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Abstract

State-of-the-art Large Multi-Modal Models001
(LMMs) have demonstrated exceptional capa-002
bilities in vision-language tasks. Despite their003
advanced functionalities, the performances of004
LMMs are still limited in challenging scenarios005
that require complex reasoning with multiple006
levels of visual information. Existing prompt-007
ing techniques for LMMs focus on either im-008
proving textual reasoning or leveraging tools009
for image preprocessing, lacking a simple and010
general visual prompting scheme to promote011
vision-language coordination in LMMs. In012
this work, we propose SCAFFOLD prompting013
that scaffolds coordinates to promote vision-014
language coordination. Specifically, SCAF-015
FOLD overlays a dot matrix within the image016
as visual information anchors and leverages017
multi-dimensional coordinates as textual posi-018
tional references. Extensive experiments on019
a wide range of challenging vision-language020
tasks demonstrate the superiority of SCAFFOLD021
over GPT-4V with the textual CoT prompting.022

1 Introduction023

Large Multi-Modal Models (LMMs) like GPT-024

4V (Achiam et al., 2023) and Gemini (Team et al.,025

2023) have demonstrated impressive zero-shot ca-026

pabilities in processing diverse visual-language027

tasks. Leveraging the advanced reasoning ability028

of the language model component, early attempts029

have been made to deploy LMMs in realistic sce-030

narios, such as autonomous driving (Wen et al.,031

2023) and anomaly detection (Cao et al., 2023).032

However, current LMMs display limited perfor-033

mance when conducting complex reasoning over034

multiple levels of visual information (Yang et al.,035

2023b; Wu et al., 2023a; Wu and Xie, 2023). For036

example, in a spatial reasoning task (Liu et al.,037

2023a), an LMM needs to verify or generate the038

statement by elucidating the relationship between039

different sources of visual information, and align-040

ing its internal workings with textual expressions.041

Overlaid Image

(x1,y1) (x1,y2)

(x2,y1) (x2,y2)X

y

Scaffolding 
Coordinates

Near coordinates 
(x1, y1) …… Focus 
on the region near 

(x2, y2) …… 

Textual Response

Promote
Vision-Language 

Coordination

Visual
Positions

Textual 
References

(x1,y1) (x1,y2)

(x2,y1) (x2,y2)

Figure 1: The overall framework of SCAFFOLD. SCAF-
FOLD overlays a dot matrix onto the input image with
Cartesian coordinates labeled aside the dots. The co-
ordinates are also briefed in the textual prompt, which
steers the LMM to leverage the dots on the image as a
scaffold and promotes vision-language coordination.

Challenges for LMMs arise in orchestrating pre- 042

cise visual perception with accurate language un- 043

derstanding and generation. 044

To enhance vision-language coordination, prior 045

efforts for LMMs can be divided into two cat- 046

egories: instruction tuning and prompting. In- 047

struction tuning uses high-quality image-text pairs 048

of either general purposes (Dai et al., 2023; Liu 049

et al., 2023c,b; Xu et al., 2023) or specialized do- 050

mains (Zhang et al., 2023; Chen et al., 2023a, 2024) 051

to facilitate additional training of LMMs for im- 052

proved performance. Nevertheless, instruction- 053

tuning consumes heavy loads of computing re- 054

sources and thus sacrifices flexibility in method- 055

ology. Prompting for LMMs, on the contrary, 056

steers the improved functioning of LMMs in a non- 057

parametric manner. While techniques for language 058

model prompting like Chain-of-Thought (Wei et al., 059

2022) apply to LMMs as well, the elicited inter- 060

mediate reasoning steps mainly take place with the 061

condition of the textual prompts (Wu et al., 2023b). 062

As textual prompting techniques are actively being 063

exploited, few endeavors have been made into vi- 064

sual prompting, which steers the precise visual per- 065

ception of LMMs for vision-language coordination. 066
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Question: Choose the correct image for the caption. Caption: a big cat is next to a small dog. Options: (A) image
1(left) (B) image 2(right)

GPT-4V + SCAFFOLD:
Textual Prompt for SCAFFOLD: Two images are provided, each overlaid with a grid of dots arranged in a matrix with
dimensions 6 by 6. Each dot on this grid is assigned a unique set of three-dimensional coordinates labeled as (t, x, y). ...
1. When you mention any key objects in the image, first output their nearest coordinates then identify them.
2. You can use the coordinates to determine the spatial relationships of the objects. ...
Output: In the first image (1), at coordinates (1,4,2) and (1,5,4), there is a small dog wearing a red and white checkered
outfit and a large orange and white cat sitting next to each other on the grass. This matches the caption "a big cat is next
to a small dog.". In the second image (2), at coordinates (2,3,3) and (2,5,5), there is a large black dog and a small kitten
facing each other on the grass. Therefore, the correct image for the caption is: A.

GPT-4V Output: The correct image is: (B) image 2(right). This image shows a large black dog next to a much smaller
kitten on a grassy surface. The size difference between the two animals is evident, with the dog being the "big cat" and
the kitten being the "small dog" in a metaphorical sense, as the caption likely plays on the term "big cat" which usually
refers to large wild felines. The first image (A) shows an actual cat and a small dog, which does not fit the caption.

Figure 2: An example of SCAFFOLD in double-image vision-language tasks, with correct textual reasoning illustrated
in green and incorrect textual reasoning illustrated in red. Note that only the original images and questions are
visible to GPT-4V; SCAFFOLD adds the coordinates on images and the corresponding textual prompt guidance.

The challenge of visual prompting for LMMs067

lies in the mismatch of semantic granularity be-068

tween visual and textual information. While each069

word is explicitly separated in a textual sentence,070

different identities in an image are not isolated with071

clear boundaries. Recent works on visual prompt-072

ing include leveraging tools to narrow the semantic073

granularity gap between visual and textual inputs.074

Yang et al. (2023a) leverage advanced image seg-075

mentation models (Kirillov et al., 2023) to con-076

struct object segmentation overlays on the input077

image. Mitra et al. (2023) treat the LMM itself078

as a scene graph extractor to generate visual infor-079

mation in the textual format. However, tool usage080

inevitably results in additional resource burdens081

and potentially erroneous information. An alterna-082

tive avenue of recent efforts is visual search (Wu083

and Xie, 2023; Nasiriany et al., 2024), where the so-084

lution to a complex visual task is cast as an iterative085

search process that accounts for multiple aspects086

of the image. Nevertheless, the iterative queries of087

LMMs throughout the visual search process entail088

considerable expenses, limiting the practical value.089

Therefore, it remains elusive whether a simple and 090

general visual prompting scheme exists to promote 091

vision-language coordination in LMMs. 092

In this work, we present SCAFFOLD, a simple 093

and versatile visual prompting scheme to promote 094

the coordination between vision and language in 095

LMMs. SCAFFOLD overlays a dot matrix onto 096

the input image, and each dot is labeled with its 097

multi-dimensional Cartesian coordinate. The dot 098

matrix on the image forms the scaffold that indi- 099

cates relative visual positions for LMMs. The over- 100

laid coordinates are also included in the textual 101

prompt, which explicitly strengthens the connec- 102

tion between visual and textual information for 103

LMMs. The LMMs are thus steered to leverage 104

the coordinates to solve different vision-language 105

tasks. In this way, SCAFFOLD provides a scaffold 106

to promote vision-language coordination in LMMs. 107

Extensive experiments on spatial reasoning, compo- 108

sitional reasoning, fine-grained grounding, and hal- 109

lucination benchmarks demonstrate the superiority 110

of SCAFFOLD over GPT-4V with the textual CoT 111

prompting. We also show that the performance of 112
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SCAFFOLD can be further enhanced with region113

cropping, which reveals the promising future of114

active perception enabled by SCAFFOLD.115

2 Related Work116

Large Multi-Modal Models (LMMs). State-of-117

the-art LMMs like GPT-4V (Achiam et al., 2023)118

and Gemini (Team et al., 2023) have excelled in119

general vision-language tasks (Wu et al., 2023a;120

Yang et al., 2023b; Fu et al., 2023b). The integra-121

tion of visual capabilities in LMMs with advanced122

language proficiency and instruction-following123

skills pave the way for versatile visual interactive124

agents, both in digital (He et al., 2024; Zheng et al.,125

2024) and embodied environments (Wake et al.,126

2023; Chen et al., 2023b).127

GPT-4V Evaluation. As a leading LMM, GPT-128

4V (Achiam et al., 2023) has significantly expanded129

the boundaries of LMM capabilities, motivating re-130

searchers to systematically explore its strengths131

and weaknesses (Wu et al., 2023a; Yang et al.,132

2023b). Despite its proficiency, researchers have133

proposed challenging benchmarks that reveal large134

performance gap between GPT-4V and humans, in-135

cluding MMVP (Tong et al., 2024), MMMU (Yue136

et al., 2023), Mementos (Wang et al., 2024), V*137

Bench (Wu and Xie, 2023), Contextual (Wad-138

hawan et al., 2024), etc. Extensive evaluations139

indicate that plenty of room exists for state-of-the-140

art LMMs to improve their certain visual-language141

capabilities. Additionally, previous works (Yan142

et al., 2023; Liu et al., 2023d; Cao et al., 2023;143

Wen et al., 2023) have shown a promising future144

of potential applications of GPT-4V in downstream145

domains like medicine science.146

Multi-Modal Prompting Methods. Prompting147

methods focus on unlocking model potentials by148

carefully constructing model inputs. Chain-of-149

Thought (Wei et al., 2022; Kojima et al., 2022,150

CoT) and its variants (Yao et al., 2023; Besta et al.,151

2023) have successfully elicited reasoning capa-152

bilities in language models. However, in multi-153

modal contexts such as compositional reasoning,154

the original CoT is less effective (Mitra et al., 2023).155

Consequently, numerous multi-modal prompting156

methods have been developed for specific visual ca-157

pabilities. For instance, Compositional CoT (Mitra158

et al., 2023) for compositional reasoning, Spatial159

CoT (Chen et al., 2024) for spatial understanding,160

Set-of-Marks prompting (Yang et al., 2023a) for161

visual grounding. However, these methods tend162

to be tailored for specific capabilities, calling for 163

simple and general visual prompting schemes. 164

3 Methodology 165

In this section, we introduce SCAFFOLD prompting 166

for vision-language coordination in LMMs. 167

3.1 Visual Perspective of SCAFFOLD: 168

Dot Matrices and Coordinates 169

Visually, we enhance each input image with a uni- 170

formly distributed rectangular dot matrix, where 171

each dot is labeled with multi-dimensional coordi- 172

nates. These dots serve as visual positional anchors, 173

while their coordinates are utilized as textual refer- 174

ences in textual responses. 175

Visual Anchor Implementation. We select rectan- 176

gular dot matrices as our visual anchor due to their 177

simplicity, flexibility in textual description, and 178

potential adaptability to image sequences. Unlike 179

grids, which divide images into separate regions 180

and may disrupt continuous visual content, dot ma- 181

trices offer a less intrusive overlay. Additionally, to 182

preserve original information, we deliver both the 183

original image and the coordinates-overlaid image 184

as inputs in single-image tasks. 185

Coordinates Implementation. For our approach, 186

we use multi-dimensional Cartesian coordinates 187

due to its simplicity and clarity. For a single image 188

with an overlaid dot matrix of size h×w, we assign 189

two-dimensional coordinates (x, y) to each dot, 190

representing its relative visual position. Here, the x- 191

coordinate ascends from 1 to h within each column, 192

while the y-coordinate ascends from 1 to w within 193

each row. For image sequences, we extend these 194

coordinates to three-dimensional (t, x, y). The t- 195

coordinate remains constant within each image but 196

increases sequentially across the sequence, allow- 197

ing for differentiation between images and enhanc- 198

ing temporal perception. 199

In comparison, we also consider other coordinate 200

options and identify their limitations. Absolute 201

pixel coordinates, for example, consume excessive 202

space and are complicated to perceive and apply ac- 203

curately. Furthermore, one-dimensional Cartesian 204

coordinates and alphabetic coordinates fall short in 205

providing adequate positional information. 206

Other Factors. 1. Matrix Size. The matrix should 207

be visually clear and provide ample space for multi- 208

dimensional coordinates. For simplicity, we em- 209

ploy a 6 × 6 matrix for general vision-language 210

tasks. 2. Matrix Density. Without prior visual 211
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knowledge, we choose rectangular dot matrices212

with a uniform density for general vision-language213

tasks, providing LMMs equal assistance when rea-214

soning across different regions. 3. Matrix Color.215

The coordinates are designed to be recognizable by216

LMMs using their OCR capabilities. Consequently,217

we color each dot in either black or white according218

to its contrast against the background.219

3.2 Textual Perspective of SCAFFOLD:220

Description and Guidelines221

To complement the coordinates-overlaid visual in-222

puts, we prepend textual guidance to task instruc-223

tions for LMMs. This includes a brief description224

of the dot matrices and coordinates, accompanied225

by several general guidelines for their effective226

use, as detailed in Appendix A.1.1. The character-227

istics of these descriptions and guidelines are as228

follows: (1) Conciseness: The textual guidance is229

deliberately brief and clear, ensuring easy compre-230

hension. (2) Generality: Designed to be univer-231

sally applicable, these guidelines are not specific to232

any particular scenario, making them suitable for233

a wide range of vision-language tasks. (3) Exten-234

sibility: The guidelines are semantically indepen-235

dent, allowing for the seamless addition of more236

tailored instructions based on different scenarios.237

(4) Compositionality: The prepended texts can238

be easily combined with other prompting methods,239

such as zero-shot or compositional CoT (Kojima240

et al., 2022; Mitra et al., 2023).241

4 Experiments242

To demonstrate the effectiveness of SCAFFOLD, we243

conduct extensive experiments on top of GPT-4V244

on a range of challenging vision-language tasks,245

including Spatial Reasoning, Compositional Rea-246

soning, Fine-Grained Visual Understanding and247

Hallucination. Specifically, we perform systematic248

evaluations on 11 benchmarks, with detailed infor-249

mation presented in Appendix A.1.2. We set the250

temperature of GPT-4V as zero in our experiments.251

4.1 Benchmarks252

This subsection briefly introduces the benchmarks253

used for evaluation. Due to the limited budget, for254

some datasets, we sample a subset for experiments.255

Spatial Reasoning evaluates LMM capability to in-256

fer spatial relationships between objects. Selected257

benchmarks are as follows. 1. MME (Position258

split) (Fu et al., 2023a) is a subset of the MME259

comprehensive evaluation suite for LMMs to in- 260

fer object positions. 2. Visual Spatial Reasoning 261

(VSR) (Liu et al., 2023a) challenges LMMs with 262

66 types of spatial relations to verify spatial propo- 263

sitions. 3. EgoThink (Spatial split) (Cheng et al., 264

2023) tests the spatial reasoning ability of LMMs 265

from a first-person perspective. 266

Compositional Reasoning requires LMMs to 267

identify object attributes and their interrela- 268

tions. Selected benchmarks are as follows. 1. 269

Winoground (Thrush et al., 2022) is a challeng- 270

ing benchmark that necessitates compositional rea- 271

soning of LMMs to match images with captions, 272

reformulated as binary choice questions for our 273

evaluation. 2. WHOOPS! VQA (Bitton-Guetta 274

et al., 2023) involves compositional reasoning over 275

commonsense-defying images. 3. CLEVR (John- 276

son et al., 2017) is designed for assessing composi- 277

tional reasoning in program-generated scenes. 278

Fine-Grained Visual Understanding requires 279

LMMs to perform visual search and precisely per- 280

ceive fine-grained visual details. Selected bench- 281

marks are as follows. 1. V* Bench (Wu and Xie, 282

2023) requires LMMs to identify and reason with 283

fine-grained visual details in high-resolution im- 284

ages. 2. Spotting Differences 1 is our newly- 285

collected dataset challenging LMMs to find and 286

pinpoint differences between two similar images, 287

with further details in Appendix A.2.3. 288

Hallucination measures the tendency of LMMs 289

to generate hallucinatory or illusory perceptions. 290

Selected benchmarks are as follows. 1. POPE (Ad- 291

versarial Subset) (Li et al., 2023) assesses object 292

hallucination by querying the existence of specific 293

objects. 2. HallusionBench (Guan et al., 2023) 294

consists of meticulously crafted images to mea- 295

sure hallucination and visual illusion in LMMs. 3. 296

Mementos (Wang et al., 2024) evaluates LMM to 297

conduct precise reasoning over image sequences 298

and measures their performances in terms of object 299

and behavior hallucinations. 300

4.2 Baselines 301

This section presents the prompting methods uti- 302

lized as baselines in our experiments, including 303

1. Naive Prompting utilizes original images and 304

user instructions as inputs for LMMs, establishing 305

a straightforward baseline without any prompt opti- 306

mization. 2. CoT (Wei et al., 2022) guides LMMs 307

to perform step-by-step reasoning before outputting 308

1https://www.crazygames.com/game/find-the-difference
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Crucial Capability Dataset Size Metric Naive CoT SCAFFOLD (Ours)

MME (Position) 60 Accuracy 51.7 51.7 75.0 (+23.3)
VSR 200 Accuracy 67.8 70.4 74.4 (+6.6)

Spatial
Reasoning EgoThink (Spatial) 50 LLM as Judge 66.0 74.0 76.0 (+10.0)

Winoground 100 Group Score 17.0 33.0 33.0 (+16.0)
WHOOPS! VQA 200 BEM Score 58.6 57.6 62.7 (+4.1)

Compositional
Reasoning CLEVR 200 LLM as Judge 43.5 43.0 48.0 (+4.5)

V* Bench 238 Accuracy 27.2 30.8 44.6 (+17.4)Fine-Grained
Visual Understanding Spotting Differences 100 Accuracy 13.0 14.0 19.0 (+6.0)

POPE (Adversarial) 100 Accuracy 79.0 80.0 86.0 (+7.0)
HallusionBench (Hard) 504 Accuracy 45.6 48.8 53.0 (+7.4)Hallucination

Mementos 100 LLM as Judge 33.3 33.5 36.1 (+2.8)

Overall All 1852 Average 45.7 48.8 55.3 (+9.6)

Table 1: Results of SCAFFOLD on 11 challenging vision-language benchmarks, with the highest score bold.

the final answer. The prompt text “Let’s think step309

by step." is prepended to task descriptions.310

4.3 Results and Analyses311

As presented in Table 1, the results demonstrate312

that SCAFFOLD significantly enhances the visual313

capabilities of LMMs, surpassing CoT (Wei et al.,314

2022) in most evaluated benchmarks. With naive315

prompting and CoT prompting averaging 45.7 and316

48.8 respectively, SCAFFOLD successfully obtains317

an overall improvement of 9.6.318

Spatial Reasoning: SCAFFOLD notably enhances319

the spatial reasoning capabilities of LLMs across320

the three benchmarks, with an average improve-321

ment of 13.3. Fig. 3 illustrates how SCAFFOLD322

enabled GPT-4V adeptly identifies crucial objects323

and records accurate positional information using324

two-dimensional coordinates, leading to the correct325

assessment of spatial relations through the numeri-326

cal analysis of their x-coordinates.327

Compositional Reasoning: With SCAFFOLD,328

GPT-4V demonstrates improved abilities in com-329

positional reasoning with an average improvement330

of 8.2, showing enhanced perception of key visual331

elements and smoother reasoning processes. As332

Fig. 9 in Appendix A.3 shows, SCAFFOLD asso-333

ciates crucial objects with their textual positions,334

assisting GPT-4V to accurately identify and local-335

ize significant visual details.336

Fine-Grained Visual Understanding: On bench-337

marks such as V* Bench (Wu and Xie, 2023) and338

Spotting Differences, SCAFFOLD has markedly im-339

proved the capabilities of LMMs in conducting340

visual search and localizing fine-grained visual de-341

tails, with an average improvement of 11.7. Taking342

Fig. 4 as an example, with the support of coordi-343

nates, GPT-4V effectively pinpoints and documents344

Question: Determine whether the following state-
ment is true or false: The bench is at the left side of
the potted plant.

Ground-Truth: True.
GPT-4V + CoT: The statement is false. In the image
provided, the bench is on the right side of the potted
plant, not the left. Therefore, the statement is false.
GPT-4V + SCAFFOLD: The bench is located near
coordinates (3,2) through (6,4), and the potted plant
is near coordinates (3,6) through (6,6). Given the
arrangement of the coordinates, the bench is to the
left of the potted plant. true.

Figure 3: An example from the Visual Spatial Reason-
ing (VSR) dataset. SCAFFOLD facilitates better vision-
language coordination than other methods.

the precise locations of target visual elements, con- 345

tributing to its accurate perception of the target 346

attribute. Additionally, we notice that without co- 347

ordinates, GPT-4V is more easily to give up and 348

apologize for its search failure. 349

Hallucination: With an average improvement of 350

5.7, utilizing coordinates as a scaffold enables GPT- 351

4V to recognize objects within a scene and further 352

accurately describe their positions, guiding its tex- 353

tual reasoning to focus on precise visual informa- 354
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Question: What is the color of the little girl’s shirt?
Options: (A) pink. (B) white. (C) yellow. (D) black.

Ground-Truth: A
GPT-4V + CoT: I’m sorry, but there seems to be
a misunderstanding. The image provided does not
contain a little girl or any individuals wearing a shirt
that can be described. Therefore, I cannot provide an
answer to the question about the color of a little girl’s
shirt based on this image.
GPT-4V + SCAFFOLD: The little girl is located
near coordinates (7,9) and (7,10). Her shirt appears
to be pink in color. Therefore, the answer is A.

Figure 4: An example from the V* Bench dataset.

tion. With an example shown in Fig. 11 in Ap-355

pendix A.3, GPT-4V with coordinates is capable356

of precisely capturing visual details and prevent-357

ing hallucinating non-existent objects, promoting358

accurate visual grounding.359

5 Ablation Study360

We conduct extensive ablation studies on key fac-361

tors such as matrix size and coordinate color to362

validate and further explore SCAFFOLD.363

5.1 Experimental Setup364

Due to limited GPT-4V access quota, we each365

sample 50 questions from Visual Spatial Reason-366

ing (Liu et al., 2023a), Winoground (Thrush et al.,367

2022), and POPE (Adversarial Subset) (Li et al.,368

2023), creating an ablation subset of 150 samples.369

Overall accuracy per question is adopted as the370

metric and GPT-4V is used for our experiments.371

Additionally, for stable results, we run each experi-372

ment twice and report average accuracy.373

5.2 Effect of Matrix Size374

The matrix size h and w may influence the pre-375

cision of textual reference and the granularity of376

visual information. Consequently, we incorporate377
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Figure 5: Impact of matrix sizes. Better accuracies are
illustrated in darker green.

Coloring Strategy WNG VSR POPE Overall

None (Baseline) 70.0 64.0 73.0 69.0
White 78.0 72.0 78.0 76.0
Black 79.0 73.0 82.0 78.0

Complementary 77.0 71.0 81.0 76.3
Binary (Ours) 81.0 73.0 84.0 79.3

Table 2: Results of different coloring strategies
in ablation experiments, where WNG denotes the
Winoground (Thrush et al., 2022) dataset and POPE
denotes the POPE (Li et al., 2023) Adversarial subset.

matrices of difference sizes varying from 3× 3 to 378

7× 7 and measure their performances. 379

Fig. 5 depicts the performance variations with 380

different matrix sizes, suggesting 6× 6 as the op- 381

timal size for our ablation dataset. Additionally, 382

the sizes in the upper right section tend to perform 383

better than those in the lower left section. It may 384

be due to the sampled images usually possessing 385

equal or larger widths than heights, suggesting ma- 386

trix sizes may ideally align with image sizes. 387

Additionally, the 6 × 6 size did not yield the 388

best results across all three subsets, hinting at po- 389

tential improvements by customizing matrix sizes 390

for specific tasks. It may be beneficial to automat- 391

ically and dynamically adjust the matrix size and 392

we leave this open problem to future research. 393

5.3 Effect of Matrix Color 394

In terms of matrix color, we design different col- 395

oring strategies and compare their performances. 396

As illustrated in Fig. 6, uniform coloring strategies 397

adopt the same color for various scenes, occasion- 398

ally blending into the surroundings. Complemen- 399

tary colors introduce large amounts of colors and 400
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(a) Black (b) White (c) Complementary (d) Binary (Ours)

Figure 6: Examples of different color configurations of dot matrices and coordinates.

Coordinates WNG VSR POPE Overall

None (Baseline) 70.0 64.0 73.0 69.0
Alphabet 80.0 72.0 79.0 77.0

Pixel 78.0 75.0 77.0 76.7
One-Dimensional 72.0 71.0 81.0 74.7
Cartesian (Ours) 81.0 73.0 84.0 79.3

Table 3: Results of different coordinates designs
in ablation experiments, where WNG denotes the
Winoground (Thrush et al., 2022) dataset and POPE
denotes the POPE (Li et al., 2023) Adversarial subset.

may mislead model attention. Consequently, for401

simplicity and visibility, we choose the most con-402

trasting color from black and white at each dot403

location. To assess the efficacy of our approach,404

we compared it against baseline coloring strate-405

gies, including uniform black, uniform white, and406

complementary coloring. As shown in Table 2,407

our binary coloring strategy slightly surpasses the408

alternatives in performance.409

5.4 Effect of Coordinate Format410

Coordinates, as textual references for dots, are vital411

for aligning visual inputs with textual outputs. To412

assess the effectiveness of our implementation, we413

experiment with various coordinate formats, includ-414

ing alphabetic, one-dimensional numerical, and415

pixel absolute coordinates. The examples of these416

formats are exhibited in Fig. 12 of Appendix A.3.417

The results, detailed in Table 3, reveal that our418

approach surpasses alternative coordinate designs419

in performance. Additionally, all the coordinates420

designs perform better than the baseline without421

coordinates, indicating the flexibility of coordinates422

design and the adaptability to different scenarios.423

5.5 Effect of Dot Perturbations424

To assess the resilience of SCAFFOLD, we intro-425

duce Gaussian noise to the dots, slightly adjusting426

their positions without significantly changing their427

relative placements, as illustrated in Fig. 7. We428

model the original dot positions as (X,Y ), with lh429

60 80 100
Accuracy

POPE

VSR

WNG

Baseline
Standard
Perturbed

Figure 7: The results of perturbed and stan-
dard coordinates (left) and a perturbed coordinates-
overlaid example (right), where WNG denotes the
Winoground (Thrush et al., 2022) dataset and POPE
denotes the POPE (Li et al., 2023) Adversarial subset.

and lw representing the distances between neigh- 430

boring dots along the x and y axes, respectively. 431

The perturbed coordinate (Xnew, Ynew) reads: 432

[
Xnew
Ynew

]
=

[
X
Y

]
+

N (
0,
(
1
4 · lh

)2)
N

(
0,
(
1
4 · lw

)2)
 (1) 433

According to the findings depicted in Fig. 7, the 434

coordinates perturbed with noise not only retain the 435

enhancements provided by standard coordinates 436

but also, in the VSR subset, exceed their perfor- 437

mance. This indicates the substantial robustness 438

against perturbation of the coordinates and suggests 439

the potential for further optimizing their placement. 440

6 Integration with Other Methods 441

This section describes integration experiments of 442

SCAFFOLD combined with active perception and 443

Chain-of-Thought (Wei et al., 2022). 444

6.1 SCAFFOLD + Active Perception 445

In complex visual environments, humans would 446

proactively engage with their surroundings to en- 447

hance scene understanding, like zooming in or 448

changing perspectives. Similarly, we recognize that 449

LMMs should possess such capabilities in realistic 450

7



Question:
What’s the color of the bench?

Initial Answer:
Sorry, there is no bench in the image.

First identify key objects and output 
their nearest coordinates.

Visual Search Answer:
The bench is near coordinates (7,9). 
But I’m not sure about its color …

Based on the cropped image, what’s 
the color of the bench?

Final Answer:
Upon closer look, the color of the 
bench is green.

Coordinates

For Visual Search

Image Cropping

For Closer Look

Figure 8: The procedure of combined SCAFFOLD and active perception techniques on V* Bench.

Method N.F.R. ↓ (%) S.R. ↑ (%)

Naive 72.2 21.7
CoT 71.3 21.7

SCAFFOLD 26.2 31.3
SCAFFOLD + A.P. 14.8 45.2

Table 4: Results of SCAFFOLD + active perception on
V* Bench (Wu and Xie, 2023) direct_attributes subset,
where A.P. denotes active perception, N.F.R. denotes
Not Found Rate and S.R. denotes Success Rate.

scenarios and propose that SCAFFOLD can function451

as a scaffold for effective active perception.452

To validate this, we integrate SCAFFOLD with453

active perception in the experiments on the di-454

rect_attributes subset of V* Bench (Wu and Xie,455

2023), which requires LMMs to perceive fine-456

grained details in high-resolution images. This457

challenge encompasses both the localization of tar-458

get objects and the identification of their attributes459

under resolution constraints. Consequently, we460

adopt two metrics to measure LMM performance,461

including Not Found Rate representing the percent-462

age of invalid responses, and Success Rate repre-463

senting the percentage of correct responses.464

As depicted in Fig. 8, our combined method un-465

folds in two phases: initial visual search to locate466

the target details, followed by cropping the image467

around the pinpointed coordinates to closely exam-468

ine and identify the target attributes.469

The results, presented in Table 4, reveal a per-470

formance enhancement of 14.1% compared with471

SCAFFOLD alone, underscoring the utility of co-472

ordinates in facilitating active perception. Further-473

more, the results reveal two notable performance474

leaps. The initial improvement (CoT → SCAF-475

FOLD) is attributed to the use of coordinates, sig-476

Dataset Naive CoT SCAFFOLD SCAFFOLD + CoT

Wino. 17.0 33.0 33.0 41.0
V* 27.2 30.8 44.6 47.9

Table 5: Results of SCAFFOLD combined with Chain-
of-Thought (Wei et al., 2022) on V* Bench (Wu and
Xie, 2023) and Winoground (Thrush et al., 2022).

nificantly reducing the Not Found Rate and thereby 477

aiding in the visual search process. The subsequent 478

gain (SCAFFOLD → SCAFFOLD + A.P.) results 479

from the combined implementation of active per- 480

ception, which enables LMMs to accurately discern 481

target attributes within the cropped regions. 482

6.2 SCAFFOLD + Chain-of-Thought 483

Our prompting method, characterized by its sim- 484

plicity, can seamlessly integrate with zero-shot CoT 485

by appending Let’s think step by step. to user in- 486

structions. To test its effectiveness, we conduct ex- 487

periments on Winoground (Thrush et al., 2022) and 488

V* Bench (Wu and Xie, 2023). Results from Ta- 489

ble 5 demonstrate that combining our method with 490

CoT enhances LMM performance beyond what 491

either method achieves independently. These find- 492

ings underscore our method’s substantial compati- 493

bility and potential for performance improvement 494

when combined with other methods. 495

7 Conclusion 496

In this work, we propose SCAFFOLD, a simple and 497

general visual prompting method that utilizes scaf- 498

folding coordinates to promote vision-language co- 499

ordination in LMMs. Extensive experiments show 500

that SCAFFOLD successfully elicits LMM capabili- 501

ties in several challenging vision-language tasks. 502

8



Limitations503

Here we discuss two limitations of this work.504

(1) To automatically adjust dot matrix attributes.505

In this work, for simplicity and clarity, we adopt506

matrices of size 6× 6 in our implementation. How-507

ever, our ablation study in Section 5 suggests that a508

one-size-fits-all matrix size can yield good, but not509

the best results across all datasets. Given the diver-510

sity of visual tasks and the varying granularity of511

information in different scenes, it stands to reason512

that tailoring the matrix attributes, such as size and513

coordinates format, to the specific requirements of514

each task or even each sample could improve per-515

formance. Addressing the dynamic and automatic516

adjustment of these attributes to better suit different517

scenarios remains an area for future exploration.518

(2) To enhance precision in visual localization.519

By integrating dot matrices with coordinates onto520

images, we aimed to facilitate improved vision-521

language coordination by associating key objects522

with their closest coordinates. However, our ob-523

servations indicate that, particularly in complex or524

clustered scenes, GPT-4V occasionally struggles525

to accurately associate textual reasoning with the526

nearest coordinates. This challenge underscores527

the need for LMMs to achieve improved visual lo-528

calization and grounding capabilities in intricate529

environments. With SCAFFOLD, we expect the fu-530

ture of LMMs and visual prompting techniques to531

be further improved in terms of visual localization.532
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A Appendix753

A.1 Prompts754

This section exhibits the prompts used in SCAF-755

FOLD implementation and our experiments.756

A.1.1 SCAFFOLD implementation757

In SCAFFOLD implementation, we use the follow-758

ing textual guidelines to describe the effective use759

of coordinates.760

Single-Image Setting. In the single-image setting,761

we label all the dots with two-dimensional coordi-762

nates and deliver both the original image and the763

coordinates-overlaid image to the model. Conse-764

quently, we use the following guidelines.765

I will provide you with two images of the same scene.
The second image is overlaid with a dot matrix of the
shape of HEIGHT * WIDTH to help you with your
task, and each dot is labeled with two-dimensional
coordinates (x,y).
1. When you mention any key objects in the image,
first output their nearest coordinates then identify
them.
2. You use the coordinates to determine the spatial
relationships of the objects. Within each column,
the x-coordinate increases from top to bottom, and
within each row, the y-coordinate increases from left
to right.
3. You can search and reason region by region with
the help of the dots.
4. Finally, conclude your answer in format [[AN-
SWER]], such as [[A]], [[B]], [[C]] or [[D]].

766

Note that the fourth guideline serves as a con- 767

straint for specific output formats and may vary 768

among different tasks. 769

Double-Images Setting. In a double-images set- 770

ting, we label all the dots with three-dimensional 771

coordinates, with the first coordinate serving to dis- 772

tinguish between two images. Consequently, we 773

use the following guidelines. 774

Two images are provided, each overlaid with a grid
of dots arranged in a matrix with dimensions h by
w. Each dot on this grid is assigned a unique set
of three-dimensional coordinates labeled as (t, x, y).
The first coordinate, ’t’, serves to distinguish between
the two images: ’1’ is assigned to the first image on
the left, and ’2’ to the second image on the right.
The other two coordinates, ’x’ and ’y’, are used to
specify the dot’s spatial location within its respective
image. This labeling system is designed to assist you
in identifying and referring to specific points within
each image.
1. When you mention any key objects in the image,
first output their nearest coordinates then identify
them.
2. You use the coordinates to determine the spatial
relationships of the objects. within each column,
the x-coordinate increases from top to bottom, and
Within each row, the y-coordinate increases from left
to right.
3. You can search and reason region by region with
the help of the dots.
4. Finally, you must conclude your answer in format
[[ANSWER]], such as [[A]] or [[B]].

775

Note that the fourth guideline serves as a con- 776

straint for specific output formats and may vary 777

among different tasks. 778

Image-Sequence Setting. In the image sequence 779

setting, we label all the dots with three-dimensional 780

coordinates. For simplicity and efficiency, we only 781

deliver the coordinates-overlaid image to the model. 782

Consequently, we use the following guidelines. 783
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A sequence of images is provided, each overlaid with
a grid of dots arranged in a matrix with dimensions
HEIGHT by WIDTH. Each dot on this grid is as-
signed a unique set of three-dimensional coordinates
labeled as (t, x, y). The first coordinate, ’t’, serves to
distinguish between the images, for instance, ’1’ is
assigned to the first image, and ’8’ to the last image.
The other two coordinates, ’x’ and ’y’, are used to
specify the dot’s spatial location within its respective
image. This labeling system is designed to assist you
in identifying and referring to specific points within
each image.
1. When you mention any key objects in the image,
first output their nearest coordinates then identify
them.
2. You use the coordinates to determine the tempo-
ral and spatial relationships of the objects. Within
the image sequence, the t-coordinate increases as
time grows; within each column, the x-coordinate
increases from top to bottom; within each row, the
y-coordinate increases from left to right.
3. You can search and reason region by region with
the help of the dots.
4. you need to keep your descriptions concise and
clear.

784

Note that the fourth guideline serves as a con-785

straint for specific output formats and may vary786

among different tasks.787

A.1.2 Datasets788

Spotting Differences dataset is our newly formu-789

lated dataset challenging LMMs to precisely lo-790

calize different details in two similar images. We791

exhibit the prompts as follows.792

Spotting Differences 2793

[Question] Spot ten differences between the images
and answer the dot position closest to every difference
in the format: [spot index, x, y]. I am going to tip
$100 for a better answer.
[Answer] Let’s identify ten differences between the
left and right images:
1. The bird in the sky is missing in the right image.
Closest dot: [1, 2, 1]...

794

A.1.3 Integration Experiments795

We list the prompts used in the integration experi-796

ments.797

SCAFFOLD + Active Perception Firstly, we guide798

the LMM to visually search the image and localize799

target objects using the following prompt.800

2https://www.crazygames.com/game/find-the-difference

Based on the question: question you should first iden-
tify key objects in the question and link them with
their nearest coordinate, and finally conclude the co-
ordinates in format [[(x,y)]] in the end(you don’t need
to answer the question).

801

Secondly, we crop the image based on the out- 802

put coordinates and guide the LMM to answer the 803

question based on the cropped images in the second 804

turn of the conversation. 805

Here are the cropped images from the scene accord-
ing to your selected coordinates, you can take a closer
look and answer the question. If I don’t provide
cropped images or the target does not exist in the
cropped image, please visually search the original
image and answer the question.
Question: QUESTION
Options: OPTIONS

806

A.2 Benchmarks 807

This section details the benchmarks used in our ex- 808

periments to evaluate our method. The benchmarks 809

are divided into four categories and elaborated re- 810

spectively. 811

A.2.1 Spatial Reasoning 812

Spatial reasoning is a crucial capability of LMMs 813

to determine spatial relationships between objects 814

in the image. To evaluate the effectiveness of 815

our method to elicit spatial reasoning capabilities, 816

we select several challenging datasets including 817

MME (Fu et al., 2023a) Position split, Visual Spa- 818

tial Reasoning (Liu et al., 2023a) dataset, Ego- 819

Think (Cheng et al., 2023) Spatial split. Note that 820

we only select a subset related to spatial reason- 821

ing in comprehensive evaluation benchmarks like 822

MME (Fu et al., 2023a) and EgoThink (Cheng 823

et al., 2023) because the other subsets don’t con- 824

stitute spatial reasoning and our GPT-4V access 825

quota is limited. The details of the benchmarks are 826

as follows. 827

MME (Position) (Fu et al., 2023a) 828

Dataset Introduction. The MME (Fu et al., 2023a) 829

benchmark is a comprehensive evaluation suite de- 830

signed to measure the perception and recognition 831

capabilities of LMMs in 14 tasks. To evaluate spa- 832

tial reasoning capabilities, we only select Position 833

split from 14 subtasks. It contains 60 questions 834

about the spatial relationship among the objects in 835

the scene, such as left, above, etc.. 836

Metric. All questions are formatted as general in- 837

terrogative sentences, which can be answered with 838

either "yes" or "no". Therefore, we guide the model 839
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to output the final answer within double square840

brackets [[]], and then use accuracy as the metric841

to evaluate the model’s performance.842

Example.843

Is the cricket bat above the batter’s body? Please
answer yes or no.

844

Visual Spatial Reasoning (VSR) (Liu et al.,845

2023a)846

Dataset Introduction. The VSR (Liu et al., 2023a)847

dataset is designed to comprehensively evaluate848

LMM capabilities to perform spatial reasoning in849

images, containing 66 types of spatial descriptions850

in language. Each sample provides an image and a851

corresponding spatial description in terms of two852

individual objects in the scene. Because of the853

limited GPT-4V (Achiam et al., 2023) access quota,854

we randomly sample 200 samples from the dataset855

for evaluation.856

Metric. The task is to determine the correctness857

of the given spatial description, which can be an-858

swered with either "true" or "false". Therefore, we859

guide the model to output the final answer within860

double square brackets [[]], and then use accuracy861

as the metric to evaluate the model’s performance.862

Example.863

Determine whether the following statement is true or
false: The person is facing the banana.

864

EgoThink (Spatial) (Cheng et al., 2023)865

Dataset Introduction. The Egothink (Cheng866

et al., 2023) dataset is intended for first-perspective867

vision-language problem-solving capabilities. To 868

evaluate spatial reasoning capabilities, we only se- 869

lect Spatial split from it. The Spatial split contains 870

50 questions about the spatial relationship among 871

the objects, particularly requiring LMMs to per- 872

ceive and reason from the first perspective. 873

Metric. The task is to answer spatial questions from 874

the first perspective. We adopt the evaluation script 875

in EgoThink official implementation 3, which uses 876

GPT-4 (Achiam et al., 2023) as the judge model to 877

score the answers. 878

Example. 879

Where is the phone, on my left or on my right?
880

A.2.2 Compositional Reasoning 881

Compositional reasoning represents the capabil- 882

ity of LMMs to perceive and reason in terms of 883

objects’ attributes and their relationships, signif- 884

icant for visual perception. To evaluate the ef- 885

fectiveness of our method to elicit compositional 886

reasoning capabilities, we select several challeng- 887

ing datasets including Winoground (Thrush et al., 888

2022), WHOOPS! (Bitton-Guetta et al., 2023) and 889

CLEVR (Johnson et al., 2017). 890

Winoground (Thrush et al., 2022) 891

Dataset Introduction. Winoground (Thrush et al., 892

2022) proposes a novel dataset that challenges 893

LMMs to correctly match two images and two 894

captions. The captions use the same words but 895

in a different order, requiring a precise understand- 896

ing of both images and captions. The challenging 897

dataset is a suitable benchmark for compositional 898

reasoning. 899

Metric. Given two images and two captions, we 900

compose a sample into four binary-choice ques- 901

tions for the effective evaluation of LMMs, includ- 902

ing choosing the correct caption given two images 903

and choosing the correct image given two captions 904

respectively. Finally, we adopt group score to mea- 905

sure LMM performance: only when the model an- 906

3https://github.com/AdaCheng/EgoThink
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swers all four questions correctly is it considered907

completely correct for this sample.908

Example.909

Q1: [[Image1]] [[Image2]] Choose the correct image
for the caption. Caption: an old person kisses a young
person. Options: (A) image 1(left) (B) image 2(right)
Q2: [[Image1]] [[Image2]] Choose the correct image
for the caption. Caption: a young person kisses an
old person. Options: (A) image 1(left) (B) image
2(right)
Q3: [[Image1]] Choose the correct caption for the
image. (A) an old person kisses a young person. (B)
a young person kisses an old person.
Q4: [[Image2]] Choose the correct caption for the
image. (A) an old person kisses a young person. (B)
a young person kisses an old person.

910

WHOOPS! (Bitton-Guetta et al., 2023)911

Dataset Introduction. The WHOOPS! (Bitton-912

Guetta et al., 2023) is designed to challenge LMMs913

to perform compositional reasoning in terms of914

purposefully commonsense-defying images. It re-915

mains challenging for LMMs to recognize and in-916

terpret these unconventional images. Furthermore,917

several tasks are posed over the dataset, and we918

select the visual question-answering task.919

Metric. We adopt the BEM score in WHOOPS!920

official implementation 4 to evaluate LMM perfor-921

mances.922

Example.923

What is on a table with holes through the material?
924

CLEVR (Johnson et al., 2017)925

4https://whoops-benchmark.github.io/

Dataset Introduction. The CLEVR (Johnson et al., 926

2017) is designed as a standard evaluation suite 927

for compositional vision-language reasoning with 928

program-rendered images and correctly generated 929

annotations. Containing objects like a metal cube 930

or red sphere, the dataset poses questions in terms 931

of object existence, object attributes, and object re- 932

lationships. For effective evaluation, we randomly 933

sampled 200 samples in the dataset. 934

Metric. We guide the LMMs to answer the ques- 935

tions in an open-ended generative manner. Due 936

to the complexity of the question and the answer, 937

we adopt GPT-4 (Achiam et al., 2023) as a judge 938

model to determine the correctness of answers. 939

Our judge prompt is as follows, adapted from MT- 940

Bench (Zheng et al., 2023). 941

[Instruction] Please act as an impartial judge and eval-
uate the quality of the response provided by an AI
assistant to the user question displayed below. Your
evaluation should consider correctness and helpful-
ness. You will be given a reference answer and the
assistant’s answer. Begin your evaluation by compar-
ing the assistant’s answer with the reference answer.
Identify and correct any mistakes. The assistant has
access to an image along with questions but you will
not be given images. Therefore, please consider only
how the answer is close to the reference answer. If
the assistant’s answer is not exactly the same as or
similar to the answer, then he must be wrong. Be as
objective as possible. Discourage uninformative an-
swers. Also, equally, treat short and long answers and
focus on the correctness of answers. After providing
your explanation, you must rate the response with
either 0, 0.5, or 1 by strictly following this format:
"[[rating]]", for example: "Rating: [[0.5]]".
[Question] question
[The Start of Reference Answer] ground_truth [The
End of Reference Answer]
[The Start of Assistant’s Answer] answer [The End
of Assistant’s Answer]

942

Example. 943

Are there more large balls behind the tiny brown cube
than green shiny cylinders?

944
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A.2.3 Fine-Grained Visual Understanding945

Fine-grained Visual Understanding represents the946

capability of LMMs to precisely capture, perceive,947

and describe certain visual details in the scene. To948

evaluate the effectiveness of our method to elicit949

Fine-grained Visual Understanding, we select sev-950

eral challenging datasets including V* Bench (Wu951

and Xie, 2023) and Spotting Differences.952

V* Bench (Wu and Xie, 2023)953

Dataset Introduction. The V* Bench (Wu and Xie,954

2023) is designed to challenge LMMs to perform955

visual search and identify fine-grained visual de-956

tails in high-resolution images. The challenges lie957

in the necessity of visual search, while GPT-4V958

sometimes fails to capture visual details, respond-959

ing with I’m sorry, I couldn’t find XXX in the image.960

Note that we conduct our evaluation in an open-961

ended generative manner, GPT-4V sometimes fails962

to identify targets and refuses to choose an option.963

Metric. The questions are multiple-choice ques-964

tions. Due to the generative nature of current965

LMMs, we pose a question to the target LMM and966

let it generate an open-ended response. Finally, we967

guide the model to output the final answer within968

double square brackets [[]], and then use accuracy969

as the metric to evaluate the model’s performance.970

Example.971

From the information on that advertising board, what
is the type of this shop?
Options: (A) The shop is a yoga studio. (B) The shop
is a cafe. (C) The shop is a seven-eleven. (D) The
shop is a milk tea shop.

972

Spotting Differences 5973

Dataset Introduction. The dataset was designed974

to challenge the spatial analysis capabilities and975

object localization abilities of LLMs. Inspired and976

derived by the "Spot the Difference" web game,977

each level consists of two images. The goal is to978

5https://www.crazygames.com/game/find-the-difference

locate the differences between the two images at 979

10 specific locations. The first 50 levels, increas- 980

ing in difficulty, were selected as samples for this 981

dataset. The challenge lies in the LLM’s ability 982

to first analyze the images and then accurately lo- 983

calize the correct object positions. GPT-4V may 984

sometimes return I’m sorry, but I cannot assist with 985

this request.. 986

Metric. We guide GPT-4V to answer the pixel or 987

matrix positions of the difference by dividing the 988

prompt into question text + standardized answer 989

requirement + prompt trick. We use OpenCV’s 990

Hough Circle Transform to locate the correct im- 991

age position of the difference. When the distance 992

between the correct position and the position given 993

by GPT-4V is less than 50 pixels, the difference 994

positioning is considered successful. 995

Example. 996

Question Image.

Correct answer Image.

[Question] Spot ten differences between the images
and give mathematic coordinates of every difference
to make sure I can locate the image with my program.
The coordinate can be that the left edge of the left
image is x=0, the right edge of the right image is
x=1904 (based on the resolution of the image), and
the top and bottom edges of the images are y=0 and
y=594. please note that you only need to indicate the
coordinate in the left image for difference because I
want to use coordinates in only one image use [spot
index, x, y], do not indicate coordinate in the right
image(it means that the x of coordinate is less than
1000). I am going to tip $100 for a good solution.
[Answer] Here are the ten differences between the
two images along with their approximate coordinates
on the left image:
1. [1, 150, 100] - The bird flying in the sky is miss-
ing...

997

A.2.4 Hallucination 998

Hallucination in vision-language contexts repre- 999

sents a misalignment between visual inputs and 1000

textual outputs in terms of object existence, at- 1001

tributes, and relationships. To evaluate the effec- 1002

tiveness of our method to mitigate hallucination in 1003
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vision-language tasks, we select several challeng-1004

ing datasets including POPE Adversarial subset (Li1005

et al., 2023), HallusionBench (Hard) (Guan et al.,1006

2023) and Mementos (Wang et al., 2024). The1007

details of these benchmarks are as follows.1008

POPE (Li et al., 2023)1009

Dataset Introduction. The POPE (Li et al., 2023)1010

benchmark is designed for measuring object hallu-1011

cination in images. The questions are built based1012

on the object annotations, challenging LMMs to1013

determine object existence in images.1014

Metric. All questions are formatted as general in-1015

terrogative sentences, which can be answered with1016

either "yes" or "no". Therefore, we guide the model1017

to output the final answer within double square1018

brackets [[]], and then use accuracy as the metric1019

to evaluate the model’s performance.1020

Example.1021

Is there a tennis racket in the image?
1022

HallusionBench (Li et al., 2023)1023

Dataset Introduction. The HallusionBench (Li1024

et al., 2023) is designed for evaluating language1025

hallucination and visual illusion in LMMs. The1026

images and questions are meticulously crafted by1027

human experts, posing great challenges to current1028

LMMs. Due to the limited GPT-4V quota, we1029

evaluate our method on the Hard set.1030

Metric. All questions are formatted as general in-1031

terrogative sentences, which can be answered with1032

either "yes" or "no". Therefore, we simplify the1033

evaluation process 6 and guide the model to output1034

the final answer within double square brackets [[]],1035

and then use accuracy as the metric to evaluate the1036

model’s performance.1037

Example.1038

6the official evaluation process of HallusionBench involves
GPT-4 as judge model

According to the chart, does China have the second
largest population in the world?

1039

Mementos (Wang et al., 2024) 1040

Dataset Introduction. The Mementos (Wang et al., 1041

2024) is designed for evaluating reasoning capa- 1042

bilities across image sequences. Featuring 4,761 1043

diverse image sequences with varying lengths, the 1044

dataset adopts a GPT-4_assisted metric to evaluate 1045

the correctness of objects and behaviors in gener- 1046

ated descriptions, reflecting both reasoning capa- 1047

bilities and hallucination levels. 1048

Metric. The task is to generate a description of the 1049

image sequences. We adopt the evaluation script 1050

in Mementos official implementation 7, which uses 1051

GPT-4 (Achiam et al., 2023) as the judge model to 1052

extract the objects and behaviors in the description, 1053

then calculates F1 score in terms of objects and 1054

behaviors respectively. Finally, we use the average 1055

F1 score to measure the performance. 1056

Example. 1057

Write a description for the given image sequence in a
single paragraph, what is happening in this episode?

1058

7https://github.com/umd-huang-lab/Mementos
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A.3 Complementary Cases1059

Choose the correct caption for the image. (A) a frog
is above rocks which are under the water (B) a frog
is under rocks which are above the water.

Ground-Truth: B
GPT-4V + CoT: The frog is visible above the rocks,
and the rocks are partially submerged in water, indi-
cating that the frog is not under the rocks but rather
resting on top of them or between them above the
water level. A.
GPT-4V + SCAFFOLD: The frog is located near
coordinates (3,3) and (4,3), and it is clearly visible
underneath the rocks, which are near coordinates
(1,3), (2,3), (1,4), and (2,4). The water is visible
around the frog, particularly near coordinates (5,4)
and (6,4). Based on the spatial relationships, the
rocks are above the water, and the frog is under the
rocks, which are above the water. The correct caption
for the image is: B.

Figure 9: An example from the Winoground dataset.

Task: spot 10 differences in two images.
GPT-4V:

GPT-4V + SCAFFOLD:

Analysis: In this example, the addition of a dot ma-
trix resulted in identifying a greater number of differ-
ences, reflecting the guiding role of the dot matrix in
image analysis.

Figure 10: An example from the Spotting Differences
dataset.

Question: Is there a dining table in the image?

Ground-Truth: Yes.
GPT-4V + CoT: There is no person visible in the
image. The image shows a plate with some food and
a pair of chopsticks, and there is a fork in the process
of picking up food, but no person is seen in the frame.
So, the answer is no..
GPT-4V + SCAFFOLD: In the provided images,
there is no complete person visible. However, there
is a hand holding a fork in the upper right area of
the image, near coordinates (1,6) through (3,6). This
indicates the presence of a person, but only a part of
them (the hand) is shown. Therefore, the answer is
yes.

Figure 11: An example from the POPE (adversarial)
dataset.
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(a) Alphabet (b) Pixel

(c) One-dimensional (d) Cartesian (Ours)

Figure 12: Examples of different coordinate formats.
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