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ABSTRACT

Inductive one-bit matrix completion is motivated by modern applications such as
recommender systems, where new users would appear at test stage with the ratings
consisting of only ones and no zeros. We propose a unified graph signal sampling
framework which enjoys the benefits of graph signal analysis and processing. The
key idea is to transform each user’s ratings on the items to a function (graph sig-
nal) on the vertices of an item-item graph, then learn structural graph properties
to recover the function from its values on certain vertices — the problem of graph
signal sampling. We propose a class of regularization functionals that takes into
account discrete random label noise in the graph vertex domain, then develop the
GS-IMC approach which biases the reconstruction towards functions that vary
little between adjacent vertices for noise reduction. Theoretical result shows that
accurate reconstructions can be achieved under mild conditions. For the online set-
ting, we develop a Bayesian extension, i.e., BGS-IMC which considers continuous
random Gaussian noise in the graph Fourier domain and builds upon a prediction-
correction update algorithm to obtain the unbiased and minimum-variance recon-
struction. Both GS-IMC and BGS-IMC have closed-form solutions and thus are
highly scalable in large data as verified on public benchmarks.

1 INTRODUCTION

In domains such as recommender systems and social networks, only “likes” (i.e., ones) are observed
in the system and service providers (e.g, Netflix) are interested in discovering potential “likes” for
existing users to stimulate demand. This motivates the problem of 1-bit matrix completion (OBMC),
of which the goal is to recover missing values in an n-by-m item-user matrix R∈ {0, 1}n×m. We
note that Ri,j = 1 means that item i is rated by user j, but Ri,j = 0 is essentially unlabeled or
unknown which is a mixture of unobserved positive examples and true negative examples.

However, in real world new users, who are not exposed to the model during training, may appear at
testing stage. This fact stimulates the development of inductive 1-bit matrix completion, which aims
to recover unseen vector y ∈ {0, 1}n from its partial positive entries Ω+ ⊆ {j|yj = 1} at test time.
Fig. 1(a) emphasizes the difference between conventional and inductive approaches. More formally,
let M∈{0, 1}n×(m+1) denote the underlying matrix, where only a subset of positive examples Ψ is
randomly sampled from {(i, j)|Mi,j=1, i≤n, j≤m} such that Ri,j=1 for (i, j)∈Ψ and Ri,j=0
otherwise. Consider (m+1)-th column y out of matrix R, we likewise denote its observations si=1
for i ∈ Ω+ and si=0 otherwise. We note that the sampling process here assumes that there exists a
random label noise ξ which flips a 1 to 0 with probability ρ, or equivalently s = y + ξ where

ξi = −1 for i ∈ {j|yj = 1} − Ω+, and ξi = 0 otherwise. (1)
Fig. 1(a) presents an example of s,y, ξ to better understand their relationships.

Fundamentally, the reconstruction of true y from corrupted s bears a resemblance with graph signal
sampling. Fig. 1(b) shows that the item-user rating matrix R can be used to define a homogeneous
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Figure 1: (a) Conventional 1-bit matrix completion focuses on recovering missing values in matrix
R, while inductive approaches aim to recover new column y from observations s that are observed at
testing stage. ξ denotes discrete noise that randomly flips ones to zeros. (b) Our GS-IMC approach,
which regards y as a signal residing on nodes of a homogeneous item-item graph, aims to reconstruct
true signal y from its observed values (orange colored) on a subset of nodes (gray shadowed).

item-item graph (see Sec 3.1), such that user ratings y/s on items can be regarded as signals residing
on graph nodes. The reconstruction of bandlimited graph signals from certain subsets of vertices (see
Sec 2) has been extensively studied in graph signal sampling (Pesenson, 2000; 2008).

Despite popularity in areas such as image processing (Shuman et al., 2013; Pang & Cheung, 2017;
Cheung et al., 2018) and matrix completion (Romero et al., 2016; Mao et al., 2018; McNeil et al.,
2021), graph signal sampling appears less studied in the specific inductive one bit matrix completion
problem focused in this paper (see Appendix A for detailed related works). Probably most closely
related to our approach are MRFCF (Steck, 2019) and SGMC (Chen et al., 2021) which formulate
their solutions as spectral graph filters. However, we argue that these methods are orthogonal to us
since they focus on optimizing the rank minimization problem, whereas we optimize the functional
minimization problem, thereby making it more convinient and straightforward to process and ana-
lyze the matrix data with vertex-frequency analysis (Hammond et al., 2011; Shuman et al., 2013),
time-variant analysis (Mao et al., 2018; McNeil et al., 2021), smoothing and filtering (Kalman, 1960;
Khan & Moura, 2008). Furthermore, (Steck, 2019; Chen et al., 2021) can be incorporated as special
cases of our unified graph signal sampling framework (see Appendix B for detailed discussions).

Another emerging line of research has focused on learning the mapping from side information (or
content features) to latent factors (Jain & Dhillon, 2013; Xu et al., 2013; Ying et al., 2018; Zhong
et al., 2019). However, it has been recently shown (Zhang & Chen, 2020; Ledent et al., 2021; Wu
et al., 2021) that in general this family of algorithms would possibly suffer inferior expressiveness
when high-quality content is not available. Further, collecting personal data is likely to be unlawful
as well as a breach of the data minimization principle in GDPR (Voigt & Von dem Bussche, 2017).

Much effort has also been made to leverage the advanced graph neural networks (GNN) for improve-
ments. van den Berg et al. (2017) represent the data matrix R by a bipartite graph then generalize
the representations to unseen nodes by summing the embeddings over the neighbors. Zhang & Chen
(2020) develop graph neural networks which encode the subgraphs around an edge into latent factors
then decode the factors back to the value on the edge. Besides, Wu et al. (2021) consider the problem
in a downsampled homogeneous graph (i.e., user-user graph in recommender systems) then exploit
attention networks to yield inductive representations. The key advantage of our approach is not only
the closed form solution which takes a small fraction of training time required for GNNs, but also
theory results that guarantee accurate reconstruction and provide guidance for practical applications.

We emphasize the challenges when connecting ideas and methods of graph signal sampling with in-
ductive 1-bit matrix completion — 1-bit quantization and online learning. Specifically, 1-bit quanti-
zation raises challenges for formulating the underlying optimization problems: minimizing squared
loss on the observed positive examples Ω+ yields a degenerate solution — the vector with all en-
tries equal to one achieves zero loss; minimizing squared loss on the corrupted data s introduces the
systematic error due to the random label noise ξ in Eq. (1). To address the issue, we represent the
observed data R as a homogeneous graph, then devise a broader class of regularization functionals
on graphs to mitigate the impact of discrete random noise ξ. Existing theory for total variation de-
noising (Sadhanala et al., 2016; 2017) and graph regularization (Belkin et al., 2004; Huang et al.,
2011), which takes into account continuous Gaussian noise, does not sufficiently address recover-
ability in inductive 1-bit matrix completion (see Sec 3.4). We finally mange to derive a closed-form
solution, entitled Graph Sampling for Inductive (1-bit) Matrix Completion GS-IMC which biases
the reconstruction towards functions that vary little between adjacent vertices for noise reduction.
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For online learning, existing matrix factorization methods (Devooght et al., 2015; Volkovs & Yu,
2015; He et al., 2016) incrementally update model parameters via gradient descent, requiring an
expensive line search to set the best learning rate. To scale up to large data, we develop a Bayesian
extension called BGS-IMC where a prediction-correction algorithm is devised to instantly refreshes
the prediction given new incoming data. The prediction step tracks the evolution of the optimization
problem such that the predicted iterate does not drift away from the optimum, while the correction
step adjusts for the distance between current prediction and the new information at each step. The
advantage over baselines is that BGS-IMC considers the uncertainties in the graph Fourier domain,
and the prediction-correction algorithm can efficiently provide the unbiased and minimum-variance
predictions in closed form, without using gradient descent techniques. The contributions are:

• New Inductive 1-bit Matrix Completion Framework. We propose and technically manage
(for the first time to our best knowledge) to introduce graph signal sampling to inductive 1-bit ma-
trix completion. It opens the possibility of benefiting the analysis and processing of the matrix
with signal processing toolbox including vertex-frequency analysis (Hammond et al., 2011; Shu-
man et al., 2013), time-variant analysis (Mao et al., 2018; McNeil et al., 2021), smoothing and
filtering (Kalman, 1960; Khan & Moura, 2008) etc. We believe that our unified framework can
serve as a new paradigm for 1-bit matrix completion, especially in large-scale and dynamic systems.
• Generalized Closed-form Solution. We derive a novel closed-form solution (i.e., GS-IMC) in
the graph signal sampling framework, which incorporates existing closed-form solutions as special
cases, e.g., (Chen et al., 2021; Steck, 2019). GS-IMC is learned from only positive data with discrete
random noise. This is one of key differences to typical denoising methods (Sadhanala et al., 2016)
where efforts are spent on removing continuous Gaussian noise from a real-valued signal.
• Robustness Enhancement. We consider the online learning scenario and construct a Bayesian
extension, i.e., BGS-IMC where a new prediction-correction algorithm is proposed to instantly yield
unbiased and minimum-variance predictions given new incoming data. Experiments in Appendix
E show that BGS-IMC is more cost-effective than many neural models such as SASREC (Kang &
McAuley, 2018), BERT4REC (Sun et al., 2019) and GREC (Yuan et al., 2020). We believe that this
proves a potential for the future application of graph signal sampling to sequential recommendation.
• Theoretical Guarantee and Empirical Effectiveness. We extend Paley-Wiener theorem of (Pe-
senson, 2009) on real-valued data to positive-unlabelled data with statistical noise. The theory shows
that under mild conditions, unseen rows and columns in training can be recovered from a certain
subset of their values that is present at test time. Empirical results on real-world data show that our
methods achieve state-of-the-art performance for the challenging inductive Top-N ranking tasks.

2 PRELIMINARIES

In this section, we introduce the notions and provide the necessary background of graph sampling
theory. Let G = (V,E,w) denote a weighted, undirected and connected graph, where V is a set of
vertices with |V | = n, E is a set of edges formed by the pairs of vertices and the positive weight
w(u, v) on each edge is a function of the similarity between vertices u and v.

Space L2(G) is the Hilbert space of all real-valued functions f : V → R with the following norm:

‖ f ‖=
√∑
v∈V
|f(v)|2, (2)

and the discrete Laplace operator Ł is defined by the formula (Chung & Graham, 1997):

Łf(v) =
1√
d(v)

∑
u∈N (v)

w(u, v)

(
f(v)√
d(v)

− f(u)√
d(u)

)
, f ∈ L2(G)

where N (v) signifies the neighborhood of node v and d(v)=
∑
u∈N (v)w(u, v) is the degree of v.

Definition 1 (Graph Fourier Transform). Given a function or signal f in L2(G), the graph Fourier
transform and its inverse (Shuman et al., 2013) can be defined as follows:

f̃G = U>f and f = Uf̃ , (3)
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Table 1: Regularization functions, operators, kernels with free parameters γ ≥ 0, a ≥ 2.
Function Operator Filter Kernel

Tikhonov Regularization (Tikhonov, 1963) R(λ) = γλ R(Ł) = γŁ H(λ) = 1/(1 + γλ)
Diffusion Process (Stroock & Varadhan, 1969) R(λ) = exp(γ/2λ) R(Ł) = exp(γ/2Ł) H(λ) = 1/(exp(γ/2λ) + 1)
One-Step Random Walk (Pearson, 1905) R(λ) = (a− λ)−1 R(Ł) = (aI− Ł)− H(λ) = (a− λ)/(a− λ+ 1)
Inverse Cosine (MacLane, 1947) R(λ) = (cosλπ/4)−1 R(Ł) = (cos Łπ/4)− H(λ) = 1/(1/(cosλπ/4) + 1)

where U represents eigenfunctions of discrete Laplace operator Ł, f̃G denotes the signal in the graph
Fourier domain and f̃G(λl)=〈f ,ul〉 signifies the information at the frequency λl1.

Definition 2 (Bandlimiteness). f ∈L2(G) is called ω-bandlimited function if its Fourier transform
f̃G has support in [0, ω], and ω-bandlimited functions form the Paley-Wiener space PWω(G).

Definition 3 (Graph Signal Sampling). Given y ∈ PWω(G), y can be recovered from its values
on the vertices Ω+ by minimizing below objective (Pesenson, 2000; 2008), with positive scalar k:

min
f∈L2(G)

‖ Łkf ‖ s.t., f(v) = y(v), ∀v ∈ Ω+. (4)

Recall that the observation in inductive 1-bit matrix completion consists of only ones and no zeros
(i.e., y(v) = 1 for v ∈ Ω+) and ‖ Łk1 ‖= 0. It is obvious that minimizing the loss on the observed
entries corresponding to ones, produces a degenerate solution — the vector with all entries equal
to one achieves zero loss. From this point of view, existing theory for sampling real-valued signals
(Pesenson, 2000; 2008) is not well suited to the inductive 1-bit matrix completion problem.

3 CLOSED-FORM SOLUTION FOR 1-BIT MATRIX COMPLETION

This section builds a unified graph signal sampling framework for inductive 1-bit matrix completion
that can inductively recover y from positive ones on set Ω+. The rational behind our framework is
that the rows that have similar observations are likely to have similar reconstructions. This makes
a lot of sense in practice, for example a user (column) is likely to give similar items (rows) similar
scores in recommender systems. To achieve this, we need to construct a homogeneous graph G
where the connected vertices represent the rows which have similar observations, so that we can
design a class of graph regularized functionals that encourage adjacent vertices on graph G to have
similar reconstructed values. In particular, we mange to provide a closed-form solution to the matrix
completion problem (entitled GS-IMC), together with theoretical bounds and insights.

3.1 GRAPH DEFINITION

We begin with the introduction of two different kinds of methods to construct homogeneous graphs
by using the zero-one matrix R ∈ Rn×m: (i) following the definition of hypergraphs (Zhou et al.,
2007), matrix R can be regarded as the incidence matrix, so as to formulate the hypergraph Lapla-
cian matrix as Ł = I − D

−1/2
v RD−e R>D

−1/2
v where Dv ∈ Rn×n (De ∈ Rm×m) is the diagonal

degree matrix of vertices (edges); and (ii) for regular graphs, one of the most popular approaches is
to utilize the covariance between rows to form the adjacent matrix Ai,j = Cov(Ri,Rj) for i 6= j

so that we can define the graph Laplacian matrix as Ł = I−D
−1/2
v AD

−1/2
v .

3.2 GRAPH SIGNAL SAMPLING FRAMEWORK

Given a graph G = (V,E), any real-valued column y ∈ Rn can be viewed as a function on G that
maps from V to R, and specifically the i-th vector component yi is equivalent to the function value
y(i) at the i-th vertex. Now it is obvious that the problem of inductive matrix completion, of which
the goal is to recover column y from its values on entries Ω+, bears a resemblance to the problem
of graph signal sampling that aims to recover function y from its values on vertices Ω+.

However, most of existing graph signal sampling methods (Romero et al., 2016; Mao et al., 2018;
McNeil et al., 2021) yield degenerated solutions when applying them to the 1-bit matrix completion
problem. A popular heuristic is to treat some or all of zeros as negative examples Ω−, then to recover
y by optimizing the following functional minimization problem, given any k = 2l, l ∈ N:

min
f∈L2(G)

‖ [R(Ł)]kf ‖ s.t., ‖ sΩ − fΩ ‖≤ ε (5)

1To be consistent with (Shuman et al., 2013), ul (l-th column of matrix U) is the l-th eigenvector associated
with the eigenvalue λl, and the graph Laplacian eigenvalues carry a notion of frequency.
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Figure 2: Recall results on Netflix data of very-high degree vertices (left), high degree vertices (left
middle), medium degree vertices (right middle) and low degree vertices (right) for top-100 ranking
tasks, where λ50 on the x-axis corresponds to the assumption of space PWλ50

(G) or namely we use
the eigenfunctions whose eigenvalues are not greater than λ50 to make predictions. The results show
that low(high)-frequency functions reflect user preferences on the popular (cold) items.

where recall that s = y + ξ is the observed data corrupted by discrete random noise ξ, and sΩ (fΩ)
signifies the values of s (f ) only on Ω = Ω+ ∪Ω−; R(Ł) =

∑
lR(λl)ulu

>
l denotes the regularized

Laplace operator in which {λl} and {ul} are respectively the eigenvalues and eigenfunctions of
operator Ł. It is worth noting that s(i) = y(i) + ξ(i) = 0 for i ∈ Ω− is not the true negative data,
and hence Ω− will introduce the systematic bias when there exists i ∈ Ω− so that y(i) = 1.

The choice of regularization function R(λ) needs to account for two critical criteria: 1) The result-
ing regularization operator R(Ł) needs to be semi-positive definite. 2) As mentioned before, we
expect the reconstruction ŷ to have similar values on adjacent nodes, so that the uneven functions
should be penalized more than even functions. To account for this, we adopt the family of positive,
monotonically increasing functions (Smola & Kondor, 2003) as present in Table 1.

To the end, we summarize two natural questions concerning our framework: 1) What are the benefits
from introducing the regularized Laplacian penalty? It is obvious that minimizing the discrepancy
between sΩ and fΩ does not provide the generalization ability to recover unknown values on the rest
vertices V − Ω, and Theorem 4 and 5 answer the question by examining the error bounds. 2) What
kind of R(Ł) constitutes a reasonable choice? It has been studied in (Huang et al., 2011) that R(Ł)
is most appropriate if it is unbiased, and an unbiased R(Ł) reduces variance without incurring any
bias on the estimator. We also highlight the empirical study in Appendix C that evaluates how the
performance is affected by the definition of graph G and regularization function R(λ).

3.3 CLOSED-FORM SOLUTION

In what follows, we aim to provide a closed-form solution for our unified framework by treating all
of the zeros as negative examples, i.e., s(v) = 1 for v ∈ Ω+ and s(v) = 0 otherwise. Then by using
the method of Lagrange multipliers, we reformulate Eq. (5) to the following problem:

min
f∈L2(G)

1

2
〈f , R(Ł)f〉+

ϕ

2
‖s− f‖2 , (6)

where ϕ > 0 is a hyperparameter. Obviously, this problem has a closed-form solution:

ŷ =
(
I +R(Ł)/ϕ

)−
s =

(∑
l

(
1 +R(λl)/ϕ

)
ulu
>
l

)−
s = H(Ł)s, (7)

whereH(Ł) =
∑
lH(λl)ulu

>
l with kernel 1/H(λl) = 1+R(λ)/ϕ, and we exemplifyH(λ) when

ϕ = 1 in Table 1. From the viewpoint of spectral graph theory, our GS-IMC approach is essentially
a spectral graph filter that amplifies(attenuates) the contributions of low(high)-frequency functions.

Remark. To understand low-frequency and high-frequency functions, Figure 2 presents case studies
in the context of recommender systems on the Netflix prize data (Bennett et al., 2007). Specifically,
we divide the vertices (items) into four classes: very-high degree (> 5000), high degree (> 2000),
medium degree (> 100) and low degree vertices. Then, we report the recall results of all the four
classes in different Paley-Wiener spaces PWλ50

(G), . . . ,PWλ1000
(G) for top-100 ranking predic-

tion. The interesting observation is: (1) the low-frequency functions with eigenvalues less than λ100

contribute nothing to low degree vertices; and (2) the high-frequency functions whose eigenvalues
are greater than λ500 do not help to increase the performance on very-high degree vertices. This
finding implies that low(high)-frequency functions reflect the user preferences on the popular(cold)
items. From this viewpoint, the model defined in Eq. (7) aims to exploit the items with high click-
through rate with high certainty, which makes sense in commercial applications.
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3.4 ERROR ANALYSIS

Our GS-IMC approach defined in Eq. (7) bears a similarity to total variation denoising (Sadhanala
et al., 2016; 2017), graph-constrained regularization (Belkin et al., 2004; 2006), and particularly
Laplacian shrinkage methods (Huang et al., 2011). However, we argue that the proposed GS-IMC
approach is fundamentally different from previous works. Specifically, they operate on real-valued
data while GS-IMC deals with positive-unlabeled data. We believe that our problem setting is more
complicated, since the unlabeled data is a mixture of unobserved positive examples and true negative
examples. In addition, existing methods analyze the recoverability considering statistical noise to be
continuous Gaussian, e.g., Theorem 3 (Sadhanala et al., 2016), Theorem 1.1 (Pesenson, 2009) etc.

However, we study upper bound of GS-IMC in the presence of discrete random label noise ξ. Specif-
ically, Theorem 4 extends Paley-Wiener theorem of (Pesenson, 2009) on real-valued data to positive-
unlabelled data, showing that a bandlimited function y can be recovered from its values on certain
set Ω. Theorem 5 takes into account statistical noise ξ and shows that a bandlimited function y can
be accurately reconstructed if C2

n = C > 0 is a constant, not growing with n.

Theorem 4 (Error Analysis, extension of Theorem 1.1 in (Pesenson, 2009)). Given R(λ) with
λ ≤ R(λ) on graph G = (V,E), assume that Ωc = V − Ω admits the Poincare inequality ‖ φ ‖≤
Λ ‖ Łφ ‖ for any φ ∈ L2(Ωc) with Λ > 0, then for any y ∈ PWω(G) with 0 < ω ≤ R(ω) < 1/Λ,

‖ y − ŷk ‖≤ 2
(

ΛR(ω)
)k
‖ y ‖ and y = lim

k→∞
ŷk (8)

where k is a pre-specified hyperparameter and ŷk is the solution of Eq. (5) with ε = 0.

Remark. Theorem 4 indicates that a better estimate of y can be achieved by simply using a higher k,
but there is a trade-off between accuracy of the estimate on one hand, and complexity and numerical
stability on the other. We found by experiments that GS-IMC with k = 1 can achieve SOTA results
for inductive top-N recommendation on benchmarks. We provide more discussions in Appendix G.

Theorem 5 (Error Analysis, with label noise). Suppose that ξ is the random noise with flip rate
ρ, and positive λ1 ≤ · · · ≤ λn are eigenvalues of Laplacian Ł, then for any function y ∈ PWω(G),

E
[
MSE(y, ŷ)

]
≤ C2

n

n

( ρ

R(λ1)(1 +R(λ1)/ϕ)2
+

1

4ϕ

)
, (9)

where C2
n = R(ω) ‖ y ‖2, ϕ is the regularization parameter and ŷ is defined in Eq. (7).

Remark. Theorem 5 shows that for a constantC2
n = C > 0 (not growing with n), the reconstruction

error converges to zero as n is large enough. Also, the reconstruction error decreases with R(ω)
declining which means low-frequency functions can be recovered more easily than high-frequency
functions. We provide more discussions on ϕ, ρ in Appendix H.

4 BAYESIAN GS-IMC FOR ONLINE LEARNING

In general, an inductive learning approach such as GAT (Veličković et al., 2017) and SAGE (Hamil-
ton et al., 2017), etc., can naturally cope with the online learning scenario where the prediction is
refreshed given a newly observed example. Essentially, GS-IMC is an inductive learning approach
that can update the prediction, more effective than previous matrix completion methods (Devooght
et al., 2015; He et al., 2016). Let ∆s denote newly coming data that might be one-hot as in Fig. 3(a),
ŷ denotes original prediction based on data s, then we can efficiently update ŷ to ŷnew as follows:

ŷnew = H(Ł)(s + ∆s) = ŷ +H(Ł)∆s. (10)

However, we argue that GS-IMC ingests the new data in an unrealistic, suboptimal way. Specifically,
it does not take into account the model uncertainties, assuming that the observed positive data is
noise-free. This assumption limits model’s fidelity and flexibility for real applications. In addition,
it assigns a uniform weight to each sample, assuming that the innovation, i.e., the difference between
the current a priori prediction and the current observation information, is equal for all samples.

4.1 PROBLEM FORMULATION

To model the uncertainties, we denote a measurement by z=Uŷ (Fourier basis U) which represents
prediction ŷ in the graph Fourier domain and we assume that z is determined by a stochastic process.
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Figure 3: (a) Online learning scenario requires the model to refresh the predictions based on newly
coming data ∆s that is one-hot (orange colored). (b) GS-IMC deals with this problem in graph
vertex domain using Eq. (10), while BGS-IMC operates in graph Fourier domain. The measurement
z/znew is graph Fourier transformation of the prediction ŷ/ŷnew, and we assume hidden states
x/xnew determine these measurements under noise ν. To achieve this, x/xnew should obey the
evolution of ŷ/ŷnew, and thus Eq. (11) represents Eq. (10) under noise η in graph Fourier domain.

In Fig. 3(b), measurement z is governed by hidden state x and noise ν captures the data uncertainties
in an implicit manner. The choice of state transition equation need to account for two critical criteria:
(1) the model uncertainties need to be considered. (2) the transition from state x to state xnew need
to represent the evolution of predictions ŷ/ŷy defined in Eq. (10).

To account for this, we propose a Bayesian extension of GS-IMC, entitled BGS-IMC, which con-
siders the stochastic filtering problem in a dynamic state-space form:

xnew = x + F∆s + η (11)
znew = xnew + ν (12)

where Eq. (11) essentially follows Eq. (10) in the graph Fourier domain, i.e., multiplying both sides
of Eq. (10) by U. In control theory, F = UH(Ł) is called the input matrix and ∆s represents the
system input vector. The state equation (11) describes how the true state x,xnew evolves under the
impact of the process noise η ∼ N (0,Ση), and the measurement equation (12) characterizes how
a measurement znew = U>(s + ∆s) of the true state xnew is corrupted by the measurement noise
ν ∼ N (0,Σν). It is worth noting that larger determinant of Σν means that data points are more
dispersed, while for Ση large determinant implies that BGS-IMC is not sufficiently expressive and
it is better to use measurement for decision making, i.e., BGS-IMC is reduced to GS-IMC.

Using Bayes rule, the posterior is given by:

p(xnew|∆s, znew) ∝ p(znew|xnew)p(xnew|∆s), (13)

where p(znew|xnew) and p(xnew|∆s) follow a Gauss-Markov process.

4.2 PREDICTION-CORRECTION UPDATE ALGORITHM

To make an accurate prediction, we propose a prediction-correction update algorithm, resembling
workhorse Kalman filtering-based approaches (Kalman, 1960; Wiener et al., 1964). To our knowl-
edge, the class of prediction-correction methods appears less studied in the domain of 1-bit matrix
completion, despite its popularity in time-series forecasting (Simonetto et al., 2016; de Bézenac
et al., 2020) and computer vision (Matthies et al., 1989; Scharstein & Szeliski, 2002).

In the prediction step, we follow the evolution of the state as defined in Eq. (11) to compute the
mean and the covariance of conditional p(xnew|∆s):

E[xnew|∆s] = x̂ + F∆s = x̄new and Var(xnew|∆s) = P + Ση = P̄new, (14)

where x̂ is the estimate state of x and P is the estimate covariance, i.e., P= E(x − x̂)(x − x̂)>,
while x̄new, P̄new are the extrapolated estimate state and covariance respectively. Meanwhile, it is
easy to obtain the mean and the covariance of conditional p(znew|xnew):

E[znew|xnew] = E[xnew + ν] = xnew and Var(znew|xnew) = E[νν>] = Σν . (15)

In the correction step, we combine Eq. (13) with Eq. (14) and (15):

p(xnew|∆s, znew)∝exp
(
(xnew− znew)>Σ−ν (xnew− znew) + (xnew− x̄new)>P̄−new(xnew− x̄new)

)
.
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By solving ∂ ln p(xnew|∆s, znew)/∂xnew = 0, we have the following corrected estimate state x̂new

and covariance Pnew, where we recall that the new measurement is defined as znew =U>(s + ∆s):

x̂new = x̄new + K(znew − x̄new) (16)

Pnew = (I−K)P̄new(I−K)> + KΣνK
> (17)

K = P̄new(P̄new + Σν)−, (18)

where K is the Kalman gain and znew − x̄new is called the innovation. It is worth noting that
Eq. (16) adjusts the predicted iterate x̄new in terms of the innovation, the key difference to GS-IMC
and existing methods, e.g., GAT (Veličković et al., 2017) and SAGE (Hamilton et al., 2017).

Remark. The BGS-IMC approach is highly scalable in Paley-Wiener spaces. Let PWω(G) be the
span of k (� n) eigenfunctions whose eigenvalues are no greater than ω, then the transition matrix
F in (11) is k-by-n and every covariance matrix is of size k× k. Computationally, when P,Ση,Σν

are diagonal, it takes O(k2) time to compute x̂new and Pnew, and O(nk) time for x̄new and P̄new.
The total time complexity is O(nk + k2), linear to the number of vertices n. Further, Proposition 6
shows that x̂new in (16) is an unbiased and minimum-variance estimator.
Proposition 6. Given an observation ∆s, provided F is known, x̂new obtained in Eq. (16) is the
optimal linear estimator in the sense that it is unbiased and minimum-variance.

To summarize, the complete procedure of BGS-IMC is to first specify Ση,Σν ,P using prior knowl-
edge, then to calculate extrapolated state x̄new using (14), and finally to obtain x̂new using (16) so
that we have the updated model prediction as ŷnew = Ux̂new that ingests the new observation.

5 EXPERIMENT

This section evaluates GS-IMC (in Section 3) and BGS-IMC (in Section 4) on real-world datasets.
All the experiments are conducted on the machines with Xeon 3175X CPU, 128G memory and P40
GPU with 24 GB memory. The source code and models will be made publicly available.

5.1 EXPERIMENTAL SETUP

We adopt three large real-world datasets widely used for evaluating recommendation algorithms: (1)
Koubei (1, 828, 250 ratings of 212, 831 users and 10, 213 items); (2) Tmall (7, 632, 826 ratings of
320, 497 users and 21, 876 items); (3) Netflix (100, 444, 166 ratings of 400, 498 users and 17, 770
items). For each dataset, we follow the experimental protocols in (Liang et al., 2018; Wu et al.,
2017a) for inductive top-N ranking, where the users are split into training/validation/test set with
ratio 8 : 1 : 1. Then, we use all the data from the training users to optimize the model parameters. In
the testing phase, we sort all interactions of the validation/test users in chronological order, holding
out the last one interaction for testing and inductively generating necessary representations using the
rest data. The results in terms of hit-rate (HR) and normalized discounted cumulative gain (NDCG)
are reported on the test set for the model which delivers the best results on the validation set.

We implement our method in Apache Spark with Intel MKL, where matrix computation is paral-
lelized and distributed. In experiments, we denote item-user rating matrix by R and further define
the Laplacian Ł = I−D

−1/2
v RD−e R>D

−1/2
v . We set a=4, γ=1, ϕ=10 for GS-IMC, while we set

the covariance to Ση=Σν=10−4I and initialize P using the validation data for BGS-IMC. In the
test stage, if a user has |Ω| training interactions, BGS-IMC uses first |Ω|−1 interactions to produce
initial state x̂, then feed last interaction to simulate the online update.

In the literature, there are few of existing works that enable inductive inference for topN ranking only
using the ratings. To make thorough comparisons, we prefer to strengthen IDCF with GCMC for
the improved performance (IDCF+ for short) rather than report the results of IDCF (Wu et al., 2021)
and GCMC (van den Berg et al., 2017) as individuals. Furthermore, we study their performance
with different graph neural networks including ChebyNet (Defferrard et al., 2016), GAT (Veličković
et al., 2017), GraphSage (Hamilton et al., 2017), SGC (Wu et al., 2019) and ARMA (Bianchi et al.,
2021). We adopt the Adam optimizer (Kingma & Ba, 2015) with the learning rate decayed by 0.98
every epoch. We search by grid the learning rate and L2 regularizer in {0.1, 0.01, . . . , 0.00001}, the
dropout rate over {0.1, 0.2, . . . , 0.7} and the latent factor size ranging {32, 64, . . . , 512} for the op-
timal performance. In addition, we also report the results of the shallow models i.e., MRCF (Steck,
2019) and SGMC (Chen et al., 2021) which are most closely related to our proposed method. The
software provided by the authors is used in the experiments.
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Table 2: Hit-Rate results against the baselines for inductive top-N ranking. Note that SGMC (Chen
et al., 2021) is a special case of our method using the cut-off regularization, and MRFCF (Steck,
2019) is the full rank version of our method with (one-step) random walk regularization. The stan-
dard errors of the ranking metrics are less than 0.005 for all the three datasets.

Koubei, Density=0.08% Tmall, Density=0.10% Netflix, Density=1.41%

Model H@10 H@50 H@100 H@10 H@50 H@100 H@10 H@50 H@100

IDCF∗ (Wu et al., 2021) 0.14305 0.20335 0.24285 0.16100 0.27690 0.34573 0.08805 0.19788 0.29320
IDCF+GAT (Veličković et al., 2017) 0.19715 0.26440 0.30125 0.20033 0.32710 0.39037 0.08712 0.19387 0.27228
IDCF+GraphSAGE (Hamilton et al., 2017) 0.20600 0.27225 0.30540 0.19393 0.32733 0.39367 0.08580 0.19187 0.26972
IDCF+SGC (Wu et al., 2019) 0.20090 0.26230 0.30345 0.19213 0.32493 0.38927 0.08062 0.18080 0.26720
IDCF+ChebyNet (Defferrard et al., 2016) 0.20515 0.28100 0.32385 0.18163 0.32017 0.39417 0.08735 0.19335 0.27470
IDCF+ARMA (Bianchi et al., 2021) 0.20745 0.27750 0.31595 0.17833 0.31567 0.39140 0.08610 0.19128 0.27812

MRFCF (Steck, 2019) 0.17710 0.19300 0.19870 0.19123 0.28943 0.29260 0.08738 0.19488 0.29048
SGMC (Chen et al., 2021) 0.23290 0.31655 0.34500 0.13560 0.31070 0.40790 0.09740 0.22735 0.32193

GS-IMC (ours, Sec 3) 0.23460 0.31995 0.35065 0.13677 0.31027 0.40760 0.09725 0.22733 0.32225
BGS-IMC (ours, Sec 4) 0.24390 0.32545 0.35345 0.16733 0.34313 0.43690 0.09988 0.23390 0.33063

Table 3: NDCG results of GS-IMC and BGS-IMC against the baselines for inductive top-N ranking.
Koubei, Density=0.08% Tmall, Density=0.10% Netflix, Density=1.41%

Model N@10 N@50 N@100 N@10 N@50 N@100 N@10 N@50 N@100

IDCF∗ (Wu et al., 2021) 0.13128 0.13992 0.14523 0.10220 0.12707 0.13821 0.05054 0.07402 0.08944
IDCF+GAT (Veličković et al., 2017) 0.15447 0.16938 0.17534 0.10564 0.13378 0.14393 0.04958 0.07250 0.08518
IDCF+GraphSAGE (Hamilton et al., 2017) 0.15787 0.17156 0.17701 0.10393 0.13352 0.14417 0.04904 0.07155 0.08419
IDCF+SGC (Wu et al., 2019) 0.15537 0.16848 0.17548 0.10287 0.13208 0.14260 0.04883 0.06965 0.08456
IDCF+ChebyNet (Defferrard et al., 2016) 0.15784 0.17406 0.18055 0.09916 0.12955 0.14175 0.04996 0.07268 0.08582
IDCF+ARMA (Bianchi et al., 2021) 0.15830 0.17320 0.17954 0.09731 0.12628 0.13829 0.04940 0.07192 0.08526

MRFCF (Steck, 2019) 0.10037 0.10410 0.10502 0.08867 0.11223 0.11275 0.05235 0.08047 0.09584
SGMC (Chen et al., 2021) 0.16418 0.18301 0.18764 0.07285 0.11110 0.12685 0.05402 0.08181 0.09710

GS-IMC (ours, Sec 3) 0.17057 0.18970 0.19468 0.07357 0.11115 0.12661 0.05504 0.08181 0.09759
BGS-IMC (ours, Sec 4) 0.17909 0.19680 0.20134 0.09222 0.13082 0.14551 0.05593 0.08400 0.09982

We omit the results of Markov chain Monte Carlo based FISM (He & McAuley, 2016), variational
auto-encoder based MultVAE (Liang et al., 2018), scalable Collrank (Wu et al., 2017b), graph neural
networks GCMC (van den Berg et al., 2017) and NGCF (Wang et al., 2019), as their accuracies were
found below on par in SGMC (Chen et al., 2021) and IDCF (Wu et al., 2021).

5.2 ACCURACY COMPARISON

In this section, GS-IMC and BGS-IMC assume that the underlying signal is λ1000-bandlimited, and
we compare them with eight state-of-the-arts graph based baselines, including spatial graph models
(i.e., IDCF (Wu et al., 2021), IDCF+GAT (Veličković et al., 2017), IDCF+GraphSAGE (Hamilton
et al., 2017)), approximate spectral graph models with high-order polynomials (i.e., IDCF+SGC (Wu
et al., 2019), IDCF+ChebyNet (Defferrard et al., 2016), IDCF+ARMA (Bianchi et al., 2021)) and
exact spectral graph models (i.e., MRFCF (Steck, 2019) and SGMC (Chen et al., 2021)).

In Table 2 and Table 3, the results on the real-world Koubei, Tmall and Netflix show that BGS-IMC
outperforms all the baselines on all the datasets. Note that MRFCF (Steck, 2019) is the full rank
version of GS-IMC with (one-step) random walk regularization. We can see that MRFCF underper-
forms its counterpart on all the three datasets, which demonstrates the advantage of the bandlimited
assumption for inductive top-N ranking tasks. Further, BGS-IMC consistently outperforms GS-IMC
on all three datasets by margin which proves the efficacy of the prediction-correction algorithm for
incremental updates. Additionally, we provide extensive ablation studies in Appendix C, scalability
studies in Appendix D and more comparisons with SOTA sequential models in Appendix E.

To summarize, the reason why the proposed method can further improve the prediction accuracy
is due to 1) GS-IMC exploits the structural information in the 1-bit matrix to mitigate the negative
influence of discrete label noise in the graph vertex domain; and 2) BGS-IMC further improves
the prediction accuracy by considering continuous Gaussian noise in the graph Fourier domain and
yielding unbiased and minimum-variance predictions using prediction-correction update algorithm.

6 CONCLUSION

We have introduced a unified graph signal sampling framework for inductive 1-bit matrix comple-
tion, together with theoretical bounds and insights. Specifically, GS-IMC is devised to learn the
structural information in the 1-bit matrix to mitigate the negative influence of discrete label noise in
the graph vertex domain. Second, BGS-IMC takes into account the model uncertainties in the graph
Fourier domain and provides a prediction-correction update algorithm to obtain the unbiased and
minimum-variance reconstructions. Both GS-IMC and BGS-IMC have closed-form solutions and
are highly scalable. Experiments on the task of inductive top-N ranking have shown the supremacy.
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In Appendix, we present the detailed related works in Appendix A, generalization of SGMC and
MRFCF in Appendix B, extensive ablation studies in Appendix C and scalability studies in Ap-
pendix D, limitation and future work in Appendix F, proofs of theoretical results in Appendix G -
I and more implementation details in Appendix J.

A RELATED WORK

Inductive matrix completion. There has been a flurry of research on problem of inductive matrix
completion (Chiang et al., 2018; Jain & Dhillon, 2013; Xu et al., 2013; Zhong et al., 2019), which
leverage side information (or content features) in the form of feature vectors to predict inductively
on new rows and columns. The intuition behind this family of algorithms is to learn mappings
from the feature space to the latent factor space, such that inductive matrix completion methods can
adapt to new rows and columns without retraining. However, it has been recently shown (Zhang &
Chen, 2020; Ledent et al., 2021; Wu et al., 2021) that inductive matrix completion methods provide
limited performance due to the inferior expressiveness of the feature space. On the other hand,
the prediction accuracy has strong constraints on the content quality, but in practice the high quality
content is becoming hard to collect due to legal risks (Voigt & Von dem Bussche, 2017). By contrast,
one advantage of our approach is the capacity of inductive learning without using side information.

Graph neural networks. Inductive representation learning over graph structured data has received
significant attention recently due to its ubiquitous applicability. Among the existing works, Graph-
SAGE (Hamilton et al., 2017) and GAT (Veličković et al., 2017) propose to generate embeddings
for previously unseen data by sampling and aggregating features from a node’s local neighbors. In
the meantime, various approaches such as ChebyNet (Defferrard et al., 2016) and GCN (Kipf &
Welling, 2016) exploit convolutional neural networks to capture sophisticated feature information
but are generally less scalable. To address the scalability issue, Wu et al. (2019) develop simpli-
fied graph convolutional networks (SGCN) which utilize polynomial filters to simulate the stacked
graph convolutional layers. Furthermore, Bianchi et al. (2021) extend auto-regressive moving aver-
age (ARMA) filters to convolutional layers for broader frequency responses.

To leverage recent advance in graph neural networks, lightGCN (He et al., 2020), GCMC (van den
Berg et al., 2017) and PinSAGE (Ying et al., 2018) represent the matrix by a bipartite graph then
generalize the representations to unseen nodes by summing the content-based embeddings over the
neighbors. Differently, IGMC (Zhang & Chen, 2020) trains graph neural networks which encode
the subgraphs around an edge into latent factors then decode the factors back to the value on the
edge. Recently, IDCF (Wu et al., 2021) studies the problem in a downsampled homogeneous graph
(i.e., user-user graph in recommender systems) then applies attention networks to yield inductive
representations. Probably most closely related to our approach are IDCF (Wu et al., 2021) and
IGMC (Zhang & Chen, 2020) which do not assume any side information, such as user profiles and
item properties. The key advantage of our approach is not only the closed form solution for efficient
GNNs training, but also the theoretical results which guarantee the reconstruction of unseen rows
and columns and the practical guidance for potential improvements.

Graph signal sampling. In general, graph signal sampling aims to reconstruct real-valued functions
defined on the vertices (i.e., graph signals) from their values on certain subset of vertices. Existing
approaches commonly build upon the assumption of bandlimitedness, by which the signal of interest
lies in the span of leading eigenfunctions of the graph Laplacian (Pesenson, 2000; 2008). It is
worth noting that we are not the first to consider the connections between graph signal sampling
and matrix completion, as recent work by Romero et al. (Romero et al., 2016) has proposed a
unifying kernel based framework to broaden both of graph signal sampling and matrix completion
perspectives. However, we argue that Romero’s work and its successors (Benzi et al., 2016; Mao
et al., 2018; McNeil et al., 2021) are orthogonal to our approach as they mainly focus on real-valued
matrix completion in the transductive manner. Specifically, our approach concerns two challenging
problems when connecting the ideas and methods of graph signal sampling with inductive one-bit
matrix completion — one-bit quantization and online learning.

To satisfy the requirement of online learning, existing works learn the parameters for new rows and
columns by performing either stochastic gradient descent used in MCEX (Giménez-Febrer et al.,
2019), or alternating least squares used in eALS (He et al., 2016). The advantage of BGS-IMC is
three fold: (i) BGS-IMC has closed form solutions, bypassing the well-known difficulty for tuning
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learning rate; and (ii) BGS-IMC considers the random Gaussian noise in the graph Fourier domain,
characterizing the uncertainties in the measurement and modeling; (iii) prediction-correction algo-
rithm, resembling Kalman filtering, can provide unbiased and minimum-variance reconstructions.

Probably most closely related to our approach are SGMC (Chen et al., 2021) and MRFCF (Steck,
2019) in the sense that both of them formulate their solutions as spectral graph filters and can be
regarded as methods for data filtering in domains of discrete signal processing. More specifically,
SGMC optimizes latent factors V,U by minimizing the normalized matrix reconstruction error:

min
U,V
‖ D−1/2

v RD−1/2
e −VU ‖, s.t. ‖ U ‖≤ ε, ‖ V ‖≤ η, (19)

while MRFCF minimizes the following matrix reconstruction error:

min
X
‖ R−XR ‖ +λ ‖ X ‖ s.t. diag(X) = 0, (20)

where the diagonal entries of parameter X is forced to zero. It is obvious now that both SGMC and
MRFCF focus on minimizing the matrix reconstruction problem. This is one of the key differences
to our graph signal sampling framework which optimizes the functional minimization problem as
defined in Eq. 5. We argue that our problem formulation is more suitable for the problem of inductive
one-bit matrix completion, since it focuses on the reconstruction of bandlimited functions, no matter
if the function is observed in the training or at test time. Perhaps more importantly, both of methods
(Chen et al., 2021; Steck, 2019) can be included as special cases of our framework. We believe that a
unified framework cross graph signal sampling and inductive matrix completion could benefit both
fields, since the modeling knowledge from both domains can be more deeply shared.

Advantages of graph signal sampling perspectives. A graph signal sampling perspective requires
to model 1-bit matrix data as signals on a graph and formulate the objective in the functional space.
Doing so opens the possibility of processing, filtering and analyzing the matrix data with vertex-
frequency analysis (Hammond et al., 2011; Shuman et al., 2013), time-variant analysis (Mao et al.,
2018; McNeil et al., 2021), smoothing and filtering (Kalman, 1960; Khan & Moura, 2008) etc. In
this paper, we technically explore the use of graph spectral filters to inductively recover the missing
values of matrix, Kalman-filtering based approach to deal with the streaming data in online learning
scenario, and vertex-frequency analysis to discover the advantages of dynamic BERT4REC model
over static BGS-IMC model. We believe that our graph signal sampling framework can serve as a
new paradigm for 1-bit matrix completion, especially in large-scale and dynamic systems.

B GENERALIZING SGMC AND MRFCF

This section shows how GS-IMC generalizes SGMC (Chen et al., 2021) and MRFCF (Steck, 2019).

GS-IMC generalizes SGMC. Given the observation R, we follow standard routine of hypergraph
(Zhou et al., 2007) to calculate the hypergraph Laplacian matrix Ł = I −D

−1/2
v RD−e R>D

−1/2
v ,

where Dv (De) is the diagonal degree matrix of vertices (edges). Then the rank-k approximation
(see Eq. (9) in (Chen et al., 2021)) is equivalent to our result using bandlimited norm R(λ) = 1 if
λ ≤ λk and R(λ) =∞ otherwise,

ŷ =
(∑

l

(
1 +R(λl)/ϕ

)
ulu
>
l

)−
s =

∑
l≤k

ulu
>
l s = UkU

>
k s

where we set ϕ = ∞ and limϕ→∞R(λ)/ϕ = ∞ for λ > λk, and matrix Uk comprises k leading
eigenvectors whose eigenvalues are less than or equal to λk.

GS-IMC generalizes MRFCF. Given R, we simply adopt the correlation relationship to construct
the affinity matrix and define the Laplacian as Ł = 2I − D

−1/2
v RR>D

−1/2
v . Then the matrix

approximation (see Eq. (4) in (Steck, 2019)) is equivalent to our GS-IMC approach using one-step
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random walk norm,

ŷ =
(∑

l

(
1 +

1

a− λ

)
ulu
>
l

)−
s

=
∑
l

(
1− 1

a− λ+ 1

)
ulu
>
l s

=
{

I−
(

(a+ 1)I− Ł
)−}

s

=
{

I−
(

(a− 1)I + D1/2
v RR>D1/2

v

)−}
s

where we set ϕ = 1 and a ≥ λmax is a pre-specified parameter for the random walk regularization.

C ABLATION STUDIES

This study evaluates how GS-IMC and BGS-IMC perform with different choice of the regularization
function and the graph definition. In the following, we assume the underlying signal to recover is in
the Paley-Wiener space PWλ1000

(G), and hence we only take the first 1000 eigenfunctions whose
eigenvalues are not greater than λ1000 to make predictions.

C.1 IMPACT OF REGULARIZATION FUNCTIONS

Table 4 and 5 show that for the proposed GS-IMC models, Tikhonov regularization produces the best
HR and NDCG results on both Koubei and Netflix, while Diffusion process regularization performs
the best on Tmall. Meanwhile, BGS-IMC with random walk regularization achieves the best HR and
NDCG results on Koubei, while Tikhonov regularization and Diffusion process regularization are
best on Tmall and Netflix. Perhaps more importantly, BGS-IMC consistently outperforms GS-IMC
on all three datasets by margin which proves the efficacy of the prediction-correction algorithm.

We highlight the reason why BGS-IMC can further improve the performance of GS-IMC is due to
the fact that BGS-IMC considers Gaussian noise in the Fourier domain and the prediction-correction
update algorithm is capable of providing unbiased and minimum-variance predictions.

Table 4: Hit-Rate of GS-IMC, BGS-IMC with different regularization R(λ) for inductive top-N
ranking. Overall, BGS-IMC consistently outperforms GS-IMC. The standard errors of the ranking
metrics are less than 0.005 for all the three datasets.

Koubei, Density=0.08% Tmall, Density=0.10% Netflix, Density=1.41%

Model H@10 H@50 H@100 H@10 H@50 H@100 H@10 H@50 H@100

GS-IMC-Tikhonov (Sec. 3) 0.23430 0.31995 0.35065 0.13363 0.30630 0.40370 0.09725 0.22733 0.32190
GS-IMC-Diffusion Process (Sec. 3) 0.23460 0.31440 0.34370 0.13677 0.30863 0.40390 0.09678 0.21980 0.31750
GS-IMC-Random Walk (Sec. 3) 0.23360 0.31860 0.34935 0.13423 0.30853 0.40550 0.09660 0.22328 0.32235
GS-IMC-Inverse Cosine (Sec. 3) 0.23300 0.31710 0.34645 0.13537 0.31027 0.40760 0.09675 0.22575 0.32225

BGS-IMC-Tikhonov (Sec. 4) 0.24260 0.32320 0.35045 0.16733 0.34313 0.43690 0.09988 0.23390 0.33063
BGS-IMC-Diffusion Process (Sec. 4) 0.24385 0.32185 0.34910 0.16680 0.34263 0.43317 0.09853 0.22630 0.32450
BGS-IMC-Random Walk (Sec. 4) 0.24390 0.32545 0.35345 0.16303 0.34127 0.43447 0.09825 0.23028 0.32973
BGS-IMC-Inverse Cosine (Sec. 4) 0.24275 0.32405 0.35130 0.16567 0.34303 0.43637 0.09945 0.23260 0.33055

Table 5: NDCG of GS-IMC, BGS-IMC with different regularization for inductive top-N ranking.

Koubei, Density=0.08% Tmall, Density=0.10% Netflix, Density=1.41%

Model N@10 N@50 N@100 N@10 N@50 N@100 N@10 N@50 N@100

GS-IMC-Tikhonov (Sec. 3) 0.17057 0.18970 0.19468 0.07174 0.10940 0.12519 0.05399 0.08181 0.09709
GS-IMC-Diffusion Process (Sec. 3) 0.16943 0.18742 0.19219 0.07357 0.11115 0.12661 0.05504 0.08134 0.09713
GS-IMC-Random Walk (Sec. 3) 0.16846 0.18753 0.19253 0.07208 0.11011 0.12582 0.05452 0.08158 0.09759
GS-IMC-Inverse Cosine (Sec. 3) 0.16560 0.18453 0.18930 0.07265 0.11083 0.12660 0.05410 0.08173 0.09734

BGS-IMC-Tikhonov (Sec. 4) 0.17540 0.19352 0.19794 0.09144 0.13021 0.14544 0.05535 0.08400 0.09982
BGS-IMC-Diffusion Process (Sec. 4) 0.17909 0.19664 0.20108 0.09222 0.13082 0.14551 0.05593 0.08321 0.09909
BGS-IMC-Random Walk (Sec. 4) 0.17854 0.19680 0.20134 0.08956 0.12873 0.14387 0.05533 0.08349 0.09958
BGS-IMC-Inverse Cosine (Sec. 4) 0.17625 0.19451 0.19894 0.09094 0.12992 0.14507 0.05546 0.08394 0.09964
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Table 6: HR, NDCG on the Netflix prize data of GS-IMC (w/ random walk regularization), where
we adopt different methods for constructing the homogeneous graph for inductive top-N ranking.

HR@10 HR@50 HR@100 NDCG@10 NDCG@50 NDCG@100

GS-IMC w/ Hypergraph 0.09660±0.0006 0.22328±0.0002 0.32235±0.0011 0.05452±0.0004 0.08158±0.0004 0.09759±0.0002
GS-IMC w/ Covariance 0.09767±0.0012 0.22388±0.0006 0.31312±0.0052 0.05454±0.0005 0.08171±0.0007 0.09613±0.0007

C.2 IMPACT OF GRAPH DEFINITIONS

Table 6 present the HR and NDCG results of GS-IMC with one-step random walk regularization on
the Netflix prize data. To avoid the clutter, we omit the results of GS-IMC with other regularization
functions, since their results share the same trends. It seems that the regular graph that use covariance
matrix as the affinity matrix has better HR and NDCG results when recommending 10 and 50 items,
while the hypergraph helps achieve better results when recommending 100 items.

D SCALABILITY STUDIES

The solution for either GS-IMC or BGS-IMC requires to compute leading eigenvetors whose eigen-
values are less than or equal to pre-specified ω. However, one might argue that it is computationally
intractable on the industry-scale datasets. To address the concerns, one feasible approach is to
perform the Nyström (Fowlkes et al., 2004) method to obtain the leading eigenvectors. For the com-
pleteness of the paper, we present the pseudo-code of the approximate eigendecomposition (Chen
et al., 2021) in Algorithm 1, of which the computational complexity is O(lnk + k3) where n is the
number of columns in Ł, l is the number of sampled columns and k is the number of eigenvectors to
compute. This reduces the overhead from O(n3) to O(lnk + k3), linear to the number of rows.

To evaluate how the proposed GS-IMC and BGS-IMC methods perform with the approximate eigen-
vectors, we conduct the experiments on the largest Netflix prize data. Table 7 reports the HR, NDCG
and runtime results for the standard GS-IMC and BGS-IMC methods, and their scalable versions
entitled GS-IMCs and BGS-IMCs. To make the comparison complete, we also present the results
of neural IDCF (Wu et al., 2021) model equipped with ChebyNet (Defferrard et al., 2016). It is
obvious that the standard GS-IMC and BGS-IMC methods consume only a small fraction of train-
ing time, required by graph neural networks. Meanwhile, GS-IMCs achieves comparable ranking

Algorithm 1 Approximate Eigendecomposition

Require: n × l matrix C derived from l columns sampled from n × n kernel matrix L without
replacement, l × l matrix A composed of the intersection of these l columns, l × l matrix W,
rank k, the oversampling parameter p and the number of power iterations q.

Ensure: approximate eigenvalues Σ̃ and eigenvectors Ũ.
1: Generate a random Gaussian matrix Ω ∈ Rl×(k+p), then compute the sample matrix AqΩ.
2: Perform QR-Decomposition on AqΩ to obtain an orthonormal matrix Q that satisfies the equa-

tion AqΩ = QQ>AqΩ, then solve ZQ>Ω = Q>WΩ.
3: Compute the eigenvalue decomposition on the (k + p)-by-(k + p) matrix Z, i.e., Z =

UZΣZUZ
>, to obtain UW = QUZ [:, : k] and ΣW = ΣZ [: k, : k].

4: Return Σ̃← ΣW , Ũ← CA−1/2UWΣ
−1/2
W .

Table 7: Hit-Rate, NDCG and Runtime of the enhanced IDCF (Wu et al., 2021) model equipped
with ChebyNet (Defferrard et al., 2016), GS-IMC, BGS-IMC (w/ random walk regularization) and
their scalable versions (i.e., GS-IMCs and BGS-IMCs) for inductive top-N ranking on Netflix data.

HR@10 HR@50 HR@100 NDCG@10 NDCG@50 NDCG@100 Runtime

IDCF+ChebyNet 0.08735±0.0016 0.19335±0.0042 0.27470±0.0053 0.04996±0.0010 0.07268±0.0017 0.08582±0.0037 598 min

GS-IMC 0.09660±0.0006 0.22328±0.0002 0.32235±0.0011 0.05452±0.0004 0.08158±0.0004 0.09759±0.0002 12.0 min
GS-IMCs 0.09638±0.0007 0.22258±0.0009 0.31994±0.0015 0.05352±0.0006 0.08135±0.0006 0.09657±0.0002 1.5 min

BGS-IMC 0.09988±0.0006 0.23390±0.0005 0.33063±0.0009 0.05593±0.0004 0.08400±0.0004 0.09982±0.0001 12.5 min
BGS-IMCs 0.10005±0.0011 0.23318±0.0014 0.32750±0.0020 0.05508±0.0006 0.08365±0.0006 0.09890±0.0001 2.0 min
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Figure 4: Spectrum analysis for static GS-IMC, BGS-IMC and dynamic BERT4REC on the Koubei
dataset. Compared to BERT4REC, the energy of GS-IMC and BGS-IMC is concentrated on the low
frequencies since the high-frequency functions are highly penalized during minimization.

performance to GS-IMC, while improving the efficiency by 8X. Likewise, BGS-IMCs enjoys the
improvement in the system scalability without significant loss in prediction accuracy. The overall
results demonstrate that GS-IMC and BGS-IMC are highly scalable in very large data.

E SPECTRUM ANALYSIS AND DISCUSSION WITH SEQUENTIAL MODELS

Table 8: Comparisons to neural sequential models for the
task of inductive top-N ranking on Koubei.

Model BERT4REC SASREC GREC BGS-IMC
H@10 0.23760 0.23015 0.22405 0.24390
H@50 0.32385 0.30500 0.30065 0.32545
H@100 0.35965 0.34735 0.34350 0.35345
N@10 0.18822 0.18496 0.18118 0.17854
N@50 0.20663 0.20137 0.19816 0.19680
N@100 0.21402 0.20819 0.20583 0.20134
Runtime 89 min 37 min 27 min 83 sec

We compare BGS-IMC with recent
sequential recommendation models,
including Transformer-based SAS-
REC (Kang & McAuley, 2018),
BERT-based BERT4REC (Sun et al.,
2019) and causal CNN based GREC
(Yuan et al., 2020). We choose the
embedding size of 256 and search
the optimal hyper-parameters by grid.
Each model is configured using the
same parameters provided by the original paper i.e., two attention blocks with one head for SAS-
REC, three attention blocks with eight heads for BERT4REC and six dilated CNNs with degrees
1, 2, 2, 4, 4, 8 for GREC.

Table 8 presents HR and NDCG results on Koubei for inductive top-N ranking. Note that BGS-IMC
only accepts the most recent behavior to update the obsolete state for incremental learning, whereas
SASREC, BERT4REC and GREC focus on modeling the dynamic patterns in the sequence. Hence,
such a comparison is not in favor of BGS-IMC. Interestingly, we see that static BGS-IMC achieves
comparable HR results to SOTA sequential models, while consuming a small fraction of running
time. From this viewpoint, BGS-IMC is more cost-effective than the compared methods.

To fully understand the performance gap in NDCG, we analyze GS-IMC, BGS-IMC and the best
baseline BERT4REC in the graph spectral domain, where we limit the `2 norm of each user’s spectral
signals to one and visualize their averaged values in Figure 4. As expected, the energy of GS-IMC
and BGS-IMC is concentrated on the low frequencies, since the high-frequency functions are highly
penalized during minimization. Furthermore, the proposed prediction-correction update algorithm
increases the energy of high-frequency functions. This bears a similarity with BERT4REC of which
high-frequency functions are not constrained and can aggressively raise the rankings of unpopular
items. This explains why BERT4REC and BGS-IMC have better NDCGs than GS-IMC.

F LIMITATION AND FUTURE WORK

Limitation on sequence modeling. The proposed BGS-IMC method is simple and cannot capture
the sophisticated dynamics in the sequence. However, we believe that our work opens the possibil-
ity of benefiting sequential recommendation with graph signal processing techniques, for example
extended Kalman filter, KalmanNet and Particle filter.

Limitation on sample complexity. The sample complexity is not provided in the paper, and we
believe that this is an open problem due to the lack of regularity in the graph which prevent us from
defining the idea of sampling “every other node” (the reader is referred to (Anis et al., 2016; Ortega
et al., 2018) for more details).

Future work on deep graph learning. Though GS-IMC and BGS-IMC are mainly compared with
neural graph models, we note that our approach can help improve the performance of existing graph
neural networks including GAT (Veličković et al., 2017) and SAGE (Hamilton et al., 2017), etc. We
summarize the following directions for future works: 1) It is interesting to see how GS-IMC takes
advantage of content features. One feasible idea is to use GS-IMC as multi-scale wavelets which
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can be easily adapted to graph neural networks; 2) BGS-IMC can also be utilized to optimize the
aggregation module for the improved robustness, as every neighbor’s representation can be viewed
as a measurement of the query node’s representation.

G PROOF OF THEOREM 4

Proof. This proof is analogous to Theorem 1.1 in (Pesenson, 2009), where we extend their results
from Sobolev norm to a broader class of positive, monotonically increasing functionals.

Proof of the first part of the Theorem 4.

Suppose that the Laplacian operator Ł has bounded inverse and the fitting error ε = 0, if y ∈
PWω(G) and ŷk interpolate y on a set Ω = V − Ωc and Ωc admits the Poincare inequality ‖ φ ‖≤
Λ ‖ Łφ ‖ for any φ ∈ L2(Ωc). Then y − ŷk ∈ L2(Ωc) and we have

‖y − ŷk‖ ≤ Λ‖Ł(y − ŷk)‖.

At this point, we can apply Lemma 7 with Λ = a and φ = y− ŷk. It gives the following inequality

‖ y − ŷk ‖≤ Λk ‖ Łk(y − ŷk) ‖

for all k = 2l, l = 0, 1, 2, . . . Since R(λ) is positive and monotonically increasing function, it gives

Λk ‖ Łk(y − ŷk) ‖≤ Λk ‖ R(Ł)k(y − ŷk) ‖ .

Because the interpolant ŷk minimize the norm ‖ R(Ł)k · ‖, we have

‖ R(Ł)k(y − ŷk) ‖≤‖ R(Ł)ky ‖ + ‖ R(Ł)kŷk ‖≤ 2 ‖ R(Ł)ky ‖ .

As for functions y ∈ PWω(G) ⊂ PWR(ω)(G) the Bernstein inequality in Lemma 8 holds

‖ R(Ł)ky ‖≤ R(ω)k ‖ y ‖, k ∈ N.

Putting everything together, we conclude the first part of Theorem 4:

‖ y − ŷk ‖≤ 2
(

ΛR(ω)
)k
‖ y ‖,ΛR(ω) < 1, k = 2l, l ∈ N (21)

Proof of the second part of the Theorem 4.

Since ΛR(ω) < 1 holds, it gives the following limit

lim
k→∞

(ΛR(ω))k = 0 and lim
k→∞

‖ y − ŷk ‖≤ 0

With the non-negativity of the norm, we have

‖y − ŷk‖ ≥ 0. (22)

This implies the second part of the Theorem 4:

y = lim
k→∞

ỹk. (23)

Lemma 7 (restated from Lemma 4.1 in (Pesenson, 2009)). Suppose that Ł is a bounded self-
adjoint positive definite operator in a Hilbert space L2(G), and ‖ φ ‖≤ a ‖ Łφ ‖ holds true for any
φ ∈ L2(G) and a positive scalar a > 0, then for all k = 2l, l = 0, 1, . . . , the following inequality
holds true

‖ φ‖ ≤ ak‖Łkφ ‖ . (24)

Lemma 8 (restated from Theorem 2.1 in (Pesenson, 2008)). A function f ∈ L2(G) belongs to
PWω(G) if and only if the following Bernstein inequality holds true for all s ∈ R+

‖ Łsy ‖≤ ωs ‖ y ‖ . (25)
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G.1 EXTRA DISCUSSION

In (Pesenson, 2008), the complementary set S = Ωc = V − Ω which admits Poincare inequality is
called the Λ-set. Theorem 4 in our paper and Theorem 1.1 in (Pesenson, 2009) state that bandlimited
functions y ∈ PWω can be reconstructed from their values on a uniqueness set Ω = V −S. To better
understand the concept of Λ-set, we restate Lemma 9 from (Pesenson, 2008) which presents the
conditions for Λ-set. It is worth pointing out that (i) the second condition suggests that the vertices
from Λ-set would likely be sparsely connected with the uniqueness set Ω; and (ii) the vertices in
Λ-set are disconnected with each other or isolated in the subgraph constructed by the vertices S,
otherwise there always exists a non-zero function φ ∈ L2(S), ‖ φ ‖6= 0 which makes ‖ Łφ ‖= 0.
Lemma 9 (restated from Lemma 3.6 in (Pesenson, 2008)). Suppose that for a set of vertices
S ⊂ V (finite or infinite) the following holds true:

1. every point from S is adjacent to a point from the boundary bS, the set of all vertices in V
which are not in S but adjacent to a vertex in S;

2. for every v ∈ S there exists at least one adjacent point uv ∈ bS whose adjacency set
intersects S only over v;

3. the number Λ = supv∈s d(v) is finite;

Then the set S is a Λ-set which admits the Poincare inequality
‖ φ ‖≤ Λ ‖ Łφ ‖, φ ∈ L2(S). (26)

In our experiments for recommender systems, each user’s ratings might not comply with Poincare
inequality. This is because there exists some users who prefer niche products/movies (low-degree
nodes). As shown in Fig. 2, user preferences on low-degree nodes are determined by high-frequency
functions. When R(ω) is not large enough, Poincare inequality does not hold for such users. This
also explains why our model performs poorly for cold items.

Regarding to choice of parameter k, empirical results show that using k ≥ 2 does not help improve
the performance, and note that when k is large enough, all kernels will be reduced to bandlimited
norm, i.e., R(λ) = 1 if λ ≤ λk ≤ 1, since the gap between eigenvalues shrinks.

H PROOF OF THEOREM 5

Proof. Let ξ denote the random label noise which flips a 1 to 0 with rate ρ, assume that the sample
s = y + ξ is observed from y under noise ξ, then for a graph spectral filter Hϕ = (I +R(Ł)/ϕ)−1

with positive ϕ > 0, we have

E
[
MSE(y, ŷ)

]
=

1

n
E ‖ y −Hϕ(y + ξ) ‖2

≤ 1

n
E ‖ Hϕξ ‖2 +

1

n
‖ (I−Hϕ)y ‖2, (27)

where the last inequality holds due to the triangular property of matrix norm.

To bound E ‖ Hϕξ ‖2, let Cn = R1/2(ω) ‖ y ‖, then

E ‖ Hϕξ ‖2
(a)
=

∑
y(v)=1

ρ(Hϕ,(∗,v) ×−1)2 + (1− ρ)(Hϕ,(∗,v) × 0)2

= ρ
∑

y(v)=1

(Hϕ,(∗,v)y(v))2 = ρ ‖ Hϕy ‖2

(b)

≤ sup
‖R1/2(Ł)y‖≤Cn

ρ ‖ Hϕy ‖2= sup
‖z‖≤Cn

ρ ‖ HϕR
−1/2(Ł)z ‖2

= ρC2
nσ

2
max

(
HϕR

−1/2(Ł)
)

= ρC2
n max
l=1,...,n

1

(1 +R(λl)/ϕ)2

1

R(λl)

≤ ρϕ2C2
n

R(λ1)(ϕ+R(λ1))2
, (28)
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where (a) follows the definition of the flip random noise ξ and (b) holds to the fact that y is in the
Paley-Wiener space PWω(G). As for the second term,

‖ (I−Hϕ)y ‖2 ≤ sup
‖R1/2(Ł)y‖≤Cn

‖ (I−Hϕ)y ‖2

(a)
= sup
‖z‖≤Cn

‖ (I−Hϕ)R−1/2(Ł)z ‖2

= C2
nσ

2
max

(
(I−Hϕ)R−1/2(Ł)

)
= C2

n max
l=1,...,n

(
1− 1

1 +R(λl)/ϕ

)2 1

R(λl)

=
C2
n

ϕ
max

l=1,...,n

R(λl)/ϕ

(R(λl)/ϕ+ 1)2

(b)

≤ C2
n

4ϕ
. (29)

where (a) holds due to the fact that the eigenvectors of I−Hϕ are the eigenvectors of R(Ł); and (b)
follows the simple upper bound x/(1 + x)2 ≤ 1/4 for x ≥ 0.

By combing everything together, we conclude the result

E
[
MSE(y, ŷ)

]
≤ C2

n

n

( ρϕ2

R(λ1)(ϕ+R(λ1))2
+

1

4ϕ

)
. (30)

H.1 EXTRA DISCUSSION

Choosing ϕ to balance the two terms on the right-hand side above gives ϕ∗ = ∞ for ρ < 1/8 and
1 +R(λ1)/ϕ∗ = 2ρ1/3 for ρ ≥ 1/8. Plugging in this choice, we have the upper bound if ρ ≥ 1

8

E
[
MSE(y, ŷ)

]
≤ C2

n

4R(λ1)n
(3ρ1/3 − 1), (31)

and if ρ < 1
8 , then the upper bound is

E
[
MSE(y, ŷ)

]
≤ C2

nρ

4R(λ1)n
. (32)

This result implies that we can use a large ϕ to obtain accurate reconstruction when the flip rate ρ is
not greater than 1/8, and ϕ need to be carefully tuned when the flip rate ρ is greater than 1/8.

I PROOF OF PROPOSITION 6

As below we present the proof in a Bayesian framework, and the reader is referred to (Maybeck,
1982) for a geometrical interpretation of Monte Carlo estimate statistics.

Proof of the minimal variance

To minimize the estimate variance, we need to minimize the main diagonal of the covariance Pnew:

trace
(
Pnew

)
= trace

(
(I−K)P̄new(I−K)> + KΣµK>

)
.

Then, we differentiate the trace of Pnew with respect to K

d trace
(
Pnew

)
d K

= trace
(

2KP̄new − 2P̄new

)
+ trace

(
2KΣu

)
.

The optimal K which minimizes the variance should satisfy d trace(Pnew)/d K = 0, then it gives

K(I + P̄new) = P̄new.
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(a) Transductive ranking
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?𝑢"

⋯

(b) Inductive ranking

Figure 5: Evaluation protocols, where the users in top block (green) are used for training and the
ones in bottom block (pink) are used for evaluation. (a) transductive ranking, where the model
performance is evaluated based on the users already known during the model training; (b) inductive
ranking, the model performance is evaluated using the users unseen during the model training.

This implies that the variance of estimate x̂new is minimized when K = P̄new(I + P̄new)−.

Proof of the unbiasedness

Suppose that the obsolete estimate x̂ is unbiased, i.e. Ex̂ = x, then using Eq. (11) we have

E
(
x̄new

)
= E

(
x̂ + F∆s

)
= x + F∆s = xnew.

Because of Eq. (12) and the measurement noise ν has zero mean, it gives

E
(
znew

)
= E

(
xnew + ν

)
= xnew.

Putting everything together, we conclude the following result

E
(
x̂new

)
= E

(
x̄new + K(znew − x̄new)

)
= xnew + K(xnew − xnew) = xnew. (33)

This implies that the estimate state x̂new is unbiased.

J IMPLEMENTATION DETAILS

In this section, we present the details for our implementation in Section 5 including the additional
dataset details, evaluation protocols, model architectures in order for reproducibility. All the experi-
ments are conducted on the machines with Xeon 3175X CPU, 128G memory and P40 GPU with 24
GB memory. The configurations of our environments and packages are listed below:

• Ubuntu 16.04

• CUDA 10.2

• Python 3.7

• Tensorflow 1.15.3

• Pytorch 1.10

• DGL 0.7.1

• NumPy 1.19.0 with MKL Intel

J.1 ADDITIONAL DATASET DETAILS

We use three real-world datasets which are processed in line with (Liang et al., 2018; Steck, 2019):
(1) for Koubei2, we keep users with at least 5 records and items that have been purchased by at least
100 users; and (2) for Tmall3, we keep users who click at least 10 items and items which have been
seen by at least 200 users; and (3) for Netflix4, we keep all of the users and items. In addition, we
chose the random seed as 9876 when splitting the users into training/validation/test sets.

2https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=35680
4https://kaggle.com/netflix-inc/netflix-prize-data
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J.2 EVALUATION PROTOCOLS

In Figure 5, we illustrate the difference between the transductive ranking and inductive ranking
evaluation protocols. In the transductive ranking problem, the model performance is evaluated on the
users already known during the model training, whereas the model performance is evaluated on the
unseen users in the inductive ranking problems. It is worth noting that in the testing phrase, we sort
all interactions of the validation/test users in chronological order, holding out the last one interaction
for testing and inductively generating necessary representations on the rest data. In a nutshell, we
evaluate our approach and the baselines for the challenging inductive next-item prediction problem.

J.3 EVALUATION METRICS

We adopt hit-rate (HR) and normalized discounted cumulative gain (NDCG) to evaluate the model
performance. Suppose that the model provideN recommended items for user u asRu, let Tu denote
the interacted items of the user, then HR is computed as follows:

HR@N = Eu 1|Tu∩Ru| (34)

where 1|Ω| is equal to 1 if set Ω is not empty and is equal to 0 otherwise. NDCG evaluates ranking
performance by taking the positions of correct items into consideration:

NDCG@N =
1

Z
DCG@N =

1

Z

N∑
j=1

21|R
j
u∩Tu| − 1

log2(j + 1)
(35)

where Z is the normalized constant that represents the maximum values of DCG@N for Tu.

J.4 GRAPH LAPLACIAN

Let R denote the item-user rating matrix, Dv and De denotes the diagonal degree matrix of vertices
and edges respectively, then graph Laplacian matrix used in our experiments is defined as follows:

Ł = I−D−1/2
v RD−e R>D−1/2

v . (36)

where I is identity matrix.

J.5 DISCUSSION ON PREDICTION FUNCTIONS

In experiments, we focus on making personalized recommendations to the users, so that we are
interested in the ranks of the items for each user. Specifically, for top-k ranking problem we choose
the items with the k-largest predicted ratings,

Recommendation@k = max
|O|=k

∑
v∈O,v/∈Ω+

y(v). (37)

More importantly, our proposed method is also suitable for the link prediction problem, where the
goal is classify whether an edge between two vertices exists or not. This can be done by choosing
a splitting point to partition the candidate edges into two parts. There are many different ways of
choosing such splitting point. One can select the optimal splitting point based on the ROC or AUC
results on the validation set.

J.6 MODEL ARCHITECTURES

As mentioned before, we equip IDCF (Wu et al., 2021) with different GNN architectures as the
backbone. Here we introduce the details for them.

GAT. We use the GATConv layer available in DGL for implementation. The detailed architecture
description is as below:

• A sequence of one-layer GATConv with four heads.
• Add self-loop and use batch normalization for graph convolution in each layer.
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• Use tanh as the activation.

• Use inner product between user embedding and item embedding as ranking score.

GraphSAGE. We use the SAGEConv layer available in DGL for implementation. The detailed
architecture description is as below:

• A sequence of two-layer SAGEConv.

• Add self-loop and use batch normalization for graph convolution in each layer.

• Use ReLU as the activation.

• Use inner product between user embedding and item embedding as ranking score.

SGC. We use the SGConv layer available in DGL for implementation. The detailed architecture
description is as below:

• One-layer SGConv with two hops.

• Add self-loop and use batch normalization for graph convolution in each layer.

• Use ReLU as the activation.

• Use inner product between user embedding and item embedding as ranking score.

ChebyNet. We use the ChebConv layer available in DGL for implementation. The detailed archi-
tecture description is as below:

• One-layer ChebConv with two hops.

• Add self-loop and use batch normalization for graph convolution in each layer.

• Use ReLU as the activation.

• Use inner product between user embedding and item embedding as ranking score.

ARMA. We use the ARMAConv layer available in DGL for implementation. The detailed architec-
ture description is as below:

• One-layer ARMAConv with two hops.

• Add self-loop and use batch normalization for graph convolution in each layer.

• Use tanh as the activation.

• Use inner product between user embedding and item embedding as ranking score.

We also summarize the implementation details of the compared sequential baselines as follows.

SASREC.5 We use the software provided by the authors for experiments. The detailed architecture
description is as below:

• A sequence of two-block Transformer with one head.

• Use maximum sequence length to 30.

• Use inner product between user embedding and item embedding as ranking score.

BERT4REC.6 We use the software provided by the authors for experiments. The detailed architec-
ture description is as below:

• A sequence of three-block Transformer with eight heads.

• Use maximum sequence length to 30 with the masked probability 0.2.

• Use inner product between user embedding and item embedding as ranking score.

5https://github.com/kang205/SASRec
6https://github.com/FeiSun/BERT4Rec
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GREC.7 We use the software provided by the authors for experiments. The detailed architecture
description is as below:

• A sequence of six-layer dilated CNN with degree 1, 2, 2, 4, 4, 8.
• Use maximum sequence length to 30 with the masked probability 0.2.
• Use inner product between user embedding and item embedding as ranking score.

7https://github.com/fajieyuan/WWW2020-grec
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Figure 6: Spectrum analysis for static GS-IMC, of which the energy is concentrated on the low
frequencies since the high-frequency functions are highly penalized during minimization.
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Figure 7: Spectrum analysis for static BGS-IMC, of which the energy is concentrated on the low
frequencies since the high-frequency functions are highly penalized during minimization.
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Figure 8: Spectrum analysis for sequential BERT4REC, of which the high-frequency functions are
not highly penalized and can aggressively raise the rankings of unpopular items .
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