
La-MAML: Look-ahead Meta Learning for Continual Learning

Gunshi Gupta * 1 Karmesh Yadav * 2 Liam Paull 1

Abstract
The continual learning problem involves train-
ing models with limited capacity to perform
well on a set of an unknown number of sequen-
tially arriving tasks. While meta-learning shows
great potential for reducing interference between
old and new tasks, the current training proce-
dures tend to be either slow or offline, and sen-
sitive to many hyper-parameters. In this work,
we propose Look-ahead MAML (La-MAML), a
fast optimisation-based meta-learning algorithm
for online-continual learning, aided by a small
episodic memory. Our proposed modulation of
per-parameter learning rates in our meta-learning
update allows us to draw connections to prior
work on hypergradients and meta-descent. This
provides a more flexible and efficient way to miti-
gate catastrophic forgetting compared to conven-
tional prior-based methods. La-MAML achieves
performance superior to other replay-based, prior-
based and meta-learning based approaches for
continual learning on real-world visual classifica-
tion benchmarks.

1. Introduction
Embodied or interactive agents that accumulate knowledge
and skills over time must possess the ability to continually
learn. Catastrophic forgetting (French, 1999; Mcclelland
et al., 1995), one of the biggest challenges in this setup,
can occur when the i.i.d. sampling conditions required by
stochastic gradient descent (SGD) are violated as the data
belonging to different tasks to be learnt arrives sequentially.
Algorithms for continual learning (CL) must also use their
limited model capacity efficiently since the number of future
tasks is unknown. Ensuring gradient-alignment across tasks
is therefore essential, to make shared progress on their ob-
jectives. Gradient Episodic Memory (GEM) (Lopez-Paz &
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Ranzato, 2017) investigated the connection between weight
sharing and forgetting in CL and developed an algorithm
that explicitly tried to minimise gradient interference. This
is an objective that meta-learning algorithms implicitly opti-
mise for (refer to (Nichol et al., 2018) for derivations of the
effective parameter update made in first and second order
meta learning algorithms). Meta Experience Replay (MER)
(Riemer et al., 2019) formalized the transfer-interference
trade-off and showed that the gradient alignment objective
of GEM coincide with the objective optimised by the first
order meta-learning algorithm Reptile (Nichol et al., 2018).

Besides aligning gradients, meta-learning algorithms show
promise for CL since they can directly use the meta-
objective to influence model optimisation and improve on
auxiliary objectives like generalisation or transfer. This
avoids having to define heuristic incentives like sparsity (Le
et al., 2017) for better CL. The downside is that they are
usually slow and hard to tune, effectively rendering them
more suitable for offline continual learning (Javed & White,
2019; Riemer et al., 2019). In this work, we overcome these
difficulties and develop a gradient-based meta-learning al-
gorithm for efficient, online continual learning. We first
propose a base algorithm for continual meta-learning re-
ferred to as Continual-MAML (C-MAML) that utilizes a
replay-buffer and optimizes a meta-objective that mitigates
forgetting. Subsequently, we propose a modification to
C-MAML, La-MAML, which incorporates modulation of
per-parameter learning rates (LRs) to pace the learning of
a model across tasks and time. Finally, we show that the
algorithm is scalable, robust and achieves favourable perfor-
mance on several benchmarks of varying complexity.

2. Related work
Relevant CL approaches can be roughly categorized into
replay-based, regularisation-based (or prior-based) and
meta-learning-based approaches.

In order to circumvent the issue of catastrophic forgetting,
replay-based methods maintain a collection of samples from
previous tasks in memory. Approaches utilising an episodic-
buffer (Castro et al., 2018; Rebuffi et al., 2017) uniformly
sample old data points to mimic the i.i.d. setup within con-
tinual learning. Approaches proposing Generative-replay
(Shin et al., 2017) train generative models to replay the data
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distribution of past samples. However, they currently face
scalability issues arising from the difficulty of modeling
complex non-stationary distributions. GEM (Lopez-Paz &
Ranzato, 2017) and A-GEM (Chaudhry et al., 2019) take
memory samples into account to determine altered low-
interference gradients for updating parameters.

Regularisation-based methods avoid using replay at all by
constraining the network weights according to heuristics
intended to ensure that performance on previous tasks is
preserved. This involves penalising changes to weights
deemed important for old tasks (Kirkpatrick et al., 2017) or
enforcing weight or representational sparsity (Aljundi et al.,
2019) to ensure that only a subset of neurons remain active
(and thus receiving gradients) at any point of time.

Meta-Learning-based approaches are fairly recent and have
shown impressive results on small benchmarks like Om-
niglot and MNIST. MER (Riemer et al., 2019), inspired
by GEM(Lopez-Paz & Ranzato, 2017), utilises replay to
incentivise alignment of gradients between old and new
tasks. Online-aware Meta Learning (OML) (Javed & White,
2019) introduces a meta-objective for a pre-training algo-
rithm to learn an optimal representation offline, which is
subsequently frozen and used for CL. The the orthogonal
setup of online learning is investigated in (Al-Shedivat et al.,
2018; Finn et al., 2019; Nagabandi et al., 2019), where a
learning agent uses all previously seen data to adapt quickly
to an incoming stream of data, thereby ignoring the problem
of catastrophic forgetting. Our motivation lies in develop-
ing a scalable, online algorithm capable of learning from
limited cycles through streaming data with reduced interfer-
ence on old samples. In the following sections, we review
background concepts, outline our proposed algorithm, and
note connections to prior work not directly pertaining to CL.

3. Preliminaries
We consider a setting where a sequence of T tasks
[τ1, τ2, ..τT ] is learnt by observing their training data
[D1, D2, ..DT ] sequentially. We define Xi, Y i =
{(Xi

n, Y
i
n)}Ni

n=0 as the set of Ni input-label pairs randomly
drawn from Di. An any time-step j during online learning,
we aim to minimize the empirical risk of the model on all
the t tasks seen so far (τ1:t), given limited access to data
(Xi, Y i) from previous tasks τi (i < t).

We refer to this objective as the cumulative risk, given by:

T∑
t=1

t∑
i=1

E(Xi,Y i)

[
`i
(
fi
(
Xi; θ

)
, Y i
)]

=

T∑
t=1

E(X1:t,Y 1:t)

[
Lt
(
f
(
X1:t; θ

)
, Y 1:t

)] (1)

where `i is the loss on τi and fi is a learnt, possibly task-
specific mapping from inputs to outputs using parameters
θ. Lt =

∑t
i=1 `i is the sum of all task-wise losses for tasks

τ1:t. T is unknown beforehand and we merely use it to
specify an upper bound in our summations.

Let θj0 denote the model’s parameters at time j, and ` denote
a loss objective to be minimised. Then the SGD operator
acting on parameters θj0, denoted by U(θj0), is defined as:

U
(
θj0

)
= θj1 = θj0 − α∇θj0`(θ

j
0) = θj0 − αg

j
0 (2)

where gj0 = ∇θj0`(θ
j
0). fU can be composed for k updates

as Uk
(
θj0

)
= U... ◦ U ◦ U(θj0) = θjk. α is a scalar or a

vector LR. U (·, x) implies gradient updates are made on
data sample x. We now introduce the MAML (Finn et al.,
2017) and OML (Javed & White, 2019) algorithms, that we
build upon in Section 4.

Model-Agnostic Meta-Learning (MAML): Meta-
learning (Schmidhuber, 1987), or learning-to-learn (Thrun
& Pratt, 1998) has emerged as a popular approach for
training models amenable to fast adaptation on limited
data. MAML (Finn et al., 2017) proposed optimising
model parameters to learn a set of tasks while improving
on auxiliary objectives like few-shot generalisation within
their task distributions. We review some terminology used
in gradient-based meta-learning: 1) at time-step j during
training, model parameters θj0 (or θ0 for simplicity), are
often referred to as an initialisation, since MAML finds an
ideal starting point for few-shot gradient-based adaptation
on unseen data. 2) Fast updates, refer to gradient-based
updates made to a copy of θ0, optimising an inner objective
(in this case, `i for some τi). 3) A meta-update involves
the trajectory of fast updates from θ0 to θk, followed by
making a permanent slow-update to θ0. This slow-update is
computed by evaluating an auxiliary objective (or meta-loss
Lmeta) on θk, and differentiating through the trajectory
to obtain ∇θ0Lmeta(θk). MAML thus optimises θj0 to
perform optimally on tasks in {τ1:t} after undergoing a
few gradient updates on their samples by optimsiing the
objective:

min
θj0

Eτ1:t

[
Lmeta

(
Uk(θj0)

)]
= min

θj0

Eτ1:t

[
Lmeta(θjk)

]
(3)

Equivalence of Meta-Learning and Gradient Alignment
Objectives: The first-order meta-learning algorithm Reptile
has been shown to be approximately equivalence to the
MAML objective (Nichol et al., 2018). MER (Riemer et al.,
2019) then showed that their CL objective of minimising
loss on tasks τ1:t seen till time j, while aligning gradients
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between them:

min
θj0

 t∑
i=1

(
`i(θ

j
0)
)
− α

∑
p,q≤t

∂`p
(
θj0

)
∂θj0

·
∂`q

(
θj0

)
∂θj0


(4)

is equivalent to the Reptile objective i.e.:

min
θj0

Eτ1:t

[
Lt

(
Uk(θj0)

)]
(5)

where the meta-loss Lt =
∑t
i=1 `i is evaluated on samples

from tasks τ1:t. We will show how a version of this objec-
tive coincides with our proposed multi-step MAML-based
algorithm. Note that this implies that the procedure to learn
an initialisation through meta-learning, coincides with the
procedure to learn optimal parameters for CL.

Online-aware Meta-Learning (OML): (Javed & White,
2019) proposed to meta-learn a Representation-Learning
Network (RLN) to provide a representation suitable for CL
to a Task-Learning Network (TLN). The RLN’s representa-
tion is learnt in an offline phase, where it is trained using
catastrophic forgetting as the learning signal. Data from a
fixed set of tasks (τval), is repeatedly used to evaluate the
RLN and TLN as the TLN undergoes temporally correlated
updates. In every meta-update’s inner loop, the TLN under-
goes fast updates on streaming task data with a frozen RLN.
The RLN and updated TLN are then evaluated through a
meta-loss computed on data from τval along with the cur-
rent task. This tests how the performance of the model
has changed on τval in the process of trying to learn the
streaming task. The meta-loss is then differentiated to get
gradients for slow updates to the TLN and RLN. This com-
position of two losses to simulate CL in the inner loop and
test forgetting in the outer loop, is referred to as the OML
objective. The slow updates to the RLN lead to it eventually
providing a better representation to the TLN for CL.

4. Proposed approach
In the previous section, we described how the OML ob-
jective can directly regulate CL behaviour, and how MER
exploits the equivalence of the objectives of Reptile and CL
to construct a CL algorithm that uses Reptile updates. We
noted that OML is for offline pre-training of a static represen-
tation and that MER’s online algorithm is still prohibitively
slow. We observe that we can adapt the OML objective
to be optimised continuously online with respect to all of
the model parameters similar to a standard k-step MAML
update. We then prove the equivalence of this MAML ob-
jective to that of a standard CL objective, to be able to use
this algorithm for continual learning in a principled manner.

In this section, we describe Continual-MAML (C-MAML),
the base algorithm that we propose for online continual

learning. We then detail an extension to C-MAML, referred
to as Look-Ahead MAML (La-MAML), outlined in Algo-
rithm 1.

4.1. C-MAML

C-MAML aims to optimise the OML objective online, so
that learning on the current task doesn’t lead to forgetting on
previously seen tasks. We define this objective, adapted to
optimise a model’s parameters θ instead of a representation
at time-step j, as:

min
θj0

OML(θj0, t) = min
θj0

∑
Sj
k∼Dt

[
Lt

(
Uk(θj0,S

j
k)
)]

(6)

where Sjk is a stream of data tuples
(
Xt
j+l, Y

t
j+l

)k
l=1

from
the current task τt that is seen by the model at time j. The
meta-loss Lt =

∑t
i=1 `i is evaluated on θjk = Uk(θj0, S

j
k).

It evaluates the fitness of θjk for the continual learning pre-
diction task defined in Eq. 1 until τt. We omit the implied
data argument (xi, yj) ∼ (Xi, Y i) that is the input to each
loss `i in Lt for any task τi. We will show in Appendix B
that optimising our objective in Eq. 6 through the k-step
MAML update in C-MAML:

min
θj0

Eτ1:t

[
Lt

(
Uk(θj0)

)]
(7)

coincides with optimising the CL objective of AGEM
(Chaudhry et al., 2019):

min
θj0

t∑
i=1

`i(θj0)− α
∂`i

(
θj0

)
∂θj0

·
∂`t

(
θj0

)
∂θj0

 (8)

This differs from Eq. 4’s objective by being asymmetric:
it focuses on aligning the gradients of τt and the average
gradient of τ1:t instead of aligning all the pair-wise gra-
dients between tasks τ1:t. Incentivizing alignment of all
τ1:t with the common τt indirectly incentivises alignment
amongst τ1:t. This results in a drastic speedup over MER’s
objective (Eq. 4) which tries to align all τ1:t equally, and
therefore has to resample incoming samples s ∼ τt to form
a uniformly distributed batch over τ1:t. Since each s then
has 1

t -th the contribution in gradient updates, it becomes
necessary for MER to take multiple passes over many such
uniform batches including s.

To evaluate the meta-loss Lt(θ
j
k) which indicates perfor-

mance of θjk on all tasks seen till time j, old tasks’ data is
sampled from a replay-buffer R. R is populated through
reservoir sampling on the incoming data stream as in
(Riemer et al., 2019). The SGD-based inner-updates start-
ing from initial weights θj0 are carried out using data from
the task being streamed at the time of meta-update step j.
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At the start of every meta-update step, a batch b is sampled
from the current task and is combined with a batch sampled
from R to form the meta-batch, bm. θj0 is updated for k
steps by seeing samples from b one at a time. The outer loss
is evaluated on bm.

Figure 1. The proposed La-MAML algorithm: For every batch
of data, the initial weights undergo a series of k fast updates to
obtain θjk (here j = 0), which is evaluated against a meta-loss to
backpropagate gradients with respect to the weights θ00 and LRs
α0. First α0 is updated to α1 which is then used to update θ00 to θ10
The blue boxes indicate fast weights while the green boxes indicate
gradients for the slow updates. LRs and weights are updated in an
asynchronous manner.

4.2. La-MAML

Despite the fact that meta-learning incentivises the align-
ment of within-task and across-task gradients, there can still
be some interference between the gradients of old and new
tasks, τ1:t−1 and τt respectively. This would lead to for-
getting on τ1:t−1, since its data is no longer fully available
to us. This is especially true at the beginning of training
a new task, when its gradients aren’t necessarily aligned
with the old ones. A mechanism is thus needed to ensure
that meta-updates are conservative with respect to τ1:t−1,
so as to avoid negative transfer on them. The magnitude and
direction of the meta-update needs to be regulated, guided
by how the loss on τ1:t−1 would be affected by the update.

In La-MAML, we include a set of learnable per-parameter
learning rates (LRs) to be used in the inner updates, as
depicted in Figure 1. This is motivated by our observation
that the expression for the gradient of Eq. 6 with respect to
the inner loop’s LRs directly reflects the alignment between
the old and new tasks. The augmented learning objective
and its gradient with respect to the LR vector α, denoted as
gMAML(α) is then given as:

min
θj0,α

j

∑
Sj
k∼Dt

[
Lt

(
U
(
αj , θj0,S

j
k

))]
(9)

gMAML(αj) =
∂

∂θjk
Lt

(
θjk

)
·

(
−
k−1∑
n=0

∂

∂θjn
`t
(
θjn
))
(10)

We provide the full derivation in the Appendix A, and
simply state the expression for a first-order approximation
(Finn et al., 2017) of gMAML(α) here. The first term in
gMAML(α) corresponds to the gradient of the meta-loss on
batch bm: gmeta. The second term indicates the cumula-
tive gradient from the inner-update trajectory: gtraj . This
expression indicates that the gradient of the LRs will be
negative when the inner product between gmeta and gtraj
is high, ie. the two are aligned. Similarly, it should be zero
when the two are orthogonal (not interfering) and positive
when there is disagreement between the two, leading to in-
terference. Negative (positive) LR gradients would pull up
(down) the LR magnitude. We depict this visually in Figure
2.

Algorithm 1 La-MAML : Look-ahead MAML

Input: Network weights θ, LRs α, inner objective `, meta
objective L, learning rate for α : η
R← {} . replay-buffer
for t = 1 to T do

Datat ← Sample(Dt)
for ep = 1 to numep do

for b in Datat do
k = sizeof(b)
bm ← Sample(R, b)
Initialize θ00, α

0 ← θ, α
for n = 0 to k − 1 do

Push b[n] to R with reservoir sampling
θ0n+1 = θ0n − α0 · ∇θ0n`t(θ

0
n, b[n])

end for
Lmeta = Lt(θ

0
k, bm)

α1 ← α0 − η∇α0Lmeta (a)
θ10 ← θ00 −max(0, α1) · ∇θ00Lmeta (b)
α, θ ← α1, θ10

end for
end for

end for

We propose updating the network weights and LRs asyn-
chronously in the meta-update. Let αj+1 be the updated LR
vector obtained by taking an SGD step with the LR gradient
from Eq. 10 at time j. We then update the weights as:

θj+1
0 ← θj0 −max(0, αj+1) · ∇θj0Lt(θ

j
k) (11)

where k is the number of steps taken in the inner-loop. The
LRs αj+1 are clipped to positive values to avoid ascending
the gradient, and also to avoid making interfering parameter-
updates, thus mitigating catastrophic forgetting. The meta-
objective thus conservatively modulates the pace and direc-
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tion of learning to achieve quicker learning progress on a
new task while facilitating transfer on old tasks. Algorithm
1 illustrates this procedure. Lines (a), (b) are the only dif-
ference between C-MAML and La-MAML, with C-MAML
using a fixed scalar LR α for the meta-update to θj0 instead
of αj+1.

Figure 2. Different scenarios for the alignment of gtraj (blue
dashed line) and gmeta, going from interference (left) to align-
ment (right). Yellow arrows denote the inner updates. The LR α
increases (decreases) when gradients align (interfere).

Our meta-learning based algorithm incorporates concepts
from both prior-based and replay-based approaches. Our
LRs modulate the parameter updates in an entirely data
driven manner, guided by the interplay between the gradi-
ents of the replay samples and the streaming task. However,
since LRs evolve with every meta-update, their decay is tem-
porary. This is unlike many prior-based approaches, where
penalties on the change in parameters gradually become so
high that the network capacity saturates (Kirkpatrick et al.,
2017). Our learnable LRs can be modulated to high and
low values as tasks arrive, thus being a simpler, flexible
and elegant way to constrain weights. This asynchronous
update resembles trust-region optimisation (Yuan, 1999)
since the LRs are evolved in a manner similar to look-ahead
search, which adjusts step-sizes based on the loss incurred
on adapted parameters. Our LR update is also analogous
to the heuristic uncertainty-based LR update schemes of
UCB (Ebrahimi et al., 2020) or BGD (Zeno et al., 2018), the
latter of which we will include in our comparative analysis
in Section 5.3.

4.3. Connections to Work Outside Continual Learning

Stochastic Meta-Descent (SMD): When learning over a
non-stationary data distribution, using decaying learning
rate schedules is not common. Strictly diminishing learning
rate schedules aim for closer and faster convergence to a
fixed mimima of a stationary distribution, which is at odds

with the goal of online and continual learning. In many
Continual Learning scenarios it is impossible to manually
tune the schedule since the extent of the data distribution
is unknown. However, adaptivity in learning rates is still
highly desired to better adapt to the optimisation landscape
and accelerate learning. Another reason to desire adaptivity
in CL is to modulate the degree of adaptation of certain
parameters, to reduce catastrophic forgetting. Our adaptive
learning rates can be connected to work on meta-descent
(Baydin et al., 2018; Schraudolph, 1999) in standard offline
supervised learning (OSL). While several variations of meta-
descent exist, the core idea behind these variations and
our approach is the same: gain adaptation, analogous to
gain adjustment in a Kalman Filter (KF). In a KF, the gain
is a quantity that signifies how much trust we place in a
proposed belief or parameter update. While in our case,
we want to check the correlation between old and new task
gradients to adapt the gain so that we can make the most
shared progress on old and new tasks, in the case of (Baydin
et al., 2018; Schraudolph, 1999) the correlation between two
successive stochastic gradients on the same data distribution
is used to converge faster. HD (Baydin et al., 2018) proposes
analytically, asynchronously updating learning rates during
optimization. This is done by differentiating the update
rule at any time-step j with respect to the learning rates at
time-step j − 1. We instead rely on the meta-objective’s
differentiability with respect to the LRs, to obtain these
learning rate hypergradients automatically.

Learning LRs in meta-learning: Meta-SGD (Li et al.,
2017) first proposed learning the per-parameter learning
rates used within the inner-loop of MAML in the few-shot
learning setting. Some notable differences between their up-
date and ours exist. They synchronously update the weights
and learning rates while our asynchronous update to the
learning rates serves to carry out a more conservative update
to the weights. The intuition for our update stems from the
need to mitigate gradient interference and its connection to
the transfer-interference trade-off ubiquitous in continual
learning. Similarly, α-MAML (Singh Behl et al., 2019)
proposed analytically updating the two scalar learning rates
used in the inner and outer MAML update for more adaptive
few-shot learning. In contrast, our per-parameter learning
rates are modulated implicitly through back-propagation,
to regulate change in parameters based on their alignment
across tasks, providing our model with a more powerful
degree of adaptability in the CL domain.

5. Experiments
In this section we evaluate La-MAML in task incremental
settings, where the model learns a set of sequentially stream-
ing classification tasks. Experiments are performed on the
MNIST, CIFAR and TinyImagenet (tin) datasets. Similar
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Table 1. RA, BTI and their standard deviation on MNIST benchmarks. Each experiment is run with 5 seeds.
METHOD ROTATIONS PERMUTATIONS MANY

RA BTI RA BTI RA BTI

ONLINE 53.38 ± 1.53 -5.44 ± 1.70 55.42 ± 0.65 -13.76 ± 1.19 32.62 ± 0.43 -19.06 ± 0.86

EWC 57.96 ± 1.33 -20.42 ± 1.60 62.32 ± 1.34 -13.32 ± 2.24 33.46 ± 0.46 -17.84 ± 1.15

GEM 67.38 ± 1.75 -18.02 ± 1.99 55.42 ± 1.10 -24.42 ± 1.10 32.14 ± 0.50 -23.52 ± 0.87

MER 77.42 ± 0.78 -5.60±0.70 73.46± 0.45 -9.96 ± 0.45 47.40 ± 0.35 -17.78 ± 0.39

C-MAML 77.33 ± 0.29 -7.88 ± 0.05 74.54 ± 0.54 -10.36 ± 0.14 47.29 ± 1.21 -20.86 ± 0.95

SYNC 70.07 ± 2.07 -15.42 ± 4.19 60.12 ± 1.84 -19.56 ± 2.43 42.73 ± 1.20 -23.96 ± 1.95

LA-MAML 77.42 ± 0.65 -8.64 ± 0.403 74.34 ± 0.67 -7.60 ± 0.51 48.46 ± 0.45 -12.96 ± 0.073

to (Riemer et al., 2019), we use the retained accuracy (RA)
metric to compare various approaches. RA is the average
accuracy of the model across tasks at the end of training.
We also report the backward-transfer and interference (BTI)
values which measure the average change in the accuracy of
each task from when it was learnt to the end of the last task.
A smaller BTI implies lesser forgetting during training.

Efficient Lifelong Learning (LLL): Formalized in (Chaudhry
et al., 2019), the setup of efficient lifelong learning assumes
that incoming data for every task has to be processed in
only one single pass: once processed, data samples are
not accessible anymore unless they were added to a replay
memory. We evaluate our algorithm on this challenging
(Single-Pass) setup as well as the standard (Multiple-Pass)
setup where offline training-until-convergence is performed
for every task, once we have access to its data.

Table 2. Running times for MER and La-MAML on MNIST bench-
marks for one epoch

METHOD ROTATIONS PERMUTATIONS

LA-MAML 45.95 ± 0.38 46.13 ± 0.42

MER 218.03 ± 6.44 227.11 ± 12.12

5.1. Continual learning benchmarks

First, we carry out experiments on the toy continual learning
benchmarks proposed in prior CL works. MNIST Rota-
tions, introduced in (Lopez-Paz & Ranzato, 2017), com-
prises tasks to classify MNIST digits rotated by a different
common angle in [0, 180] degrees in each task. In MNIST
Permutations, tasks are generated by shuffling the image
pixels by a fixed random permutation. Unlike Rotations,
the input distribution of each task is unrelated here, leading
to less positive transfer between tasks. Many Permuta-
tions, a more complex version of Permutations, has five
times more tasks (100 tasks) and five times less training
data (200 images per task). We use the same architecture
and experimental settings as in MER (Riemer et al., 2019),
allowing us to compare directly with their results. We use

the cross-entropy loss as the inner and outer objectives dur-
ing meta-training. Similar to (Nichol et al., 2018), we see
improved performance when evaluating and summing the
meta-loss at all steps of the inner updates as opposed to just
the last one.

We compare our method in the Single-Pass setup against
multiple baselines including Online, Independent, EWC
(Kirkpatrick et al., 2017), GEM (Lopez-Paz & Ranzato,
2017) and MER (Riemer et al., 2019), as well as ablations
detailed in Appendix E. In Table 1, we see that La-MAML
achieves comparable or better performance than the base-
lines on all benchmarks. Table 2 shows that La-MAML
matches the performance of MER in less than 20% of the
training time, owing to its sample-efficient objective which
allows it to make make more learning progress per itera-
tion. This also allows us to scale it to real-world visual
recognition problems as described next.

5.2. Real-world classification

While La-MAML fares well on the MNIST benchmarks,
we are interested in understanding its capabilities on more
complex visual classification benchmarks. We conduct ex-
periments on the CIFAR-100 dataset in a task-incremental
manner (Lopez-Paz & Ranzato, 2017). 20 tasks compris-
ing of disjoint 5-way classification problems are streamed.
We also evaluate on the TinyImagenet-200 dataset by par-
titioning its 200 classes into 40 5-way classification tasks.
Experiments are carried out in both the Single-Pass and
Multiple-Pass settings, where in the latter we allow training
for up to a maximum of 10 epochs. Each method has a
replay-buffer containing 200 and 400 samples for CIFAR-
100 and TinyImagenet respectively. We provide further
details about the baselines and evaluation setup in Appendix
D.

Table 4 reports the results of these experiments. We con-
sistently observe superior performance of La-MAML as
compared to other CL baselines on both datasets across se-
tups. While the iCarl baseline attains lower BTI in some
setups, it achieves that at the cost of much lower perfor-
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mance throughout learning. Among the high-performing
approaches, La-MAML has the lowest BTI. Recent work
(Chaudhry et al., 2019; Riemer et al., 2019) noted that Ex-
perience Replay (ER) is often a very strong baseline that
closely matches the performance of the proposed algorithms.
We highlight the fact that meta-learning and LR modulation
combined show an improvement of more than 10 and 18%
(as the number of tasks increase from CIFAR to Imagenet)
over the ER baseline in our case, with limited replay. Over-
all, we see that our method is better-performing under both
the standard and LLL setups of CL which come with differ-
ent kinds of challenges. Many CL methods (Ebrahimi et al.,
2020; Serra et al., 2018) are suitable for only one of the two
setups. As shown in Figure 3, our model evolves to become
resistant to forgetting as training progresses. This means
that beyond a point, it can keep making gradient updates on
a small window of incoming samples without needing to do
meta-updates.

Table 3. Gradient Alignment on CIFAR-100 and IMAGENET
dataset (values lie in [-1,1], higher is better)

METHOD CIFAR-100 IMAGENET

ER 0.22× 10−2 ± 0.0017 0.27× 10−2 ± 0.0005

C-MAML 1.84× 10−2 ± 0.0003 1.74× 10−2 ± 0.0005

SYNC 2.28× 10−2 ± 0.0004 2.17× 10−2 ± 0.0020

LA-MAML 1.86× 10−2 ± 0.0027 2.14× 10−2 ± 0.0023

5.3. Evaluation of La-MAML’s learning rate
modulation

To capture the gains from learning the LRs, we compare La-
MAML with our base algorithm, C-MAML. We ablate our
choice of updating LRs asynchronously by constructing a

version of C-MAML where per-parameter learnable LRs are
used in the inner updates while the meta-update still uses a
constant scalar LR during training. We refer to it as Sync-La-
MAML or Sync since it has synchronously updated LRs that
don’t modulate the meta-update. While only minor gains
are seen on the MNIST benchmarks from asynchronous LR
modulation, the performance gap increases as the tasks get
harder. On CIFAR-100 and TinyImagenet, we see a trend
in the RA of our variants with La-MAML performing best
followed by Sync. This shows that optimising the LRs aids
learning and our asynchronous update helps in knowledge
consolidation by enforcing conservative updates to mitigate
interference.

To test our LR modulation against an alternative bayesian
modulation scheme proposed in BGD (Zeno et al., 2018),
we define a baseline called Meta-BGD where per-parameter
variances are modulated instead of LRs. This is described
in further detail in Appendix E. Meta-BGD emerges as a
strong baseline and matches the performance of C-MAML
given enough Monte Carlo iterations m, implying m times
more computation than C-MAML. Additionally, Meta-BGD
was found to be sensitive to hyperparameters and required
extensive tuning. We present a discussion of the robustness
of our approach in Appendix C.

We also compare the gradient alignment of our three variants
along with ER in Table 3 by calculating the cosine similarity
between the gradients of the replay samples and newly ar-
riving data samples. As previously stated, the aim of many
CL algorithms is to achieve high gradient alignment across
tasks to allow parameter-sharing between them. We see
that our variants achieve an order of magnitude higher co-
sine similarity compared to ER, verifying that our objective
promotes gradient alignment.

Figure 3. Retained Accuracy (RA) for La-MAML plotted every 25 meta-updates up to Task 5 on CIFAR-100. RA at iteration j (with j
increasing along the x-axis) denotes accuracy on all tasks seen uptil then. Red denotes the RA computed during the inner updates (at θjk).
Blue denotes RA computed at θj+1

0 right after a meta-update. We see that in the beginning, inner updates lead to catastrophic forgetting
(CF) since the weights are not suitable for CL yet, but eventually become resistant when trained to retain old knowledge while learning on
a stream of correlated data. We also see that RA maintains its value even as more tasks are added indicating that the model is successful at
learning new tasks without sacrificing performance on old ones.
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Table 4. Results on the standard continual (Multiple) and LLL (Single) setups with CIFAR-100 and TinyImagenet-200. Experiments are
run with 3 seeds. * indicates result omitted due to high instability.

METHOD CIFAR-100 TINYIMAGENET
MULTIPLE SINGLE MULTIPLE SINGLE

RA BTI RA BTI RA BTI RA BTI

IID 85.60 ± 0.40 - - - 77.1 ± 1.06 - - -
ER 59.70 ± 0.75 -16.50 ± 1.05 47.88 ± 0.73 -12.46 ± 0.83 48.23 ± 1.51 -19.86 ± 0.70 39.38 ± 0.38 -14.33 ± 0.89

ICARL 60.47 ± 1.09 -15.10 ± 1.04 53.55 ± 1.69 -8.03 ± 1.16 54.77 ± 0.32 -3.93 ± 0.55 45.79 ± 1.49 -2.73 ± 0.45

GEM 62.80 ± 0.55 -17.00 ± 0.26 48.27 ± 1.10 -13.7 ± 0.70 50.57 ± 0.61 -20.50 ± 0.10 40.56 ± 0.79 -13.53 ± 0.65

AGEM 58.37 ± 0.13 -17.03 ± 0.72 46.93 ± 0.31 -13.4 ± 1.44 46.38 ± 1.34 -19.96 ± 0.61 38.96 ± 0.47 -13.66 ± 1.73

MER - - 51.38 ± 1.05 -12.83 ± 1.44 - - 44.87 ± 1.43 -12.53 ± 0.58

META-BGD 65.09 ± 0.77 -14.83 ± 0.40 57.44 ± 0.95 -10.6 ± 0.45 * * 50.64 ± 1.98 -6.60 ± 1.73

C-MAML 65.44 ± 0.99 -13.96 ± 0.86 55.57 ± 0.94 -9.49 ± 0.45 61.93 ± 1.55 -11.53 ± 1.11 48.77 ± 1.26 -7.6 ± 0.52

SYNC 67.06 ± 0.62 -13.66 ± 0.50 58.99 ± 1.40 -8.76 ± 0.95 65.40 ± 1.40 -11.93 ± 0.55 52.84 ± 2.55 -7.3± 1.93

LA-MAML 70.08 ± 0.66 -9.36 ± 0.47 61.18 ± 1.44 -9.00 ± 0.2 66.99 ± 1.65 -9.13 ± 0.90 52.59 ± 1.35 -3.7 ± 1.22

6. Conclusion
We introduced La-MAML, an efficient meta-learning algo-
rithm that leverages replay to avoid forgetting and favors
positive backward transfer by learning the weights and LRs
in an asynchronous manner. It is capable of learning on-
line on a non-stationary stream of data and scales to vision
tasks. We presented results that showed better performance
against the state-of-the-art in the setup of efficient lifelong
learning (LLL) (Chaudhry et al., 2019), as well as the stan-
dard continual learning setting. In the future, more work on
analysing and producing good optimizers for CL is needed,
since many of our standard go-to optimizers like Adam
(Kingma & Ba, 2014) are primarily aimed at ensuring faster
convergence in stationary supervised learning setups. An-
other interesting direction is to explore how the connections
to meta-descent can lead to more stable training procedures
for meta-learning.
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A. Hypergradient Derivation for La-MAML
We derive the gradient of the weights θj0 and LRs αj at time-step j under the k-step MAML objective, with Lt =

∑t
i=0 `i

as the meta-loss and `t as the inner-objective:
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Where (a) is obtained by recursively expanding and differentiating the update function U() as done in the step before it. (b)
is obtained by assuming that the initial weight in the meta-update at time j : θj0, is constant with respect to αj .

Similarly we can derive the MAML gradient for the weights θj0, denoted as gMAML(θj0) as:
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= L′t(θ
j
k)
(
I − α`′′t (θjk−1)

)
· · ·
(
I − α`′′t (θj0)

)
(

using U ′(θjn) = I − α`′′t (θjn)
)

(′ implies derivative with respect to argument)

=

(
k−1∏
n=0

(
I − α`′′t (θjn)

))
L′t(θ

j
k)

Setting all first-order gradient terms as constants to ignore second-order derivatives, we get the first order approximation as:

gFOMAML(θj0) =
(∏k−1
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(
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L′t(θ
j
k) = L′t(θ

j
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In Appendix B, we show the equivalence of the C-MAML and CL objectives in Eq. 7 by showing that the gradient of the
former (gMAML(θj0)) is equivalent to the gradient of the latter.
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B. Equivalence of Objectives
It is straightforward to show that when we optimise the OML objective through the k-step MAML update, as proposed in
C-MAML in Eq. 6:

min
θj0

Eτ1:t

[
Lt

(
Uk(θj0)

)]
(12)

where the inner-updates are taken using data from the streaming task τt, and the meta-loss Lt(θ) =
∑t
i=1 `i(θ) is computed

on the data from all tasks seen so far, it will correspond to minimising the following surrogate loss used in CL :

min
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·
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 (13)

We show the equivalence for the case when k = 1, for higher k the form gets more complicated but essentially has a similar
set of terms. Reptile (Nichol et al., 2018) showed that the k-step MAML gradient for the weights θj0 at time j, denoted as
gMAML(θj0) is of the form:
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Expressing the terms as derivatives, and using
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which is the same as the gradient of Eq. 13.

where:
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(
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∂θj0

(gradient of the meta-loss evaluated at the initial point )

ḡi =
∂

∂θj0
Linner(θ

j
0) (for i < k) (gradients of the inner-updates evaluated at the initial point)

θji+1 = θji − αgi (sequence of parameter vectors)
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H̄k = L′′meta

(
θj0

)
(Hessian of the meta-loss evaluated at the initial point)

H̄i = L′′inner

(
θj0

)
(for i < k) (Hessian of the inner-objective evaluated at the initial point)

And, in our case:

Lmeta = Lt =

t∑
i=1

`i

Linner = `t

Bias in the objective: We can see in Eq. 13 that the gradient alignment term introduces some bias, which means that we
don’t exactly converge to the minimiser of the losses on all tasks. This has been acceptable in CL for the following reason:
We never aim to reach the minimiser of some stationary distribution anyway in the CL regime (as also mentioned in Section
4.3). If we did converge to the minimiser of say t tasks at some time j, this minimiser would no longer be optimal as soon as
we see the new task τt+1. Therefore, in the limit of infinite tasks or time, gradient alignment between tasks will pay off
more as opposed to being able to converge to the exact minima, by allowing us to make shared progress on both previous
and incoming tasks.

C. Robustness
Learning rate is one of the most crucial hyper-parameters during training and it often has to be tuned extensively for each
experiment. In this section we analyse the robustness of our proposed variants to their LR-related hyper-parameters on the
CIFAR-100 dataset. Our three variants have different sets of these hyper-parameters which are specified as follows:

• C-MAML: Inner and outer update LR (scalar) for the weights (α and β)

• Sync La-MAML: Inner loop initialization value for the vector LRs (α0), scalar learning rate of LRs (η) and scalar
learning rate for the weights in the outer update (β)

• La-MAML: Scalar initialization value for the vector LRs (α0) and scalar learning rate of LRs (η)

La-MAML is considerably more robust to tuning compared to its variants, as can be seen in Figure 4c. We empirically
observe that it only requires tuning of the initial value of the LR, while being relatively insensitive to the learning rate of
the LR (η). We see a consistent trend where the increase in η leads to an increase in the final accuracy of the model. The
increase is very gradual, across a wide range of LRs varying over 2 orders of magnitude (from 0.003 to 0.3), the difference
in RA is only 6%. This means that even without tuning this parameter (η), La-MAML would have outperformed most
baselines at their optimally tuned values.

(a) C-MAML: Modulation of α and β (b) Sync: Modulation of α0, η and β (c) La-MAML: Modulation of α0 and η

Figure 4. Retained Accuracy vs Learning Rates plot for La-MAML and its variants. Figures are plotted by varying one of the learning rate
hyperparameter while keeping the others fixed at their optimal value. The hyperparameter is varied between [0.001, 0.3].

As seen in Figure 4a, C-MAML sees considerable performance variation with the tweaking of both the inner and outer LR.
We also see that the effects of the variations of the inner and outer LR follow very similar trends and their optimal values



La-MAML: Look-ahead Meta Learning for Continual Learning

(a) C-MAML: Modulation of α and β (b) La-MAML: Modulation of α0 and η

Figure 5. Plots of Retained Accuracy (RA) across hyper-parameter variation for C-MAML and La-MAML. We show results of the grid
search over the learning rate hyperparameters. RA decreases from red to blue. All the hyperparameters are varied between [0.001, 0.3],
with the axes being in log-scale.

finally selected are also identical. This means that we could potentially tune them by doing just a 1D search over them
together instead of varying both independently through a 2D grid search. The Sync version of La-MAML (Figure 4b), while
being relatively insensitive to the scalar initial value α0 and the η, sees considerable performance variation as the outer
learning rate for the weights: β is varied. This variant has the most hyper-parameters and only exists for the purpose of
ablation.

Fig. 5 shows the result of 2D grid-searches over sets of the above-mentioned hyper-parameters for C-MAML and La-MAML
for a better overview.

D. Experimental
We carry out hyperparameter tuning for all the approaches by performing a search over the range [0.0001 - 0.3] for
hyper-parameters related to the learning-rate. Note that in the Single-Pass (LLL) setup, since we only see the data in one
pass without the option of revisiting, seeing each data-point for multiple glances is essential. We define a hyper-parameter
called glances, which indicates the number of gradient updates made on each data-point, with the performance of the
algorithms increasing with the increase in the number of glances up to a certain point. This is replaced by the parameter
indicating the number of epochs that the model is trained for, for each task in the Multiple-Pass setup. Table 5 lists the
optimal hyperparameters for all the compared approaches. All setups used the SGD optimiser since it was found to preform
better than Adam (Kingma & Ba, 2014) (possibly due to reasons stated in Section 4.3 regarding the CL setup).

To avoid exploding gradients, we clip the gradient values of all approaches at a norm of 2.0. Class divisions across different
tasks vary with the random seeds with which the experiments were run. Overall, we did not see much variability across
different class splits, with the variation being within 0.5-2% of the mean reported result as can be seen from Table 4

For all our baselines, we use a constant batch-size of 10 samples from the streaming task. This batch is augmented with
10 samples from the replay buffer for the replay-based approaches. La-MAML and its variants split the batch from the
streaming task into a sequence of smaller disjoint sets to take k = 5 gradient steps in the inner-loop. In MER, each sample
from the incoming task is augmented with a batch of 10 replay samples to form the batch used for the meta-update. We
found very small performance gaps between the first and second-order versions of our proposed variants with performance
differences in the range of 1-2% for RA. This is in line with the observation that deep neural networks have near-zero
hessians since the ReLU non-linearity is linear almost everywhere (?).

MNIST Benchmarks: On the MNIST continual learning benchmarks, images of size 28x28 are flattened to create a 1x784
array. This array is passed on to a fully-connected neural network having two layers with 100 nodes each. Each layer uses
ReLU non-linearity. These experiments use a modest replay buffer of size 200 for MNIST Rotations and Permutation and
size 500 for Many Permutations.

Real-world visual classification: For Cifar and Imagenet we used a CNN having 3 and 4 conv layers respectively with 160
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Table 5. Final hyperparameters for all compared approaches on the CIFAR and Imagenet benchmarks
METHOD PARAMETER CIFAR-100 IMAGENET

SINGLE MULTIPLE SINGLE MULTIPLE

ER LR 0.03 0.03 0.1 0.1
Epochs/Glances 10 10 10 10

IID LR - 0.03 - 0.01
Epochs/Glances - 50 - 50

ICARL LR 0.03 0.03 0.01 0.01
Epochs/Glances 2 10 2 10

GEM LR 0.03 0.03 0.03 0.03
Epochs/Glances 2 10 2 10

AGEM LR 0.03 0.03 0.01 0.01
Epochs/Glances 2 10 2 10

MER LR α 0.1 - 0.1 -
LR β 0.1 - 0.1 -
LR γ 1 - 1 -

Epochs/Glances 10 - 10 -

META-BGD η 50 50 50 -
std-init 0.02 0.02 0.02 -
βinner 0.1 0.1 0.1 -

mc-iters 2 2 2 -
Epochs/Glances 3 10 3 -

C-MAML α 0.03 0.03 0.03 0.03
β 0.03 0.03 0.03 0.03

Epochs/Glances 5 10 2 10

SYNC LA-MAML α0 0.1 0.1 0.075 0.075
β 0.1 0.1 0.075 0.075
η 0.3 0.3 0.25 0.25

Epochs/Glances 5 10 2 10

LA-MAML α0 0.1 0.1 0.1 0.1
η 0.3 0.3 0.3 0.3

Epochs/Glances 10 10 2 10

3x3 filters. The output from the final convolution layer is flattened and is passed through 2 fully connected layers having
320 and 640 units respectively. All the layers are succeeded by ReLU nonlinearity. For CIFAR and Imagenet we allow a
replay buffer of size 200 and 400 respectively which implies that each class in these dataset gets roughly about 1-2 samples
in the buffer. For Tiny-Imagenet, we split the validation set into val and test splits, since the labels in the actual test set are
not released.

E. Baselines
On the MNIST benchmarks, we compare our algorithm against the baselines used in (Riemer et al., 2019), which are as
follows:

• Online: A baseline for the LLL setup, where a single network is trained one example at a time with SGD.

• EWC (Kirkpatrick et al., 2017): Elastic Weight Consolidation is a regularisation based method which constraints the
weights important for the previous tasks to avoid catastrophic forgetting.

• GEM (Lopez-Paz & Ranzato, 2017): Gradient Episodic Memory does constrained optimisation by solving a quadratic
program on the gradients of new and replay samples, trying to make sure that these gradients do not alter the past tasks’
knowledge.

• MER (Riemer et al., 2019): Meta Experience Replay samples i.i.d data from a replay memory to meta-learn model
parameters that show increased gradient alignment between old and current samples. We evaluate against this baseline
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in the LLL setup.

On the real-world visual classification datasets, we carry out experiments on GEM, MER along with:-

• ER: Experience Replay uses a small replay buffer to store old data using reservoir sampling. This stored data is then
replayed again along with the new data samples.

• IID: Network gets the data from all tasks in an independent and identically distributed manner, thus bypassing the issue
of catastrophic forgetting completely.

• iCARL (Rebuffi et al., 2017): iCarl is from the family of class incremental learners, which learns to classify images in
the metric space. It prevents catastrophic forgetting by using a memory of exemplar samples to perform distillation
from the old network weights.

• A-GEM (Chaudhry et al., 2019): Averaged Gradient Episodic Memory proposed to project gradients of the new task to
a direction such as to avoid interference with respect to the average gradient of the old samples in the buffer.

• Meta-BGD: Bayesian Gradient Descent (Zeno et al., 2018) proposes training a bayesian neural network for CL where
the learning rate for the parameters (the means) are derived from their variances. We construct this baseline by
equipping C-MAML with bayesian training, where each parameter in θ is now sampled from a gaussian distribution
with a certain mean and variance. The inner-loop stays as in C-MAML(constant LR), but the magnitude of the
meta-update to the parameters in θ is now influenced by their associated variances. The variance updates themselves
have a closed form expression which depends on m monte-carlo samples of the meta-loss, thus implying m forward
passes of the inner-and-outer loops (each time with a newly sampled θ) to get m meta-gradients.


