

4-bit Dense -0.76 -1.11 -0.29 -0.70 -0.26 -0.62
(% difference) MoE 0.31 -0.90 -0.74 -0.45 -0.68 -0.49

3-bit Dense -5.82 -4.79 -3.96 -5.41 -4.54 -4.91
(% difference) MoE -0.21 -2.12 -1.41 -0.87 -0.89 -1.10

2-bit Dense -97.28 -96.16 -95.52 -96.68 -94.83 -96.09
(% difference) MoE -5.24 -6.19 -5.19 -5.30 -4.48 -5.28

Table 10: The BLEU score differences in percentage (%) of 5.3B MoE model after quantization on
different language pairs on WMT datasets. The rows with fp16 show the baseline BLEU scores.

Quantization Bits Model de-en fr-en Avg. (xx-English)
fp16 Dense 50.11 42.98 46.54

(Baseline BLEU) MoE 52.73 44.04 48.39
8-bit Dense 0.04 0.11 0.07

(% difference) MoE 0.09 -0.04 0.03
4-bit Dense -0.59 -1.27 -0.91

(% difference) MoE -0.47 -0.36 -0.42
3-bit Dense -5.75 -6.17 -5.94

(% difference) MoE -1.15 -0.90 -1.03
2-bit Dense -96.88 -95.59 -96.28

(% difference) MoE -5.37 -3.68 -4.60
en-de en-fr Avg. (English-xx)

fp16 Dense 50.90 44.47 47.68
(Baseline BLEU) MoE 52.90 45.51 49.21

8-bit Dense 0.00 0.02 0.01
(% difference) MoE -0.05 0.23 0.08

4-bit Dense 0.24 -1.31 -0.48
(% difference) MoE -0.93 0.25 -0.39

3-bit Dense -5.86 -7.53 -6.64
(% difference) MoE -1.41 -0.69 -1.08

2-bit Dense -97.77 -96.22 -97.05
(% difference) MoE -6.34 -6.15 -6.25

18

	Introduction
	Background - Challenges of deploying MoE models
	Increased memory footprint
	Slower inference speed

	Quantization methods for MoE layers
	Numerical distribution of model weights
	Quantization algorithms
	Quantization techniques
	Robustness of expert layers to quantization

	Mixture of Quantized Experts (MoQE)

	Experiments
	Experimental setup
	MoQE performance results
	Robustness comparison between MoE and dense models

	Conclusion and future works
	Channel-wise vs matrix-wise quantization
	Quantization of different layers in a dense model
	Skewness of weight matrices in MoE and dense models
	Abstractive summarization task performance
	Better generalization with expert quantization
	Additional sparsity distribution
	Machine translation dataset summary
	Quantization aware training (QAT)
	Magnitude pruning experiments
	Detailed BLEU score differences with quantization applied to the model trained on public WMT dataset
	Detailed BLEU score differences with quantization applied to 5.3B model.

