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Abstract

Brain-inspired spiking neural networks (SNNs) attract broad interest in neuromorphic com-
puting but suffer the problem of being difficult to optimize. Concurrently, pre-trained mod-
els (PTMs) have become a foundation for developing and applying artificial intelligence.
Therefore, it is expected that pre-trained SNNs can alleviate the optimization difficulty of
training from scratch. However, with a lot of PTMs available in the model hubs, effectively
selecting the most appropriate PTM for a given task remains a significant challenge, often
necessitating exhaustive fine-tuning and grid-searching. While several solutions to this chal-
lenge have been proposed for the mainstream artificial neural network (ANNs), aimed at
developing efficient methods to assess the transferability of PTMs on target tasks, the realm
of SNNs remains unexplored. The currently most used transferability assessment method
for ANNs predicts transferability in a Bayesian perspective. Feature maps extracted by the
PTM backbone on the target task are used to calculate the maximum model evidence as
the indicator of transferability. However, ANNs and SNNs differ in architecture, rendering
the existing Bayesian method incompatible with SNNs. To solve this problem, this paper
introduces a novel approach to using the feature maps averaged over the time domain to
calculate maximum evidence. Our proposed Maximum Evidence method with Averaged
Features (MEAF) demonstrates effectiveness for SNNs. Additionally, the current algorithm
calculates maximum evidence in an iterative way. To accelerate the selection of PTMs, an
approximation method is proposed to avoid iteration in the calculation of maximum evi-
dence, significantly reducing time consumption. It is shown through experiment that the
proposed MEAF method is effective for the transferability assessment of SNNs. MEAF out-
performs information theory-based assessment methods such as LEEP and NCE, which can
directly adapt to SNNs on neuromorphic datasets, underscoring its potential to streamline
PTM selection and application in the realm of SNNs.

1 Introduction

Spiking neural networks (SNNs), known as the third generation of neural networks (Maass, 1997), have
obtained broad attention in the field of neuromorphic computing (Roy et al., 2019). Inspired by the way
biological neurons communicate with spikes in the brain, neurons in SNNs encode information into sequential
binary spikes, offering a potential way towards energy-efficient machine intelligence (Dampfhoffer et al., 2022).
Based on its distinctive mechanism, SNNs have achieved outstanding performance in robotics (Bing et al.,
2019; Debat et al., 2021), event-based vision (Zhu et al., 2022; Hagenaars et al., 2021), and other fields (Pei
et al., 2019; He et al., 2024). However, SNN models are much harder to optimize compared to ANNs (Wu
et al., 2019; Wang et al., 2020) because of the non-differentiable nature of spiking signals.

1

https://openreview.net/forum?id=GaUtrgXMHe


Published in Transactions on Machine Learning Research (04/2025)

Pre-trained models (PTMs) have fueled the development and applications of artificial intelligence (Jiang
et al., 2022). In computer vision, neural networks pre-trained on ImageNet (Deng et al., 2009) exhibit
improved performance or convergence efficiency (Yosinski et al., 2014; He et al., 2019; Kornblith et al.,
2019), and recent advances in vision-language pre-training provide large-scale visual encoders capable of
even zero-shot generalization on downstream tasks (Radford et al., 2021; Jia et al., 2021). Meanwhile,
language models self-supervised pre-trained on a large-scale unlabeled corpus demonstrate in-context learning
capabilities (Devlin et al., 2018; Brown et al., 2020; Radford et al., 2019; Du et al., 2022). The pre-training
and adaptation paradigm has become a foundational methodology for the implementation of large neural
network models. With lots of PTMs available, model hubs such as TorchVision (maintainers & contributors,
2016) and Hugging Face Transformers (Wolf et al., 2020) have attracted widespread interest. Meanwhile,
pre-trained SNNs have been shown to exhibit higher training efficiency and performance on downstream
tasks, significantly reducing the time required to optimize the SNN and improving generalization(Lee et al.,
2018; Lin et al., 2022). It is expected that pre-trained SNNs can alleviate the difficulty of optimization when
training SNNs from scratch.

However, when using PTMs in a model hub, selecting the most suitable PTM for a given task without
exhaustive fine-tuning and grid-searching (You et al., 2021) remains a challenge. Several model hub schedul-
ing methods have been proposed to address this challenge for the mainstream artificial neural network
(ANN) (Tran et al., 2019; Nguyen et al., 2020; You et al., 2021). They focus on designing efficient methods
to assess the transferability of PTMs on a target dataset and then select the highest-ranked candidate. To
the best of our knowledge, however, there is no research focusing on the scheduling of SNN PTMs. Therefore,
to bridge the gap, it is meaningful to explore model hub scheduling methods for SNN PTMs.

One problem is that not all existing transferability assessment methods for ANNs can be applied to SNNs
directly. Current methods use the pseudo-output (Tran et al., 2019; Nguyen et al., 2020) or the feature
map (You et al., 2021; 2022) generated by the PTMs to assess the transferability on the target task. The
pseudo-output approaches, which are information theory-based, including LEEP (Nguyen et al., 2020) and
NCE (Tran et al., 2019), can be applied directly to SNN. However, the feature-based approach logME (You
et al., 2021), which is more effective on ANNs, cannot be adopted to SNN directly. In this logME approach,
feature maps extracted by the PTM backbone are used to calculate the maximum model evidence as an
indicator of transferability from a Bayesian perspective. Differences between ANNs and SNNs in architecture
render the feature-based methods incompatible with SNNs from two aspects. i) The feature map extracted by
the SNN backbone has an additional temporal dimension, which cannot adapt to the current model evidence
calculation framework. ii) SNNs generate predictions based on the feature with a nonlinear transform, while
the maximum model evidence method for ANNs supposes a linear hypothesis.

Taking these two factors into consideration, this paper introduces a Bayesian method of PTM transferability
for SNNs inspired by the counterpart for ANNs. To match the feature map of SNN with the current
calculation framework of maximum model evidence, we propose to use feature maps averaged through the
time domain for the assessment of transferability. Theoretical analysis shows that the nonlinear transform of
the SNN layer can be estimated by a linear transform with the proposed averaged features, thus satisfying the
linear assumption of the maximum model evidence method. Moreover, the calculation of maximum model
evidence requires MacKay’s algorithm (MacKay, 1999) to maximize the model evidence iteratively. To
further accelerate the selection of PTMs, we propose an approximated maximum model evidence method to
avoid iteration while giving similar results as logME. Experiment results show that the proposed Maximum
Evidence method with Averaged Features (MEAF) is effective for SNNs and outperforms information theory-
based NCE and LEEP on neuromorphic datasets, and achieves comparable results on static datasets. The
effectiveness of the approximated maximum model evidence method is also validated. Our contributions are
as follows:

1. We identify the gaps of current Bayesian transferability assessment methods between ANNs and
SNNs, and propose the Maximum Evidence method with Averaged Features (MEAF) for the
assessment of transferability of pre-trained SNNs.

2. To further accelerate the selection of PTMs, we provide an approximated maximum model evidence
method, which avoids iteration while giving effective results.
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3. We validate our proposed method through experiments, and confirm that our Bayesian-based method
outperforms information theory-based methods like NCE and LEEP for SNNs on neuromorphic
datasets, and achieves comparable results on static datasets.

2 Related works

2.1 Bayesian model selection

Bayesian model selection methods use model evidence (or marginal likelihood) among different hypotheses
as the criterion for selection (Wasserman, 2000). It is believed that model evidence implicitly incorporates
the Occam Razor Principle, which balances the complexity and the representation capability of a given
model (Knuth et al., 2015). Gull uses model evidence in image reconstruction to determine a critical prior
hyperparameter (Gull, 1989). Inspired by Gull’s work, model evidence is used in the field of machine learning
by MacKay to determine the degree of polynomials in interpolation problems (MacKay, 1992a). It is also
used to get the optimal regularization coefficient in the training of regression (MacKay, 1992c) and classi-
fication (MacKay, 1992b) problems, even in multi-layer backpropagation neural network models, for better
generalization performance (Wolpert, 1992). An algorithm to automatically determine the regularization co-
efficient in linear regression problems is proposed by MacKay by maximizing the model evidence iteratively
(MacKay, 1999).

Evidence-based Bayesian method provides a practical framework to automatically tune the hyperparameters
of deep neural networks without the use of validation data. However, a main obstacle lies in the difficulty of
estimating the model evidence when the model is deep, as conventional methods proposed by MacKay are
only suitable for basic linear regression problems. The Hessian matrix of loss with respect to the trainable
parameters is required to calculate the model evidence, which is impossible to efficiently calculate for large-
scale neural networks. To solve this problem, scalable Laplace approximation is used to calculate model
evidence for deep neural networks (Daxberger et al., 2021; Immer et al., 2021). However, this process is still
time-consuming and suffers the problem of inaccurate estimation (Kunstner et al., 2019).

2.2 Transferability assessment

Assessment of the transferability of PTMs starts from measuring the similarity between the source task where
the models are pre-trained and the target task to transfer. Several distance-based metrics are proposed to
measure the difference between source and target tasks, which gives error bounds of the transferred model
in theory (Ben-David & Schuller, 2003; Ben-David et al., 2006; Mansour et al., 2009). While it is obvious
that models trained on more challenging datasets have better performance when transferred to simple tasks,
the opposite is not true. Therefore, distance, which is a symmetry metric, is not an ideal measure of
transferability (Nguyen et al., 2020).

As an improvement, some new metrics other than distance have been proposed. Tran et al. (2019) uses
conditional entropy (NCE) to estimate the test set accuracy after transfer by calculating the conditional
entropy of the target task relative to the source task. Conditional entropy is calculated based on the
probability distributions to generate source and target tasks. It is asymmetrical and can reflect the difficult
relationship between tasks, achieving good results in experiments.

Contrary to the above methods, Nguyen et al. (2020) no longer uses the relation between tasks as the basis
for evaluation, but instead directly inputs the target tasks into the pre-trained model, and quantitatively
evaluates the transferability through the output of the pre-trained model. They calculate the expected
probability of the real result obtained from the pre-trained model based on the joint distribution between
the results obtained from the pre-trained model and the real result of the target task, as a basis for evaluation.

Model evidence-based Bayesian methods are also used in transferability assessment. Kim et al. (2016) uses
model evidence to select pre-trained convolutional neural network (CNN) models for best feature extraction.
You et al. (2021; 2022) use model evidence to predict the transferability of different PTMs on a given target
dataset. In this approach, features extracted by the PTMs instead of predicted results are used as the
basis for transferability evaluation. Compared to prediction results, the features extracted from the middle
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layer are more universal, so this method can be applied not only to classification problems but also to other
problems such as regression.

3 Methodology

3.1 Background

We consider a supervised learning task on observed data D = {(xi, ti)}N
i=1 with inputs xi and targets ti ∈ R.

SNN model Mθ predicts t̂i for each input xi, where θ ∈ RD represents the trainable weights of the model.
The model evidence of M on task D is defined as the probability the model generates the observed data,
which is calculated as

p(D|M) =
∫
RD

p(D, θ|M)dθ. (1)

For different candidate models, the best one can be chosen by maximizing the model evidence in the Bayesian
perspective.

The model evidence can be used to automatically determine the regularization coefficients in ridge regression
tasks. Given feature vectors fi, i = 1, · · · , N , the model predicts t̂i, i = 1, · · · , N using a linear transforma-
tion. Ridge regression assumes that the parameters follow a Gaussian prior distribution θ ∼ N (0, α−1I),
where α controls the strength of regularization. Furthermore, it assumes that the targets ti are conditionally
distributed according to a Gaussian likelihood ti ∼ N (θTfi, β−1), where β−1 represents the noise variance.
For determination of regularization coefficients, linear regression models with different regularization coef-
ficients α, β are viewed as different candidate models, and the evidence is calculated as a function of α, β
like

Evidence(α, β) = p(D|α, β)

=
∫
RD

p(D|θ, β)p(θ|α)dθ

=
(

β

2π

)N
2

α
D
2 exp

(
−β

2 ∥Fm− t∥2 − α

2 mTm

)
(det A)− 1

2 ,

(2)

where F ∈ RN×D denotes inputs and t ∈ RN denotes targets. A = αI + βFTF, m = βA−1FTt.

For convenience of calculation, the logarithm of equation 2 is more often used as

L(α, β) = N

2 log β − N

2 log 2π + D

2 log α− β

2 ∥Fm− t∥2 − α

2 mTm− 1
2 log det A. (3)

We denote γ =
∑D

i=1
βσi

α+βσi
, where σi is the ith singular value of FTF.

By iteratively updating α, β with MacKay’s algorithm

α← γ

mTm
, β ← N − γ

∥Fm− t∥2 , (4)

model evidence can be maximized with α, β optimized simultaneously.

Linear probe is usually used as a method of transfer learning, especially when the pre-trained backbone is
large (Radford et al., 2021) as the retraining of large models is sometimes prohibitive. In such a setting,
pre-trained backbones are used to extract representations, and a fully connected layer is used to predict
results based on the representations. This process is a linear transform, and the model evidence can be
calculated analytically.

Therefore, to assess and compare the transferability of different models on target task D, for each pre-trained
backbone Mi, evidence Li(α, β) can be calculated and maximized with MacKays’s algorithm, resulting in
the logarithm of maximum evidence Li(α∗, β∗). Eventually, transferability can be compared in terms of
L(α∗, β∗), and candidate models can be ranked.
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3.2 Adapting maximum evidence method to SNN with averaged features

Architectural differences between SNNs and ANNs impede the direct application of existing feature-based
transferability assessment methods for ANNs to SNNs. SNN uses multiple time steps of forward pass to
generate results. Therefore, the feature map extracted by an SNN backbone is a two-dimensional matrix
instead of a single-dimensional vector. In addition, SNN models generate predictions based on the feature
map with a non-linear transform in classification tasks.

We consider the most used leaky-integral and fire (LIF) spiking neuron model. One layer of LIF neurons in
the SNN is given by 

τ
dun(t)

dt
= −un(t) + Θnon−1(t),

on
i (t) = 1, if un

i (t) ≥ uth,

on
i (t) = 0, if un

i (t) < uth,

(5)

where n is the layer number of the multilayer SNN, t is time and τ > 0 is a time constant. Each neuron
in the last layer is depicted by its membrane potential u ∈ R and output spike o ∈ {0, 1}. The membrane
potential un

i (t) will be reset to u0 (usually u0 = 0) if on
i (t) = 1. The spiking frequency is usually used as

the prediction of logit of the target category. This nonlinear transform makes existing ANN transferability
assessment methods incompatible with SNNs.

We propose to use features averaged through time steps for the evaluation of the transferability of SNN
PTMs. Consider a pre-trained SNN model with T time steps, for data (x, t) ∈ D, the feature map extracted
by the model is f(t) ∈ RD, t = 1, · · · , T . We denote averaged feature as f̄ = 1

T

∑T
t=1 f(t) ∈ RD. To get the

output prediction t̂, the feature map f(t) is processed by equation 5 as

u(t) = e− ∆t
τ u(t− 1) (1− o(t− 1)) + θTf(t). (6)

o(t) = s(u(t)− uth), (7)

t̂ = 1
T

T∑
t=1

o(t), (8)

where e− ∆t
τ denotes the decay of membrane potential in a time step ∆t, time constant τ describes the speed

to decay, s(·) is the function to describe the spiking behavior of a spiking neuron, giving 1 when input is
non-negative and 0 otherwise, and uth is the threshold to spike.

In classification tasks where the target t ∈ {0, 1}, each predicted result t̂ should tend towards its target t.
Suppose that t = t̂ = 1, then o(t) = 1 for all t = 1, · · · , T . Therefore, the membrane potential in each time
step is a linear transform of the feature of this time step as

u(t) = θTf(t). (9)

From equation 7, it is clear that θTf (t) = u(t) ≥ uth,∀t = 1, . . . , T . Therefore, we can get that

θTf̄ = θT

(
1
T

T∑
t=1

f(t)
)

= 1
T

T∑
t=1

θTf(t) ≥ 1
T

T∑
t=1

uth = uth. (10)

Conversely, when t = t̂ = 0, we have θTf̄ ≤ uth. To keep the main text concise, the derivation for this case
is provided in Appendix A.2.3. This shows that the SNN transform of a single layer can be approximated
by a linear classification problem, and then transformed into a linear problem on average features.

3.3 Accelerating convergence with approximated maximum evidence

MacKay’s algorithm iteratively updates the regularization coefficients and maximizes the model evidence.
However, the convergence of MacKay’s algorithm is not guaranteed (You et al., 2022), and the iteration
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number might be large in some cases. To reduce the time consumption and thus further improve the
efficiency of model hub scheduling, here we propose an alternative method that avoids the iteration while
giving an approximated result of maximum model evidence with MacKay’s algorithm (hereinafter referred
to as MacKay’s method). We name our proposed method approximated maximum model evidence method
(hereinafter referred to as the approximated method).

The starting point of designing the approximated version is to make sure that our approximated results share
the same properties as MacKay’s method. To achieve this, we state three properties of MacKay’s method.
These properties describe the invariance of MacKay’s method with some operation on the input feature map.
We design our approximated method adhering to these properties.
Property 1 (invariance with stacking). Consider input data F ∈ RN×D and targets t ∈ RN . Suppose that
MacKay’s algorithm converges to α∗ and β∗ and the logarithm of maximized model evidence is L∗

1, then when
input data is stacked q times as

[
F, . . . , F

]
∈ RN×qD, MacKay’s method converges to qα∗ and β∗, and the

logarithm of maximized model evidence L∗
2 equals exactly to L∗

1.
Property 2 (invariance with padding zero). Consider input data F ∈ RN×D and targets t ∈ RN . Suppose
that MacKay’s algorithm converges to α∗ and β∗ and the logarithm of maximized model evidence is L∗

1, then
when input data is padded with zeros as

[
F, 0

]
∈ RN×qD, MacKay’s method converges to α∗ and β∗, and the

logarithm of maximized model evidence L∗
2 equals exactly to L∗

1.
Property 3 (invariance with scalar multiplication). Consider input data F ∈ RN×D and targets t ∈ RN .
Suppose that MacKay’s algorithm converges to α∗ and β∗ and the logarithm of maximized model evidence
is L∗

1, then when input data is multiplied by a scalar q > 0 as qF ∈ RN×D, MacKay’s method converges to
q2α∗ and β∗, and the logarithm of maximized model evidence L∗

2 equals exactly to L∗
1.

The proof of property 1 and property 2 can be found in reference You et al. (2022). The proof of property
3 is given in appendix A.2.1.

The approximated maximum model evidence method is given below.

Consider input feature F ∈ RN×D and labels t ∈ RN . Let

λ←
∥F∥2

2
N

, (11)

m←
(
λI + FTF

)−1 FTt, (12)

β0 ←
N

∥Fm− t∥2 + λ ∥m∥2 , (13)

α0 ← λβ0. (14)

Then the approximate model evidence can be calculated by equation 3 with α0 and β0.
Theorem 1. The model evidence calculated by our method satisfies properties 1, 2, and 3.

Proof. See appendix A.2.2.

The experimental results in section 4.4 show that our method gives similar results to MacKay’s method when
the number of samples N is larger than the dimension of features D. Therefore, the approximated result
can serve as an approximated maximum model evidence under such circumstances. We have summarized
the procedure of MEAF with MacKay’s method and our approximated method in Algorithm 1.

4 Results

4.1 Experimental setup

Datasets The experiment is conducted on both neuromorphic datasets and static datasets. Neuromorphic
datasets are vision datasets recorded with event cameras (Gallego et al., 2020), which are the commonly
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Algorithm 1 Algorithm of maximum evidence method with averaged feature
1: Input: Feature map of an SNN PTM on a target dataset {F(t) ∈ RN×D}T −1

t=0 , labels t ∈ RN

2: Output: Score of transferability L
3: Step 1: calculate averaged feature through time F̄ =

∑T −1
t=0 F(t)

4: Step 2 (MacKay’s method):
5: α = 1, β = 1
6: repeat
7: λ← α

β

8: A← αI + βF̄TF̄
9: m← A−1F̄Tt

10: α← γ
mTm

, β ← N−γ
||F̄m−t||2

11: λ′ ← α
β

12: until |λ− λ′| < ϵ
13: Step 2 (approximated method):
14: λ← ||F||2

N

15: m←
(
λI + F̄TF̄

)−1 F̄Tt

16: β ← N
||F̄m−t||2+λ||m||2

17: α← λβ
18: A← αI + βF̄TF̄
19: Step 3: calculate score of transferability L by equation 3 with A, m, α, β

used benchmark for SNNs (He et al., 2020). As SNNs can also apply to conventional frame-based images
(static datasets), we also validate our method on these datasets. For experiments on neuromorphic datasets,
we use ES-ImageNet dataset (Lin et al., 2021) for pre-training and DVS128 Gesture (DVS128), CIFAR10-
DVS (C10-DVS), N-Caltech101 (N-C101) and N-MNIST for fine-tuning, and for that on static datasets, the
SNN models are pre-trained on ImageNet (Deng et al., 2009) and fine-tuned on CIFAR10 (C10), CIFAR100
(C100), Caltech101 (C101) and MNIST.

Pre-train SNN models We pre-train SNN models as the foundation of our experiment. We use spiking
version of vanilla ResNet, spiking version of multi-layer perception (MLP), spike-element-wise (SEW) ResNet
(Fang et al., 2021) and attention spiking neural networks (Yao et al., 2023) as candidate PTMs. Ten different
kinds of SNN models are used as different kinds of PTMs on neuromorphic datasets, and eight different kinds
of SNN models are used as PTMs on static datasets. The details of the PTMs are given in appendix A.1.
For experiments on neuromorphic datasets, models are pre-trained with Adam optimizer (Kingma & Ba,
2014) with momentum 0.9 and 0.999 for 10 epochs with 8 RTX3090 GPUs. We use a step learning rate
scheduler with an initial learning rate of 0.01, step size 3, and γ = 0.3. For experiments on static datasets,
we use PTMs from Fang et al. (2021).

Fine-tune pre-trained models The fine-tuning of pre-trained SNN models are as the settings in
logME (You et al., 2021). The parameters of the pre-trained neural network backbone are frozen during fine-
tuning, and a spiking FC layer is re-trained as the classifier of the PTMs. On neuromorphic datasets, each
model is re-trained for 200 epochs. The hyper-parameters, learning rate, and weight decay, are determined
by grid-searching from 1e − 1 to 1e − 3 and 1e − 5 to 1e − 8 respectively. On static datasets, each model
is re-trained for 100 epochs. The same hyper-parameters are determined by grid-searching from 1e − 1 to
1e− 3 and 1e− 5 to 1e− 7 respectively. The test set accuracy of the best model on the validation set is used
as the ground truth of transferability.

Assessment of transferability For each PTM, the transferability is assessed with MEAF, LEEP, and
NCE 1. We calculate the logarithm of maximum model evidence on the train set. Note that ranking models
with the maximum model evidence does not require the involvement of the validation or test set. This is also

1Code is available at https://github.com/haohq19/meaf-snn.
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an advantage of the assessment method over the fine-tuning methods. Same as You et al. (2021), the Kendall
correlation coefficient is used as a metric to evaluate the validity of our assessed score of transferability. Given
N candidate models, {Ti, 1 ≤ i ≤ N} is the list of their ground truth transferability and {Si, 1 ≤ i,≤ N}
is the list of predicted scores. Kendall’s coefficient τ gives a quantitative illustration of how the ranking
of Si can stand for the ranking of Ti that when Si > Sj , then the probability that Ti > Tj is τ+1

2 (Fagin
et al., 2003). We also provide Pearson correlation coefficients between the test accuracy and predicted scores,
which is used in LEEP (Nguyen et al., 2020) and NCE (Tran et al., 2019) as the metric. This metric could
better illustrate how the predicted scores are linearly correlated with the ground truth transferability.

4.2 Transferability assessment on neuromorphic datasets

We demonstrate the effectiveness of the maximum evidence method with averaged features on neuromorphic
datasets. The results of Kendall correlation coefficients are shown in Figure 1. It is shown that our MEAF
method gives the best prediction result on all datasets, compared to NCE and LEEP. The Kendall coeffi-
cients are above 0.78 on all datasets, meaning that the predicted scores can represent the ranking of real
transferability with a probability of more than 89%. It is shown that LEEP also gives effective predictions
on SNNs but with a relatively lower Kendall coefficient. Note that on N-MNIST, NCE gives predictions
with correlation coefficients nearly equal to zero.

The Pearson correlation coefficients are shown in Table 1, which shows that MEAF gives predicted scores
more linearly correlated with the ground truth transferability. Neuromorphic datasets have an additional
temporal dimension, which results in a more complicated feature map extracted by the SNNs (He et al.,
2020; Samadzadeh et al., 2023; Zhang et al., 2023). Therefore, making assessments of transferability based
on the feature map could leverage more information than based on the outputs, which may downgrade the
performance LEEP and NCE on such datasets.

Table 1: Pearson correlation coefficients of NCE, LEEP and MEAF on neuromorphic datasets
DATASET C10-DVS DVS128 N-MNIST N-C101

NCE 0.67 0.08 0.11 0.63
LEEP 0.76 0.31 0.24 0.57
MEAF 0.99 0.91 0.97 0.96

4.3 Transferability assessment on static datasets

Our experimental results of Kendall correlation coefficients demonstrate the effectiveness of the MEAF
method on static datasets, as illustrated in Figure 2. The Kendall coefficients shows that the MEAF
approach achieves comparable performance with NCE and LEEP on CIFAR10 and CIFAR100 datasets.
Notably, MEAF outperforming both NCE and LEEP by a margin of 0.5 on the MNIST dataset. While
MEAF shows comparable performance to NCE on the Caltech101 dataset, it exhibits a marginal difference
of 0.14 compared to LEEP. When compared with the results obtained from neuromorphic datasets, the
Kendall coefficients of MEAF in this experiment show relatively lower values. However, it is noteworthy
that all coefficients remain above 0.5 across all datasets, indicating that the predicted scores can effectively
represent the ranking of real transferability with a probability of more than 0.75. We suspect that this
is because the transferabilities (represented by the test set accuracy) of the PTMs are much closer in this
experiment. The Pearson coefficients are given in Table 2. MEAF shows better linear correlation with the
ground truth transferability compared with LEEP and NCE on CIFAR10, CIFAR100 and MNIST datasets,
and achieves the second performance on the Caltech101 dataset behind LEEP. Overall, the experiment
results on the static datasets show that MEAF gives comparable results as LEEP and NCE. Static datasets
do not have a temporal dimension, so they could not leverage the temporal dynamics of SNNs. SNNs act
like ANNs on the static datasets, which could explain that LEEP and NCE perform well here.
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Figure 1: Result of assessed transferability scores (y-axis) vs. test set accuracy (x-axis) on 4
neuromorphic datasets. The first row gives the result of the MEAF. The second and third row shows the
results of LEEP and NCE respectively. Kendall correlation coefficients are labeled in the title of each subplot
after the dataset name.

Table 2: Pearson correlation coefficients of NCE, LEEP and MEAF on static datasets
DATASET C10 C100 C101 MNIST

NCE 0.89 0.87 0.62 0.37
LEEP 0.90 0.90 0.80 0.38
MEAF 0.95 0.91 0.64 0.83

4.4 Validation of approximated maximum evidence

We first show that the approximated maximum evidence method gives consistent results with MacKay’s
method when the number of samples is large. In this experiment, we generate toy data for linear regression
and add Gaussian noise to the data with different SNRs from -10 dB to 10 dB. The dimension of the features
(D) is fixed at 100 and the number of samples (N) increases from 100 to 3,000. The results are illustrated in
Figure 3, showing that the approximated maximum evidence converges to MacKay’s results as N tends to
infinity.

We then validate that the approximated maximum evidence is effective in model hub scheduling. Figure 4
shows that with the approximated maximum evidence, the Kendall coefficients are above 0.85 on CIFAR10-
DVS, N-MNIST, and N-Caltech101 datasets, which is not lower than the results of MacKay’s method. On
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Figure 2: Result of assessed transferability scores (y-axis) vs. test set accuracy (x-axis) on 4
static datasets. The first row gives the result of the MEAF. The second and third row shows the results of
LEEP and NCE respectively. Kendall correlation coefficients are labeled in the title of each subplot after
the dataset name.

the DVS128 Gesture dataset, the Kendall coefficient is 0.56, which is still higher than LEEP (0.2) and NCE
(0.16). We believe that the drop of coefficient on DVS128 Gesture dataset is because the DVS128 Gesture is a
small dataset, with only 1176 samples in the training set (Amir et al., 2017). This contradicts our assumption
of the number of samples being much greater than the dimension of features. As shown in Figure 3, when
N ≈ D, the result of approximated method differs a lot from the results of MacKay’s method. The results
on static datasets (Figure 5) give the Kendall coefficient not lower than the results by MacKay’s method
on CIFAR10 and CIFAR100 datasets. The result on the Caltech101 dataset gives an Kendall coefficient of
0.43, which is 0.07 lower than the result of MacKays’s method (0.5). For the MNIST dataset, the Kendall
coefficient is 0.64, 0.15 lower than the result of MacKay’s method (0.79), but still comparable to the results
given by LEEP (0.29) and NCE (0.29). We believe this might be due to the fact that the test set accuracy
of the PTMs on MNIST is overly concentrated, with values distributed between approximately 0.96 and
0.98. As a result, the transferability assessment results are also very similar, making the impact of errors
more significant. This might explain the noticeable decline in the correlation coefficient on this dataset. The
Pearson correlation coefficients are given in Table 3. It is shown that the approximated method gives similar
results with MacKay’s method on most of the datasets.

Here we give the average number of iterations required for MacKay’s method in Table 4. The stopping
criterion for the convergence of MacKay’s algorithm is set such that the relative error between two successive
α/β is less than 0.01. This is a relatively lenient stopping criterion; employing a stricter criterion would
result in a higher number of iterations. Note that the approximated method does not need an iteration
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Figure 3: Consistency between the results of MacKay’s algorithm and our approximated result on toy data.
Dimension of feature (D) is fixed as 100 and the number of samples (N) is 100, 3,000, 1,000, and 3,000
from (a) to (d). The abscissa represents the SNR of the toy data, and the ordinate represents the scores of
transferability given by MacKay’s method and our approximated method.
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Figure 4: Result of assessed transferability scores (y-axis) vs. test set accuracy (x-axis) on 4
neuromorphic datasets. The abscissa represents the test set accuracy on the corresponding dataset, and
the ordinate represents the scores of transferability given by the approximated maximum evidence method.
Kendall correlation coefficients are labeled in the title of each subplot after the dataset name.

procedure. Therefore, it could accelerate the assessment of transferability from about 1× to 7× on these
datasets.

We summarized the Kendall coefficients of NCE, LEEP, MEAF (with MacKay’s method), MEAF (with
Approximated method) on all the datasets in Table 5.
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Figure 5: Result of assessed transferability scores (y-axis) vs. test set accuracy (x-axis) on 4
static datasets. The abscissa represents the test set accuracy on the corresponding dataset, and the ordinate
represents the scores of transferability given by the approximated maximum evidence method. Kendall
correlation coefficients are labeled in the title of each subplot after the dataset name.

Table 3: Pearson coefficients of MEAF with MacKay’s method and approximated method
Dataset C10-DVS DVS128 N-MNIST N-C101 C10 C100 C101 MNIST
MEAF (+MacKay) 0.99 0.91 0.97 0.96 0.95 0.91 0.64 0.83
MEAF (+Appox) 0.99 0.87 0.97 0.98 0.96 0.91 0.63 0.86

5 Discussion

This paper introduces a novel approach to assessing the transferability of SNN PTMs. We highlight the
challenges of directly applying the existing Bayesian method to SNN transferability assessment and propose
the MEAF method to address these issues. Additionally, an approximated maximum evidence method is
introduced to reduce the computational time of model hub scheduling. We hope this work can help SNN
PTMs be more widely and efficiently used.

Our work is limited in the diversity of SNN PTMs. There are currently no large-scale SNN model hubs,
and our computational resources for pre-training are restricted. A more extensive collection of SNN PTMs
would enhance the accuracy and generalizability of our conclusions.
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A Appendix

A.1 Details of pre-training SNNs

We use spiking version of MLP, spiking version of vanilla ResNet, SEW ResNet(Fang et al., 2021) and
Attention spiking neural network(Yao et al., 2023) as candidate PTMs. On neuromorphic datasets, the
accuracy on validate datasets is shown in Table 6. We use the same model architectures as in Fang et al.
(2021). To adapt the neuromorphic dataset, we modified the input layer of the model, as shown in Table 7.
The unchanged hyper-parameters are not notified in the table. The number of time steps on static datasets
is 4 to be consistent with Fang et al. (2021) and 8 on neuromorphic datasets for better leverageing the
temporal dimension of SNNs.

A.2 Proofs

A.2.1 Proof of Property 3

Proof. The logarithm of maximum evidence is calculated as equation 3,

L∗
1 = N

2 ln β∗ + D

2 ln α∗ − N

2 ln 2π − β∗

2 ∥Fm− t∥2 − α∗

2 mTm− 1
2 ln det A, (15)

where A = α∗I + β∗FTF, m = β∗A−1FTt.
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Table 6: Pre-trained SNN models on ES-ImageNet dataset
MODEL TOP 1 ACC. TOP 5 ACC.

Spiking MLP-12 0.0180 0.0615
Attention SNN 0.1297 0.6710
SEW ResNet-18 0.3443 0.5840
SEW ResNet-34 0.3507 0.5922
SEW ResNet-50 0.3140 0.5470
SEW ResNet-101 0.3031 0.5347
SEW ResNet-152 0.2615 0.4956
Spiking ResNet-18 0.3156 0.5486
Spiking ResNet-34 0.2376 0.4475
Spiking ResNet-50 0.1661 0.3568

Table 7: Modification of the input layer of the models on neuromorphic datasets
ORIGINAL (STATIC) NEUROMORPHIC

Conv2d(in_channels=3) Conv2d(in_channels=2)
Batch normalization Batch normalization
LIF AvgPool2d(kernel_size=3)
MaxPool2d(kernel_size=3) LIF

When the input data F is multiplied by q as F̃ = qF, let α̃ be q2α∗ and β̃ be β∗, we have

Ã = q2α∗I + β∗qFTqF = q2A, (16)

m̃ = β∗Ã−1F̃Tt = 1
q

m, (17)

det Ã = q2D det A. (18)

L∗
2 is the maximum of logarithm of model evidence over α and β. Therefore we have

L∗
2 ≥ L2(α̃, β̃)

= N

2 ln β̃ + D

2 ln α̃− N

2 ln 2π − β̃

2

∥∥∥F̃m̃− t
∥∥∥2
− α̃

2 m̃Tm̃− 1
2 ln det Ã

= N

2 ln β∗ + D

2 ln q2α∗ − N

2 ln 2π − β∗

2

∥∥∥∥(qF)
(

1
q

m

)
− t

∥∥∥∥2
− q2α∗

2

(
1
q

m

)T(1
q

m

)
− 1

2 ln det
(
q2A

)
= N

2 ln β∗ + D

2 ln α∗ − N

2 ln 2π − β∗

2 ∥Fm− t∥2 − α∗

2 mTm− 1
2 ln det A

= L∗
1.

(19)

Similarly we have L∗
1 ≥ L∗

2. Therefore L∗
1 = L∗

2.

A.2.2 Proof of Theorem 1

Proof. Consider input data F ∈ RN×D and targets t ∈ RN . Let the approximated logarithm of maximum
model evidence be LA

1 . The singular value decomposition (SVD) of F = UΣVT, where U ∈ RN×N and
V ∈ RD×D are orthogonal matrix, σ1 ≥ · · · ≥ σD ≥ 0 are singular values.

We first prove the case of property 1. When the input data F is stacked q times as F̃ = [F, . . . , F]. From
the proof of property 1 in You et al. (2022), the SVD of F̃ is ŨΣ̃Ṽ = U

[√
qΣ, 0N×(q−1)D

]
ṼT, where
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Ṽ =


1√
q V · · · · · ·
...

. . .
...

1√
q V · · · · · ·

 ∈ RqD×qD is to product each element of Q =


1√
q · · · · · ·
...

. . .
...

1√
q · · · · · ·

 ∈ Rq×q with V.

Here Q is an orthogonal matrix with first column
[

1√
q , 1√

q , . . . , 1√
q

]T
, which can be obtained through Gram-

Schmidt orthogonalization. The norm of stacked matrix ∥F̃∥2 = σ̃1 = √qσ1 increases √q times, where σ̃1

denotes the first singular value of F̃. N is unchanged in this case. Therefore, λ̃ = qλ. By equation 12,

m̃ =
(

λ̃I + F̃TF̃
)−1

F̃Tt = Ṽ
(

qλI + Σ̃TΣ̃
)−1

Σ̃TUTt

=


1√
q V · · · · · ·
...

. . .
...

1√
q V · · · · · ·




1
q(λ+σ2

1)
. . .

1
q(λ+σ2

D
)

1
qλ

. . .


[ √

qΣT

0(q−1)D×N

]
UTt

=


1
q V
(
λI + ΣTΣ

)−1 ΣTUTt
...

1
q V
(
λI + ΣTΣ

)−1 ΣTUTt

 = 1
q

m
...

m

 .

(20)

Therefore we have β̃0 = β0, α̃0 = λ̃β̃0 = qα0. From equation 3, the approximated logarithm of F̃ and t is

LA
2 = N

2 ln β̃0 + qD

2 ln α̃0 −
N

2 ln 2π − β̃0

2

∥∥∥F̃m̃− t
∥∥∥2
− α̃0

2 m̃Tm̃− 1
2 ln det Ã

= N

2 ln β0 + qD

2 ln qα0 −
N

2 ln 2π − β0

2 ∥Fm− t∥2 − α0

2 mTm

− 1
2 ln det



q(α0 + β0σ2
1)

. . .
q(α0 + β0σ2

D)
qα0

. . .


= N

2 ln β0 + D

2 ln α0 + (q − 1)D
2 ln α0 + qD

2 ln q − N

2 ln 2π − β0

2 ∥Fm− t∥2 − α0

2 mTm− 1
2 ln det A

− 1
2 ln qqDα

(q−1)D
0

= LA
1 .

(21)

Then we prove the case of property 2. When the input data F is padded with zeros as F̃ = [F, 0]. Its SVD

is U
[
Σ, 0N×(q−1)D

] [V
V1

]T
, where V1 is an orthogonal matrix. The norm ∥F̃∥2 = σ̃1 keeps the same

and N is unchanged as well. Therefore, λ̃ is unchanged for F̃.
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From the proof of property 1 in You et al. (2022), we have

m̃ =
[
V

V1

]


1
λ+σ2

1
. . .

1
λ+σ2

D 1
λ

. . .


[

ΣT

0(q−1)D×N

]
UTt

=
[
V
(
λI + ΣTΣ

)−1 ΣTUTt
0(q−1)D×1

]
=
[

m
0(q−1)D×1

]
.

(22)

Therefore we have β̃0 = β0, α̃0 = λ̃β̃0 = α0. From equation 3,

LA
2 = N

2 ln β̃0 + qD

2 ln α̃0 −
N

2 ln 2π − β̃0

2

∥∥∥F̃m̃− t
∥∥∥2
− α̃0

2 m̃Tm̃− 1
2 ln det Ã

= N

2 ln β0 + qD

2 ln α0 −
N

2 ln 2π − β0

2 ∥Fm− t∥2 − α0

2 mTm− 1
2 ln det



(α0 + β0σ2
1)

. . .
(α0 + β0σ2

D)
α0

. . .


= N

2 ln β0 + D

2 ln α0 + (q − 1)D
2 ln α0 −

N

2 ln 2π − β0

2 ∥Fm− t∥2 − α0

2 mTm− 1
2 ln det A− 1

2 ln α
(q−1)D
0

= LA
1 .

(23)

We prove the case if property 3. When the input data F is multiplied by scalar q > 0 as F̃ = qF.
∥F̃∥2 = σ̃1 = qσ1 increases q times and N is unchanged. Therefore, λ̃ increases q2 times for F̃.

From the proof of property 3, Ã = q2A, m̃ = 1
q m. Therefore we have β̃0 = β0, α̃ = λ̃β̃ = q2α. From

equation 3,

LA
2 = N

2 ln β̃0 + D

2 ln α̃0 −
N

2 ln 2π − β̃0

2
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2 ln β0 + D

2 ln q2α0 −
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m
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2

(
1
q

m

)T(1
q
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− 1

2 ln det
(
q2A

)
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2 ln β0 + D

2 ln α0 −
N

2 ln 2π − β0

2 ∥Fm− t∥2 − α0

2 mTm− 1
2 ln det A

= LA
1 .

(24)

A.2.3 Proof of case t = t̂ = 0

For t = t̂ = 0, we have o(t) = 0, 1 ≤ t ≤ T and thus u(t) = e− ∆t
τ u(t − 1) + θTf(t). Note that u(0) = 0, it

can be conducted that
u(1) = θTf(1) ≤ uth

u(T0) = θT

(
T0∑

t=1
e−(T0−t) ∆t

τ f(t)
)
≤ uth, 1 ≤ T0 ≤ T

(25)

By summing ui(T0) from 1 to T − 1, we have
T −1∑
T0=1

u(T0) = θT

(
T −1∑
T0=1

(
f(T0)

T −T0−1∑
t=0

e−t ∆t
τ

))
≤ (T − 1)uth. (26)

19



Published in Transactions on Machine Learning Research (04/2025)

This is equivalent to

θT

(
T −1∑
T0=1

(
f(T0)

(
1− e−(T −T0) ∆t

τ

)))
≤
(

1− e− ∆t
τ

)
(T − 1)uth. (27)

Note that we have

u(T ) = θT

(
T∑

T0=1
e−(T −T0) ∆t

τ f(T0)
)
≤ uth. (28)

By adding Equation 27 and 28 together, we have θT
(∑T

T0=1 f(T0)
)
≤
(

T − (T − 1)e− ∆t
τ

)
uth, which is

θTf̄ = 1
T

T∑
t=1

f(t) ≤
(

1− T − 1
T

e− ∆t
τ

)
uth ≤ uth. (29)

A.3 Validation of approximated maximum evidence
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Figure 6: Results of scores given by approximated method (y-axis) vs. MacKay’s method (x-axis).
Kendall correlation coefficients are labeled in the title of each subplot after the dataset name.

We demonstrated a strong correlation between the approximated maximum evidence and those obtained
using MacKay’s algorithm (Figure 6). It is worth noting that the correlation is relatively low on the
DVS128Gesture dataset. We believe this is because the DVS128 Gesture is a very small dataset, with
only 1176 samples in the training set (Amir et al., 2017), which contradicts our assumption of the number
of samples being much greater than the dimension of features (as shown in Figure 3).

A.4 Study on error range

Here we discuss the error range of test set accuracy in the experiments. Due to computational resource
limitations, we only conducted experiments on a single typical dataset, DVS128 Gesture. Each pre-trained
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model was fine-tuned on this dataset with 8 different random seeds and grid searched with learning rates
ranging from 1e-1 to 1e-3 and weight decay ranging from 1e-5 to 1e-8. Each model is fine-tuned 200 epoches.
Based on the results, we calculated the mean and standard deviation (std) of the test set accuracy on this
dataset, which are presented in Table 8. Additionally, to better illustrate the impact of the error range in
test set accuracy on transferability assessment, we also present the corresponding results in Figure 7.

Table 8: Error range of test set accuracy on DVS128 Gesture dataset
MODEL NCE LEEP MEAF TEST ACC. (STD)

Spiking MLP-12 -2.10835 -2.25607 -0.11412 0.306 (0.009)
Attention SNN -2.06354 -2.36722 -0.00981 0.615 (0.022)
SEW ResNet-18 -2.16645 -2.18893 0.00596 0.656 (0.012)
SEW ResNet-34 -2.00966 -2.07468 0.00055 0.635 (0.008)
SEW ResNet-50 -2.26797 -2.26722 -0.03956 0.622 (0.014)
SEW ResNet-101 -2.17705 -2.18028 -0.02884 0.639 (0.017)
SEW ResNet-152 -2.14735 -2.16500 -0.05603 0.565 (0.013)
Spiking ResNet-18 -2.28786 -2.27276 -0.05153 0.523 (0.012)
Spiking ResNet-34 -2.23009 -2.26244 -0.07663 0.480 (0.015)
Spiking ResNet-50 -2.18648 -2.29238 -0.09107 0.497 (0.012)
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Figure 7: Results of test set accuracy vs. assessment score (x-axis) with error bars. Kendall
correlation coefficients are labeled in the title of each subplot after the dataset name.

A.5 Ablation study

Here we investigate the effectiveness of averaging the features. We selected three alternative ways for
constructing feature vectors of shape N × D from SNN feature maps of shape N × T × D, where N is
the dataset size, T is the number of time steps and N is the dimension of feature of each time step. We
use these feature vectors to assess transferability with MacKay’s method and compare the results with those
from MEAF. The three methods we selected are:

1. LAST: Selecting the feature vector from the last time step,

2. MAX: Applying max-pooling along the time dimension to the feature vectors,

3. PCA: Using PCA to reduce the SNN feature map from shape N × T ×D to N ×D,

and the results are presented in Table 9.
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The MEAF method performs optimally on most datasets, achieving the highest average Kendall correlation
coefficient. On the CIFAR10-DVS and N-Caltech101 datasets, it also achieves the second-best results, with
a gap of less than 0.04 from the optimal results. This demonstrates the effectiveness of average feature con-
struction. Other methods to aggregate feature from multi-time steps, such as using a convolution layer along
the time dimension may have better performance ; however, these involve additional learnable parameters
that need to be trained or set, making them more complex compared to the current approaches. We leave
this as a potential direction for future research.

Table 9: Kendall coefficient of transferability calculated by alternative ways to construct feature vector and
MEAF

DATASET LAST MAX PCA MEAF

DVS128 0.69 0.73 0.69 0.78
C10-DVS 0.91 0.91 1.00 0.96
N-C101 0.91 0.87 0.69 0.87
N-MNIST 0.87 0.78 0.73 0.87
C10 0.79 0.79 0.86 0.86
C100 0.71 0.71 0.71 0.71
MNIST 0.71 0.71 0.71 0.79
C101 0.43 0.43 0.50 0.50

AVERAGE 0.75 0.74 0.74 0.79
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