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ABSTRACT

As diffusion probabilistic models (DPMs) are being employed as mainstream mod-
els for Generative Artificial Intelligence (GenAI), the study of their memorization
of training data has attracted growing attention. Existing works in this direction
aim to establish an understanding of whether or to what extent DPMs learn via
memorization. Such an understanding is crucial for identifying potential risks of
data leakage and copyright infringement in diffusion models and, more importantly,
for trustworthy application of GenAI. Existing works revealed that conditional
DPMs are more prone to training data memorization than unconditional DPMs, and
the motivated data extraction methods are mostly for conditional DPMs. However,
these understandings are primarily empirical, and extracting training data from
unconditional models has been found to be extremely challenging. In this work,
we provide a theoretical understanding of memorization in both conditional and
unconditional DPMs under the assumption of model convergence. Our theoretical
analysis indicates that extracting data from unconditional models can also be effec-
tive by constructing a proper surrogate condition. Based on this result, we propose
a novel data extraction method named Surrogate condItional Data Extraction
(SIDE) that leverages a time-dependent classifier trained on the generated data as a
surrogate condition to extract training data from unconditional DPMs. Empirical
results demonstrate that our SIDE can extract training data in challenging scenarios
where previous methods fail, and it is, on average, over 50% more effective across
different scales of the CelebA dataset.

1 INTRODUCTION

The diffusion probabilistic models (DPMs) (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song &
Ermon, 2019) is a family of powerful generative models that learn the distribution of a dataset by
first gradually destroying the structure of the data through an iterative forward diffusion process and
then restoring the data structure via a reverse diffusion process. Due to their outstanding capability
in capturing data distribution, DPMs have become the foundation models for many pioneering
Generative Artificial Intelligence (GenAI) products such as Stable Diffusion (Rombach et al., 2022),
DALL-E 3 (Betker et al.), and Sora (Brooks et al., 2024). Despite the widespread adoption of DPMs,
a potential risk they face is data memorization, i.e., the risk of memorizing a certain proportion of the
raw training samples. This could result in the generation of memorized (rather than new) samples via
direct copying, causing data leakage, privacy breaches, or copyright infringement, as highlighted in
the literature (Somepalli et al., 2022; 2023; Asay, 2020; Cooper & Grimmelmann, 2024). A current
case argues that Stable Diffusion is a 21st-century collage tool, remixing the copyrighted creations
of countless artists whose works were included in the training data(Butterick, 2023). Furthermore,
data memorization also gives rise to data extraction attacks, which is one type of privacy attacks
that attempt to extract the training data from a well-trained model. Notably, recent work by Carlini
et al. (2023) demonstrated the feasibility of extracting training data samples from DPMs like Stable
Diffusion (Rombach et al., 2022), revealing the potential dangers associated with these models.

Several works have investigated the data memorization phenomenon in diffusion models. For example,
it has been observed that there exists a strong correlation between training data memorization and
conditional DPMs, i.e., being conditional is more prone to memorization (Somepalli et al., 2023).
Gu et al. (2023) investigates the influential factors on memorization behaviors via a comprehensive
set of experiments. They found that conditioning on random-labeled data can significantly trigger

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: A few examples of the extracted images from a DDPM trained on a subset of the CelebA
dataset using our SIDE method. Top: training images; bottom: extracted images.

memorization, and unconditional models memorize much less training data. Though inspiring, these
understandings are primarily empirical. Moreover, without a unified theoretical understanding of
memorization in both conditional and unconditional DPMs, it is extremely difficult to design an
effective data extraction method for unconditional DPMs.

In this work, we first introduce a memorization metric to quantify the degree of memorization in DPMs
by measuring the overlap between the generated and training data in a point-wise manner. Based
on this metric, we present a theoretical framework that explains why conditional generative models
memorize more data and why random labeling can lead to increased memorization. Our theoretical
analysis indicates that a classifier trained on the same or similar training data can serve as a surrogate
condition for unconditional DPMs. By further making the classifier time-dependent (to the diffusion
sampling process), we propose a novel data extraction method named Surrogate condItional Data
Extraction (SIDE) to extract training data from unconditional DPMs. We empirically verify the
effectiveness of SIDE on CIFAR-10 and different scales of the CelebA dataset (attack results in
Figure 1), confirming the accuracy of the theoretical framework.

In summary, our main contributions are:

• We introduce a novel metric to measure the degree of point-wise memorization in DPMs
and present a theoretical framework that explains 1) why conditional DPMs are more prone
to memorization, 2) why random labels can lead to more memorization, and 3) implicit
labels (e.g., the learned clusters) can serve as a surrogate condition for unconditional DPMs.

• Based on our theoretical understanding, we propose a novel training data extraction method
SIDE that leverages the implicit labels learned by a time-dependent classifier to extract
training data from unconditional DPMs.

• We evaluate the effectiveness of SIDE on CIFAR-10 and various scales of CelebA datasets,
and show that, on average, it can outperform the baseline method proposed by Carlini et al.
(2023) by more than 50%.

2 RELATED WORK

Diffusion Probabilistic Models DPMs (Sohl-Dickstein et al., 2015) such as Stable Diffusion (Rom-
bach et al., 2022), DALL-E 3 (Betker et al.), Sora (Brooks et al., 2024), Runway (Rombach et al.,
2022), and Imagen (Saharia et al., 2022) have achieved state-of-the-art performance in image/video
generation across a wide range of benchmarks (Dhariwal & Nichol, 2021). These models can be
viewed from two perspectives. The first is score matching (Song & Ermon, 2019), where diffusion
models learn the gradient of the image distribution (Song et al., 2020). The second perspective
involves denoising DPMs (Ho et al., 2020), which add Gaussian noise at various time steps to clean
images and train models to denoise them. To conditionally sample from diffusion models, (Dhariwal
& Nichol, 2021) utilizes a classifier to guide the denoising process at each sampling step. Additionally,
(Ho & Salimans, 2022) introduces classifier-free guidance for conditional data sampling using DPMs.

Memorization in Diffusion Models Early exploration of memorization in large models was focused
on language models (Carlini et al., 2022; Jagielski et al., 2022), which has motivated more in-
depth research on image-generation DPMs (Somepalli et al., 2023; Gu et al., 2023). Notably, a
recent research on image-generation DPMs. Somepalli et al. (2022) found that 0.5-2% of generated
images duplicate training samples, a result concurrently reported by Carlini et al. (2023) in broader
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experiments for both conditional and unconditional diffusion models. Further studies Somepalli et al.
(2023) and Gu et al. (2023) linked memorization to model conditioning, showing that conditional
models are more prone to memorization. To address this issue, anti-memorization guidance has been
proposed to mitigate memorization during the sampling process Chen et al. (2024a). So far, the
motivated data extraction attack or defend methods from these empirical understandings are mostly
for conditional DPMs Carlini et al. (2023); Webster (2023), and studies have shown that extracting
training data from unconditional DPMs can be much more challenging than that on conditional DPMs
Gu et al. (2023). Although the empirical understandings are inspiring, a theoretical understanding
of the memorization behaviors of DPMs is missing from the current literature. A recent attempt by
Ross et al. (2024) uses the local intrinsic dimension (LID) metric to characterize memorization in
DPMs. However, the finding that lower LID leads to more memorization is only verified on a toy
1-dimensional dataset and only a few generated images, and it fails to address the data extraction
challenge on unconditional DPMs. This challenge is exemplified by the brute-force methods currently
employed, as discussed in (Somepalli et al., 2022; Carlini et al., 2023), highlighting the inadequacies
of existing approaches for extracting data from unconditional diffusion models. In response to these
challenges, we introduce a theoretical framework to characterize memorization in DPMs, which
further motivates a novel data extraction method for unconditional DPMs.

3 PROPOSED THEORY

In this section, we introduce a memorization metric and provide a theoretical explanation for the
universality of data memorization in both conditional and unconditional diffusion models.

3.1 MEMORIZATION METRIC

Intuitively, the memorization of fixed training data points (i.e., pointwise memorization) can be
quantified by the degree of overlap between the generated distribution and the distributions centered
at each training data point. Given a generative model and training dataset, we propose the following
memorization metric to quantify the memorization of the training data points in the model.

Definition 1 (Pointwise Memorization) Given a generative model pθ with parameters θ and train-
ing dataset D = {xi}Ni=1, the degree of memorization in pθ of D is defined as:

Mpoint(D; θ) =
∑
xi∈D

∫
pθ(x) log

pθ(x)

q(x,xi, ϵ)
dx, (1)

where xi ∈ Rd is the i-th training sample, N is the total number of training samples, pθ(x) represents
the probability density function (PDF) of the generated samples, and q(x,xi, ϵ) is the probability
distribution centered at training sample xi within a small radius ϵ.

A straightforward choice for q(x,xi, ϵ) is the Dirac delta function centered at training data point
xi: q(x,xi, ϵ) = δ(x − xi). However, this would make Eq. (1) uncomputable as the Dirac delta
function is zero beyond the ϵ-neighborhood. Alternatively, we could use the Gaussian distribution
with a covariance matrix ϵI (I is the identity matrix) for q(x,xi, ϵ):

q(x,xi, ϵ) =
1√

(2πϵ)d
exp

{
− 1

2ϵ
(x− xi)

⊤(x− xi)

}
. (2)

Note that in Eq. (1), a smaller value of Mpoint(D; θ) indicates more overlap between the two
distributions and thus more memorization. As ϵ tends to 0, the measured memorization becomes
more accurate, with the limit characterizing the intrinsic memorization capability of model pθ.

Semantic Memorization As a metric, Mpoint(D; θ) should be monotonous with the actual se-
mantic memorization effect, which refers to the model’s tendency to reproduce unique features
of the training samples rather than generating near-duplicate examples. Here, we define semantic
memorization in the latent space as it distills the unique semantic information of each training sample.

Definition 2 (Semantic Memorization) Let D = {xi}Ni=1 be the dataset, pθ(x) be the PDF of the
generated samples by model pθ, and z be the learned latent code for data sample x. The semantic
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memorization of model pθ on D is:

Msemantic (D; θ) =
∑
zi∈D

∫
pθ (z) (z − zi)

T
(z − zi) dz, (3)

where zi denotes the ground truth latent code of xi.

Msemantic (D; θ) measures semantic memorization because it evaluates how well the learned repre-
sentations z of training samples align with their ground truth latent codes, capturing the underlying
structure of the data rather than simply memorizing the exact duplicates of the training data points. In
practice, the ground truth latent codes are known but can be approximated by an independent encoder.

The following theorem formulates the relationship between pointwise and semantic memorization.

Theorem 1 Pointwise memorization Mpoint(D; θ) is monotonic to semantic memorization, for-
mally:

∂Mpoint(D; θ)

∂Msemantic(D; θ)
=

1

2ϵ
+

Tr(Σ−1
pθ

)

2
> 0 (4)

where Σpθ
is the covariance matrix of the learned latent distribution of the training data.

We first build the relationship map Mpoint into latent space, and then break down Eq. (4) into
separate components and derive each component separately. So, the Eq. (4) can be simplified to 1

2ϵ .
The detailed proof can be found in Appendix A.2. Note that the memorization effect studied in this
work refers specifically to the pointwise memorization Mpoint.

3.2 THEORETICAL FRAMEWORK

Based on pointwise memorization, here we present a theoretically framework that explains why
conditional DPMs memorize more data. Our theoretical framework is based on the concept of
informative labels, which refers to information that can differentiate subsets of data samples. We
first give a formal definition of informative labels and then prove their two key properties: 1) they
facilitate tighter clustering of samples around their respective means, and 2) they reduce variance in
the latent representations. Building upon the two properties, we theoretically show that conditional
DPMs memorize more data.

Informative Labels The concept of informative labels has been previously discussed as class labels
(Gu et al., 2023). In this work, we introduce a more general definition that encompasses both class
labels and random labels as special cases. We define an informative label as follows.

Definition 3 (Informative Label) Let Y = {yi, y2, · · · , yC} be the label set for training dataset D
with C unique labels. yi is the associated label with xi, and Dy=c = {xi : xi ∈ D, yi = c} is the
subset of training samples shared the same label y = c. A label y = c is an informative label if

|Dy=c| < |D|. (5)

Here, the labels are not limited to the conventional class labels; they can also be text captions, features,
or cluster information that can be used to group the training samples into subsets. The above definition
states that an information label should be able to differentiate a subset of samples from others. An
extreme case is that all samples have the same label; in this case, the label is not informative.
According to our definition, class-wise and random labels are special cases of informative labels.
Informative labels can be either explicit like class/random labels and text captions, or implicit like
silent features or clusters. Next, we will explore the correlation between informative labels and the
clustering effect in the latent space of a generative model with an encoder and decoder. In diffusion
models, the encoder represents the forward diffusion process, while the decoder represents the reverse
process. Notably, the latent space can be defined at earlier timesteps according to (Ho et al., 2020).

Memorization in Conditional DPMs Informative labels cause a clustering effect in the latent
space of DPMs by providing contextual information that allows the encoder to better differentiate
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between data samples. When data points are associated with informative labels, the encoder can map
them to a latent distribution that accurately reflects their shared characteristics. This results in tighter
clusters in the latent space as samples with the same informative label become more concentrated
around their respective means. Consequently, the latent representations of these samples exhibit
reduced variance, leading to a more structured and organized latent space. We prove these two
properties under the assumption of model convergence.

Suppose we have an encoder fθE (x) and a decoder fθD (z). The encoder fθE (x) maps data samples
x ∈ D to the latent distribution z, which follows a normal distribution N (µ,Σ): pθ(z) = N (µ,Σ).
For xi ∈ Dy=c, the encoder maps xi to a latent distribution zc subject to N (µc,Σc). The decoder
fθD (z) maps z back to the original data samples x. yi is the label of data sample xi. Training a
generative pθ is to optimize the following:

min
θ

−
∑
xi∈D

log pθ (xi|yi). (6)

Assumption 1 Given suffix training on D, the generative model pθ converges to an optimal solution
for Eq. (6) : θ∗ = argminθ −

∑
xi∈D log pθ(xi|yi).

Based on the above assumption, we can derive the following Proposition 1, with detailed proof
deferred to Appendix A.3

Proposition 1 Let z be the latent space of generative model pθ conditioned on an informative label
y = c, the latent representations learned by pθ under Assumption 1 satisfy:∑

zi∈Dy=c

(zi − µc)
T(zi − µc) ≤

∑
zi∈Dy=c

(zi − µ)T(zi − µ), (7)

∥Σc∥∗ ≤ ∥Σ∥∗, (8)

where Σ is the covariance matrix, Σc is the covariance matrix conditioned on informative label
y = c, µc denotes the mean of the latent representations z conditioned on y = c and µ denotes the
mean on the overall dataset D.

Proposition 1 describes two properties of the learned latent space driven by informative labels: 1)
tighter clustering as defined in Eq. (7) and 2) reduced variance as defined in Eq. (8). Tighter
clustering means that the data samples associated with the same informative label are more closely
clustered, which allows the model to more effectively capture and memorize the specific features and
patterns relevant to those labels. This proximity in the latent space enhances the model’s ability to
recall memorized samples during generation, as the representations are organized around distinct
means. Additionally, reduced variance in these clustered representations leads to greater stability,
ensuring that the model can consistently reproduce memorized outputs from the clustered latent
codes. Based on this understanding, we formalize the relationship between informative labels and
memorization in conditional DPMs via the following theorem.

Theorem 2 A generative model pθ incurs a higher degree of pointwise memorization when condi-
tioned on informative labels y = c, mathematically expressed as:

lim
ϵ→0

Mpoint(Dy=c, θy=c)

Mpoint(Dy=c, θ)
≤ 1 (9)

where θy=c denotes the parameters of the model when trained on dataset Dy=c.

The proof can be found in Appendix A.4. Theorem 2 states that any form of information labels
can incur more memorization in DPMs, including conventional class labels and random labels. As
shown in our proof, the informative nature of a label reduces the entropy (or uncertainty) of the data
distribution conditioned on that label, leading to a more focused and memorable data representation.
This explains the two empirical observations made in existing works Gu et al. (2023): 1) conditional
DPMs are more prone to memorization and 2) even random labels can lead to more memorization. It
also explains the findings that unconditional models do not replicate data and that text conditioning
increases memorization Somepalli et al. (2022); Chen et al. (2024a).
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Memorization in Unconditional DPMs According to Theorem 2, one could leverage informative
labels to extract training data from conditional DPMs. Intuitively, the Text captions and class labels
commonly used to train conditional DPMs are valid informative labels, which we call explicit
informative labels. However, unconditional DPMs do not have explicit informative labels and thus
are more difficult to extract training data from. Nevertheless, our theory indicates that the learned
representation clusters by an unconditional DPM can also serve as a type of informative labels, which
we call implict information labels. It means that if we can formulate the clustering information
in the training data, we could construct implicit informative labels to help extract training data
from unconditional DPMs. This motivates us to propose a new data extraction method SIDE for
unconditional DPMs in the next section.

4 PROPOSED SIDE METHOD

In this section, we will construct implicit informative labels for unconditional DPMs, convert the
implicit labels into explicit ones, and then leverage the explicit labels to extract training data.

4.1 CONSTRUCTING IMPLICIT INFORMATIVE LABELS

Intuitively, one could use a classifier to generate (predict) implicit labels yI during the sampling
process of the diffusion model. The classifier can be a normal classifier trained on the same dataset as
the diffusion model. When such a classifier is not available, random labels or representation clusters
extracted by a pre-trained feature extractor (e.g., the CLIP image encoder) can also be used as the
implicit labels, according to our theoretical analysis in Section 3.2. We assume an implicit label yI is
learned by the target unconditional DPM, with its sampling process defined as:

dx =
[
f(x, t)− g(t)2

(
∇x log ptθ(x) +∇x log ptθ(yI |x)

)]
dt+ g(t)dw, (10)

where x represents the state vector, f(x, t) denotes the drift coefficient, g(t) is the diffusion coefficient,
∇x log ptθ(x) denotes the gradient of model pθ given x at time t, and dw corresponds to the increment
of the Wiener process.

We can use the classifier that generates the implicit labels to approximate the gradient in Eq. (10).
However, a known challenge associated with neural network classifiers is their tendency towards
miscalibration (Guo et al., 2017). Specifically, the classifier could be overconfident or underconfident
about its predictions. To mitigate the potential impact of miscalibration on the sampling process,
we introduce a hyperparameter λ to calibrate the classifier’s probability output on the diffusion path
using power prior as follows:

ptθ (x|yI) ∝ ptλθ (yI |x) ptθ (x) . (11)

Then, we have:

dx =
[
f(x, t)− g(t)2

(
∇x log ptθ(x) + λ∇x log ptθ(yI |x)

)]
dt+ g(t)dw. (12)

Note that this classifier-conditioned sampling process was initially introduced in (Dhariwal & Nichol,
2021) for a different purpose, i.e., improving sample quality with classifier guidance. Our derivation
is different from (Dhariwal & Nichol, 2021). They assumed that

∫
ptλθ (y|x)dy = Z with Z being a

constant. However, this assumption only holds when λ = 1, as Z is explicitly dependent on the xt

(the t-th step of sampling image x ) when λ ̸= 1. Our derivation solves this issue by redefining the
ptθ (y|x) using power prior.

4.2 TIME-DEPENDENT CLASSIFIER

In Eq. (151), the classifier is denoted by ptθ(y|x) with t being the timestep, implying its time-
dependent nature. However, we do not have a time-dependent classifier but only a time-independent
classifier. To address this problem, we propose a method named Time-Dependent Knowledge
Distillation (TDKD) to train a time-dependent classifier. The distillation process is illustrated in
Figure 2. TDKD equips the classifier with time-dependent guidance during sampling. It operates in
two steps: first, the network architecture is adjusted to accommodate time-dependent inputs, and the
structure of the time-dependent module and modification are illustrated in Appendix C; second, a
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Figure 2: An illustration of our proposed Time-Dependent Knowledge Distillation (TDKD) method
that trains a time-dependent classifier on a pseudo-labeled synthetic dataset.

synthetic dataset and pseudo labels are created to facilitate knowledge distillation from the normal
classifier to its time-dependent counterpart.

As the original training dataset is unknown, we employ the target DPM to generate a synthetic dataset,
following the generative data augmentation techniques Chen et al. (2023; 2024b). We then use the
normal classifier trained on the original dataset to generate pseudo labels for the synthetic dataset.
Finally, we train a time-dependent classifier on the labelled synthetic dataset. The objective of this
training is defined as following:

Ldistil = DKL

(
pθ(yI |x), ptθ(yI |xt)

)
. (13)

Overall Procedure of SIDE With the trained time-dependent classifier ptθ(y|xt) and the target
DPM, our SIDE extracts training data from the model following a conditional generation process.
Assume we condition on the label y = c. First, we pick a set of values for λ, called Sλ, to use in
the SIDE attack. Then, we gather NG data samples for each value of λ from the set. During each
sampling timestep t, we compute the gradient ∇xtCE(c, ptθ(y|xt)) (CE(·) is the cross-entropy loss),
then we use the gradient and the target DPM to reverse the diffusion process. Third, we compute
the similarity score for each generated image. Lastly, we evaluate the attack performance using
evaluation metrics. Defer to Appendix E for SIDE’s pseudocode.

5 EXPERIMENTS

In this section, we first describe our experimental setup, introduce the performance metrics, and then
present the main evaluation results of our SIDE method. We empirically verify that the memorized
images are not from the classifier. We also conduct an ablation study and hyper-parameter analysis to
help understand the working mechanism of SIDE.

5.1 EXPERIMENTAL SETUP

We evaluate the effectiveness of our method on three datasets: 1) CelebA-HQ-Face-Identity (CelebA-
HQ-FI) (Na et al., 2022) which consists of 5478 images, 2) a subset of the CelebA (CelebA-25000)
(Liu et al., 2015) which contains 25,000 images and 2) CIFAR-10 containing 50,000 images. All the
images are normalized to [-1,1]. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with a
learning rate of 1e-4 to train the time-dependent classifier. We train denoising DPMs with a discrete
denoising scheduler (DDIM (Song et al., 2021)) using the HuggingFace implementation (von Platen
et al., 2022). All DPMs are trained with batch size 64. We train the models for 258k steps (≈ 3000
epochs) on CelebA-HQ-FI, 390k steps (≈ 1000 epochs) on CelebA-25000 and 1600k steps (≈ 2048
epochs) on CIFAR-10, respectively. We use ResNet34 (He et al., 2015) as the normal classifier.

5.2 PERFORMANCE METRICS

Determining whether a generated image is a memorized copy of a training image is difficult, as
Lp distances in the pixel space are ineffective. Previous research addresses this by using the 95th
percentile Self-Supervised Descriptor for Image Copy Detection (SSCD) score for image copy
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Figure 3: A comparison between the original training images (top row) and generated images (bottom
row) by our SIDE method. The matches are classified into three categories: low similarity (SSCD
score < 0.5), mid similarity (SSCD score between 0.5 and 0.6), and high similarity (SSCD score >
0.6). This classification highlights varying degrees of semantic resemblance among the image pairs.

detection (Somepalli et al., 2022; Gu et al., 2023). However, the 95th percentile SSCD score has three
limitations: 1) it does not measure the uniqueness of memorized images; 2) it may underestimate the
number of memorized samples when cut at the 95th percentile; and 3) it does not account for different
types of memorization. Here, we propose two new memorization scores to solve these issues: 1)
Average Memorization Score (AMS) and 2) Unique Memorization Score (UMS metrics).

The AMS and UMS metrics are defined as follows:

AMS (Dgen,Dtrain, α, β) =

∑
xi∈Dgen

F (xi,Dtrain, α, β)

NG
, (14)

UMS (Dgen,Dtrain, α, β) =
|
⋃

xi∈Dgen
ϕ (xi,Dtrain, α, β) |
NG

, (15)

where Dgen is the generated dataset, Dtrain is the training dataset, and α, β are thresholds for
image similarity scoring. F(xi,Dtrain, α, β) serves as a binary check for whether any training
sample meets the similarity/distance criteria. ϕ(xi,Dtrain, α, β) provides the specific indices of
those training samples that meet the similarity/distance criteria. Mathematically, we can represent
F(xi,Dtrain, α, β) = 1[maxxj∈Dtrain γ(xi, xj) ≥ α & γ(xi, xj) ≤ β] φ(xi,Dtrain, α, β) = {j :
xj ∈ Dtrain, γ(xi, xj) ≥ α & γ(xi, xj) ≤ β}. γ represents the similarity/distance function. For
low-resolution datasets, we use the normalized L2 distance as γ following Carlini et al. (2023), while
for high-resolution datasets, we use the SSCD score as γ. In our experiments, the thresholds for
SSCD are set to α = 0.4 and β = 0.5 for low similarity, α = 0.5 and β = 0.6 for mid similarity, and
α = 0.6 and β = 1.0 for high similarity. The thresholds for the normalized L2 ditance (Carlini et al.,
2023) are set to α = 1.5 and β = 10 for low similarity, α = 1.4 and β = 1.5 for mid similarity, and
α = 1.35 and β = 1.4 for high similarity.

The AMS averages the similarity scores across generated images, ensuring that memorized images are
not overlooked. In contrast, the UMS quantifies distinct memorized instances by evaluating unique
matches, thereby accounting for the uniqueness of the memorized images. By further categorizing
the two scores into three levels—low, mid, and high—we obtain more comprehensive measurements
for different types of memorization.

While Carlini et al. (2023); Chen et al. (2024a) introduced metrics similar to AMS and UMS, they
did not account for varying levels of similarity, which is essential for assessing different types of
copyright infringement, such as character or style copying (Lee et al., 2023; Sag, 2023; Sobel, 2023).
Additionally, the UMS considers the number of generated images NG, which was overlooked in
(Carlini et al., 2023). The significance of NG lies in its non-linear impact on the UMS (see Appendix
B for proof), indicating that UMS scores should not be compared across different values of NG.

5.3 MAIN RESULTS

We compare SIDE with a random baseline and a variant of SIDE that substitutes the time-dependent
classifier with a standard (time-independent) classifier. Here, "TD" refers to the time-dependent
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Table 1: The AMS (%) and UMS (%) results at low (top), mid (middle), and high (bottom) levels.
‘Random’ denotes the baseline that generates images directly using the target unconditional DPM,
while OL-TI is a variant of SIDE which is not trained using TDKD.

Dataset Method Low Similarity Mid Similarity High Similarity
AMS(%) UMS(%) AMS(%) UMS(%) AMS(%) UMS(%)

CelebA-HQ-FI
Random 11.656 2.120 0.596 0.328 0.044 0.040
OL-TI 2.649 0.744 0.075 0.057 0.005 0.005
SIDE (Ours) 15.172 2.342 1.115 0.444 0.054 0.044

CelebA-25000
Random 5.000 4.240 0.100 0.100 0.000 0.000
OL-TI 0.164 0.152 0.000 0.000 0.000 0.000
SIDE (Ours) 8.756 6.940 0.224 0.212 0.012 0.012

CIFAR-10
Random 2.470 1.770 0.910 0.710 0.510 0.420
OL-TI 2.460 1.780 0.800 0.680 0.420 0.370
SIDE (Ours) 5.325 2.053 2.495 0.860 1.770 0.560

classifier trained using our proposed TDKD method, "TI" denotes the time-independent classifier,
and "OL" indicates training with the original dataset labels.

The "Random" baseline generates images directly using the target unconditional DPM, as described
in (Carlini et al., 2023). We average the results across various values of λ (defined in Eq. (151)),
ranging from 5 to 9, with a detailed analysis provided in Section 5.3. It is important to note that
λ = 0 corresponds to the "Random" baseline.

For each λ, including λ = 0, we generate 50,000 images for CelebA and 10,000 images for CIFAR-10
to validate our theoretical analysis and the proposed SIDE method. This effort results in one of the
largest generated image datasets to date for studying the memorization of DPMs.

Effectiveness of SIDE The AMS and UMS results for the three datasets are presented in Table
1. As shown, SIDE is highly effective in extracting memorized data across all similarity levels,
particularly on the CelebA-25000 dataset, a task previously deemed unfeasible due to its large scale.

On CelebA-HQ-FI, SIDE increases mid-level AMS by 87% to 1.115% and UMS by 37% to 0.444%,
with an average improvement of 20% across other levels. For the CelebA-25000 dataset, SIDE
dramatically enhances AMS and UMS, achieving increases of 75% and 63% for low similarity and
124% and 112% for mid similarity. In the high similarity, SIDE excels at extracting memorized data.

On CIFAR-10, SIDE also outperforms the baselines across all similarity levels. For low similarity, it
achieves an AMS of 5.325%, more than double Random’s 2.470%, and a UMS of 2.05% compared
to 1.780%. For mid similarity, SIDE reaches 2.495% AMS and 0.860% UMS, significantly higher
than Random’s 0.910% AMS and 0.710% UMS, respectively. In the high similarity category, SIDE
achieves 1.770% AMS and 0.560% UMS, well ahead of Random’s 0.510% AMS and 0.420% UMS.

Effectiveness of TDKD As shown in Table 1, time-independent classifiers perform significantly
worse than their time-dependent counterparts on the two high-resolution CelebA datasets, achieving
only about 10% of the effectiveness of classifiers trained using our TDKD method. This discrepancy
arises because time-independent classifiers can provide accurate gradients only at the final timestep,
whereas time-dependent classifiers deliver accurate gradients at each timestep. However, the per-
formance gap narrows on the CIFAR-10 dataset due to its simplicity, consisting of only 10 classes.
Thus, the gradients produced by the time-independent classifier are less prone to inaccuracy, which
mitigates the limitations of the time-independent classifier.

Memorized Images Are Not From the Classifiers There might be a concern that the extracted
images may originate from the classifier rather than the target DPM. We argue that even if a time-
dependent classifier could disclose its training images, these images would still originate from the
target DPM, as they can also be extracted with the time-dependent classifiers. Furthermore, Table
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Figure 4: Hyper-parameter (λ) analysis on CelebA-HQ-FI. For high similarity, the best λ for AMS
and UMS are 16 and 13. For other similarity levels, the best λ for AMS and UMS is 13.

1 demonstrates that employing a simple classifier reduces memorization compared to the baseline
extraction method, indicating that the memorized images do not originate from the classifier.

Impact of the Classifier on SIDE The classifier used to train SIDE is associated with a certain
number of classes. Here, we conduct experiments to explore the relationship between the number of
classes (of the classifier) and the extraction performance at a low similarity level, using 1,200 images
per class with λ = 5 on the CelebA-HQ-FI dataset. As shown in Table 2 and Figure 7 (Appendix),
there exists a strong positive correlation: as the number of classes increases, both AMS and UMS
improve. In summary, increasing number of classes positively affects both AMS and UMS, with
a stronger impact on AMS. The UMS values reported here differ significantly from Table 1. This
is because here, we only generated 1,200 images per class, whereas 50,000 images per class in the
previous experiment. Increasing the number of classes improves AMS more than UMS because a
higher class count enables the classifier to better differentiate fine details, leading to more accurate
matches at low similarity levels. UMS is less affected since it relies more on the diversity across
images, which is constrained by the smaller number of images per class in this experiment.

Table 2: This table presents the results of fitting a linear model to the relationship between the number
of classes and both AMS and UMS.

Relationship Coefficient (×10−5) Intercept R2 Correlation Coefficient
#Class vs. AMS 7.4 (positive) 0.115 0.637 0.80
#Class and UMS 6.1 (positive) 0.090 0.483 0.70

Hyper-parameter Analysis Here, we test the sensitivity of SIDE to its hyper-parameter λ. We
generate 50,000 images for each integer value of λ within the range of [0, 50]. As shown in Figure
4, the memorization score increases at first, reaching its highest, then decreases as λ increases.
This can be understood from sampling SDE Eq. (151). Starting from 0, the diffusion models are
unconditional. As λ increases, the diffusion models become conditional, and according to Theorem
2, the memorization effect will be triggered. However, when λ is too large, the generated images
will overfit the classifier’s decision boundaries, leading to a low diversity and ignoring the data
distribution. Consequently, the memorization score decreases.

6 CONCLUSION

In this paper, we introduced a pointwise memorization metric to quantify memorization effects
in DPMs. We provided a theoretical analysis of conditional memorization, offering a generalized
definition of informative labels and clarifying that random labels can also be informative. We
distinguish between explicit labels and implicit labels and propose a novel method, SIDE, to extract
training data from unconditional diffusion models by constructing a surrogate condition. The key
to this approach is training a time-dependent classifier using our TDKD technique. We empirically
validate SIDE on subsets of the CelebA and CIFAR-10 datasets with two new memorization scores:
AMS and UMS. We aim for our work to enhance the understanding of memorization mechanisms in
diffusion models and inspire further methods to mitigate memorization.
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BROADER IMPACTS

Our work introduces a memorization metric that not only quantifies memorization effects in diffusion
models but also extends to deep learning models more broadly. This contribution is significant in
enhancing our understanding of when and how models memorize training data, which is critical for
addressing concerns about data privacy and model robustness. By providing a theoretical framework
for conditional memorization, we pave the way for developing effective memorization mitigation
strategies tailored for diffusion models. These advancements can lead to the design of more secure
and trustworthy AI systems, reducing the risk of potential data leakage while fostering greater
accountability in the use of generative technologies. Ultimately, our findings aim to empower
researchers and practitioners to create models that better respect privacy, thus benefiting the wider AI
community.

A PROOFS

A.1 PRELIMINARIES

If p(x) and q(x) are normal distributions:

p(x) =
1√

(2π)d det(Σp)
exp

{
−1

2
(x− µp)

⊤Σ−1
p (x− µp)

}
(16)

q(x) =
1√

(2π)d det(Σq)
exp

{
−1

2
(x− µq)

⊤Σ−1
q (x− µq)

}
(17)

Then we have:

Ex∼p(x)

[
(x− µq)

⊤
Σ−1

q (x− µq)
]

(18)

= Tr
(
Σ−1

q Σp

)
+ (µp − µq)

⊤
Σ−1

q (µp − µq) (19)

(20)

Ex∼q(x)

[
(x− µq)

⊤
Σ−1

q (x− µq)
]
= d (21)

The entropy of p(x):

Hp (x) = Ex∼p(x)[− log p(x)] =
n

2
(1 + log 2π) +

1

2
log det (Σp) (22)

The KL divergence between the two distributions is:

DKL(p(x)∥q(x)) (23)

=
1

2

[
(µp − µq)

⊤
Σ−1

q (µp − µq)− log det
(
Σ−1

q Σp

)
+Tr

(
Σ−1

q Σp

)
− d
]

(24)

A.2 PROOF FOR THEOREM 1

We begin by assuming that we have an encoder fθE (x) and a decoder fθD (z). The encoder fθE (x)
maps the data samples x into the latent distribution z, which is modeled by a normal distribution
N (µ,Σ), where z ∈ Rd is the latent space of dimension d. The decoder fθD (z) maps the latent
variables z back to the original data samples x. This structure forms the basis of many variational
autoencoder (VAE) frameworks, where we aim to optimize the relationship between x and z through
probabilistic modeling.

Transformation of Probability Distributions Based on the transformation of probability density
functions (PDF) and the method of change of variables for multiple integrals, we can express the
likelihoods as follows:
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1. Conditional Probability of x given y = c:

pθ (x | y = c) = pθ (z | y = c) det

(
∂z

∂x

)
(25)

= pθ (z | y = c) det

(
∂fθE (x)

∂x

)
(26)

Here, pθ (x | y = c) is the probability of the data x conditioned on the label y = c, which depends
on the latent variable z. The term det

(
∂fθE (x)

∂x

)
is the determinant of the Jacobian matrix of the

encoder function fθE (x), which accounts for the change of variables from x to z.

2. Marginal Probability of x:

pθ (x) = pθ (z) det

(
∂z

∂x

)
(27)

= pθ (z) det

(
∂fθE (x)

∂x

)
(28)

This expression captures the marginal distribution of x, which is obtained by marginalizing over the
latent variable z.

3. Volume Element Change:

dx = det

(
∂x

∂z

)
dz (29)

= det

(
∂fθD (z)

∂z

)
dz (30)

= det

(
∂x

∂fθE (x)

)
dz (31)

This represents the volume element transformation between the latent space z and the data space x.
The determinant of the Jacobian of the decoder fθD (z) relates the volume elements in z and x.

Objective Function and Change of Variables Given the above transformations, we can rewrite
the memorization objective Mpoint(D; θ) as follows:

1. Original Memorization Objective:

Mpoint(D; θ) =
∑
xi∈D

∫
pθ(x) log

pθ(x)

q(x,xi, ϵ)
dx (32)

This measures the difference between the model distribution pθ(x) and a perturbed distribution
q(x,xi, ϵ) at each point xi in the dataset D.

2. Transformed Memorization Objective in Latent Space:

Msemantic(D; θ) =
∑
zi∈D

∫
pθ(z) log

pθ(z)

q(z, zi, ϵ)
dz (33)

By applying the change of variables, we transform the objective into the latent space, where the same
logic applies, but now the integration is over the latent variables z instead of the data space x.

Monotonicity Derivation We now derive the monotonicity of the memorization objective with
respect to the content-related part Msemantic(D; θ). Specifically, we want to show that the objective
increases monotonically with Msemantic:

1. Partial Derivative of the Objective:

∂M(D; θ)

∂Msemantic(D; θ)
=

∂

∂Msemantic(D; θ)

(∑
xi∈D

∫
pθ(x) log

pθ(x)

q(x,xi, ϵ)
dz

)
(34)
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2. Expanding the Derivatives:

=
∂

∂Msemantic(D; θ)

(
|D|H(pθ) +

∑
zi∈D

∫
pθ(z)

(z − zi)
T
(z − zi)

2ϵ
dz +

d

2
log 2πϵ

)
(35)

3. Applying the Chain Rule:

=
∂|D|H(pθ)

∂Msemantic
+

∂

∂Msemantic

(∑
zi∈D

∫
pθ(z)

(z − zi)
T
(z − zi)

2ϵ
dz

)
+

∂

∂Msemantic

(
d

2
log 2πϵ

)
(36)

4. Evaluating Each Term:

=
Tr(Σ−1

pθ
)

2
+

∂

∂Msemantic

(∑
zi∈D

∫
pθ(z) (z − zi)

T
(z − zi) dz

2ϵ

)
+ 0 (37)

5. Final Form:

=
1

2ϵ
+

Tr(Σ−1
pθ

)

2
(38)

A.2.1 DERIVE
∂H(pθ)

∂Msemantic

We are given:

• A multivariate normal distribution pθ(z) = N (µ,Σpθ
), where µ is the mean vector and

Σpθ
is the covariance matrix.

• The entropy of this distribution is:

H(pθ) =
1

2
ln
(
(2πe)d|Σpθ

|
)
=

d

2
ln(2πe) +

1

2
ln |Σpθ

| (39)

• The sum expression:

Msemantic =
∑
zi∈D

Epθ

[
∥z − zi∥2

]
= |D|Tr(Σpθ

) +

|D|∑
i=1

∥µ− zi∥2 (40)

where |D| is the number of data points in D.

Our goal is to find ∂H(pθ)
∂Msemantic

.

Entropy of a Multivariate Normal Distribution The entropy of a multivariate normal distribution
pθ(z) = N (µ,Σpθ

) is given by:

H(pθ) = −
∫

pθ(z) ln pθ(z) dz (41)

=
1

2
ln
(
(2πe)d|Σpθ

|
)

(42)

Where:

• d is the dimensionality of the vector z.
• |Σpθ

| denotes the determinant of the covariance matrix Σpθ
.

Thus, we can write:

H(pθ) =
d

2
ln(2πe) +

1

2
ln |Σpθ

| (43)
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Computing the Sum Msemantic We have:

Msemantic =
∑
zi∈D

Epθ

[
∥z − zi∥2

]
(44)

First, compute Epθ

[
∥z − zi∥2

]
for each zi:

Expanding the Squared Norm

∥z − zi∥2 = (z − zi)
⊤(z − zi) (45)

= z⊤z − 2z⊤zi + z⊤
i zi (46)

Taking the Expectation

Epθ

[
∥z − zi∥2

]
= Epθ

[
z⊤z

]
− 2z⊤

i Epθ
[z] + z⊤

i zi (47)

= Tr
(
Epθ

[
zz⊤])− 2z⊤

i µ+ ∥zi∥2 (48)

Computing the Expectations

• First Term: The second moment of z:

Epθ

[
zz⊤] = Σpθ

+ µµ⊤ (49)

Therefore:

Tr
(
Epθ

[
zz⊤]) = Tr(Σpθ

) + Tr(µµ⊤) = Tr(Σpθ
) + ∥µ∥2 (50)

• Second Term: The mean of z:

Epθ
[z] = µ (51)

• Third Term: Constant term involving zi:

∥zi∥2 = z⊤
i zi (52)

Combining the Terms Substitute back into the expectation:

Epθ

[
∥z − zi∥2

]
=
(
Tr(Σpθ

) + ∥µ∥2
)
− 2z⊤

i µ+ ∥zi∥2 (53)

= Tr(Σpθ
) +

(
∥µ∥2 − 2µ⊤zi + ∥zi∥2

)
(54)

= Tr(Σpθ
) + ∥µ− zi∥2 (55)

Thus, for each zi:

Epθ

[
∥z − zi∥2

]
= Tr(Σpθ

) + ∥µ− zi∥2 (56)

Summing Over All Data Points The total sum Msemantic becomes:

Msemantic =

|D|∑
i=1

(
Tr(Σpθ

) + ∥µ− zi∥2
)

(57)

= |D|Tr(Σpθ
) +

|D|∑
i=1

∥µ− zi∥2 (58)

Let’s define the sample variance Vardata:

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Vardata =
1

|D|

|D|∑
i=1

∥µ− zi∥2 (59)

Then, Msemantic can be expressed as:

Msemantic = |D|Tr(Σpθ
) + |D|Vardata = |D| (Tr(Σpθ

) + Vardata) (60)

Attempting to Relate H(pθ) and Msemantic Our challenge is to express H(pθ) as a function of
Msemantic so that we can compute ∂H(pθ)

∂Msemantic
. However, we face a difficulty:

• The entropy H(pθ) depends on ln |Σpθ
|.

• The sum Msemantic depends on Tr(Σpθ
).

For a general covariance matrix Σpθ
, there is no direct algebraic relationship between Tr(Σpθ

) and
ln |Σpθ

|. Therefore, we need to explore an alternative method.

Computing Derivatives with Respect to Σpθ
The entropy H(pθ) is given by:

H(pθ) =
d

2
ln(2πe) +

1

2
ln |Σpθ

| (61)

To find the derivative of H(pθ) with respect to Σpθ
, we proceed as follows:

∂H(pθ)

∂Σpθ

=
∂

∂Σpθ

(
d

2
ln(2πe) +

1

2
ln |Σpθ

|
)

(62)

=
1

2

∂

∂Σpθ

ln |Σpθ
| (63)

=
1

2
Σ−1

pθ
(64)

Recall that:

Msemantic = |D| (Tr(Σpθ
) + Vardata) (65)

Since Vardata does not depend on Σpθ
, the derivative of Msemantic with respect to Σpθ

is:

∂Msemantic

∂Σpθ

= |D| ∂

∂Σpθ

Tr(Σpθ
) (66)

Computing ∂H(pθ)
∂Msemantic

Using the Chain Rule Using the chain rule for derivatives:

∂H(pθ)

∂Msemantic
= Tr

(
∂H(pθ)

∂Σpθ

·
(
∂Msemantic

∂Σpθ

)−1
)

(67)
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Computing
(

∂Msemantic

∂Σpθ

)−1

Since ∂Msemantic

∂Σpθ
= |D|I , its inverse is:

(
∂Msemantic

∂Σpθ

)−1

=
1

|D|
I (68)

Combine together, we can derive

∂H(pθ)

∂Msemantic
=

Tr(Σ−1
pθ

)

2|D|
(69)

Thus, we conclude that the memorization objective increases monotonically with respect to the
memorization metric.

A.3 PROOF FOR PROPOSITION 1

A.3.1 PROOF FOR EQUATION 8

Covariance Definitions:

Σ = Cov(Z), Σc = Cov(Z | Y ) (70)

Here:

• Σ is the overall covariance matrix of Z,

• Σc is the conditional covariance matrix of Z given Y .

The goal is to prove that the trace of the conditional covariance matrix is less than or equal to the
trace of the overall covariance matrix, i.e.,

Tr(Σc) ≤ Tr(Σ) (71)

for all realizations of Y .

Proof of Trace Inequality

Σ = Cov(Z), Σc = Cov(Z | Y ) (72)

Here:

• Σ is the overall covariance matrix of the random vector Z ∈ Rn,

• Σc is the conditional covariance matrix of Z given Y .

Goal Prove that:

Tr(Σc) ≤ Tr(Σ) (73)

for all realizations of Y .

We begin by expressing the overall covariance matrix Σ in terms of the conditional covariance matrix
Σc and the covariance of the conditional expectation of Z given Y .

Σ = Cov(Z) (74)

= E
[
(Z − E[Z])(Z − E[Z])T

]
(75)

= E
[
(Z − E[Z | Y ] + E[Z | Y ]− E[Z]) (Z − E[Z | Y ] + E[Z | Y ]− E[Z])

T
]

(76)
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Expanding the Product Inside the Expectation We expand the product inside the expectation:

Σ = E

[
(Z − E[Z | Y ])(Z − E[Z | Y ])T︸ ︷︷ ︸

Term 1

+ (Z − E[Z | Y ])(E[Z | Y ]− E[Z])T︸ ︷︷ ︸
Term 2

+ (E[Z | Y ]− E[Z])(Z − E[Z | Y ])T︸ ︷︷ ︸
Term 3

+ (E[Z | Y ]− E[Z])(E[Z | Y ]− E[Z])T︸ ︷︷ ︸
Term 4

]
(77)

Analyzing Each Term

Term 1:

E
[
(Z − E[Z | Y ])(Z − E[Z | Y ])T

]
= Cov(Z | Y ) = Σc (78)

Term 2:

E
[
(Z − E[Z | Y ])(E[Z | Y ]− E[Z])T

]
(79)

To evaluate Term 2, we condition on Y :

E
[
(Z − E[Z | Y ])(E[Z | Y ]− E[Z])T

]
= E

[
E
[
(Z − E[Z | Y ])(E[Z | Y ]− E[Z])T | Y

]]
(80)

Inside the inner expectation, E[Z | Y ]− E[Z] is treated as a constant with respect to Z, so:

E
[
(Z − E[Z | Y ])(E[Z | Y ]− E[Z])T | Y

]
(81)

= (E[Z | Y ]− E[Z])E [Z − E[Z | Y ] | Y ] (82)
= (E[Z | Y ]− E[Z]) · 0 = 0 (83)

Thus:

E
[
(Z − E[Z | Y ])(E[Z | Y ]− E[Z])T

]
= 0 (84)

Term 3:

E
[
(E[Z | Y ]− E[Z])(Z − E[Z | Y ])T

]
(85)

Similarly, we condition on Y :

E
[
(E[Z | Y ]− E[Z])(Z − E[Z | Y ])T

]
(86)

= E
[
(E[Z | Y ]− E[Z])E

[
(Z − E[Z | Y ])T | Y

]]
(87)

= E
[
(E[Z | Y ]− E[Z]) · 0T

]
(88)

= 0 (89)

Term 4:

E
[
(E[Z | Y ]− E[Z])(E[Z | Y ]− E[Z])T

]
= Cov (E[Z | Y ]) = Cov(E[Z | Y ]) (90)

Combining All Terms Putting all the terms together:

Σ = Σc + 0 + 0 + Cov(E[Z | Y ]) (91)
= Σc + Cov(E[Z | Y ]) (92)
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Taking the Trace Taking the trace on both sides of the covariance decomposition:
Tr(Σ) = Tr (Σc) + Tr (Cov(Z | Y )) (93)

= [Tr(Σc)] + Tr (Cov(E[Z | Y ])) (94)

Since the trace of a covariance matrix is non-negative:
Tr (Cov(E[Z | Y ])) ≥ 0 (95)

Thus:
Tr(Σc) ≤ Tr(Σ) (96)

Conclusion We have proven that the trace of the conditional covariance matrix Σc is less than or
equal to the trace of the overall covariance matrix Σ. Formally,

Tr(Σc) ≤ Tr(Σ) (97)
This result is a multivariate generalization of the variance decomposition, showing that the expected
conditional variability of Z given Y does not exceed the overall variability of Z.

A.3.2 PROOF FOR EQUATION 7

Centering and Decomposing By the definition of variance, we can express the sum of squared
distances for the conditional mean µc and overall mean µ:

∑
zi∈Dy=c

(zi − µ)T(zi − µ) (98)

∑
zi∈Dy=c

(zi − µ)T(zi − µ) =
∑

zi∈Dy=c

(
(zi − µc + µc − µ)T(zi − µc + µc − µ)

)
(99)

=
∑

zi∈Dy=c

[
(zi − µc)

T(zi − µc)

+ (zi − µc)
T(µc − µ)

+ (µc − µ)T(zi − µc)

+ (µc − µ)T(µc − µ)
]

(100)

=
∑

zi∈Dy=c

(zi − µc)
T(zi − µc)

+
∑

zi∈Dy=c

(zi − µc)
T(µc − µ)

+
∑

zi∈Dy=c

(µc − µ)T(zi − µc)

+
∑

zi∈Dy=c

(µc − µ)T(µc − µ) (101)

=
∑

zi∈Dy=c

(zi − µc)
T(zi − µc)

+ (µc − µ)T(µc − µ)
∑

zi∈Dy=c

1 (102)

=
∑

zi∈Dy=c

(zi − µc)
T(zi − µc) + |Dy=c|(µc − µ)T(µc − µ) (103)

Expanding this expression, we have:

=
∑

zi∈Dy=c

(
(zi − µc)

T(zi − µc) + 2(zi − µc)
T(µc − µ) + (µc − µ)T(µc − µ)

)
. (104)
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Step 2: Simplifying the Inequality The term (µc −µ)T(µc −µ) is a constant for the conditional
samples, and the term 2(zi − µc)

T(µc − µ) sums to zero when averaged over the samples in Dy=c

due to the definition of µc.

Thus, we have:

∑
zi∈Dy=c

(zi − µ)T(zi − µ) =
∑

zi∈Dy=c

(zi − µc)
T(zi − µc) + |Dy=c|(µc − µ)T(µc − µ),

(105)

where |Dy=c| is the number of samples with label y = c.

Step 3: Establishing the Inequality Since the variance (sum of squared distances) from the
conditional mean will always be less than or equal to the variance from the overall mean, we
conclude:

∑
zi∈Dy=c

(zi − µc)
T(zi − µc) ≤

∑
zi∈Dy=c

(zi − µ)T(zi − µ). (106)

This establishes that the latent space representation conditioned on an informative label exhibits
reduced variance, confirming our initial claim.

GENERALIZED VARIANCE COMPARISON

In this section, we examine a broader comparison of variance that does not restrict the analysis to the
subset Dy=c but rather considers the entire dataset D. Namely, we prove that:∑

zi∈Dy=c

(zi − µc)
T (zi − µc) ≤

∑
zi∈D

(zi − µ)T (zi − µ) (107)

For a set of data points D, the sum of squared deviations from the mean is given by:

∑
zi∈D

(zi − µ)T (zi − µ) (108)

Derivation: First, let’s write out the sums of squared deviations for the unconditional and condi-
tional cases.

Unconditional Sum of Squared Deviations:∑
zi∈D

(zi − µ)T (zi − µ) (109)

where D represents the entire dataset of z values.

Conditional Sum of Squared Deviations:∑
zi∈Dy=c

(zi − µc)
T (zi − µc) (110)

where Dy=c represents the subset of data points zi where y = c.
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Covariance Matrix and Sum of Squared Deviations: The covariance matrix can be related to the
sum of squared deviations. For the unconditional case:

Σ =
1

n

∑
zi∈D

(zi − µ)(zi − µ)T (111)

Taking the trace on both sides:

tr(Σ) =
1

n
tr

(∑
zi∈D

(zi − µ)(zi − µ)T

)
(112)

Since the trace of a sum is the sum of the traces:

tr(Σ) =
1

n

∑
zi∈D

tr
(
(zi − µ)(zi − µ)T

)
(113)

The trace of the outer product of a vector with itself is the sum of squared elements of the vector:

tr
(
(zi − µ)(zi − µ)T

)
= (zi − µ)T (zi − µ) (114)

Therefore:

tr(Σ) =
1

n

∑
zi∈D

(zi − µ)T (zi − µ) (115)

Similarly, for the conditional case:

Σc =
1

nc

∑
zi∈Dy=c

(zi − µc)(zi − µc)
T (116)

Taking the trace:

tr(Σc) =
1

nc

∑
zi∈Dy=c

(zi − µc)
T (zi − µc) (117)

Inequality of Traces: Given that conditioning on y = c provides information about z, it generally
reduces the variance of z. Mathematically, this can be expressed as:

tr(Σc) ≤ tr(Σ) (118)

In terms of sums of squared deviations:

1

nc

∑
zi∈Dy=c

(zi − µc)
T (zi − µc) ≤

1

n

∑
zi∈D

(zi − µ)T (zi − µ) (119)
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Multiplying both sides by their respective sample sizes nc and n:

∑
zi∈Dy=c

(zi − µc)
T (zi − µc) ≤

nc

n

∑
zi∈D

(zi − µ)T (zi − µ) (120)

Since nc ≤ n, this further simplifies to:

∑
zi∈Dy=c

(zi − µc)
T (zi − µc) ≤

∑
zi∈D

(zi − µ)T (zi − µ) (121)

A.4 PROOF FOR THEOREM 2

This section will detail the proof for the theorem 2.

lim
ϵ→0

∑
xi∈Dy=c

∫
pθ(x|y = c) log pθ(x|y=c)

q(x,xi,ϵ)
dx∑

xi∈Dy=c

∫
pθ(x) log

pθ(x)
q(x,xi,ϵ)

dx
≤ 1 (122)

Define Dz
y=c = {zi : fθE (xi) ∈ Dy=c}

Dy=c = {xi : xi ∈ D, yi = c}
By using the change of variable theorem, the (122) becomes:

lim
ϵ→0

∑
xi∈Dy=c

∫
pθ(x|y = c) log pθ(x|y=c)

q(x,xi,ϵ)
dx∑

xi∈Dy=c

∫
pθ(x) log

pθ(x)
q(x,xi,ϵ)

dx
≤ 1 (123)

⇒ lim
ϵ→0

∑
zi∈Dz

y=c

∫
pθ(z|y = c) log pθ(z|y=c)

q(z,zi,ϵ)
dz∑

zi∈Dz
y=c

∫
pθ(z) log

pθ(z)
q(z,zi,ϵ)

dz
≤ 1 (124)

Since pθ(z) = N (µ,Σ), it is reasonable to assume that its conditional distribution is also a normal
distribution. Then:

pθ (z|y = c) = N (µc,Σc) (125)

where µc ∈ Rd,Σc ∈ Rd×d. Moreover, because pθ (z|y = c) depends on label c, we can derive the
following: ∑

zi∈Dz
y=c

(zi − µc)
T
(zi − µc) ≤

∑
zi∈Dz

y=c

(zi − µ)
T
(zi − µ) (126)

where ∀zi, fθD (zi) ∈ yc.

Intuitively, (126) means that the latent code of each training sample conditioned on the label y = c is
more centered around the learned latent space of distribution pθ(z|y = c) than around the distribution
pθ(z).

We now look into the KL divergence:∫
pθ(z|y = c) log

pθ(z|y = c)

q(z; zi)
dz (127)

=

∫
pθ(z|y = c) log pθ(z|y = c)dz −

∫
pθ(z|y = c) log q(z; zi)dz (128)

= −d

2
(1 + log 2π)− 1

2
log det (Σc) + Ez∼pθ(z|y=c) (− log q (z; zi)) (129)

=
1

2

[
(zi − µc)

⊤
(zi − µc)

ϵ
− log

det (Σc)

ϵd
+

Tr (Σc)

ϵ
− d

]
(130)
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We use the SVD decomposition to decompose Σc:

Σc = UcΛcU
T
c (131)

And:

log detΣc = log detUcΛU
T
c = log |Uc||Λc||UT

c | = log |Λc| (132)

Tr (Σc) = Tr
(
UcΛcU

T
c

)
= Tr

(
ΛcUcU

T
c

)
= Tr (Λc) (133)

Thus, (130) simplifies to:

1

2

[
(zi − µc)

⊤
(zi − µc)

ϵ
− log

det (Λc)

ϵd
+

Tr (Λc)

ϵ
− d

]
(134)

Similarly:

(135)∫
pθ(z) log

pθ(z)

q(z; zi)
dz (136)

=
1

2

[
(zi − µ)

⊤
(zi − µ)

ϵ
− log

det (Σc)

ϵd
+

Tr (Σc)

ϵ
− d

]
(137)

=
1

2

[
(zi − µ)

⊤
(zi − µ)

ϵ
− log

det (Λ)

ϵd
+

Tr (Λ)

ϵ
− d

]
(138)

where

Σ = UΛUT (139)

According to the Eq. (8), the nuclear norm of the two covariance matrices differs. Specifically:

∥Σc∥∗ ≤ ∥Σ∥∗ (140)

Thus, according to the definition of the nuclear norm, we have:

Tr (Λc) ≤ Tr (Λ) (141)

Therefore:

lim
ϵ→0

∑
zi∈Dz

y=c

∫
pθ(z|y = c) log pθ(z|y=c)

q(z,zi,ϵ)
dz∑

zi∈Dz
y=c

∫
pθ(z) log

pθ(z)
q(z,zi,ϵ)

dz
(142)

⇒ lim
ϵ→0

∑
zi∈Dz

y=c

[
(zi−µc)

⊤(zi−µc)
ϵ − log det(Λc)

ϵd
+ Tr(Λc)

ϵ − d
]

∑
zi∈Dz

y=c

[
(zi−µ)⊤(zi−µ)

ϵ − log det(Λ)
ϵd

+ Tr(Λ)
ϵ − d

] (143)

Using L’Hospital’s rule:

lim
ϵ→0

∑
zi∈Dz

y=c

[
− (zi−µc)

⊤(zi−µc)
ϵ2 + d

ϵ − Tr(Λc)
ϵ2

]
∑

zi∈Dz
y=c

[
− (zi−µ)⊤(zi−µ)

ϵ2 + d
ϵ − Tr(Λ)

ϵ2

] (144)

=

∑
zi∈Dz

y=c
(zi − µc)

⊤
(zi − µc) + Tr (Λc)∑

zi∈Dz
y=c

(zi − µ)
⊤
(zi − µ) + Tr (Λ)

(145)

≤ 1 (146)
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Figure 5: Validation of NG ’s significance

B EXPLANATION OF THE NG’S IMPORTANCE IN FAIR COMPARISON

By highlighting the significance of NG, UMS allows a fair comparison among extraction methods.
We explain this both theoretically and experimentally. Let Numem denote the number of uniquely
memorized images, M the dataset size, and pγ(i) the probability that image i is memorized. To find
E(Numem), we introduce a new variable Ii, representing the generation of image i in NG trials:

p(Ii) = 1− (1− pγ(i))
NG (147)

Using the linearity of expectation, we derive: E (Nmem)

E (Numem) (148)
= E (I1) + E (I2) + · · ·+ E (IM ) (149)

=

M∑
i=1

1− (1− pγ (i))
NG (150)

The importance of NG lies in its impact on the non-linear expectation of uniquely memorized
images. Comparing UMS across different NG values is flawed because varying NG leads to different
outcomes, underscoring the need for consistent NG values to ensure fair comparisons. In Carlini et al.
(2023), the significance of NG was overlooked, as they only reported the number of uniquely extracted
images. Our theoretical analysis accurately aligns with the behavior observed in the experimental
data in Fig 5.

C REFINEMENT RESNET BLOCK

The integration of the time module directly after batch normalization within the network architecture
is a reasonable design choice rooted in the functionality of batch normalization itself. Batch nor-
malization standardizes the inputs to the network layer, stabilizing the learning process by reducing
internal covariate shifts. By positioning the time module immediately after this normalization process,
the model can introduce time-dependent adaptations to the already stabilized features. This placement
ensures that the temporal adjustments are applied to a normalized feature space, thereby enhancing
the model’s ability to learn temporal dynamics effectively.

Moreover, the inclusion of the time module at a singular point within the network strikes a balance
between model complexity and temporal adaptability. This singular addition avoids the potential
redundancy and computational overhead that might arise from multiple time modules. It allows the
network to maintain a streamlined architecture while still gaining the necessary capacity to handle
time-varying inputs.
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Figure 6: Refinement ResNet block with time-dependent module integration. This block diagram
depicts the insertion of a time module within a conventional ResNet block architecture, allowing the
network to respond to the data’s timesteps. Image xBN is the image processed after the first Batch
Normalization Layer.

Figure 7: Scatter plots showing the relationship between the number of classes and two performance
metrics, AMS (left) and UMS (right). The fitted regression lines demonstrate a positive correlation in
both cases.

D RESULTS ON CLASSIFIER CHOICE

The analysis of classifier performance across varying numbers of classes reveals interesting patterns
for both AMS and UMS. As shown in Figure 7, the scatter plots highlight a positive relationship
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between the number of classes and the performance metrics. For AMS, the regression line suggests a
stronger relationship (R² = 0.637), implying that as the number of classes increases, the AMS metric
improves with a moderately strong association. In contrast, the relationship between the number of
classes and UMS, while still positive, exhibits a slightly weaker connection (R² = 0.483).

These results suggest that classifier performance, particularly as measured by AMS, benefits more
significantly from an increase in the number of classes compared to UMS. The shaded regions in the
plots represent the 95% confidence intervals, indicating the range of uncertainty around the fitted
regression lines. Overall, the findings imply that the choice of classifier could have a notable impact
on AMS , with a less pronounced but still meaningful effect on UMS.

E PSEUDOCODE FOR SIDE METHOD

The following Algorithm 1 outlines the detailed steps of the SIDE method for extracting training
data from unconditional diffusion models. This algorithm combines the construction of implicit
informative labels, the training of a time-dependent classifier, and the conditional generation process
to effectively extract valuable training samples.
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Algorithm 1 SIDE Method for Extracting Training Data from Unconditional Diffusion Models
1: Input:

• Unconditional Diffusion Probabilistic Model (DPM) pθ(x) = N (µ,Σpθ
)

• Pre-trained Classifier pθ(yI | x)
• Hyperparameter set Sλ

• Number of generated samples per λ, NG

• Target label y = c

2: Output: Extracted training data Dextracted

3: Construct Implicit Informative Labels
4: Input: Unconditional DPM pθ(x), Classifier pθ(yI | x)
5: Define sampling process with implicit labels:

dx =
[
f(x, t)− g(t)2

(
∇x log ptθ(x) + λ∇x log ptθ(yI | x)

)]
dt+ g(t)dw (151)

6: Calibrate Classifier Output
7: Adjust classifier probabilities using power prior:

ptθ (x | yI) ∝ ptλθ (yI | x) ptθ (x) (152)

8: Train Time-Dependent Classifier via TDKD
9: Input: Pre-trained Classifier pθ(yI | x), Synthetic Dataset Dsynthetic

10: Output: Time-Dependent Classifier ptθ(yI | xt)
11: Initialize Time-Dependent Classifier architecture with time-dependent modules
12: Generate synthetic dataset using DPM:

Dsynthetic = {x(i)}Nsynthetic

i=1 ∼ pθ(x) (153)

13: Generate pseudo labels using pre-trained classifier:

y
(i)
I = pθ(yI | x(i)) (154)

14: Train Time-Dependent Classifier by minimizing KL divergence:

Ldistil = DKL

(
pθ(yI | x(i)) ∥ ptθ(yI | x(i)

t )
)

(155)

15: Overall SIDE Procedure
16: Input: Trained Time-Dependent Classifier ptθ(yI | xt), Target Label y = c, Hyperparameter set

Sλ, Number of samples NG

17: Initialize empty dataset Dextracted

18: for each λ ∈ Sλ do
19: for i = 1 to NG do
20: Sample x0 conditioned on y = c using Eq. (151)
21: Compute gradient of cross-entropy loss:

∇xtLCE(c, p
t
θ(y | xt)) (156)

22: Reverse diffusion process using computed gradient
23: Generate similarity score for xt

24: Append xt to Dextracted with similarity score
25: end for
26: end for
27: Evaluate Attack Performance
28: Compute evaluation metrics on Dextracted

29: return Dextracted
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F SSCD-RELATED METRICS

In our evaluation of the proposed method, it is essential to include a discussion of the 95th percentile
SSCD metric alongside our newly introduced metrics, AMS (Average Matching Similarity) and UMS
(Unconditional Matching Similarity). While 95th percentile SSCD metric has its limitations, it still
serves as a useful reference point for assessing the relative similarity between extracted images and
the original training dataset.

As shown in Table 4, we provide a comprehensive comparison of performance across different
datasets.

In addition, we report detailed metrics in the context of our experiments on the CelebA-HQ-FI dataset,
which further illustrates the effectiveness of our approach. These results underscore the significance
of incorporating SSCD-related scores to complement AMS and UMS in providing a more nuanced
understanding of the similarities between generated and training images.

Table 3: Performance Comparison on CelebA-HQ-FI and CelebA-25000 Datasets
Dataset Method Top 0.01% Top 0.05% Top 0.1% Top 0.5% Top 1.0% Top 5.0%

CelebA-HQ-FI Uncond 0.656 0.624 0.604 0.544 0.518 0.463
SIDE(ours) 0.680 0.639 0.618 0.567 0.544 0.485

CelebA-25000 Uncond 0.565 0.538 0.525 0.491 0.475 0.434
SIDE(ours) 0.585 0.554 0.539 0.506 0.491 0.450
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Table 4: Generate Training Epoch: 3000 Dataset: CelebA-HQ-FI Generate Nums Per λ: 50000. The
AMS and UMS is measured on Mid Similarity

AMS(%) UMS(%) Top 0.1% Top 0.5% Top 1.0% Top 5.0% Top 10.0%
λ

0 0.596 0.328 0.604 0.544 0.518 0.463 0.440
1 0.588 0.312 0.596 0.540 0.517 0.463 0.440
2 0.640 0.350 0.591 0.541 0.518 0.465 0.441
3 0.764 0.386 0.594 0.549 0.525 0.470 0.446
4 0.850 0.390 0.604 0.553 0.529 0.473 0.448
5 0.952 0.436 0.596 0.551 0.530 0.476 0.451
6 1.092 0.414 0.611 0.560 0.536 0.480 0.454
7 1.110 0.446 0.607 0.562 0.539 0.482 0.457
8 1.148 0.444 0.618 0.566 0.542 0.484 0.458
9 1.274 0.478 0.615 0.567 0.544 0.485 0.459
10 1.338 0.444 0.613 0.569 0.546 0.487 0.461
11 1.292 0.454 0.604 0.562 0.541 0.486 0.460
12 1.262 0.406 0.617 0.567 0.544 0.486 0.460
13 1.390 0.432 0.617 0.569 0.546 0.489 0.462
14 1.232 0.384 0.613 0.567 0.544 0.485 0.459
15 1.516 0.462 0.616 0.570 0.548 0.490 0.463
16 1.280 0.390 0.612 0.566 0.543 0.487 0.461
17 1.282 0.386 0.605 0.561 0.541 0.486 0.460
18 1.330 0.374 0.616 0.569 0.545 0.488 0.461
19 1.204 0.354 0.612 0.564 0.541 0.485 0.460
20 1.178 0.358 0.603 0.559 0.538 0.483 0.458
21 1.172 0.342 0.617 0.566 0.542 0.484 0.459
22 1.208 0.368 0.602 0.560 0.539 0.485 0.459
23 1.286 0.302 0.607 0.561 0.540 0.485 0.459
24 1.244 0.352 0.597 0.558 0.538 0.484 0.458
25 1.198 0.340 0.599 0.560 0.538 0.483 0.458
26 1.220 0.338 0.601 0.559 0.539 0.483 0.458
27 1.128 0.320 0.608 0.561 0.538 0.483 0.457
28 1.102 0.314 0.604 0.556 0.534 0.481 0.456
29 1.034 0.290 0.595 0.556 0.534 0.481 0.456
30 1.026 0.326 0.602 0.557 0.535 0.480 0.455
31 1.020 0.268 0.591 0.551 0.531 0.479 0.455
32 1.054 0.282 0.593 0.551 0.531 0.479 0.455
33 1.106 0.306 0.600 0.555 0.535 0.481 0.456
34 1.062 0.288 0.582 0.547 0.529 0.479 0.454
35 0.922 0.266 0.587 0.547 0.527 0.477 0.453
36 0.874 0.260 0.585 0.545 0.525 0.477 0.453
37 0.964 0.258 0.589 0.549 0.528 0.477 0.452
38 0.888 0.246 0.582 0.543 0.524 0.475 0.452
39 0.940 0.274 0.587 0.548 0.528 0.476 0.452
40 0.808 0.234 0.587 0.544 0.524 0.474 0.451
41 0.870 0.252 0.582 0.543 0.524 0.476 0.452
42 0.872 0.238 0.584 0.543 0.523 0.475 0.451
43 0.856 0.244 0.584 0.545 0.525 0.475 0.451
44 0.796 0.212 0.578 0.540 0.521 0.473 0.449
45 0.770 0.242 0.580 0.538 0.519 0.472 0.449
46 0.774 0.218 0.580 0.540 0.521 0.472 0.448
47 0.754 0.214 0.581 0.542 0.521 0.471 0.448
48 0.716 0.218 0.572 0.536 0.518 0.471 0.448
49 0.694 0.216 0.570 0.533 0.515 0.469 0.446
50 0.728 0.204 0.576 0.535 0.518 0.471 0.447
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