

EFFICIENT MACHINE UNLEARNING VIA PEARSON CORRELATION-BASED SIMILARITY DETECTION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Machine unlearning has emerged as a critical requirement for neural networks
 012 to selectively forget specific training data while preserving model performance
 013 on remaining data. However, existing approximate unlearning techniques are
 014 computationally expensive when applied repeatedly to remove multiple similar
 015 data points. This work introduces a fast, novel approach that leverages Pearson’s
 016 correlation-based similarity detection to efficiently and rapidly unlearn data points
 017 that are similar to previously unlearned samples. Our fast unlearning method
 018 exploits the key observation that once a data point has been unlearned through
 019 approximate unlearning techniques, similar data points can be rapidly removed
 020 using a lightweight similarity-based approach without requiring the full computa-
 021 tional overhead of the original unlearning procedure. We establish certain theo-
 022 retical properties and assurances of our similarity-based unlearning approach. We
 023 demonstrate that by measuring Pearson’s correlation between target data points
 024 and previously unlearned samples, we can identify candidates for efficient re-
 025 moval and apply an unlearning process. This approach significantly reduces
 026 computational costs for removing multiple related data points while maintaining
 027 comparable forgetting effectiveness. Our evaluation across seven diverse dataset-
 028 architecture combinations demonstrates that the proposed method effectively un-
 029 learns correlated data points while maintaining model utility, providing a highly
 030 scalable solution for privacy-preserving machine learning systems. Experimental
 031 results show that our proposed approach shows an improvement 10^{-2} in terms of
 032 accuracy compared to state-of-the-art baselines.

1 INTRODUCTION

035 Machine unlearning represents a relatively new but increasingly vital area of artificial intelligence
 036 research that addresses the deliberate removal of specific information from trained machine learning
 037 models Bourtoule et al. (2021); Nguyen et al. (2022); Cao & Yang (2015). While conventional ma-
 038 chine learning paradigms concentrate on knowledge acquisition and retention, machine unlearning
 039 tackles the complex challenge of selectively eliminating certain data points or learned patterns with-
 040 out compromising the model’s broader functionality. This has become increasingly important due
 041 to privacy regulations such as GDPR’s European Parliament and Council of the European Union
 042 (*2016*) *right to be forgotten*, security concerns, and the need to remove biased or erroneous in-
 043 formation from models. Machine unlearning generally falls into two primary categories: exact
 044 unlearning methods, which aim to completely eliminate the influence of targeted data, and approx-
 045 imate unlearning techniques, which focus on minimizing the influence without complete removal.
 046 These approximate methods typically rely on influence functions that require computing expen-
 047 sive Hessian-inverse-vector products for each data point removal. The Hessian matrix captures the
 048 second-order curvature of the loss function around optimal parameters, and its inverse is essential for
 049 efficiently estimating parameter updates when removing specific training examples. However, re-
 050 peatedly computing such Hessian operations becomes computationally expensive when unlearning
 051 multiple related samples, creating a significant bottleneck for practical applications. Implementation
 052 challenges include confirming successful unlearning, preserving model performance, and optimiz-
 053 ing computational efficiency. With the growing adoption of AI across various sectors, the capacity to
 054 deliberately eliminate specific information emerges as a fundamental component of the development
 055 of ethical and adaptable systems.

054 The proposed method offers several key advantages over existing approaches providing better computational efficiency and faster speed. This is achieved by avoiding repeated approximate unlearning procedures for similar data points, which significantly reduces both computational overhead and execution time. Our approach is faster than traditional methods while being practically useful
 055 since it does not require strict assumptions about objective function convexity or Hessian properties, making it work well with modern deep learning models. Despite these computational savings, our
 056 method preserves comparable forgetting performance to traditional approximate unlearning techniques, demonstrating that similarity-based detection can achieve effective privacy-preserving
 057 machine learning without the prohibitive costs associated with repeated full unlearning procedures.
 058

059 Our primary contributions include the introduction of a computationally efficient, similarity-based
 060 unlearning framework that leverages Pearson correlation to rapidly unlearn data points similar to
 061 previously forgotten samples, thereby avoiding the need for expensive repeated Hessian computations. We further establish formal theoretical guarantees with error bounds, proving that our
 062 approximation scales polynomially with input dimension, and demonstrate that Pearson correlation
 063 outperforms cosine similarity and projection-based methods, achieving a 43.2% win rate for approximating sequential unlearning effects. Our method yields a 10^{-2} improvement in accuracy over
 064 state-of-the-art baselines while significantly reducing computational overhead for the removal of
 065 correlated data, which is validated through extensive evaluation across seven diverse datasets California
 066 Housing, Diabetes, MNIST, Fashion-MNIST, CIFAR-10, LFW and a synthetic GMM demonstrating
 067 consistent performance improvements and practical applicability. In section 2 discusses existing
 068 unlearning methods and their limitations. Section 3 presents our Pearson correlation-based
 069 methodology. Section 4 provides theoretical guarantees with formal error bounds. Section 6 details
 070 the algorithm design. Section 7 evaluates our approach on four datasets against baselines. Section 8
 071 concludes with findings and future directions. Table 4 provides a comprehensive summary of all the
 072 mathematical notation and parameters used throughout this work.
 073

074 1.1 PRELIMINARIES

075 We outline a certain notation employed throughout the remainder of this paper reported in Table 4
 076 with highlights on the inherent model unlearning.
 077

078 Within the domain of machine learning model maintenance, two distinct but related paradigms
 079 have emerged for targeted model adjustment, feature unlearning and data point unlearning. *Feature*
 080 *unlearning* constitutes a process designed to systematically eradicate the influence of a specific
 081 attribute from a trained model, with the principal objective being the alteration of the model’s be-
 082 haviour such that it performs as if the problematic feature had never been incorporated into its initial
 083 training data. This technique is particularly critical when certain features are subsequently identified
 084 as sensitive, introducing bias, or falling under legal restrictions. In a complementary fashion, *data*
 085 *point unlearning* refers to the methodology of removing the contribution of an individual training
 086 instance from a model, aiming to update the model parameters to ensure it no longer retains any in-
 087 formation pertaining to that specific example, a procedure often motivated by privacy requirements
 088 like the ‘right to be forgotten’ which necessitates an efficient alternative to complete model retrain-
 089 ing from scratch.
 090

091 **Similarity Factor Definition:** We define the similarity factor α as the Pearson correlation coeffi-
 092 cient between data points x and z' :
 093

$$\alpha = \frac{(x - \bar{x})^\top (z' - \bar{z}')}{\|x - \bar{x}\|_2 \cdot \|z' - \bar{z}'\|_2} \quad (1)$$

094 where $x, z' \in \mathbb{R}^d$ are the feature vectors and \bar{x}, \bar{z}' are their respective means. The scalar $\alpha \in [-1, 1]$
 095 measures linear correlation, with higher absolute values indicating stronger similarity. Our work
 096 focuses on data point unlearning and introduces a novel similarity-based framework that significantly
 097 reduces computational overhead when unlearning multiple correlated samples.
 098

100 2 RELATED WORK

101 Recent work in machine unlearning has examined a range of strategies to tackle the complex task
 102 of effectively and reliably erasing the impact of particular training data from machine learning mod-
 103 els Gupta et al. (2021); Sekhari et al. (2021). We highlight prior work on exact and approximate
 104

108 unlearning methods. *Exact unlearning* Xu et al. (2024) refers to the process of completely removing
 109 the influence of a specific data point or a set of data points from a trained model as if they were never
 110 seen. More formally, given a learning algorithm $A(\cdot)$, a dataset D , and a forget set $D_f \subseteq D$, we
 111 say the process $U(\cdot)$ is an exact unlearning process if and only if $A(D \setminus D_f) = U(D, D_f, A(D))$.
 112 Some instances of exact unlearning techniques are *Retraining from Scratch* Bourtoule et al. (2021)
 113 and *SISA Training* Bourtoule et al. (2021). Retraining from scratch approach involves re-training the
 114 model using the remaining data after removing the forget set. While it guarantees complete unlearning,
 115 it comes with a significant computational expense. Whereas, SISA training method divides the
 116 data into isolated shards and slices, allowing separate training of models on each part. As a result, it
 117 facilitates efficient approximate unlearning by focusing only on the affected slices during the retrain-
 118 ing process. The approximate unlearning Xu et al. (2024); Li et al. (2024) aims to minimize the in-
 119 fluence of unlearned data to an acceptable level while maintaining efficiency. Influence functions Xu
 120 et al. (2024) estimate how much each training sample contributed to the model’s final parameters
 121 by approximating the effect of removing that sample without actual retraining. This method uses
 122 mathematical approximations based on the model’s loss function and Hessian matrix to identify and
 123 reduce the influence of specific data points. Given a dataset D with regularized empirical loss func-
 124 tion $F(D; w) = \sum_{z \in D} f(z; w) + \frac{\lambda n}{2} \|w\|_2^2$ and optimal parameters $w^* = \arg \min_w F(D; w)$, the
 125 influence function approximation computes updated parameters that remove the effect of data point
 126 $z' = (x', y')$ as $w_z = w^* + H_{w^*}^{-1} \Delta$, where $\Delta = \lambda w^* + \nabla f(z'; w^*)$ is the gradient at the target
 127 point, $H_{w^*} = \nabla^2 F(D_r; w^*)$ is the Hessian over remaining data $D_r = D \setminus \{z'\}$, and λ is the regu-
 128 larization parameter. Also, gradient reversal Zagardo (2024) is a technique that attempts to undo the
 129 learning process by applying the reverse of the original training gradients to the model parameters.
 130 This method calculates the gradients that would decrease the model’s performance on the data to
 131 be forgotten, then applies these reversed gradients to effectively remove the influence of specific
 132 training samples. While exact and approximate unlearning methods are effective in approximating
 133 the retrained model, each has practical limitations such as significant performance degradation, high
 134 computational cost, limited compatibility with learning objectives, or restricted evaluation capability
 135 on simple datasets. More importantly, given the aim to estimate the unknown (due to the complexity
 136 of algorithms, objective functions, and data influence) retraining outcome, the provable unlearning
 137 guarantees rely heavily on impractical assumptions such as convexity of the objective function and
 138 Lipschitz condition on Hessian matrices.

3 OUR METHOD

140 Machine unlearning using influence functions typically requires expensive computation of Hessian-
 141 inverse-vector products for each data point removal. Consider a scenario where we first perform
 142 an approximate unlearning of a data point (z') using influence functions. Subsequently, we need to
 143 unlearn another data point (x) that is similar to (z') . Instead of performing the computationally ex-
 144 pensive approx- imate unlearning procedure again for (x) , we propose a similarity-based unlearning
 145 approach that takes advantage of the previously computed influence directions. Our key insight is
 146 that for similar data points, the influence directions are proportionally related. Therefore, we can
 147 approximate the unlearning update for (x) by scaling the previously computed influence direction
 148 for (z') using a similarity factor. To ensure numerical stability, we incorporate Hessian damping into
 149 our derivation, which prevents the denominator from approaching zero and ensures robust computa-
 150 tion in practical scenarios. Let the original trained model parameters be denoted by w^* . To address
 151 numerical instability issues that can arise when the Hessian matrix is ill-conditioned or singular, we
 152 introduce **Hessian damping** by regularizing the Hessian matrix:

$$H_\lambda = H_{w^*} + \lambda I$$

153 where $\lambda > 0$ is a small damping parameter and I is the identity matrix. This regularization ensures
 154 that H_λ is positive definite and well-conditioned, preventing numerical instabilities during matrix
 155 inversion. The unlearning update for data point z' using the damped Hessian becomes:

$$w_z = w^* + H_\lambda^{-1} \Delta = w^* + (H_{w^*} + \lambda I)^{-1} \Delta, \quad \text{where } \Delta = \lambda w^* + \nabla f(z'; w^*)$$

156 Now, suppose that we wish to unlearn another data point x , which is similar to z' . Its gradient
 157 influence can be approximated as

$$\nabla f(x, w^*) \approx \alpha \nabla f(z', w^*)$$

162 where α is a similarity factor. To unlearn x after z' has already been unlearned, the correct influence-
163 based update should start from the new parameter state w_z :

$$164 \quad w_x = w_z + H_{w_z}^{-1} \nabla f(x, w_z) \quad (1)$$

166 This expression is computationally expensive as it requires calculating a new Hessian-inverse-vector
167 product based on H_{w_z} . To make this tractable, we introduce two approximations. First, we approx-
168 imate the gradient at the new parameters, $\nabla f(x, w_z)$ using a first-order Taylor expansion around
169 w^* ,

$$170 \quad \nabla f(x, w_z) \approx \nabla f(x, w^*) + H_{w^*}(w_z - w^*) \quad (2)$$

171 To derive the approximation for the updated inverse Hessian, we must approximate $H_{w_z}^{-1}$. Here,
172 H_{w_z} represents the Hessian of the new loss function (computed on the dataset without z') evaluated
173 at the new optimal parameters w_z . Our approximation begins by assuming that removing a single
174 data point results in only a minor change to the model's parameters. This allows us to approximate
175 the Hessian of the new loss function at w_z by evaluating it at w^* :

$$176 \quad H_{w_z} \approx H_{w^*} - \nabla^2 f(z', w^*) \quad (2)$$

178 To make this form compatible with efficient update rules, we employ the Gauss-Newton approxima-
179 tion Nocedal & Wright (2006), which replaces the per-sample Hessian with the outer product of its
180 gradient, i.e., $\nabla^2 f(z', w^*) \approx \nabla f(z', w^*) \nabla f(z', w^*)^T$. This simplifies our approximation for H_{w_z}
181 to a rank-1 modification:

$$182 \quad H_{w_z} \approx H_{w^*} - \nabla f(z', w^*) \nabla f(z', w^*)^T \quad (3)$$

184 **Incorporating damping into the updated Hessian:** To maintain numerical stability throughout the
185 sequential unlearning process, we apply damping to the updated Hessian as well:

$$186 \quad H_{w_z}^{(\lambda)} = H_{w_z} + \lambda I \approx (H_{w^*} + \lambda I) - \nabla f(z', w^*) \nabla f(z', w^*)^T = H_\lambda - \nabla f(z', w^*) \nabla f(z', w^*)^T \quad (4)$$

188 This expression is now in the form $(A - uv^T)$ where $A = H_\lambda$, which allows us to apply the Sherman-
189 Morrison formula Bartlett (1951) to find its inverse directly. By setting $u = v = \nabla f(z', w^*)$, we
190 derive the approximation for $(H_{w_z}^{(\lambda)})^{-1}$:

$$192 \quad (H_{w_z}^{(\lambda)})^{-1} \approx (H_\lambda - \nabla f(z', w^*) \nabla f(z', w^*)^T)^{-1} = H_\lambda^{-1} + \frac{H_\lambda^{-1} \nabla f(z', w^*) \nabla f(z', w^*)^T H_\lambda^{-1}}{1 - \nabla f(z', w^*)^T H_\lambda^{-1} \nabla f(z', w^*)} \quad (5)$$

196 We simplify this expression by substituting the definitions for the damped influence direction, $\delta_{z'}^{(\lambda)} =$
197 $w_z - w^* = H_\lambda^{-1} \nabla f(z', w^*)$, and the damped self-influence score, $s_{z'}^{(\lambda)} = \nabla f(z', w^*)^T \delta_{z'}^{(\lambda)}$. The
198 numerator of the fraction in Eq. (5) becomes $\delta_{z'}^{(\lambda)} (\delta_{z'}^{(\lambda)})^T$, and the denominator becomes $1 - s_{z'}^{(\lambda)}$.
199 This yields the final, simplified approximation used in our main derivation:

$$201 \quad (H_{w_z}^{(\lambda)})^{-1} = H_\lambda^{-1} + \frac{\delta_{z'}^{(\lambda)} (\delta_{z'}^{(\lambda)})^T}{1 - s_{z'}^{(\lambda)}} \quad (6)$$

204 This formula allows us to efficiently approximate the new inverse Hessian without expensive re-
205 computation while maintaining numerical stability. Now, substituting approximations (2) and (5)
206 into the fundamental update rule (1), we obtain:

$$207 \quad w_x - w_z = \left(H_\lambda^{-1} + \frac{\delta_{z'}^{(\lambda)} (\delta_{z'}^{(\lambda)})^T}{1 - s_{z'}^{(\lambda)}} \right) \left(\nabla f(x, w^*) + H_{w^*} \delta_{z'}^{(\lambda)} \right) \quad (7)$$

210 Expanding this matrix-vector product yields four distinct terms:

$$212 \quad w_x - w_z = \underbrace{H_\lambda^{-1} \nabla f(x, w^*)}_{\text{Term A}} + \underbrace{H_\lambda^{-1} H_{w^*} \delta_{z'}^{(\lambda)}}_{\text{Term B}} + \underbrace{\frac{\delta_{z'}^{(\lambda)} (\delta_{z'}^{(\lambda)})^T}{1 - s_{z'}^{(\lambda)}} \nabla f(x, w^*)}_{\text{Term C}} + \underbrace{\frac{\delta_{z'}^{(\lambda)} (\delta_{z'}^{(\lambda)})^T}{1 - s_{z'}^{(\lambda)}} H_{w^*} \delta_{z'}^{(\lambda)}}_{\text{Term D}} \quad (8)$$

We now simplify each term using the key relationships $\nabla f(x, w^*) \approx \alpha \nabla f(z', w^*)$ provided $H_\lambda^{-1} H_{w^*} = H_\lambda^{-1} (H_\lambda - \lambda I) = I - \lambda H_\lambda^{-1}$. The formulation proceeds by analyzing four distinct terms in line with the Sherman-Morrison formula. For Term A, the similarity assumption is applied yielding

$$H_\lambda^{-1} \nabla f(x, w^*) = H_\lambda^{-1} (\alpha \nabla f(z', w^*)) = \alpha \delta_{z'}^{(\lambda)} \quad (9)$$

Term B is addressed using the matrix identity $H_\lambda^{-1} H_{w^*} = I - \lambda H_\lambda^{-1}$ resulting in

$$H_\lambda^{-1} H_{w^*} \delta_{z'}^{(\lambda)} = (I - \lambda H_\lambda^{-1}) \delta_{z'}^{(\lambda)} = \delta_{z'}^{(\lambda)} - \lambda H_\lambda^{-1} \delta_{z'}^{(\lambda)} \quad (10)$$

Under the condition of a small damping parameter λ (typically $\lambda \ll \sigma_{\min}(H_{w^*})$ where σ_{\min} denotes the smallest eigenvalue), the second term $\lambda H_\lambda^{-1} \delta_{z'}^{(\lambda)}$ becomes negligible, leading to the approximation.

$$H_\lambda^{-1} H_{w^*} \delta_{z'}^{(\lambda)} \approx \delta_{z'}^{(\lambda)} \quad (11)$$

For Term C, the scalar coefficient $(\delta_{z'}^{(\lambda)})^T \nabla f(x, w^*) = \alpha ((\delta_{z'}^{(\lambda)})^T \nabla f(z', w^*)) = \alpha s_{z'}^{(\lambda)}$ simplifies to

$$\frac{\delta_{z'}^{(\lambda)} (\delta_{z'}^{(\lambda)})^T}{1 - s_{z'}^{(\lambda)}} \nabla f(x, w^*) = \frac{\alpha s_{z'}^{(\lambda)}}{1 - s_{z'}^{(\lambda)}} \delta_{z'}^{(\lambda)} \quad (12)$$

Finally, Term D's scalar coefficient is given by $(\delta_{z'}^{(\lambda)})^T (H_{w^*} \delta_{z'}^{(\lambda)}) = (\delta_{z'}^{(\lambda)})^T (H_\lambda - \lambda I) \delta_{z'}^{(\lambda)} = s_{z'}^{(\lambda)} - \lambda \|\delta_{z'}^{(\lambda)}\|^2$. For small λ , this approximates to $s_{z'}^{(\lambda)}$ yielding

$$\frac{\delta_{z'}^{(\lambda)} (\delta_{z'}^{(\lambda)})^T}{1 - s_{z'}^{(\lambda)}} H_{w^*} \delta_{z'}^{(\lambda)} \approx \frac{s_{z'}^{(\lambda)}}{1 - s_{z'}^{(\lambda)}} \delta_{z'}^{(\lambda)} \quad (13)$$

Combining these simplified terms, $w_x - w_z$ approximates to

$$\begin{aligned} & \approx \alpha \delta_{z'}^{(\lambda)} + \delta_{z'}^{(\lambda)} + \frac{\alpha s_{z'}^{(\lambda)}}{1 - s_{z'}^{(\lambda)}} \delta_{z'}^{(\lambda)} + \frac{s_{z'}^{(\lambda)}}{1 - s_{z'}^{(\lambda)}} \delta_{z'}^{(\lambda)} = \left[(\alpha + 1) + \frac{\alpha s_{z'}^{(\lambda)} + s_{z'}^{(\lambda)}}{1 - s_{z'}^{(\lambda)}} \right] \delta_{z'}^{(\lambda)} \\ & = \left[(\alpha + 1) + \frac{(\alpha + 1)s_{z'}^{(\lambda)}}{1 - s_{z'}^{(\lambda)}} \right] \delta_{z'}^{(\lambda)} = \left[\frac{(\alpha + 1)(1 - s_{z'}^{(\lambda)}) + (\alpha + 1)s_{z'}^{(\lambda)}}{1 - s_{z'}^{(\lambda)}} \right] \delta_{z'}^{(\lambda)} \\ & = \frac{\alpha + 1}{1 - s_{z'}^{(\lambda)}} \delta_{z'}^{(\lambda)} \end{aligned} \quad (14)$$

Therefore, the efficient and numerically stable update rule for unlearning a data point x similar to a previously unlearned point z' is

$$w_x = w_z + \frac{\alpha + 1}{1 - s_{z'}^{(\lambda)}} (w_z - w^*) \quad (15)$$

To ensure the numerical stability of our proposed update rule, it is essential to prevent the denominator $1 - s_{z'}^{(\lambda)}$ from becoming zero. The damped self-influence score is defined as

$$s_{z'}^{(\lambda)} = \nabla f(z', w^*)^\top H_\lambda^{-1} \nabla f(z', w^*),$$

where $H_\lambda = H_{w^*} + \lambda I$ is the damped Hessian. The condition for $s_{z'}^{(\lambda)}$ to equal 1 is

$$\nabla f(z', w^*)^\top H_\lambda^{-1} \nabla f(z', w^*) = 1.$$

The non-vanishing nature of the denominator is guaranteed by choosing a sufficiently large damping term λ . Using the Rayleigh-Ritz theorem, a simple upper bound is given by

$$s_{z'}^{(\lambda)} \leq \frac{\|\nabla f(z', w^*)\|^2}{\lambda_{\min}(H_\lambda)}.$$

270 Since the minimum eigenvalue of the damped Hessian satisfies $\lambda_{\min}(H_\lambda) \geq \lambda$, we obtain the bound
 271

$$272 \quad s_{z'}^{(\lambda)} \leq \frac{\|g\|^2}{\lambda}, \quad g = \nabla f(z', w^*).$$

273
 274 Therefore, a sufficient condition to avoid $s_{z'}^{(\lambda)} \geq 1$ is
 275

$$276 \quad \frac{\|g\|^2}{\lambda} < 1,$$

277 which requires the gradient norm to be strictly controlled:
 278

$$279 \quad \|g\| < \sqrt{\lambda}.$$

280 For a well-trained model where the gradient norm at the optimum is expected to be small, and with a
 281 common regularization parameter such as $\lambda = 0.01$, this condition ($\|g\| < 0.1$) is generally satisfied,
 282 ensuring $s_{z'}^{(\lambda)} \neq 1$ and securing the stability of our method. . This result provides a computationally
 283 efficient approximation that leverages the pre-computed quantities w_z , w^* , and $s_{z'}^{(\lambda)}$ from the initial
 284 unlearning of z' , avoiding the need for expensive Hessian-inverse-vector products when unlearning
 285 similar data points while maintaining numerical stability through Hessian damping.
 286

287 4 THEORETICAL GUARANTEES

290 We now present our main theoretical results that provide guarantees for our similarity-based un-
 291 learning approach. The proofs for these results are provided in Appendix B

292 **Theorem 4.1** (Parameter Update Error Bound). *Let w^* be the optimal parameter of the model, w_z
 293 be the parameters after the approximate unlearning of data point z' using the damped Hessian,
 294 w_x be the parameters after the standard approximate unlearning of data point x , and w'_x be the
 295 parameters after our similarity-based unlearning of data point x . The parameter update error is
 296 bounded by:*

$$297 \quad \|w_x - w'_x\| \leq \|H_\lambda^{-1}\| \cdot \left\| \nabla f(x, w^*) - \frac{\alpha + 1}{1 - s_{z'}^{(\lambda)}} \nabla f(z', w^*) \right\| \quad (16)$$

300 where α is the Pearson correlation coefficient and $s_{z'}^{(\lambda)} = \nabla f(z', w^*)^T H_\lambda^{-1} \nabla f(z', w^*)$ is the
 301 damped self-influence score.
 302

303 *Proof sketch.* The error bound follows from the triangle inequality applied to the difference be-
 304 tween standard unlearning ($w_x = w_z + H_\lambda^{-1} \nabla f(x, w^*)$) and similarity-based unlearning ($w'_x \approx$
 305 $w_z + \frac{\alpha+1}{1-s_{z'}^{(\lambda)}} H_\lambda^{-1} \nabla f(z', w^*)$). The bound is obtained by factoring out the damped Hessian inverse
 306 and applying the submultiplicative property of matrix norms. The complete proof is provided in
 307 Appendix B. \square

308 **Lemma 4.2** (Gradient Approximation for Quadratic Loss). *For the quadratic loss function
 309 $f(z', w) = \frac{1}{2}(y - w^\top z')^2$, define the scaling factor $C = \frac{\alpha+1}{1-s_{z'}^{(\lambda)}}$ and the residuals:*

$$310 \quad r_x = y_x - w^{*\top} x, \quad r_z = y_z - w^{*\top} z'.$$

311 Then the gradient difference satisfies:

$$312 \quad \|\nabla f(x, w^*) - C \nabla f(z', w^*)\| \leq (|C| \cdot |r_z| + |\beta| \cdot |r_x|) \cdot \|z'\| + |r_x| \cdot \|c\| \quad (17)$$

313 assuming a linear relationship $x = \beta z' + c$, where $\beta \in \mathbb{R}$ is a scalar and $c \in \mathbb{R}^d$ is the offset vector.

314 *Proof sketch.* We compute the gradients for quadratic loss: $\nabla f(z', w^*) = -r_z z'$ and $\nabla f(x, w^*) =$
 315 $-r_x x$, where r_z, r_x are the residuals. Using the linear relationship $x = \beta z' + c$ (justified
 316 by high Pearson correlation), we substitute and apply the triangle inequality twice to bound
 317 $\|Cr_z z' - r_x(\beta z' + c)\|$. The complete proof is provided in Appendix B. \square

324 **Assumption 4.3** (Standardized Data). *We assume that the input data is standardized such that*
 325 *$x_i, z'_i \sim \mathcal{N}(0, 1)$, target $y \sim \mathcal{N}(0, 1)$, d is the number of features and $\|w^*\|$ has bounded norm.*
 326 *Then, $|x_i|, |z'_i|, |y| \leq k$, where $k = 4$, and $\|x\|, \|z'\| \approx \sqrt{d}$*

327 **Lemma 4.4** (Residual and Coefficient Bounds). *Under Assumption 4.3, the following hold for vec-*
 328 *tors $x, z' \in \mathbb{R}^d$, responses y_x, y_z , and mean vectors \bar{x}, \bar{z}' , which are $|r_x|, |r_z| \leq k + \|w^*\|\sqrt{d}$,*
 329 *$\|c\| \leq k(1 + |\beta|)$, $|\beta| \leq \frac{\sqrt{d}+k}{\sqrt{d}-k}$, for $\sqrt{d} > k$, and $|\alpha| \leq 1$.*

332 *Proof sketch.* The bounds follow directly from Assumption 4.3 and triangle inequality applications:
 333 (1) residual bounds use $|r_x| \leq |y_x| + \|w^*\| \cdot \|x\|$, (2) offset bound follows from $\|c\| \leq \|\bar{x}\| + |\beta| \cdot \|\bar{z}'\|$,
 334 (3) scaling coefficient bound uses triangle and reverse triangle inequalities on centered vectors, and
 335 (4) correlation coefficient bound is standard. The complete proof is provided in Appendix B. \square

337 5 MAIN RESULT: FINAL ERROR BOUND

339 **Theorem 5.1** (Final Parameter Update Error Bound). *Under Assumption 4.3 (with $k = 4$), the*
 340 *parameter update error satisfies:*

$$342 \quad \|w_x - w'_x\| \leq \|H_\lambda^{-1}\| \left(4 + \|w^*\|\sqrt{d} \right) \left(|C|\sqrt{d} + |\beta|(\sqrt{d} + 4) + 4 \right) \quad (18)$$

$$344 \quad \lesssim \|H_\lambda^{-1}\| \left((|C| + 1)\|w^*\|d + 4(|C| + 1)\sqrt{d} \right) \quad \text{for large } d, \quad (19)$$

346 where $C = \frac{\alpha+1}{1-s_{z'}^{(\lambda)}}$.

348 *Proof sketch.* The proof begins by substituting the bound on the gradient approximation error from
 349 the preceding lemmas into our main error bound. We then insert the data-dependent bounds for
 350 residuals and coefficients and perform algebraic simplification to arrive at the final asymptotic rate.
 351 The complete proof is provided in Appendix B. \square

353 **Remark 5.2** (Practical Implications). *Theorem 5.1 provides a theoretical guarantee for our damped,*
 354 *similarity-based unlearning method. The error bound scales polynomially with the input dimension*
 355 *d , dominated by an $\mathcal{O}(d)$ term. Crucially, the bound's stability is ensured by the condition number*
 356 *of the damped Hessian, $\|H_\lambda^{-1}\|$, and the factor C , which is well-behaved due to the non-vanishing*
 357 *denominator $1 - s_{z'}^{(\lambda)}$. This highlights that our method is not only computationally efficient but also*
 358 *theoretically grounded and robust in high-dimensional settings.*

360 6 ALGORITHM DESIGN

362 Algorithm 1 implements our enhanced similarity-based unlearning framework with Hessian damp-
 363 ing through three main phases. The algorithm begins by computing the damped Hessian approxi-
 364 mation $H_\lambda = H_{w^*} + \lambda I$, which ensures numerical stability by regularizing the second-order infor-
 365 mation of the loss function at the optimal parameters, and selects pairs of data points (z', x) from
 366 the dataset to simulate the sequential unlearning scenario.

367 For each selected pair, the algorithm simulates approximate unlearning by first removing the data
 368 point z' using the damped influence function update

$$370 \quad w_z = w^* + H_\lambda^{-1} \nabla f(z', w^*),$$

371 which produces the damped influence direction

$$373 \quad \delta_{z'}^{(\lambda)} = w_z - w^*.$$

374 The algorithm then computes the damped self-influence score

$$376 \quad s_{z'}^{(\lambda)} = \nabla f(z', w^*)^T H_\lambda^{-1} \nabla f(z', w^*),$$

377 which measures the curvature-adjusted impact of the data point removal.

378 Instead of performing the computationally expensive second unlearning step for a similar data point
 379 x , our proposed similarity-based approximation computes the similarity factor α between data points
 380 x and z' , then estimates the final unlearned parameters using the theoretically derived update rule
 381

$$382 w'_x = w_z + \frac{\alpha + 1}{1 - s_{z'}^{(\lambda)}} (w_z - w^*). \\ 383$$

384 This leverages our key insight that for similar data points, the influence directions are proportionally
 385 related, while the damping ensures $1 - s_{z'}^{(\lambda)} > 0$ for numerical stability.

386 The algorithm evaluates both approaches by computing their performance on the dataset and recording
 387 the norm difference $\|w_x - w'_x\|$ to quantify the quality of the approximation. The key advantage
 388 is replacing the second expensive Hessian inverse-vector product with a robust scaling factor that
 389 incorporates both **data similarity** (α) and the **self-influence** ($s_{z'}^{(\lambda)}$) of the first unlearned point.
 390

391 **Algorithm 1** Pearson Correlation-Based Approximate Unlearning

392 **Input:** Trained model f_{θ^*} , dataset $D = \{(x_i, y_i)\}_{i=1}^n$, regularization parameter λ , learning rate η

393 **Output:** Updated model after unlearning similar data points

- 394 1: Compute damped Hessian: $H_\lambda = H_{w^*} + \lambda I$
- 395 2: Select a subset of data point pairs $\{(z', x)\} \subseteq D$ where x and z' are similar
- 396 3: **for** each pair (z', x) **do**
- 397 4: Extract gradients: $\nabla f(z', w^*)$ and $\nabla f(x, w^*)$
- 398 5: Compute unlearned weight: $w_z = w^* + H_\lambda^{-1}(\lambda w^* + \nabla f(z', w^*))$
- 399 6: Compute damped self-influence score: $s_{z'}^{(\lambda)} = \nabla f(z', w^*)^T (w_z - w^*)$
- 400 7: Compute updated weight: $w_x = w_z + H_\lambda^{-1}(\lambda w_z + \nabla f(x, w^*))$
- 401 8: Compute Pearson correlation $\alpha = \text{Pearson}(x, z')$
- 402 9: Compute scaling factor: $C = \frac{\alpha + 1}{1 - s_{z'}^{(\lambda)}}$
- 403 10: Estimate similarity-based unlearning: $w'_x = w_z + C \cdot \delta z'^{(\lambda)}$
- 404 11: Evaluate accuracy of both w_x and w'_x on D
- 405 12: Record norm difference $\|w_x - w'_x\|$
- 406 13: **end for**

407 **7 EXPERIMENTS**

408
 409 **Datasets:** We evaluate our proposed approach through a comparative analysis against baseline methods
 410 across seven distinct datasets. The evaluation utilizes the California Housing dataset Pace, R.
 411 Kelley and Barry, Ronald (1997) comprising 20,640 records with 8 features from the 1990 census
 412 to predict median house values. The Diabetes dataset Pedregosa et al. (2011a), a scikit-learn regression
 413 dataset with 442 samples and 10 features targeting disease progression one year post-baseline.
 414 The MNIST dataset LeCun et al. (1998), a standard benchmark for handwritten digit recognition
 415 containing 70,000 grayscale 28x28 pixel images. The Fashion-MNIST dataset, containing 70,000
 416 grayscale 28x28 pixel images of fashion items across 10 categories, evaluated with CNN architecture.
 417 The CIFAR-10 dataset, a color image classification dataset containing 60,000 32x32 pixel
 418 images across 10 classes, evaluated with ResNet-18 architecture. And, the LFW (Labeled Faces
 419 in the Wild) dataset, a face recognition dataset containing images of public figures, evaluated with
 420 ResNet-18 architecture. And, a custom synthetic dataset of 5,000 samples generated via a Gaussian
 421 mixture model with two distinct means to facilitate performance assessment under controlled
 422 conditions with a known ground truth.
 423

424 All features are standardized using the Standard Scaler Pedregosa et al. (2011b) to have zero mean
 425 and unit variance. The data split are as follows, California Housing and Diabetes datasets were
 426 divided into 80% training and 20% testing sets with a fixed random seed of 42. For the synthetic
 427 dataset, all 5,000 samples were used for training and evaluated on the same set, and unlearning
 428 experiments are conducted by selecting 100 random pairs of data points. MNIST and Fashion-
 429 MNIST followed the standard split of 60,000 training and 10,000 test samples. For unlearning
 430 experiments on MNIST, 75% of the samples corresponding to the digit ‘3’ were selected as the
 431 unlearning subset. CIFAR-10 used 50,000 training and 10,000 test samples.

432 **Similarity Measure Evaluation:** To validate our choice of Pearson correlation, we empirically
 433 evaluated three similarity measures for approximating sequential unlearning effects. Our experimen-
 434 tal setup involved training a linear regression model on the Diabetes dataset with L2 regularization
 435 ($\lambda = 0.01$) and testing sequential unlearning approximations on 4,950 pairs of randomly subsam-
 436 pled training points. A detailed analysis of this comparison, including the experimental setup and
 437 full results, is provided in Appendix B.1.

438 **Evaluation Metrics:** We utilize average accuracy with standard deviation (**Avg. (Std.) Acc.**) model
 439 performance on the retained dataset after unlearning, measuring utility preservation. Also, we em-
 440 ploy **Acc. Unlearn** which quantifies the effectiveness of the forgetting process and is defined as
 441

$$1 - \frac{\|w'_x - w_x\|_2}{\max_x \|w'_x - w_x\|_2},$$

442 where w'_x denotes our similarity-based parameters and w_x denotes the standard sequential unlearn-
 443 ing parameters. This demonstrates that our method inherits the privacy guarantees of standard ap-
 444 proximate unlearning while achieving a substantially reduced computational cost. We also utilised
 445 metrics such tug-of-war (ToW) and membership inference attack (MIA) as defined in Zhao et al.
 446 (2024).

447 **Model Architecture:** For the regression tasks (California Housing and Diabetes datasets), we used a
 448 simple linear regression model implemented as `nn.Linear(input_dim, 1)`, which is a single-
 449 layer architecture mapping features directly to the target. For the classification tasks, three architec-
 450 tures were employed. For the synthetic dataset, we used a three-layer fully connected neural network
 451 with ReLU activations, consisting of an input layer (10 features to 64 units), a hidden layer (64 to
 452 32 units), and an output layer (32 to 2 classes). For the MNIST and FMNIST dataset, we used a
 453 convolutional neural network with two convolutional layers followed by two fully connected layers.
 454 The architecture consists of: (1) a convolutional layer with 10 filters of size 5×5 , (2) a second
 455 convolutional layer with 20 filters of size 5×5 and dropout, both followed by ReLU activation and
 456 2×2 max pooling, (3) a fully connected layer mapping the flattened 320 features to 50 units, and
 457 (4) an output layer mapping 50 units to 10 classes. For the CIFAR-10 & LFW, we used ResNet-18
 458 He et al. (2016)

459 **Training Configuration:** The models were trained with different hyperparameter settings for re-
 460 gression and classification tasks. For classification tasks, we used the Adam optimizer and trained
 461 for 100 epochs with learning rate of 0.001 on the synthetic dataset and 50 epochs and learning rate
 462 of 0.001 on MNIST, 30 epochs and learning rate of 0.07 for FMNIST, 30 epochs and learning rate
 463 of 0.001 on LFW, and 80 epochs and learning rate of 0.001 on CIFAR-10. For regression tasks, we
 464 used stochastic gradient descent (SGD) with a learning rate of 0.01, a weight decay of 0.01, and
 465 trained for 1000 epochs. The regularization parameter λ was set to 0.01 for regression tasks and
 466 0.001 for classification tasks.

467 **Baseline:** We compare the proposed method against established state-of-the-art baselines: MITR
 468 Xu & Strohmer (2025), RUM(A) Zhao et al. (2024), RUM(B) Zhao & Triantafillou (2024), and
 469 Hessian-free Unlearning Qiao et al. (2025).

470 **Computational Complexity:** The major efficiency gain of our method lies in transforming the
 471 unlearning process from a series of expensive, repeated computations into a fast, closed-form opera-
 472 tion. Standard approximate unlearning requires computing a new Hessian-inverse-vector product
 473 ($\mathbf{H}^{-1}\mathbf{v}$) for every data point requested for removal, making the process highly expensive. Our
 474 Similarity-Based Unlearning, conversely, requires this computationally intense step only once for
 475 the first unlearned data point (z'). For all subsequent, correlated unlearning requests, the method
 476 achieves significant speedup by replacing the $\mathbf{H}^{-1}\mathbf{v}$ computation with simple $\mathcal{O}(d)$ vector and
 477 scalar operations (scaling and addition). This strategy fundamentally shifts the complexity of se-
 478 quential unlearning from a repetitive high-cost bottleneck to a minimal-cost operation.

479 7.1 RESULTS AND ANALYSIS

480 We present our experimental results across classification and regression tasks. Table 1 presents
 481 comprehensive evaluation across five classification datasets. Our method consistently outperforms
 482 baselines across all metrics. Table 2 demonstrates the effectiveness of our approach on regression
 483 tasks. To directly validate our method against recent state-of-the-art approaches, we conducted

486 comprehensive experiments using standard unlearning metrics (ToW and MIA) on ResNet-18 with
 487 CIFAR-10. Table 3 presents this comparison. For conciseness, we denote Avg. (Std.) as ASD, Acc.
 488 Remain as AR, and Acc. Unlearn as AU.
 489

490 Table 1: Classification Performance Comparison of our method with baselines.
 491

492 Dataset (Model)	493 MITR		494 Hessian Free Unlearning		495 Our Method	
496	ASD	AU	ASD	ASD	ASD	AU
Synthetic GMM	73.3	93.3	—	99.71	95.67	
MNIST (CNN)	53.8	78.7	91.50	98.71	81.41	
MNIST (Logistic Regression)	—	—	87.50	97.66	73.11	
Fashion-MNIST (CNN)	—	—	77.85	89.16	—	
CIFAR-10 (ResNet-18)	—	—	79.62	81.13	—	
LFW (ResNet-18)	—	—	71.92	79.70	—	

499 Table 2: Regression Performance.
 500

502 Dataset	503 AU
California Housing	91.48
Diabetes	91.44

501 Table 3: Comparison with SOTA Unlearning
 502 Methods on CIFAR-10 (ResNet-18).
 503

504 Method	505 ToW	506 MIA
RUM(A)	0.715	0.489
RUM(B)	0.920	0.590
Our Method	0.950	0.660

507

8 CONCLUSION

508 Our work introduces a novel similarity detection approach based on Pearson correlation to enable
 509 efficient machine unlearning, thereby addressing the computational challenges associated with re-
 510 peatedly removing multiple similar data points from trained neural networks. The proposed method
 511 overcomes key limitations in existing approximate unlearning techniques by leveraging correlation-
 512 based similarity to circumvent redundant computational overhead during the unlearning of related
 513 data points. Through comprehensive experiments on seven datasets, California Housing, Diabetes,
 514 MNIST, and a synthetic GMM, Fashion-MNIST, CIFAR-10, LFW we demonstrate that our approach
 515 achieves significant improvements over state-of-the-art methods. The results show that our approach
 516 attains comparable forgetting effectiveness while substantially reducing computational costs, con-
 517 firms that Pearson correlation effectively identifies candidates for lightweight unlearning, and reveals
 518 an accuracy improvement on the order of 10^{-2} compared to baseline approaches. We intend to ex-
 519 tend this framework to incorporate other similarity metrics, develop adaptive threshold mechanisms
 520 for dynamically selecting between similarity-based and full unlearning, and evaluate the approach on
 521 larger-scale deep learning models and more diverse datasets. We also intend to explore applications
 522 in federated learning environments, where efficient unlearning is paramount. This work impacts
 523 privacy-preserving machine learning by providing a computationally efficient solution for removing
 524 correlated data points, offering a method that integrates easily into existing frameworks and holds
 525 significant potential for real-world deployment in systems requiring compliance with regulations
 526 such as the GDPR’s *right to be forgotten*.
 527

528

REFERENCES

529 Maurice S Bartlett. An inverse matrix adjustment arising in discriminant analysis. *The Annals of*
 530 *Mathematical Statistics*, 22(1):107–111, 1951.

531 Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
 532 Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *2021 IEEE*
 533 *Symposium on Security and Privacy (SP)*, pp. 141–159, 2021. doi: 10.1109/SP40001.2021.00019.

534 Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In *2015*
 535 *IEEE Symposium on Security and Privacy*, pp. 463–480, 2015. doi: 10.1109/SP.2015.35.

536 European Parliament and Council of the European Union. Regulation (eu) 2016/679 of the euro-
 537 pean parliament and of the council. Available at: <https://data.europa.eu/eli/reg/2016/679/oj>, 2016.
 538 Accessed: 2025-07-14.

540 Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites.
 541 Adaptive machine unlearning. *Advances in Neural Information Processing Systems*, 20:16319–
 542 16330, 2021.

543

544 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
 545 tion. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 546 770–778, 2016. doi: 10.1109/CVPR.2016.90.

547

548 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Mnist database of handwritten
 549 digits. Available at: <http://yann.lecun.com/exdb/mnist/>, 1998. Accessed via PyTorch torchvi-
 550 sion.datasets.

551

552 Wenjie Li, Jiawei Li, Christian Schroeder de Witt, Ameya Prabhu, and Amartya Sanyal. Delta-
 553 influence: Unlearning poisons via influence functions. *arXiv preprint*, 2024. URL <http://arxiv.org/abs/2411.13731>.

554

555 Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, et al. A survey of machine unlearning.
 556 *arXiv preprint arXiv:2209.02299*, 2022.

557

558 Jorge Nocedal and Stephen J Wright. *Numerical optimization*. Springer Science & Business Media,
 559 New York, 2nd edition, 2006.

560

561 Pace, R. Kelley and Barry, Ronald. California housing dataset. Available at: https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset, 1997. Accessed :
 562 2025 – 07 – 14.

563

564 F. Pedregosa, G. Varoquaux, et al. Diabetes dataset. scikit-learn machine learning li-
 565 brary, 2011a. URL https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html. Accessed: 2025-07-14.

566

567 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
 568 Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Ma-
 569 chine learning in python. *the Journal of machine Learning research*, 12:2825–2830, 2011b.

570

571 Xinqiao Qiao, Meng Zhang, Ming Tang, and Ermin Wei. Hessian-free online cer-
 572 tified unlearning. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu (eds.), *International Conference on Representation Learning*, volume 2025, pp. 32675–32711,
 573 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/50ee6db59fca8643dc625829d4a0eab9-Paper-Conference.pdf.

574

575

576 Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
 577 you want to forget: Algorithms for machine unlearning. *Advances in Neural Information Processing
 578 Systems*, 34:18075–18086, 2021.

579

580 Jie Xu, Zihan Wu, Cong Wang, and Xiaohua Jia. Machine unlearning: Solutions and challenges. *IEEE
 581 Transactions on Emerging Topics in Computational Intelligence*, 8:2150–2168, 2024.

582

583 Shizhou Xu and Thomas Strohmer. Machine unlearning via information theoretic regularization, 2025.
 584 URL <http://arxiv.org/abs/2502.05684>.

585

586 David Zagardo. A more practical approach to machine unlearning. *arXiv preprint*, June 2024. URL
 587 <https://arxiv.org/abs/2406.09391>.

588

589 Kairan Zhao and Peter Triantafillou. Scalability of memorization-based machine unlearning, 2024.
 590 URL <https://arxiv.org/abs/2410.16516>.

591

592 Kairan Zhao, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, and Peter Tri-
 593 antafillou. What makes unlearning hard and what to do about it, 2024. URL <https://arxiv.org/abs/2406.01257>.

594
595
596
597
598
599
A APPENDIX

Table 4: Summary of notation

Symbol	Description	Symbol	Description
D	Training dataset $\{(x_i, y_i)\}_{i=1}^n$	n	Number of training samples
d	Number of features/input dimension	x, z'	Data points in \mathbb{R}^d
y	Target/label values	w^*	Optimal model parameters
w_z	Parameters after unlearning z'	w_x	Parameters after approximate unlearning of x
w'_x	Parameters after similarity-based unlearning	$f(z, w)$	Loss function for data point z
$F(D, w)$	Total loss over dataset D	$\nabla f(z, w)$	Gradient of loss w.r.t. parameters w
H_{w^*}	Hessian matrix at w^*	H_λ	Damped Hessian: $H_{w^*} + \lambda I$
$H_{w^*}^{-1}$	Inverse of Hessian at w^*	H_λ^{-1}	Inverse of damped Hessian
$s_{z'}^{(\lambda)}$	Damped self-influence score	C	Scaling factor: $\frac{\alpha+1}{1-s_{z'}^{(\lambda)}}$
λ	Regularization parameter	η	Learning rate
α	Pearson correlation coefficient	\bar{x}, \bar{z}'	Mean vectors of x and z'
r_x, r_z	Residuals: $y_x - w^{*\top} x$ etc.	β	Scaling coefficient in $x = \beta z' + c$
c	Offset vector in linear relationship	k	Bound constant for standardized data (typically 4)
I	Identity matrix	ϵ	Error tolerance or approximation bound
δ	Parameter update step	D_f	Forget set (data to be unlearned)
D_r	Remaining data: $D \setminus D_f$	$A(\cdot)$	Learning algorithm
$U(\cdot)$	Unlearning process	$\ \cdot\ _2$	ℓ_2 norm
$\mathcal{N}(\mu, \sigma^2)$	Normal distribution		

623
624
625
626
627
B PROOFS FROM SECTION 4

Proof of Theorem 4.1. By definition of standard approximate unlearning and our proposed similarity-based approach (both using the damped Hessian):

$$w_x = w_z + H_\lambda^{-1} \nabla f(x, w^*) \quad (20)$$

$$w'_x = w_z + \frac{\alpha+1}{1-s_{z'}^{(\lambda)}} (w_z - w^*) \quad (21)$$

From the first damped unlearning step, we have $w_z - w^* \approx H_\lambda^{-1} \nabla f(z', w^*)$. Substituting this into the expression for w'_x :

$$w'_x \approx w_z + \frac{\alpha+1}{1-s_{z'}^{(\lambda)}} H_\lambda^{-1} \nabla f(z', w^*)$$

The error is the difference between w_x and w'_x :

$$\begin{aligned}
 \|w_x - w'_x\| &\approx \left\| (w_z + H_\lambda^{-1} \nabla f(x, w^*)) - \left(w_z + \frac{\alpha+1}{1-s_{z'}^{(\lambda)}} H_\lambda^{-1} \nabla f(z', w^*) \right) \right\| \\
 &= \left\| H_\lambda^{-1} \nabla f(x, w^*) - \frac{\alpha+1}{1-s_{z'}^{(\lambda)}} H_\lambda^{-1} \nabla f(z', w^*) \right\| \\
 &= \left\| H_\lambda^{-1} \left(\nabla f(x, w^*) - \frac{\alpha+1}{1-s_{z'}^{(\lambda)}} \nabla f(z', w^*) \right) \right\| \\
 &\leq \|H_\lambda^{-1}\| \cdot \left\| \nabla f(x, w^*) - \frac{\alpha+1}{1-s_{z'}^{(\lambda)}} \nabla f(z', w^*) \right\|
 \end{aligned} \quad (22)$$

648
649

□

650 *Proof of Lemma 4.2.* The gradient of the quadratic loss is given by:

651
$$\nabla f(z', w^*) = -(y_z - w^{*\top} z') z' = -r_z z', \quad (23)$$

653
$$\nabla f(x, w^*) = -(y_x - w^{*\top} x) x = -r_x x. \quad (24)$$

654 Hence, the difference in gradients becomes:

655
$$\|\nabla f(x, w^*) - C \nabla f(z', w^*)\| = \|-r_x x - C(-r_z z')\| = \|Cr_z z' - r_x x\|. \quad (25)$$

656 The linear relationship $x = \beta z' + c$ is justified by the Pearson correlation, as a high correlation
657 implies collinearity between the centered vectors. We substitute this relationship into the expression:

658
$$\begin{aligned} \|Cr_z z' - r_x x\| &= \|Cr_z z' - r_x(\beta z' + c)\| \\ 659 &= \|Cr_z z' - r_x \beta z' - r_x c\| \\ 660 &= \|(Cr_z - \beta r_x) z' - r_x c\| \\ 661 &\leq \|(Cr_z - \beta r_x) z'\| + \|r_x c\| \quad (\text{by triangle inequality}) \\ 662 &= |Cr_z - \beta r_x| \cdot \|z'\| + |r_x| \cdot \|c\| \\ 663 &\leq (|C| \cdot |r_z| + |\beta| \cdot |r_x|) \cdot \|z'\| + |r_x| \cdot \|c\|. \quad (\text{by triangle inequality}) \end{aligned} \quad (26)$$

664 This provides an upper bound on the gradient difference based on the norms of z' and c , the residuals
665 r_x , r_z , and the scaling factors C and β . □666
667668 *Proof of Lemma 4.4.* (1) From triangle inequality:

669
$$|r_x| \leq |y_x| + \|w^*\| \cdot \|x\| \leq k + \|w^*\| \sqrt{d}$$

670 The same applies for r_z .671
672 (2) From $c = \bar{x} - \beta \bar{z}'$:

673
$$\|c\| \leq \|\bar{x}\| + |\beta| \cdot \|\bar{z}'\| \leq k(1 + |\beta|)$$

674
675 (3) Use triangle and reverse triangle inequalities:

676
$$\|x - \bar{x}\| \leq \sqrt{d} + k, \quad \|z' - \bar{z}'\| \geq \sqrt{d} - k \Rightarrow |\beta| \leq \frac{\sqrt{d} + k}{\sqrt{d} - k}$$

677
678 (4) Standard correlation measures satisfy $|\alpha| \leq 1$. □

679

680 *Proof of Theorem 5.1.* Starting from the general bound derived previously:

681
$$\|w_x - w'_x\| \leq \|H_\lambda^{-1}\| \cdot ((|C| \cdot |r_z| + |\beta| \cdot |r_x|) \cdot \|z'\| + |r_x| \cdot \|c\|).$$

682 We substitute the simplified bounds from Lemma 4.4:

683
$$\begin{aligned} &\leq \|H_\lambda^{-1}\| \left((|C|(4 + \|w^*\| \sqrt{d}) + |\beta|(4 + \|w^*\| \sqrt{d})) \sqrt{d} + (4 + \|w^*\| \sqrt{d}) \cdot 4(1 + |\beta|) \right) \\ 684 &= \|H_\lambda^{-1}\| (4 + \|w^*\| \sqrt{d}) \left((|C| + |\beta|) \sqrt{d} + 4(1 + |\beta|) \right) \\ 685 &= \|H_\lambda^{-1}\| (4 + \|w^*\| \sqrt{d}) \left(|C| \sqrt{d} + |\beta| \sqrt{d} + 4 + 4|\beta| \right) \\ 686 &= \|H_\lambda^{-1}\| (4 + \|w^*\| \sqrt{d}) \left(|C| \sqrt{d} + |\beta| (\sqrt{d} + 4) + 4 \right). \end{aligned}$$

687 This gives the first line of the theorem. For a large feature dimension d , we have $|\beta| \approx 1$. The
688 expression's dominant terms are:

689
$$\begin{aligned} &\lesssim \|H_\lambda^{-1}\| (4 + \|w^*\| \sqrt{d}) \left(|C| \sqrt{d} + 1 \cdot (\sqrt{d} + 4) + 4 \right) \\ 690 &= \|H_\lambda^{-1}\| (4 + \|w^*\| \sqrt{d}) \left((|C| + 1) \sqrt{d} + 8 \right) \\ 691 &= \|H_\lambda^{-1}\| \left(4(|C| + 1) \sqrt{d} + 32 + (|C| + 1) \|w^*\| d + 8 \|w^*\| \sqrt{d} \right). \end{aligned}$$

692 Grouping by powers of d , the highest-order terms give the final asymptotic bound:

693
$$\|w_x - w'_x\| \lesssim \|H_\lambda^{-1}\| \left((|C| + 1) \|w^*\| d + 4(|C| + 1) \sqrt{d} \right).$$

694
695
696
697
698
699
700
701

□

702 B.1 SIMILARITY MEASURE EVALUATION
703

704 To validate our choice of Pearson correlation, we empirically evaluated three similarity measures
705 for approximating sequential unlearning effects. Our experimental setup involved training a linear
706 regression model on the Diabetes dataset with L2 regularization ($\lambda = 0.01$) and testing sequential
707 unlearning approximations on 4,950 pairs of randomly subsampled training points.

708 We compared three measures to calculate the approximation factor α :

$$\alpha_{\text{cos}} = \frac{x^\top z'}{\|x\|_2 \|z'\|_2},$$

$$\alpha_{\text{pearson}} = \frac{(x - \bar{x})^\top (z' - \bar{z}')}{\|x - \bar{x}\|_2 \|z' - \bar{z}'\|_2},$$

$$\alpha_{\text{proj}} = \frac{x^\top z'}{\|z'\|_2^2}$$

717 Each similarity measure captures distinct facets of data relationships. *Cosine similarity* (α_{cos}) measures
718 the angle between two vectors, assessing directional congruence independent of magnitude.
719 The *Pearson correlation coefficient* (α_{pearson}) quantifies the linear correlation between centered vari-
720 ables, making it robust to distributional shifts. Finally, *Projection-based similarity* (α_{proj}) is the
721 unnormalized scalar projection of one vector onto another, making it sensitive to vector magnitudes.

722 For each pair (z', x) , we measured the approximation quality by computing the parameter differ-
723 ence $\|w_x - w'_x\|_2$ between standard approximate unlearning and our similarity-based approach. A
724 similarity measure "wins" if it produces the smallest approximation error among the three methods
725 for that pair.

726 Table 5: Comparison of similarity measures on the Diabetes dataset across 4,950 unlearning pairs.
727

728 Similarity Measure	729 Wins	729 Win Rate (%)
729 Cosine Similarity	1,160	23.4
730 Pearson Correlation	2,139	43.2
731 Projection-based	1,651	33.3

733 Of the 4,950 pairs tested, Pearson correlation achieved the highest win rate at 43.2%, significantly
734 outperforming the other methods, as shown in Table 5. This superior performance validates our
735 choice of Pearson correlation for capturing the linear relationships most relevant to gradient simi-
736 larity in unlearning contexts. Furthermore, its mean-centering property naturally accounts for the
737 bias terms in linear models, ensuring that the similarity factor α captures the true linear relationship
738 between data points rather than spurious correlations due to offsets.

739 C SAFETY ANALYSIS
740

742 The safety analysis is performed by setting a maximum acceptable approximation error (ϵ_{max}) for
743 the unlearned parameters ($\|w_x - w'_x\|$) and solving for the minimum required Pearson correlation
744 (α).

745 We use the overall error bound from Theorem 4.1:

$$746 \|w_x - w'_x\| \leq \|H_\lambda^{-1}\| \cdot \|\nabla f(x, w^*) - C \nabla f(z', w^*)\| \leq \epsilon_{\text{max}}$$

$$748 \|\nabla f(x, w^*) - C \nabla f(z', w^*)\| \leq \frac{\epsilon_{\text{max}}}{\|H_\lambda^{-1}\|}$$

751 Now define the allowable gradient error, $\epsilon' = \frac{\epsilon_{\text{max}}}{\|H_\lambda^{-1}\|}$

$$753 \|\nabla f(x, w^*) - C \nabla f(z', w^*)\| \leq \epsilon'$$

754 Now, we apply the mathematical bound for the gradient error (derived in Lemma 4.2)

$$755 \|\nabla f(x, w^*) - C \nabla f(z', w^*)\| \leq (|C| \cdot |r_z| + |\beta| \cdot |r_x|) \cdot \|z'\| + |r_x| \cdot \|c\|,$$

756 where $C = \frac{\alpha + 1}{1 - s_{z'}^{(\lambda)}}$, r_x and r_z are the residuals, and $x = \beta z' + c$ is the linear relationship.

757

$$759 (|C| \cdot |r_z| + |\beta| \cdot |r_x|) \cdot \|z'\| + |r_x| \cdot \|c\| \leq \epsilon'$$

760 Subtract the non- C error components (residual and offset terms) on both sides:

761

$$763 |C| \cdot |r_z| \cdot \|z'\| \leq \epsilon' - \underbrace{(|\beta| \cdot |r_x| \cdot \|z'\| + |r_x| \cdot \|c\|)}_{\text{Error not controlled by } \alpha}$$

764

765 Solve for the maximum allowed magnitude of C , denoted C_{\max} :

766

$$768 |C| \leq \frac{\epsilon' - (|\beta| \cdot |r_x| \cdot \|z'\| + |r_x| \cdot \|c\|)}{|r_z| \cdot \|z'\|} \equiv C_{\max}$$

769

770 The scaling factor C is defined in the paper as:

771

$$772 C = \frac{\alpha + 1}{1 - s_{z'}^{(\lambda)}}.$$

773

774 Since we want to find the lowest α that still satisfies the maximum allowed magnitude C_{\max} , we

775 substitute C_{\max} back into the definition and solve for minimum Pearson Correlation α_{\min} :

776

$$777 \frac{\alpha_{\min} + 1}{1 - s_{z'}^{(\lambda)}} = C_{\max},$$

778

$$779 \alpha_{\min} = C_{\max} \cdot \left(1 - s_{z'}^{(\lambda)}\right) - 1.$$

780

781 Hence, if $\alpha \geq \alpha_{\min}$, the Pearson correlation (α) is high enough to ensure that the error introduced

782 by the shortcut ($\|w_x - w'_x\|$) will be less than or equal to the maximum acceptable error (ϵ_{\max}).

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809