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ABSTRACT

In addressing the challenge of interpretability and generalizability of artificial mu-
sic intelligence, this paper introduces a novel symbolic representation that amal-
gamates both explicit and implicit musical information across diverse traditions
and granularities. Utilizing a hierarchical and-or graph representation, the model
employs nodes and edges to encapsulate a broad spectrum of musical elements, in-
cluding structures, textures, rhythms, and harmonies. This hierarchical approach
expands the representability across various scales of music. This representation
serves as the foundation for an energy-based model, uniquely tailored to learn
musical concepts through a flexible algorithm framework relying on the minimax
entropy principle. Utilizing an adapted Metropolis-Hastings sampling technique,
the model enables fine-grained control over music generation. A comprehensive
empirical evaluation, contrasting this novel approach with existing methodologies,
manifests considerable advancements in interpretability and controllability. This
study marks a substantial contribution to the fields of music analysis, composition,
and computational musicology.

1 INTRODUCTION

1.1 MOTIVATION

Music generation methodologies can traditionally be segmented into two primary representations:
symbolic and audio (Ji et al., 2023). Models within the audio domain, such as MusicLM Agostinelli
et al. (2023), generate direct audio output. Notably, achieving control in audio generation primar-
ily relies on natural language techniques. However, encapsulating musical nuances within natural
language descriptors remains an intricate task (Kim & Belkin, 2002)(Davies, 1983)(Clarke, 1989).
A deeper issue emerges when considering the inherent difficulty in intuitively understanding fre-
quency spectrums. Hence, symbolic representations emerge as a promising alternative, providing a
sparse coding interface that bridges the chasm between human intuition and the high-entropy nature
of digital audio samples, especially in tasks requiring detailed musical control.

Deep learning paradigms tailored for symbolic music generation often specialize in specific facets,
be it conditional generation, inpainting, or the creation of melody, harmony, and accompaniment
structures (Ji et al., 2023). These models, although intricate, often lack a holistic theoretical frame-
work and face hurdles in extrapolating to more comprehensive musical composition tasks. Another
challenge is that many of these models adapt loss functions originally devised for natural language
processing or computer vision. Such borrowings, while innovative, might not encapsulate musical
intricacies fully, hampering control over output generation.

A few symbolic music generation models, like Hyun et al. (2022), Zou et al. (2021), and Wang et al.
(2020), have embarked on integrating hierarchical and modifiable structures. Although these models
incorporate a degree of interpretability and control, their granularity is often not meticulous enough
to encompass the breadth of prior knowledge in symbolic music.

While the Generative Theory of Tonal Music (GTTM) by Lerdahl & Jackendoff (1983) presents an
insightful hierarchical blueprint for musical analysis, current adaptations of GTTM predominantly
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cater to homophonic tonal melodies, leaving out compositions enriched with polyphonic non-tonal
components.

In light of these identified limitations, our research endeavors to pioneer methods that surmount
challenges in both control and generalization within symbolic music generation. We envisage an
approach interweaving hierarchical constructs with visually intuitive representations, aiming for
versatile control over the generation mechanism and broad applicability across diverse musical tra-
ditions.

1.2 CONTRIBUTION

In summary, this paper makes three contributions:

• We propose a flexible and generalized hierarchical representation for symbolic music, en-
compassing existing representations while also providing additional musicological insights.

• The developed energy-based model, based on this hierarchical representation, enables ef-
fective learning of score music with interpretability.

• By adapting and employing Metropolis-Hastings sampling, we enable controlled genera-
tion of music, granting users fine-grained control over compositions.

2 RELATED WORK

The stochastic and-or grammar (AOG) initially emerged for parsing visual images(Zhu & Mum-
ford, 2006). It later extended to temporal and causal patterns in videos and robotic activities(Xiong
et al., 2016)(Pei et al., 2011)(Shu et al., 2015). The attributed and-or graph (A-AOG) was introduced
to enhance attribute reasoning (Park et al., 2016), and has been beneficial in scene synthesis(Qi et al.,
2018). We adapt the A-AOG representation and synthesis methodologies to symbolic music in our
research.

The filters random fields and maximum entropy (FRAME) model, rooted in the minimax entropy
principle, was crafted for texture characterization(Zhu et al., 1997). Recognized as energy-based
models, they’ve been utilized for analyzing natural images, unveiling detailed texture properties(Lu
et al., 2016a). The FRAME model was later applied to data articulated through and-or graphs(Zhu
& Mumford, 2006). In our work, we refactor the FRAME model to tailor the learning mechanism
for music, aiding in interpreting musical nuances.

The Metropolis-Hastings algorithm, a key part of the Markov chain Monte Carlo (MCMC) sam-
pling techniques(Metropolis et al., 2004)(Hastings, 1970), has been effective in tasks like furniture
arrangement and indoor scene synthesis(Yu et al., 2011)(Qi et al., 2018). We adapt this algorithm
to enhance music generation while allowing fine control over the modification of existing musical
constructs.

The Generative Theory of Tonal Music (GTTM) provides a robust framework for understand-
ing music perception and cognition based on generative grammar principles(Lerdahl & Jackendoff,
1983). We extract the core of GTTM, merging its four main concepts into a unified entity. Dur-
ing implementation, we included specific well-formedness rules to narrow down the search domain
during the sampling process.

3 REPRESENTATION OF SYMBOLIC MUSIC

This study utilizes the attributed And-Or Graph (A-AOG) as the representation of symbolic music.
The A-AOG is a stochastic hierarchical grammar model that integrates phrase structure grammar,
dependency grammar, and attribute grammar. The specific A-AOG used for music, known as Musi-
cAOG, can be described by a 6-tuple:

AGmus =< S, V,E,R, X,P > (1)

We will now provide a breakdown of each component:

2



Under review as a conference paper at ICLR 2024

Figure 1: An example music parse graph of Robert Schumann’s Kinderszenen, Op.15, No.1: Von fremden
Ländern und Menschen. The section, period, phrase, radical, note and metrical node are nodes on the parse
graph, while the succession, variation, diad, and synchronization are relations. They are arranged hirarchically
and horizontally throu production rules and relations. The metrial tree are implicit tree where each metrical
nodes are linked to nodes in event trees with synthronization relations.

1) S represents the root node for the concept of music.

2) The vertex set V = Vand ∪ Vor ∪ VT consists of three distinct subsets: (i) Vand represents
a set of and-nodes responsible for decomposing musical ideas; (ii) Vor represents a set of
or-nodes that allow branching to alternative decompositions and facilitate reconfiguration;
(iii) VT comprises a set of terminal nodes that ground the representation in radicals. Each
node v ∈ V is associated with state variables indicating the temporal onset and offset of
the musical event (ton, toff).

3) The edge set E = Esucc ∪ Evar ∪ Ediad ∪ Esyn consists of four distinct subsets: (i) Esucc

represents a set of edges denoting the succession of musical events; (ii) Evar represents a
set of edges enabling repetition, variation, and recapitulation of musical ideas; (iii) Ediad

captures generalized harmonic intervals between pitched musical events; (iv) Esyn ensures
the synchronization of rhythmic patterns.

4) R = {γ1, . . . , γk} stands for the set of production rules. It describes how nodes in the
AOG are decomposed into child nodes, representing the hierarchy of the AOG.

5) The attribute set X = {x1, . . . ,xk} is associated with the nodes in V . The attributes are
defined based on the and-node and can include additional dimensions for further learning
tasks. The ”pitch” attribute is represented using a vector instead of a scalar MIDI pitch.
Temporal attributes (ton, toff) are treated separately. Attributes can be propagated between
parent and child nodes in the hierarchy.

6) P represents the probability model associated with the graphical representation.

A MusicAOG serves as a conceptual framework for music, encompassing the entire music grammar
and containing all valid music. A parse graph is an instance generated by the AOG, representing a
music piece through the switching of children of or-nodes. Formally, a parse graph can be defined
as:

pg =< V,E,R, X > . (2)
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In the above notation, E represents the set of edges, R represents the production rules, and X
represents the set of vertices. The set of nodes V comprises only and-nodes and terminal nodes, i.e.,
V = Vand ∪ VT.

In an and-or grammar, concepts are represented through or-nodes, which are associated with in-
stances of those concepts represented by child and-nodes. In natural language and vision domains,
the number of or-nodes is typically large, approximately equivalent to the number of words in a nat-
ural language dictionary. However, defining concepts in the context of music composition is often
ambiguous. Therefore, in MusicAOG, we limit the representability of or-nodes to capture explicit or
implicit ”fragments” of music and refer to nodes with different possible attributes as different types
of nodes, compared to different vocabulary items in an and-or grammar. Each or-node has a single
child and-node, and the switching of an or-node corresponds to the production of attributes for that
particular and-node:

A→ (β,x),with A ∈ Vor, β ∈ (Vand ∪ VT)
+, x ∈ X. (3)

Subsequently, the attributed and-node generates one or several or-nodes along with their associated
relations r (together known as the configuration) through a production rule γ. The specific number
of child or-nodes depends on the attributes of the parent and-node n(x). Figure 1 provides a intuitive
visualisation of a parse graph 1, and the details are described as below.

3.1 NODES

Specifically, nodes in MusicAOG can be textural and structural, i.e. V = Vtext ∪ Vstruct. the
structural nodes at the structural level encapsulate section nodes and period nodes which repre-
sent temporal segments of music, i.e. Vstruct = Vsection ∪ Vperiod. Period nodes represent short
timescales, focusing on distinct cognitive processes like emotions, styles. It is produced by sec-
tion nodes of longer timescale, emphasizing more reflective elements such as narratives behind the
music.

At the textural level, period nodes are further decomposed into phrases and radicals within an
event tree, while the rhythmic and harmonic aspect of the music is captured by the metrical tree.
This layered representation aids in capturing both the explicit and implicit elements of musical com-
position ”spatially”, contributing to a richer understanding and analysis of musical pieces. Detailed
explanation of these nodes can be found in the Supplementary Information.

3.2 RELATIONS

In the realm of musical composition, relations or edges are pivotal as they instill a defined structure,
akin to a dependency grammar in language, orchestrating how musical elements interact and unfold
over time. Among these relations, succession relations are prominent, painting a picture of how
musical fragments succeed one another. This succession, dictated by various variables, showcases
not just the transition but the temporal distance, overlapping, and the smoothness of how one musical
fragment flows into the next.

On another hand, diad relations elucidate the vertical pitch intervals between radicals, while the
synchronization relations (Esyn) act as pointers that bridge metrical nodes and radicals, specifying
which musical time interval a node belongs to.

In many musical compositions, the recapitulation of musical elements enhances memorability. This
is represented by the variation relations (Evar). It is important to note that, unlike traditional music
theory, variation relations can encompass not only variations but also repetitions and sequences. The
variation relations also possess attributes, although the details are beyond the scope of this paper. In
the Supplementary Information, we propose simple formulation of these relations.

1https://musescore.com/user/23490456/scores/5367341
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4 PROBABILISTIC FORMULATION

In this study, the MusicAOG is represented using a descriptive model. Utilizing the maximum
entropy principle, the prior probability of a given music parse graph can be expressed according to
the Gibbs distribution as:

p(pg; Θ, E,∆) =
1

Z(Θ)
exp (−E(pg; Θ, E,∆)) (4)

Here, the energy term E(pg; Θ, E,∆) is the sum of all energy components associated with the
attributes of nodes, relations, and the production of or-nodes that are derived from the AOG:

E(pg; Θ, E,∆) = EΘ(X(Vand)) + EΘ(E) + EΘ(Vor) (5)

In the domain of music, the aforementioned terms can be dissected into constituent parts involving
structural and textural nodes, along with four distinct types of relations:

E(pg; Θ, E,∆) =EΘ(X(Vstruct)) + EΘ(X(Vtext)) + EΘ(E) + EΘ(Vor)

=EΘ(X(Vsection)) + EΘ(X(Vperiod)) + EΘ(X(Vphrase)) + EΘ(X(Vradical))

+ EΘ(Esucc) + EΘ(Evar) + EΘ(Ediad) + EΘ(Esync) + EΘ(Vor)

(6)

As delineated in a preceding section, the MusicAOG permits any or-node to generate a substantial
set of configurations from possible combinations of child nodes. Consequently, enumerating all
possible configurations as a multinomial distribution is infeasible. Instead, the approach taken is
to evaluate the energies of the edges connecting parent nodes to the child nodes they produce (the
production rules R). A multinomial distribution is employed solely to characterize the number of
child nodes associated with a parent node, denoted as V or

num:

EΘ(Vor) = EΘ(R) + EΘ(V or
num) (7)

5 LEARNING MUSICAOG

The aim in learning MusicAOG is to minimize the Kullback-Leibler divergence between the proba-
bilistic model p(pg) and the true distribution of symbolic music f . Given a sufficiently large sample
size N , this process is equivalent to a maximum likelihood estimation (MLE):

p∗ = argmin
p∈Ωp

DKL(f∥p) ≈ argmax
p∈Ωp

1

N

N∑
i=1

log p(pgi; Θ, E,∆) (8)

Under the descriptive method, a set of feature statistics ϕα(pg), α = 1, . . . ,K is defined. These
feature statistics provide the necessary constraints for the formulation of the model p. Formally, this
is represented as:

Ωp = {p(pg) : Ep(pg;Θ)[ϕα(pg)] = hα, α = 1, . . . ,K} (9)

Here, E[ϕα(pg)] represents the marginal distribution of p with respect to observed statistics, and hα

denotes the histogram from the application of the α-th feature on the parse graph.

5.1 MAXIMUM ENTROPY FOR PARAMETER LEARNING

Define the log-likelihood as:

L(pg; Θ) =
1

N

N∑
i=1

log p(pgi; Θ). (10)

Through the application of Lagrange multipliers for MLE under the maximum entropy principle and
setting ∂L(pg;Θ)

∂λ = 0, we obtain the exponential form:

p(pg; Θ, E,∆) =
1

Z(Θ)
exp

(
−

K∑
α=1

< λα,hα >

)
,where Θ = λα, α = 1, . . . ,K (11)
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Algorithm 1: Learning MusicAOG via Minimax Principle

Input: Dataset of music parse graphs Dobs = {pgobs
i , i = 1, . . . , N}, statistical feature bank

B = {Fα, α = 1, . . . ,K}, learning rate η, total learning iterations L, error tolerance
ϵ = 0.1, sampling iterations s

Initialize: Selected feature bank S = ∅, parameter set {λα} = 0 ∀ α = 1, . . . ,K, initial
synthesized music parse graphs Dsyn = {pgsyn

i |i = 1, . . . , N} utilizing the
sampling initialization procedure from subsection 6.1

repeat
for Fα′ ∈ B\S do

Compute histograms hobs
α′ and hsyn

α′ ;
end
Utilizing hobs

α′ and hsyn
α′ , select the optimal feature F∗

+ from set {Fα′} following
Equation 12;

Update the selected feature set S ← S ∪ {F∗
+};

Set iteration counter l = 0;
repeat

Calculate hobs
+ and hsyn

+ for currently selected features, use hsyn
+ as Ep(pg;Θ)[ϕ+(pg)];

Update λ+ through gradient descent: δλ+ = η(hsyn
+ − hobs

+ );
Generate a new set of parse graphs D′

syn from the existing Dsyn employing the method
described in subsection 6.1 over s iterations, subsequently updating the histograms;

Increment iteration counter: l← l + 1;
until l = L or hsyn

+ − hobs
+ < ϵ;

until All statistical features in the feature bank are selected;

This is consistent with the Gibbs form described in Equation 4, where the energy term
E(pg; Θ, E,∆) corresponds to the parameterized potential function

∑K
α=1⟨λα,hα⟩. Analogous

to the additive decomposition of the energy term in prior sections, parameters λα can be estimated
by extracting features of MusicAOG with following steps:

1. Node Attributes Learning: We learn the potential function λx(u) for attributes on and-
nodes and terminal nodes u ∈ Vand ∪ VT. Setting ∂L(pg;Θ)

∂λ = 0, we derive the statistical
constraints as Ep(pg;Θ)[ϕ

node
α (x(u))] = hobs

x(u). This formulation is crucial for empirical
distribution in subsequent data sampling.

2. Relation Learning: For relations (s, t) ∈ E, the potential function λs,t is learned. Using
the previously mentioned condition for maximization, we determine the statistical con-
straints Ep(pg;Θ)[ϕ

relation
α (s, t)] = hobs

s,t .

3. Production Learning: For relations (m,n) ∈ R, the potential function λm,n

is determined. The maximization condition yields the statistical constraints
Ep(pg;Θ)[ϕ

prod
α (m,n)] = hobs

m,n.

4. Or-node Learning: The MLE for the selection in or-nodes λv,∀v ∈ Vor is equivalent to
the frequency of selected child counts of and-nodes by or-nodes. This is mathematically
represented as hobs

v = #(n(v)=j)∑n(v)
j=1 #(n(v)=j)

, j = 1, . . . , n(v).

Given that E[ϕα(pg)] is inaccessible directly, we employ Metropolis-Hastings sampling to generate
a set {pgsyn

i , i = 1, . . . , N}. The synthesized histogram hsyn
α is computed for E[ϕα(pg)]. Details

on the sampling process are provided in the succeeding section.

5.2 MINIMUM ENTROPY FOR FEATURE SELECTION

For the selection of salient statistical features (descriptors) from a feature bank B = {Fα, α =
1, . . . ,K}, we adhere to the minimum entropy principle. The criterion is that the chosen feature
should most significantly reduce DKL(f∥p(pgi; Θ, E,∆)). This objective is realized by selecting
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a feature that amplifies the disparity between observed and synthesized histograms:
F∗

+ = argmax
F+∈B

DKL(f∥p)−DKL(f∥p+) = argmax
F+∈B

∥hobs
+ − hsyn

+ ∥ (12)

When integrating the maximum and minimum entropy principles, the comprehensive learning algo-
rithm is elucidated in algorithm 1.

6 SAMPLING SCHEME

Music generation is realized by sampling a pg from the prior distribution characterized by the
MusicAOG model. Direct sampling of node attributes and the number of child branches for or-
nodes is facilitated using hobs

x(u) and hobs
v . However, to sample relations and hierarchical structures

that adhere to multiple joint constraints from the learned MusicAOG is non-trivial. To address
this, we employ the Metropolis-Hastings algorithm within a Markov Chain Monte Carlo (MCMC)
framework to sample music parse graphs.

6.1 DIRECT SAMPLING

The sampling methodology constructs music parse graphs following a top-down and sequential ap-
proach. Commencing from the root, for any non-terminal nodes, node types, attributes, and child
counts are proposed based on their prior distribution. Once all children of a particular node are sam-
pled, a random selection of two distinct child nodes is made, establishing a variation relation Evar

between them.

Subsequent to the inital construction of the parse graph, several proposal mechanisms are available
for the Hastings-Metropolis algorithm:(1) Propose a new attribute vector for a selected node in the
parse graph, based on its prior distribution. (2)Propose the addition or removal of a child from a
non-terminal node, or a variation relation Evar.

Given a proposal, its acceptance is governed by the probability:
α(pg′|pg; Θ) = min (1, exp (E(pg; Θ)− E(pg′; Θ))) . (13)

It should be noted that the relations of succession, diad, and synchronization are automatically de-
duced post-proposal. While they are inherently used to evaluate the energy function E(pg′; Θ), they
also play a role in determining the proposal’s acceptance probability.

6.2 CONTROLLED AMENDMENT

In the controlled amendment phase, each node attribute within a music parse graph is associated
with a regulatory term, T ≥ 0 (termed as temperature), which the user sets to indicate the desired
amendment degree. During the continuation of MCMC sampling via Metropolis-Hastings on the
parse graph, proposals are generated randomly but only pertain to attributes with T > 0. Proposals
related to adding or deleting nodes and relations are valid when the parent node’s temperature is
greater than 0. The proposal’s acceptance probability is subsequently adjusted by the temperature:

α(pg′|pg; Θ) = min

(
1, exp

(E(pg; Θ)− E(pg′; Θ))

Tt(x′)

)
. (14)

The temperature term undergoes adjustments over iterations, adopting a simulated annealing ap-
proach, where Tt =

T0

ln (1+t) .

To provide intuition: for 0 < T < 1, modifications to the target property are subtle, aligning closely
with the original music. When T > 1, the property is actively altered, even if it conforms to a
plausible distribution, paving the way for exploring a broader creative musical space.

7 EXPERIMENT AND DISCUSSION

The representation advocated in this work is extensive and encompasses numerous elements. Fur-
thermore, the learning algorithm is significantly dependent on thorough labeling carried out by pro-
fessional musician, who engage in the study and construction of music parse graphs. To empirically
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(a)
(b)

(c)

Figure 2: (a) The histograms of each features applied.(b) Information projections. (c) Sample from noise

ascertain the effectiveness of MusicAOG, we streamlined our model while preserving the indispens-
able concepts in AOG representation. A controlled experiment was undertaken utilizing 3 pieces
from Bach’s chorale (BWV 9, BWV 347, and BWV 267) sourced from MuseScore2. The pg for
the chosen music score was meticulously constructed by an expert musician acquainted with our
representational framework. The simplifications enacted during MusicAOG construction included:
treating individual notes as radicals, disregarding variation relations, and simplifying the complex
structures of metrical trees and synchronization relations to just three levels—measure-level beats
giving rise to crotchet-level beats, which further devolve into semiquaver-level beats. At the textural
level of the MusicAOG, a homogeneous distribution for nodes and edges is assumed. Consequently,
the devised feature bank solely accentuates statistical note features. To ascertain robustness, even
within this streamlined experiment, fourteen feature descriptors were conceived to encapsulate node
attributes, relations, productions, and or-node selections (see histograms in Figure 2c).

The learning algorithm, delineated in algorithm 1, was configured with the following hyperparame-
ters: maximum learning iterations per selected feature, L = 500; error tolerance ϵ = 0.1; sampling
iterations, s = 150; and learning rate, η = 1. For the controlled resampling test, the original parse
graph data was employed. All notes’ attributes were assigned a temperature of T = 0.1. Over
100 resampling iterations were executed to amend the original music composition. To mitigate
complexity, proposals during sampling were solely node-centric, encompassing attribute alterations
(adjusting pitches) and node insertions and deletions (adjusting durations and rhythms).

Figure 2b displays the evolution of energy values across learning iterations, in tandem with the se-
quence of feature selection. This plot intuitively illustrates how the minimax entropy principle in
the learning algorithm projects the model distribution onto the eligible feature defined by Hk for
k-th feature selection, and gradually approximates the true distribution. In the realm of controlled
generation, the notes originating from noise pg0

syn undergo resampling to gradually yield pg∗
syn

under addition of descriptors showcased in Figure 2b. A comparative analysis between the his-
tograms corresponding to the observed pgobs and the synthesized pgsyn for each feature descriptor
is provided in Figure 2c, alongside parameters on each bin. These findings suggest that despite the
limited parameter space (only 289 parameters), the model has adeptly assimilated all the features,

2https://musescore.com/user/11015626/scores/3117011
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Table 1: Comparison of subjective scoring of music generated by different model

Methods Style Structural Integrity Balance of Textural Notation Playability
Coherence Clarity Voice Rationality Professionality

Lv et al. (2023) 7.82 ± 1.90 5.73 ± 1.86 6.91 ± 2.02 7.00 ± 1.86 7.36 ± 2.06 7.64 ± 1.55 7.82 ± 1.11
Hyun et al. (2022) 8.45 ± 1.30 6.00 ± 1.60 4.73 ± 1.29 6.18 ± 1.03 7.73 ± 1.60 7.64 ± 1.82 8.55 ± 0.99

Lu et al. (2023) 7.91 ± 1.78 6.27 ± 1.21 4.91 ± 1.50 7.27 ± 1.66 7.36 ± 1.97 4.36 ± 1.67 7.55 ± 1.88
MusicAOG (ours) 8.91 ± 1.16 8.09 ± 1.62 8.09 ± 2.19 8.73 ± 1.29 8.73 ± 1.42 9.18 ± 0.94 9.27 ± 0.86

Table 2: Comparison of controllling condition of different approaches. The size of dataset used for training
and the size of parameters of model are also compared.

Methods Control Condition Size of Dataset Size of Parameters
Lv et al. (2023) source tracks (fine-tuned on 3 Bach’s chorales) 1569469 N/A

Hyun et al. (2022) metadata (BPM=100, Key=A major, Time Signature=4/4, Pitch Range=mid) 11144 13677310
Lu et al. (2023) text (”Bach’s chorale with SATB choir; Moderato; 4/4; A major”) 947659 ˜120000000

MusicAOG (ours) hierarchical graph (Structural nodes with attributes same as 3 Bach’s chorales) 3 289

and the employed sampling technique proficiently generates symbolic music that closely aligns with
the data distribution.

Three alternative models were trained to generate MIDIs of music. The controlled schemes among
these models vary, but we adhere to the sampling condition capable of describing Bach’s music,
which served as the dataset for learning and templates for resampling. The detailed generation
condition is elucidated in Table 2.

For subjective comparison, we invited 11 musicians possessing at least basic music analysis educa-
tion. A questionnaire was crafted to score the music across 7 dimensions to scrutinize the model’s
performance in music composition. Participants were required to assign an integer between 0 and 10
(inclusive) to evaluate each sample music on each dimension. The label names of dimensions and
the means and standard deviations of scores received are disclosed in Table 1. Evidently, our model
garnered the highest average scores on every dimension, implying superior ability in professional
composition.

The objective comparison is not entirely applicable to our model, given its non-reliance on deep
learning, and any objective evaluation metrics can serve as the feature descriptors for our model
to learn from. Nonetheless, comparisons of objective features of models are furnished in Table 2.
A notable advantage of our model is its one-shot nature, negating the need for training on a vast
dataset, with a smaller number of parameters to learn. The control conditions of our model can be
refined to a finer granularity, imparting certain flexibility in our controllable generation compared to
other methods.

Notably, MusicAOG not only encapsulates music scores in western traditions but also accommo-
dates musical notation from diverse cultures. The representability of MusicAOG is explored in the
supplementary materials, with example parse graphs for scores in different musical notation.

8 CONCLUSION AND FUTURE WORK

This work introduces a novel representation for symbolic music using an And-Or Graph (Musi-
cAOG), enabling a holistic representation of both explicit and implicit musical concepts. Building
upon this, we formulated an algorithmic framework for learning symbolic music, tested on a small,
simplistic dataset. Due to paper constraints, some model details, especially concerning learning and
generating music of various styles and modalities, remain unexplored. However, this groundwork
opens several avenues for future research: (1) Extending the attributes and depth of MusicAOG
could facilitate representation of more complex music scores and MIDIs. (2) Given that the con-
struction of a music parse graph necessitates a time-intensive labeling process, leveraging the learned
energy model as prior knowledge to parse unseen music scores could enrich our dataset. (3) Current
manually designed descriptors and proposers in our feature bank and sampling algorithm may not
sufficiently capture music composition nuances. Future work could also look into employing neural
networks to improve our model’s performance, akin to efforts in image synthesis(Lu et al., 2016b).

9



Under review as a conference paper at ICLR 2024

REFERENCES

Andrea Agostinelli, Timo I. Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, Matt Sharifi, Neil Zeghidour,
and Christian Frank. Musiclm: Generating music from text. 1 2023. URL http://arxiv.
org/abs/2301.11325.

Eric F. Clarke. Issues in language and music. Contemporary Music Review, 4(1):9–22, 1989. doi: 10.
1080/07494468900640181. URL https://doi.org/10.1080/07494468900640181.

Stephen Davies. Is music a language of the emotions? The British Journal of Aesthetics, 23:
222–233, 06 1983. doi: 10.1093/bjaesthetics/23.3.222.

W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109, 1970. ISSN 00063444. URL http://www.jstor.org/
stable/2334940.

Lee Hyun, Taehyun Kim, Hyolim Kang, Minjoo Ki, Hyeonchan Hwang Pozalabs, Kwanho Park,
Sharang Han Pozalabs, Seon Joo Kim Pozalabs, and Yonsei Univ. Commu: Dataset for combina-
torial music generation, 2022. URL https://pozalabs.github.io/ComMU/.

Shulei Ji, Xinyu Yang, and Jing Luo. A survey on deep learning for symbolic music generation:
Representations, algorithms, evaluations, and challenges. ACM Computing Surveys, 5 2023. ISSN
0360-0300. doi: 10.1145/3597493.

Ja-Young Kim and Nicholas J. Belkin. Categories of music description and search terms and phrases
used by non-music experts. In International Society for Music Information Retrieval Conference,
2002. URL https://api.semanticscholar.org/CorpusID:16654825.

Fred Lerdahl and Ray Jackendoff. A generative theory of tonal music. The MIT Press, Cambridge.
MA, 1983. ISBN 0262120941.

Peiling Lu, Xin Xu, Chenfei Kang, Botao Yu, Chengyi Xing, Xu Tan, and Jiang Bian. Musecoco:
Generating symbolic music from text, 2023.

Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Learning frame models using cnn filters. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pp. 1902–1910. AAAI
Press, 2016a.

Yang Lu, Song-chun Zhu, and Ying Nian Wu. Learning frame models using cnn filters. In Thirtieth
AAAI Conference on Artificial Intelligence, 2016b.

Ang Lv, Xu Tan, Peiling Lu, Wei Ye, Shikun Zhang, Jiang Bian, and Rui Yan. Getmusic: Generating
any music tracks with a unified representation and diffusion framework, 2023.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Ed-
ward Teller. Equation of State Calculations by Fast Computing Machines. The Journal of Chem-
ical Physics, 21(6):1087–1092, 12 2004. ISSN 0021-9606. doi: 10.1063/1.1699114. URL
https://doi.org/10.1063/1.1699114.

Seyoung Park, Bruce Xiaohan Nie, and Song-Chun Zhu. Attribute and-or grammar for joint parsing
of human attributes, part and pose. 5 2016. URL http://arxiv.org/abs/1605.02112.

Mingtao Pei, Yunde Jia, and Song-Chun Zhu. Parsing video events with goal inference and intent
prediction. In 2011 International Conference on Computer Vision, pp. 487–494, 2011. doi:
10.1109/ICCV.2011.6126279.

Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and Song-Chun Zhu. Human-centric indoor
scene synthesis using stochastic grammar. 8 2018. URL http://arxiv.org/abs/1808.
08473.

Tianmin Shu, Dan Xie, Brandon Rothrock, Sinisa Todorovic, and Song-Chun Zhu. Joint inference
of groups, events and human roles in aerial videos. 5 2015. URL http://arxiv.org/abs/
1505.05957.

10

http://arxiv.org/abs/2301.11325
http://arxiv.org/abs/2301.11325
https://doi.org/10.1080/07494468900640181
http://www.jstor.org/stable/2334940
http://www.jstor.org/stable/2334940
https://pozalabs.github.io/ComMU/
https://api.semanticscholar.org/CorpusID:16654825
https://doi.org/10.1063/1.1699114
http://arxiv.org/abs/1605.02112
http://arxiv.org/abs/1808.08473
http://arxiv.org/abs/1808.08473
http://arxiv.org/abs/1505.05957
http://arxiv.org/abs/1505.05957


Under review as a conference paper at ICLR 2024

Ziyu Wang, Yiyi Zhang, Yixiao Zhang, Junyan Jiang, Ruihan Yang, Junbo Zhao, and Gus Xia.
Pianotree vae: Structured representation learning for polyphonic music. 8 2020. URL http:
//arxiv.org/abs/2008.07118.

Caiming Xiong, Nishant Shukla, Wenlong Xiong, and Song-Chun Zhu. Robot learning with a
spatial, temporal, and causal and-or graph. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pp. 2144–2151, 2016. doi: 10.1109/ICRA.2016.7487364.

Lap-Fai Yu, Sai-Kit Yeung, Chi-Keung Tang, Demetri Terzopoulos, Tony F. Chan, and Stanley J.
Osher. Make it home: Automatic optimization of furniture arrangement. ACM Trans. Graph., 30
(4), jul 2011. ISSN 0730-0301. doi: 10.1145/2010324.1964981. URL https://doi.org/
10.1145/2010324.1964981.

Song Chun Zhu and David Mumford. A stochastic grammar of images. Foundations and Trends in
Computer Graphics and Vision, 2:259–262, 2006. ISSN 15722740. doi: 10.1561/0600000018.

Song Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy principle and its application
to texture modeling. Neural Computation, 9(8):1627–1660, 1997. doi: 10.1162/neco.1997.9.8.
1627.

Yi Zou, Pei Zou, Yi Zhao, Kaixiang Zhang, Ran Zhang, and Xiaorui Wang. Melons: generating
melody with long-term structure using transformers and structure graph. 10 2021. URL http:
//arxiv.org/abs/2110.05020.

11

http://arxiv.org/abs/2008.07118
http://arxiv.org/abs/2008.07118
https://doi.org/10.1145/2010324.1964981
https://doi.org/10.1145/2010324.1964981
http://arxiv.org/abs/2110.05020
http://arxiv.org/abs/2110.05020

	Introduction
	Motivation
	Contribution

	Related Work
	Representation of Symbolic Music
	Nodes
	Relations

	Probabilistic Formulation
	Learning MusicAOG
	Maximum Entropy for Parameter Learning
	Minimum Entropy for Feature Selection

	Sampling Scheme
	Direct Sampling
	Controlled Amendment

	Experiment and Discussion
	Conclusion and Future Work

