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Abstract

Recent advancements in tool learning have en-001
abled large language models (LLMs) to in-002
tegrate external tools, enhancing their task003
performance by expanding their knowledge004
boundaries. However, relying on tools of-005
ten introduces trade-offs between performance,006
speed, and cost, with LLMs sometimes ex-007
hibiting overreliance and overconfidence in008
tool usage. This paper addresses the chal-009
lenge of aligning LLMs with their knowl-010
edge boundaries to make more intelligent de-011
cisions about tool invocation. We propose a012
multi-objective alignment framework that com-013
bines probabilistic knowledge boundary estima-014
tion with dynamic decision-making, allowing015
LLMs to better assess when to invoke tools016
based on their confidence. Our framework017
includes two methods for knowledge bound-018
ary estimation—consistency-based and abso-019
lute estimation—and two training strategies020
for integrating these estimates into the model’s021
decision-making process. Experimental results022
on various tool invocation scenarios demon-023
strate the effectiveness of our framework, show-024
ing significant improvements in tool efficiency025
by reducing unnecessary tool usage.026

1 Introduction027

The objective of tool learning is to enable large028

language models (LLMs; Gemini Team, 2023;029

Achiam et al., 2023; Dubey et al., 2024) to ac-030

quire the capability to effectively utilize external031

tools, thereby enhancing their performance across032

various downstream tasks (Schick et al., 2023; Hao033

et al., 2023; Hsieh et al., 2023; Tang et al., 2023).034

Tools can be regarded as extensions of an LLM’s035

knowledge or capability boundaries. By invoking036

tools, models can accomplish tasks beyond their037

knowledge boundaries and even access information038

from different modalities (Zeng et al., 2022).039

While tools can enhance LLM’s task perfor-040

mance, it is important to note that solving tasks041
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Figure 1: Our method effectively enables LLMs to
switch between answering independently and calling
tools (upper part), thereby reducing the model’s over-
reliance and overconfidence in tools (lower part).

through tool invocation often requires more steps, 042

longer completion times, and additional tool- 043

calling costs. For example, in question-answering 044

scenarios involving search tools, the model must 045

first generate a query for the retrieval tool, wait 046

for the search results, and then process these re- 047

sults to produce a final answer. In contrast, direct 048

answering involves simply generating a response. 049

This introduces a trade-off problem between per- 050

formance and speed. Unfortunately, recent studies 051

have shown that O1-like LLMs struggle to strike 052

a balance between these two aspects: exhibit over- 053

thinking (Chen et al., 2024) in simple reasoning 054

tasks and underthinking (Wang et al., 2025) in 055

more difficult ones. Similarly, we observe that the 056

same issue arises in tool usage scenarios. Current 057

LLMs exhibit over-tool-reliance, invoking tools 058

even when tasks could be completed independently, 059

while also exhibiting overconfidence by refusing to 060

use tools when necessary. This inconsistency mir- 061

rors the challenges faced by O1-like models, under- 062
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mining the model’s tool intelligence and increasing063

task completion costs in real-world scenarios.064

In this work, we aim to improve how LLMs de-065

cide when and how to use external tools for task066

completion. The main challenge is aligning the067

model’s behavior with its knowledge boundaries,068

allowing it to determine when a tool is needed069

based on its confidence. Instead of treating the070

model’s knowledge as simply "known" or "un-071

known" (Yang et al., 2023c), we propose a more072

nuanced approach that accounts for uncertainty.073

This approach recognizes an "uncertain region"074

where the model assigns probabilistic estimates075

to its knowledge, enabling better decision-making076

that balances task success and tool usage costs.077

We introduce an alignment framework for effi-078

cient tool calling that combines probabilistic knowl-079

edge boundary estimation with dynamic decision-080

making. Our approach has two main components:081

1) Knowledge Boundary Estimation: we pro-082

pose two methods to assess the model’s knowledge:083

consistency-based estimation based on agreement084

and using external ground truth to evaluate the av-085

erage accuracy of multiple model samplings. 2)086

Knowledge Boundary Modeling: we construct087

different data to exhibit implicit modeling, where088

the model makes decisions based on predefined089

thresholds of knowledge certainty, and explicit090

modeling, where the model outputs both an an-091

swer and a confidence score. This framework helps092

the model use tools more efficiently, invoking them093

only when necessary, thus improving performance094

while reducing costs. Our approach is evaluated095

across multiple tool-use scenarios, demonstrating a096

significant reduction in unnecessary tool invocation097

and an improvement in overall tool efficiency. Our098

contributions can be summarized as follows:099

• We propose a multi-objective alignment100

framework for efficient tool invocation, along101

with corresponding evaluation metrics.102

• We propose the tool alignment algorithms and103

corresponding data generation methods.104

• We conduct extensive experiments across mul-105

tiple tool invocation scenarios, demonstrating106

the effectiveness of our approach.107

2 Related Work108

2.1 LLM Alignment109

LLM alignment seeks to train language models to110

act in accordance with the user’s intent, utilizing111

methods such as supervised fine-tuning (Wei et al., 112

2022; Chung et al., 2022; Zhang et al., 2023), di- 113

rect preference optimization (DPO) (Rafailov et al., 114

2024), or reinforcement learning from human feed- 115

back (RLHF) (Stiennon et al., 2020; Ouyang et al., 116

2022; Glaese et al., 2022). Most works focus 117

on enhancing the instruction-following capabili- 118

ties (Sanh et al., 2021; Wei et al., 2022), helpful- 119

ness (Ding et al., 2023; Xu et al., 2023), harmless- 120

ness (Solaiman and Dennison, 2021; Bender et al., 121

2021), and honesty (Cui et al., 2023; Yang et al., 122

2023b) of LLMs. In addition, some works pro- 123

posed aligning models with their knowledge bound- 124

aries (Xu et al., 2024b; Yang et al., 2023c), specif- 125

ically by training LLMs to reject unknown ques- 126

tions. However, these approaches assume a binary 127

view of the model’s knowledge boundary—either 128

the model knows the answer or it does not. In con- 129

trast, our work posits that knowledge boundaries 130

are more nuanced and exist within a gray area. We 131

propose dynamically determining the model’s be- 132

havior within this ambiguous region, depending on 133

the specific application scenario. 134

2.2 Tool Learning 135

Recent advancements in tool learning have en- 136

abled LLMs to effectively integrate external tools, 137

enhancing real-time knowledge retrieval, multi- 138

modal functionalities, and domain-specific exper- 139

tise (Yang et al., 2023a; Gupta and Kembhavi, 140

2023; Jin et al., 2024). Methods range from lever- 141

aging in-context learning for tool descriptions and 142

demonstrations (Hsieh et al., 2023) to explicit train- 143

ing on tool-enriched datasets (Patil et al., 2023; 144

Tang et al., 2023; Qin et al., 2023). Some works 145

have also investigated how to accomplish tasks 146

within a limited number of tool invocations (Zheng 147

et al., 2024) and how to call tools more reliably (Xu 148

et al., 2024a; Gui et al., 2024). However, previ- 149

ous research on tool invocation has largely over- 150

looked the correlation between tool usage and the 151

model’s knowledge boundaries. Additionally, there 152

has been no unified evaluation metric proposed for 153

assessing efficient tool invocation. 154

3 Problem Formulation 155

3.1 LLM Alignment 156

With the rapid development of large language mod- 157

els (LLMs), ensuring their alignment with human 158

instructions, preferences, and values has become 159

a crucial research area (Wang et al., 2024). Align- 160
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ment approaches are designed to optimize model161

responses based on predefined objectives such as162

helpfulness, truthfulness, and safety. Specifically,163

given an input prompt xi and an alignment goal164

helpfulness, we employ the following scoring prin-165

ciple to represent the alignment objective:166

s(x, yh) > s(x, yu), (1)167

where yh and yu represent a helpful response and168

an unhelpful response, respectively. The preference169

order can be determined through human annota-170

tion (Ouyang et al., 2022) or a scoring model (Gao171

et al., 2023a) trained with human preference data.172

The collected preference data can be further lever-173

aged to train reward models or fine-tune LLM poli-174

cies, thereby improving alignment with human ex-175

pectations.176

3.2 Multi-Objective Alignment for Efficient177

Tool Calling178

While alignment with helpfulness is essential, effi-179

cient tool calling introduces additional alignment180

challenges. A well-aligned LLM should not only181

provide helpful responses but also minimize un-182

necessary tool usage, as excessive tool calls in-183

crease inference latency and computational costs.184

Therefore, we propose a multi-objective alignment185

framework that balances helpfulness and tool cost.186

First, we define alignment objectives separately187

for helpfulness and tool cost. The helpfulness align-188

ment objective follows:189

s(x, yc) > s(x, yw), (2)190

where yc represents a correct response, and yw rep-191

resents an incorrect response. Simultaneously, for192

tool cost, we define:193

s(x, yn) > s(x, yt), (3)194

where yn represents a response without tool usage,195

and yt represents a response with tool usage. Com-196

bining these two objectives, our final alignment197

formulation becomes:198

s(x, ync) > s(x, ytc) > s(x, ynw) > s(x, ytw),
(4)

199

where ync, ytc, ynw, ytw represent correct re-200

sponses without tool usage, correct responses with201

tool usage, incorrect responses without tool usage,202

and incorrect responses with tool usage, respec-203

tively. This ordering reflects the principle that an204

ideal LLM should solve problems independently 205

whenever possible, resorting to tool usage only 206

when necessary, while also avoiding incorrect an- 207

swers and unnecessary tool calls. 208

3.3 Evaluation Methodology 209

To quantify the tradeoff between helpfulness and 210

tool cost, we define a benefit-cost utility function 211

as follows: 212

u(y) = 1helpfulness(y)− α · 1cost(y), (5) 213

where 1helpfulness(y), 1tool(y) equal to 1 when 214

the response y is correct or contains tool calling, 215

respectively. α represents the cost associated with 216

tool usage. The overall utility of a model on a 217

dataset with N samples is then computed as: 218

Utility =
1

N

N∑
i=1

u(yi) = Acc − α · TR, (6) 219

where Acc and TR represent the overall accuracy 220

and tool usage ratio on the dataset, respectively. 221

The parameter α is crucial, as it determines the 222

relative penalty of tool usage. A larger α indicates 223

a higher sensitivity to cost or a greater penalty for 224

invoking tools. If α is too high, the model may 225

completely avoid tool usage, even when necessary. 226

Conversely, if α is too low, the model may overuse 227

tools. Therefore, selecting a moderate α ensures 228

a balanced tradeoff between efficiency and effec- 229

tiveness. Furthermore, the cost of tool usage varies 230

across different tasks and tools. To account for 231

these differences, α can be set dynamically based 232

on the specific tool being used. Empirically, in our 233

study, we assign α values of 0.2, 0.4, and 0.6 to 234

calculators, search engines, and external LLM rea- 235

soning, respectively. The different α values reflect 236

the increasing computational cost and inference 237

latency associated with these tools. 238

4 Methodology 239

4.1 Framework for Efficient Tool Learning 240

The key to enabling efficient tool calling lies in 241

aligning LLMs with their own knowledge bound- 242

aries. Unlike a binary classification of knowl- 243

edge into "known" and "unknown," human cog- 244

nition—and by extension, LLMs—operates within 245

a spectrum. As shown in the left part of Figure 2, 246

there exists a large "uncertain region" where the 247

model can only assign a probabilistic estimate to 248

its knowledge. Previous works that enforce a strict 249
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binary classification fail to capture this nuanced250

understanding, leading to inaccurate estimations251

and suboptimal tool invocation strategies.252

To achieve effective tool use, the model must253

first develop an awareness of its knowledge bound-254

aries and then leverage this understanding to ad-255

just its decision-making process. This perspective256

aligns with the efficiency objective discussed in257

prior sections: a model that perceives knowledge258

in binary terms will struggle to adjust its behavior259

under varying cost considerations (represented by260

α). If a model simply categorizes knowledge as261

either "known" or "unknown," it will either always262

invoke a tool for uncertain cases or always answer263

directly, ignoring cost-sensitive optimization.264

We propose a solution where the model learns265

to estimate its knowledge uncertainty probabilis-266

tically rather than making binary classifications.267

This allows for greater flexibility in tool invocation.268

Depending on different values of α (which repre-269

sent different real-world tool costs), we can train270

the model to dynamically adjust its behavior. This271

can be implemented implicitly through controlled272

training data distributions or explicitly by having273

the model output confidence estimates that can be274

thresholded at inference time to determine whether275

a tool should be invoked.276

4.2 Estimating Knowledge Boundaries277

We propose two methods for knowledge boundary278

estimation as shown in the middle part of Figure 2:279

Consistency-Based Estimation This method re-280

lies on self-consistency. We assume that if a model281

produces highly consistent outputs across multiple282

samples for a given question, it possesses a stronger 283

grasp of the underlying knowledge. To operational- 284

ize this, we measure the variance in the model’s 285

sampled responses and use it as an indicator of 286

knowledge certainty. Higher consistency implies 287

greater confidence in the model’s knowledge. 288

Absolute Estimation via Ground Truth While 289

consistency-based estimation is useful, it does not 290

directly leverage external validation. To address 291

this, we introduce an absolute estimation method 292

based on ground truth correctness. We repeatedly 293

sample model responses for the same question and 294

compute the average accuracy using ground truth. 295

This provides an externally validated measure of 296

the model’s knowledge, correcting for potential 297

biases in self-estimation. 298

4.3 Training Approaches 299

To integrate knowledge boundary estimation into 300

the model’s behavior, we employ two SFT strate- 301

gies as shown in the right part of Figure 2: implicit 302

modeling and explicit modeling. 303

Implicit Modeling In this approach, the model is 304

trained to directly output actions (either answering 305

directly or invoking a tool) based on pre-defined 306

decision rules. Specifically, we sort all training 307

samples based on their estimated knowledge scores 308

and set a threshold: samples above this threshold 309

are labeled for direct answering, while those below 310

it are labeled for tool invocation. Since different 311

values of α correspond to different tool usage pref- 312

erences, we train separate SFT models with vary- 313

ing thresholds to adapt to different scenarios. This 314
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method is efficient during inference, as the model315

only needs to generate a single response per query.316

However, it requires multiple rounds of training for317

different values of α.318

Explicit Modeling Unlike implicit modeling, ex-319

plicit modeling trains the model to output both an320

answer and an associated knowledge confidence321

score. This allows dynamic adjustment of tool invo-322

cation decisions at inference time without requiring323

separate SFT models for different α values. Dur-324

ing inference, we set a threshold on the confidence325

score: if the score is above the threshold, the model326

answers directly; otherwise, it invokes a tool. This327

approach eliminates the need for retraining but in-328

troduces additional inference latency, as each query329

requires both an answer and an uncertainty estima-330

tion before deciding whether to use a tool.331

Each method has its advantages and drawbacks.332

Implicit Modeling has Faster inference (single re-333

sponse generation) but requires multiple training334

runs for different α values. Explicit Modeling is335

more flexible at inference time (threshold tuning336

without retraining) but slower due to the two-step337

generation process. In our experiments, we evalu-338

ate both approaches to determine the most effective339

strategy for efficient tool calling.340

5 Experiments341

5.1 Experiment Setup342

5.1.1 Task Scenarios343

We evaluate our approach across three scenarios,344

each requiring a specific external tool: symbolic345

computation via a calculator, factual retrieval us-346

ing a retrieval-augmented generation (Gao et al.,347

2023b) system, and complex reasoning with a348

strong reasoning model. See Appendix D for more349

detailed experimental setup.350

Arithmetic Computation (Calculator). To evalu-351

ate mathematical computation capabilities, we con-352

struct an arithmetic dataset following Liu and Low353

(2023). Input numbers are sampled on a logarith-354

mic scale to ensure diverse magnitudes with mini-355

mal duplication. To enhance linguistic diversity, we356

use hundreds of instruction templates generated by357

ChatGPT. Computation is performed using a sym-358

bolic calculator as a tool, implemented via code359

execution for precise mathematical evaluation.360

Knowledge-based QA (Retrieval-Augmented361

Generation). To evaluate factual knowledge re-362

trieval, we use TriviaQA (Joshi et al., 2017), a363

widely used question-answering dataset. We sam- 364

ple 10,000 instances for training and use the 11,313 365

instance development set for evaluation, as the offi- 366

cial test set ground truth is unavailable. To enhance 367

factual accuracy, we integrate a retrieval system, 368

leveraging Pyserini (Lin et al., 2021)—a Python 369

toolkit designed for reproducible information re- 370

trieval with sparse and dense representations. 371

Complex Reasoning (Reasoning Model). To eval- 372

uate multi-step reasoning tasks, we use the MATH 373

dataset (Hendrycks et al., 2021) with its original 374

train-test split. Given the inherent complexity of 375

mathematical reasoning, we employ DeepSeek- 376

R1 (DeepSeek-AI et al., 2025) as a tool for rea- 377

soning, leveraging its strong problem-solving capa- 378

bilities. However, this comes at a trade-off: higher 379

computational cost and slower inference speed. 380

5.1.2 Baselines 381

The baseline methods are categorized into two ma- 382

jor groups: Prompt-based and Uncertainty-based. 383

All prompts used are listed in Appendix F. 384

Prompt-based Prompt-based methods govern 385

how the model interacts with external tools and 386

determines its tool usage behavior. The Baseline 387

(w/o tool) approach has the model answer queries 388

entirely on its own, relying only on internal knowl- 389

edge. The Baseline (all tool) forces the model to 390

always invoke a tool. The Auto tool method allows 391

the model to decide when to use a tool based on its 392

estimated confidence. ICL tool (10-shot) provides 393

the model with 10 example interactions (5 correct, 394

5 incorrect) to better guide its decision on whether 395

to answer directly or use a tool. These baselines are 396

newly designed to reflect intuitive tool-use strate- 397

gies under varying assumptions of tool accessibility 398

and cost (see Appendix A for details). 399

Uncertainty-based. Uncertainty-based methods 400

estimate the confidence of model-generated an- 401

swers, which we leverage to determine the optimal 402

utility by searching for the best confidence thresh- 403

old. We explore four approaches: Raw logits (Lyu 404

et al., 2024), P(True) (Kadavath et al., 2022), Ver- 405

balized Confidence (Tian et al., 2023), and Agree- 406

ment (Self-Consistency) (Lyu et al., 2024), each 407

providing a different way to assess model confi- 408

dence (see Appendix B for details). 409

5.1.3 Training Details 410

We use two baseline models: LLAMA-3.1- 411

8B-INSTRUCT and QWEN-2.5-7B-INSTRUCT.To 412
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align with our experimental setup, we customize413

the DeepSpeed-Chat (Yao et al., 2023) framework.414

The training process adopts a learning rate of415

5× 10−5 and a batch size of 128. All other train-416

ing parameters are set to the default parameters417

in DeepSpeed-Chat. By default, 10,000 samples418

are used for Supervised Fine-Tuning. All models419

undergo training for 2 epochs on A800 GPUs (see420

Appendix C for more details).421

5.2 Main Results422

Table 1 compares the performance of all evalu-423

ated methods. Our approach achieves the highest424

utility scores across three scenarios, demonstrat-425

ing its effectiveness in balancing task success and426

tool efficiency. Among our methods, Absolute-427

based knowledge boundary estimation outperforms428

Consistency-based estimation, as external supervi-429

sion via ground truth labels enables more accurate430

boundary estimation and better tool invocation de-431

cisions. Our approach maintains accuracy compa-432

rable to the best methods while reducing tool usage433

by nearly 50% compared to fully automatic base-434

lines. It also matches the Baseline (All Tools) in435

accuracy while significantly lowering reliance on436

external tools, reducing computational costs. Our437

training-based method further enhances efficiency438

compared to Auto Tool, achieving better perfor-439

mance while reducing tool usage. This validates the440

effectiveness of refining tool invocation alignment441

with the model’s internal knowledge boundary.442

5.3 Overconfidence and Over-tool-reliance443

We analyze how implicit modeling shape model be-444

havior by adjusting the SFT data ratio, which rep-445

resents the proportion of training samples with tool446

invocation. As this ratio increases, the model’s con-447

fidence estimation and reliance on external tools448

shift. Figure 3 illustrates how the SFT data ra-449

tio influences both overconfidence and over-tool-450

reliance. A higher SFT data ratio increases reliance451

on tools, leading to more tool invocation while452

reducing the model’s overconfidence in its knowl-453

edge. Conversely, a lower SFT data ratio decreases454

tool reliance but increases overconfidence. Each455

dataset exhibits an optimal SFT data ratio, where456

this combined proportion is minimized, balancing457

model confidence and tool dependency. This turn-458

ing point in Figure 3 serves as a guideline for op-459

timal model selection. At this ratio, the model460

maintains a well-calibrated knowledge boundary461

while minimizing unnecessary tool usage.462
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Figure 3: Trade-off between overconfidence and over-
tool-reliance with different SFT data ratios.

5.4 Inference Time 463

Since tool invocation adds computational overhead, 464

we assess inference cost by measuring actual exe- 465

cution time. Using VLLM (Kwon et al., 2023) on 466

NVIDIA A800 GPUs (see Appendix E for detailed 467

experimental setup), we compute per-sample infer- 468

ence time and aggregate the total runtime across the 469

dataset. Figure 4 illustrates the trade-off between 470

inference time and performance, where methods 471

positioned towards the upper-left corner achieve a 472

more favorable balance. Our approach consistently 473

demonstrates superior efficiency, attaining either 474

higher performance at the same inference time or 475

reduce latency while maintaining accuracy. By 476

optimizing tool usage, our method reduces compu- 477

tational cost while maintaining comparable perfor- 478

mance, ensuring efficient real-world deployment 479

and making it well-suited for practical applications. 480

5.5 Ablation Study 481

5.5.1 Implict Modeling Methods 482

To understand how implicit modeling affects our 483

utility, we perform an ablation study to see how 484

different Supervised Fine-Tuning (SFT) data ra- 485

tios impact the model’s behavior. The data ratio 486

means the percentage of training examples where 487

the model uses a tool to get the answer instead of 488

answering on its own. We keep the total dataset 489

size the same but change this ratio to see how it 490

affects the model’s preference for using tools or an- 491

swering directly. This helps us find the best balance 492
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Type Method
Arithmetic + Calculator TriviaQA + RAG Math + Reasoner

Acc ↑ Tool Rate ↓ Utility(0.2) ↑ Acc ↑ Tool Rate ↓ Utility(0.4) ↑ Acc ↑ Tool Rate ↓ Utility(0.6) ↑
Llama3.1 8B

Prompt-based

Baseline (w/o tool) 63.0 0.0 63.0 62.5 0.0 62.5 51.4 0.0 51.4
Baseline (all tool) 99.0 100.0 79.0 95.8 100.0 55.8 96.2 100.0 36.2
Auto tool 90.3 75.0 75.3 89.5 78.0 58.3 73.1 50.1 43.0
ICL tool (10-shot) 91.6 62.6 79.2 85.6 69.5 57.8 53.2 4.9 50.3

Uncertainty-based

Raw logits 90.7 54.6 79.8 74.3 16.9 67.5 59.0 9.9 53.1
P(True) 90.4 65.1 77.4 87.4 59.2 63.7 84.4 61.6 47.4
verb. 1S top-1 65.5 7.8 63.9 77.4 32.8 64.3 64.1 16.3 54.3
verb. 2S top-1 69.1 16.1 65.9 74.8 20.9 66.3 62.0 16.7 52.0
agreement(consistency) 77.3 22.4 72.8 87.3 45.7 69.0 71.7 28.5 54.6

Training-based

IMPLICIT-LOGITS 80.0 33.7 73.3 74.5 24.6 64.7 85.5 56.7 51.5
EXPLICIT-LOGITS 89.5 65.5 76.4 75.8 26.8 65.1 84.9 47.5 56.4
IMPLICIT-CONSISTENCY 80.1 30.9 73.9 77.0 25.1 67.0 84.4 51.6 53.6
IMPLICIT-ABSOLUTE 96.7 45.2 87.7 91.1 42.3 74.2 93.1 55.5 59.8
EXPLICIT-CONSISTENCY 90.7 61.7 78.4 76.9 25.9 66.5 84.1 45.7 56.7
EXPLICIT-ABSOLUTE 93.3 33.8 86.5 82.9 29.7 71.0 79.5 35.6 58.1

Qwen2.5 7B

Prompt-based

Baseline (w/o tool) 67.0 0.0 67.0 51.1 0.0 51.1 74.9 0.0 74.9
Baseline (all tool) 99.0 100.0 79.0 94.7 100.0 54.7 96.2 100.0 36.2
Auto tool 95.7 83.4 79.0 90.4 89.6 54.6 77.1 24.5 62.4
ICL tool (10-shot) 91.2 32.9 84.6 74.5 33.8 61.0 75.1 1.8 74.0

Uncertainty-based

Raw logits 95.1 47.8 85.5 86.6 61.7 61.9 86.9 34.1 66.4
P(True) 94.2 63.4 81.5 79.1 53.1 57.9 86.0 30.7 67.6
verb. 1S top-1 68.9 4.9 67.9 81.2 55.9 58.8 75.6 6.9 71.5
verb. 2S top-1 78.9 22.4 74.4 79.5 51.5 58.9 83.9 20.2 71.8
agreement(consistency) 91.6 22.4 87.1 86.2 47.9 67.0 97.8 38.6 74.6

Training-based

IMPLICIT-LOGITS 83.9 22.8 79.3 81.3 56.1 58.9 91.9 52.9 60.2
EXPLICIT-LOGITS 84.2 27.2 78.8 83.2 60.1 59.2 92.9 53.9 60.6
IMPLICIT-CONSISTENCY 82.7 17.2 79.3 84.2 58.1 61.0 96.9 54.9 64.0
IMPLICIT-ABSOLUTE 97.6 37.9 90.1 90.7 59.1 67.1 93.9 29.0 76.5
EXPLICIT-CONSISTENCY 90.7 61.7 78.4 72.9 23.9 63.3 89.9 22.3 76.5
EXPLICIT-ABSOLUTE 97.3 28.8 91.5 80.3 30.3 68.2 90.1 21.2 77.4

Table 1: Performance comparison on three tool calling scenarios. The utility is the overall evaluation metric of
accuracy and tool rate. A larger α indicates a higher cost sensitivity and a greater penalty for invoking tools.

Figure 4: Performance vs. inference time (seconds).

based on cost. When using a tool is cheap, a higher493

ratio makes the model use tools more often, which494

improves accuracy by using external resources. On495

the other hand, if tool usage is expensive, a lower496

ratio makes the model answer questions indepen-497

dently, reducing costs. The key is to find the right498

balance so the model efficiently decides when to499

use tools based on the situation. Figure 5 shows500

how the data ratio affects the model’s utility. At501

first, utility increases as the ratio goes up, reaching502

a peak before dropping. The best ratio is different 503

for each dataset and depends on how much the tool 504

costs. If tool costs are high, the optimal ratio is 505

lower. This shows that our implicit modeling ap- 506

proach helps the model make smart choices based 507

on task costs, balancing accuracy and efficiency. 508

5.5.2 Explicit Modeling Methods 509

Unlike implicit approaches, explicit modeling al- 510

lows the model to directly output confidence scores 511

alongside its predictions, enabling threshold-based 512

decision-making for tool invocation. To further 513

evaluate its effectiveness, we compare explicit mod- 514

eling with uncertainty-based baselines, as both 515

methods fundamentally rely on confidence esti- 516

mation to determine knowledge boundaries. To 517

ensure a fair comparison, we adjust the confidence 518

threshold to control the tool invocation ratio, sys- 519

tematically varying the threshold to assess model 520

performance at different levels of tool usage. As 521

shown in Figure 6 illustrates the relationship be- 522

tween tool invocation rate and model performance 523

across various confidence thresholds. Explicit mod- 524

eling consistently outperforms uncertainty-based 525

baselines at all invocation ratios, demonstrating 526

its ability to provide a more reliable estimation of 527

knowledge boundaries. The performance gap re- 528

mains stable, highlighting the robustness of explicit 529

confidence modeling. By leveraging these confi- 530
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Figure 5: Effect of SFT Data Ratio on Utility. The ratio represents the proportion of training samples in which the
model invokes a tool rather than answering directly.
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Figure 6: Comparison of tool invocation strategies: ex-
plicit modeling vs. uncertainty-based baselines.

dence scores, our approach enables finer control531

over tool invocation, optimizing task success while532

reducing unnecessary computational overhead.533

5.6 Knowledge Boundary Alignment534

To examine whether the model learns about knowl-535

edge boundary, we compare our method with536

auto_tool in terms of tool invocation distribution.537

Figure 7 presents tool usage across different ac-538

curacy levels. Higher accuracy reflects a better539

understanding of the problem. An ideal model540

should rely on tools for challenging cases while541

minimizing tool use for confidently answered ques-542

tions. However, auto_tool exhibits a nearly uni-543

form tool invocation pattern, suggesting it lacks544

awareness of its knowledge boundaries. In contrast,545

our method shows a gradual decline in tool usage546

as accuracy increases, indicating adaptive tool in-547

vocation based on knowledge confidence. We also548

analyze over-tool-reliance, where the model uses549

tools unnecessarily despite being capable of an-550

swering correctly. Figure 7 shows that the baseline551

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

T
oo

l U
sa

ge
 (%

)

Arithmetic + Calculator

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
TriviaQA + RAG

0.0 0.2 0.4 0.6 0.8 1.0
Average Accuracy

0

20

40

60

80

100
Math + Reasoner

auto_tool (Tool Usage)
auto_tool (Over-tool-reliance)
IMPLICIT-ABSOLUTE (Tool Usage)
IMPLICIT-ABSOLUTE (Over-tool-reliance)

Figure 7: Comparison of tool usage and over-tool-
reliance across different accuracy levels.

exhibits increasing over-tool-reliance with accu- 552

racy, leading to unnecessary computational over- 553

head. Conversely, our method reduces over-tool- 554

reliance, enabling more intelligent invocations. 555

6 Conclusion 556

In this work, we introduced a novel approach to 557

improve LLMs’ decision-making regarding when 558

and how to use external tools. By incorporating the 559

concept of an "uncertain region" and probabilistic 560

knowledge boundary estimation, our framework 561

enables more informed and efficient tool usage. 562

Through extensive experiments, we demonstrated 563

that our approach reduces unnecessary tool calls, 564

improving performance and cost-effectiveness. By 565

combining implicit and explicit modeling tech- 566

niques, we provide the model with greater flexi- 567

bility in real-time decisions. Our work advances 568

LLMs’ tool intelligence, ensuring more judicious 569

and efficient tool invocation. Future work can ex- 570

plore further refinements and broader applications. 571
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Limitations572

This work primarily proposes an alignment frame-573

work for efficient tool invocation, evaluated574

through experiments on three datasets. On the one575

hand, the number of tools used in these experiments576

is limited, with a selection of three representative577

tools: a mathematical calculator, a search engine,578

and an external large model. This choice is moti-579

vated by the fact that most tools possess highly spe-580

cific knowledge. For example, tools that retrieve581

weather information for a particular day contain582

knowledge that does not overlap with that of the583

model, requiring the model to invoke the tool to584

complete the task. On the other hand, different585

models and knowledge sources can also be framed586

as tools, meaning that the discussion in this work587

on modeling knowledge boundaries remains highly588

valuable. In addition, the experiments in this work589

were conducted on only two open-source models,590

as obtaining baseline data for closed-source models591

presents significant challenges. For instance, meth-592

ods such as uncertainty estimation often require593

access to specific token logits, which are difficult594

to obtain for proprietary models. This limitation595

affects the generalizability of the experimental re-596

sults, as the performance of closed-source models597

may differ in ways that cannot be captured without598

direct access to their internals.599
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A Prompt-based Methods 887

We implement four prompt-based baseline meth- 888

ods to facilitate a fair and interpretable comparison 889

across varying tool-use strategies. These baselines 890

are designed to represent intuitive and commonly 891

used decision patterns along the spectrum of tool 892

accessibility and reliance. Below, we provide de- 893

tailed descriptions and the design rationale for each 894

baseline. 895

Baseline (w/o tool) In this setting, the model is 896

instructed to answer each question using only its 897

internal parametric knowledge, without access to 898

any external tool. This baseline serves to evaluate 899

the model’s raw performance without any form 900

of external assistance. It provides a lower bound 901

for performance, isolating the contribution of the 902

model’s internal memory. Moreover, it allows us 903

to quantify the incremental benefits gained from 904
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tool usage and to identify scenarios where tools are905

essential for accurate responses.906

Baseline (all tool) The model is required to al-907

ways utilize external tool outputs—such as re-908

trieved documents or calculator results—when gen-909

erating an answer, irrespective of its confidence910

level. This baseline simulates an over-reliance911

on tools, representing a naïve strategy where the912

model defaults to tool usage regardless of necessity.913

It approximates an upper bound on task perfor-914

mance under the assumption that tool outputs are915

generally helpful. At the same time, it highlights916

the trade-off between performance and tool usage917

cost, particularly in settings sensitive to latency or918

resource constraints.919

Auto Tool (Zero-Shot) The model is prompted to920

make a binary decision on whether to invoke a tool,921

based solely on its internal confidence, without any922

fine-tuning or in-context examples. This baseline923

evaluates the model’s zero-shot uncertainty esti-924

mation capability and its ability to make tool-use925

decisions guided purely by prompt instructions. It926

offers a natural and competitive baseline for com-927

parison with approaches that incorporate explicit928

confidence training or reinforcement.929

ICL Tool (10-Shot In-Context Learning) This930

method extends the Auto Tool baseline by prepend-931

ing 10 in-context examples (5 correct answers with-932

out tools, and 5 correct answers with tools) that933

demonstrate when to use or avoid tool invocation.934

The goal of this baseline is to assess whether the935

model can learn a tool-use decision policy implic-936

itly from in-context demonstrations. By provid-937

ing examples of both high-confidence (tool-free)938

and low-confidence (tool-required) responses, the939

model is expected to generalize and apply similar940

decision criteria to new inputs.941

B Uncertainty Estimation Methods942

This section provides a comprehensive overview of943

the uncertainty estimation techniques employed in944

our study. These methods aim to quantify model945

confidence in its predictions, helping regulate tool946

invocation and decision-making.947

Raw Logits. This approach estimates confidence948

using the model’s logit values, specifically by com-949

puting the exponential of the average log probabil-950

ity of the generated tokens. This metric is mathe-951

matically equivalent to the reciprocal of perplexity,952

where lower perplexity indicates higher confidence, 953

effectively capturing how certain the model is in its 954

prediction. 955

Agreement (Consistency-based). In this 956

method, confidence is determined by measuring 957

the proportion of generated responses that align 958

with the most frequently predicted answer. A 959

higher agreement percentage suggests greater 960

internal consistency in the model’s responses, 961

thereby indicating a stronger level of confidence in 962

its generated output. 963

P(True). This method involves prompting the 964

model to explicitly assess the correctness of its 965

own response. The confidence score is derived 966

from the normalized probability assigned to the 967

‘True’ token, reflecting the model’s self-evaluated 968

likelihood that its answer is correct. 969

Verbalized Confidence: 1-Stage Top-k (Verb. 1S 970

Top-k). In this one-stage approach, the model 971

generates the top k candidate answers along with 972

their respective probabilities in a single pass. The 973

highest-ranked answer and its assigned probability 974

serve as an indicator of confidence, offering a direct 975

estimation of the model’s certainty in its response. 976

Verbalized Confidence: 2-Stage Top-k (Verb. 2S 977

Top-k). Unlike the single-stage method, this two- 978

stage approach first prompts the model to gener- 979

ate multiple candidate answers and then separately 980

assigns probabilities to each of them in a second 981

inference step. The final confidence score is com- 982

puted based on these probabilities, allowing for a 983

refined estimation that accounts for potential self- 984

correction. 985

These uncertainty estimation techniques play a 986

crucial role in calibrating tool invocation decisions, 987

ensuring that external tools are utilized effectively 988

based on the model’s confidence in its own predic- 989

tions. To optimize utility, we sort all confidence 990

scores across responses and use each unique score 991

as a potential threshold, systematically evaluating 992

its impact on tool invocation. 993

C Training Details 994

We use two baseline models: LLAMA-3.1- 995

8B-INSTRUCT and QWEN-2.5-7B-INSTRUCT.To 996

align with our experimental setup, we customize 997

the DeepSpeed-Chat (Yao et al., 2023) framework. 998

The training process adopts a learning rate of 999
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5× 10−5 and a batch size of 128. All other train-1000

ing parameters are set to the default parameters1001

in DeepSpeed-Chat. By default, 10,000 samples1002

are used for Supervised Fine-Tuning. All models1003

undergo training for 2 epochs on A800 GPUs.1004

We train our models by leveraging the confi-1005

dence scores estimated from the aforementioned1006

methods. Specifically, the model is trained us-1007

ing these different confidence estimation strate-1008

gies—LOGITS, CONSISTENCY, and ABSO-1009

LUTE—as supervisory signals to guide and cal-1010

ibrate its learning process.1011

LOGITS This approach estimates confidence us-1012

ing the model’s logit values, specifically by comput-1013

ing the exponential of the average log probability1014

of the generated tokens. This metric is mathemat-1015

ically equivalent to the reciprocal of perplexity,1016

where lower perplexity indicates higher confidence,1017

effectively capturing how certain the model is in its1018

prediction.1019

CONSISTENCY In this method, confidence is1020

determined by measuring the proportion of gener-1021

ated responses that align with the most frequently1022

predicted answer. A higher agreement percentage1023

suggests greater internal consistency in the model’s1024

responses, thereby indicating a stronger level of1025

confidence in its generated output.1026

ABSOLUTE This method estimates the model’s1027

confidence by measuring the proportion of gener-1028

ated responses that align with external supervision1029

(i.e., the ground-truth labels). It uses external sig-1030

nals to calibrate the model’s confidence.1031

D Experimental Setup1032

Arithmetic Computation. For arithmetic tasks,1033

we use a dataset consisting of 10,000 training sam-1034

ples and 1,000 test samples. To ensure the quality1035

of generated arithmetic expressions, we filter out1036

any syntactically incorrect or malformed expres-1037

sions that do not conform to standard arithmetic1038

formats. Symbolic computation is performed us-1039

ing the SymPy library, which provides a robust1040

framework for symbolic mathematics and equation1041

evaluation.1042

Knowledge-based QA (TriviaQA). For1043

knowledge-based question answering, we ran-1044

domly select 10,000 training instances from the1045

full TriviaQA training set. The retrieval system1046

is employed only during inference and does1047

not participate in training. During training, the 1048

model is only exposed to the tool invocation 1049

format, but actual retrieval is not performed. 1050

We follow the Pyserini setup for TriviaQA and 1051

utilize a sparse retriever to retrieve the top 100 1052

highest-scoring passages. To improve retrieval 1053

accuracy, we further filter passages that contain 1054

the correct answer and refine the selection using 1055

ChatGPT, eliminating irrelevant noisy passages. 1056

This ensures that the retrieved information is 1057

reliable, preventing erroneous tool invocation from 1058

negatively impacting final performance. 1059

Complex Reasoning (MATH). For mathemati- 1060

cal problem-solving, we process the MATH dataset 1061

following its original settings. We utilize a total 1062

of 7500 training samples and 5000 test samples, 1063

adhering strictly to the dataset’s official evaluation 1064

protocol to ensure consistency and comparability 1065

with prior work. We employ DeepSeek-R1 (671B) 1066

as the external reasoning model, deploying it lo- 1067

cally using VLLM on a cluster of 32 NVIDIA A800 1068

GPU. The model operates in a zero-shot setting. To 1069

mitigate excessive inference latency, we instruct the 1070

model to generate concise responses while main- 1071

taining reasoning completeness. Despite this con- 1072

straint, DeepSeek-R1 still significantly surpasses 1073

our primary models in response time. 1074

E Inference Time Experimental Setup 1075

For inference time evaluation, we employ the 1076

VLLM framework and conduct experiments on 1077

two NVIDIA A800 GPUs. To obtain a precise 1078

measurement of raw inference latency, we process 1079

input samples sequentially, without applying any 1080

parallelization techniques such as batching. We 1081

measure only the pure inference time, excluding 1082

any overhead from data loading. All other parame- 1083

ters remain at their default settings, and the model 1084

is loaded in bfloat16 format to optimize memory 1085

usage while preserving numerical precision. 1086

F Prompts Used in Experiments 1087

F.1 Prompts Used in Different Prompt-based 1088

Methods 1089

The prompts used for different datasets are pre- 1090

sented in the following sections. Table 2 shows 1091

the prompts for the MATH dataset, Table 3 con- 1092

tains the prompts for the Arithmetic dataset, and 1093

Table 4 presents the prompts for the TriviaQA 1094

dataset. 1095
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F.1.1 Prompts for MATH Dataset1096

Table 2 lists the prompts used for different methods1097

when evaluating the MATH dataset.1098

F.1.2 Prompts for Arithmetic Dataset1099

Table 3 lists the prompts used for different methods1100

when evaluating the Arithmetic dataset.1101

F.1.3 Prompts for TriviaQA Dataset1102

Table 4 lists the prompts used for different methods1103

when evaluating the TriviaQA dataset.1104

F.2 Prompts Used in Different1105

Uncertainty-based Methods1106

The prompts are shown in Table 5.1107

F.3 Question Templates1108

The examples of arithmetic question templates are1109

shown in 6.1110
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Baseline (w/o tool) - MATH

Given the following problem, break it down into steps and reason through each part before arriving at a final conclusion. Your
final answer MUST be enclosed in \boxed{}.
Problem: {question}

Baseline (all tool) - MATH

Given the following problem, break it down into steps and reason through each part before arriving at a final conclusion. Your
final answer MUST be enclosed in \boxed{}.
Problem: {question}

Auto Tool - MATH

Given the following problem. If you can solve it directly with confidence, your final answer must be in \boxed{} format. If you
cannot solve it directly, call the tool immediately without reasoning, using this format:
{{

"tool_name": "math_solver"
}}
Problem: {question}

ICL Tool (10-shot) - MATH

Given the following problem. If you can solve it directly with confidence, your final answer must be in \boxed{} format. If you
cannot solve it directly, call the tool immediately without reasoning, using this format:
{{

"tool_name": "math_solver"
}}
Examples: {example}
Problem: {question}

Table 2: Prompts Used in Different Methods for MATH Dataset.

Baseline (w/o tool) - Arithmetic

Given the following problem, provide the final answer directly.
Problem: {question}
Your response should only be "The final answer is [answer]" where [answer] is the response to the problem.

Baseline (all tool) - Arithmetic

Use a calculator to solve the question. Format your output as a JSON object in the following structure:
{{

"calculator": "<expression>"
}}
Problem: {question}

Auto Tool - Arithmetic

If you are confident in your answer, output the final answer directly. If unsure, use the calculator tool and respond with a JSON
object formatted as:

{{
"tool_name": "calculator"

}}
Problem: {question}

ICL Tool (10-shot) - Arithmetic

If you are confident in your answer, output the final answer directly. If unsure, use the calculator tool and respond with a JSON
object formatted as:

{{
"tool_name": "calculator"

}}

Examples: {example}
Problem: {question}

Table 3: Prompts Used in Different Methods for Arithmetic Dataset.
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Baseline (w/o tool) - TriviaQA

Answer the following question. Your response should only be "The final answer is [answer]" where [answer] is the response to
the problem.
Problem: {question}

Baseline (all tool) - TriviaQA

{documents}
Based on the information in this document, answer the following question accurately.
Problem: {question}

Auto Tool - TriviaQA

Answer the following question directly if you are confident in your knowledge. If you are uncertain or need to retrieve
information, respond with a JSON object in the following format:
{{

"tool_name": "search_info"
}}
Problem: {question}

ICL Tool (10-shot) - TriviaQA

Answer the following question directly if you are confident in your knowledge. If you are uncertain or need to retrieve
information, respond with a JSON object in the following format:
{{

"tool_name": "search_info"
}}
Examples: {example}
Problem: {question}

Table 4: Prompts Used in Different Methods for TriviaQA Dataset.

Logits-based Prompt

You are a helpful assistant.
Answer the following question as accurately as possible.
Question: {question}

P(true) Prompt

You are a helpful assistant. You should judge whether the answer to the given question is True or False. Please only reply with a
simple word "True" or "False".
Answer the following questions as accurately as possible.
Question: {question}
Answer: {answer}
Is the above answer correct? (True / False)

Consistency Prompt

You are a helpful assistant.
Answer the following question as accurately as possible. Provide ONLY the direct answer without any explanation.
Question: {question}

Verb. 1S top1 Prompt

You are a helpful assistant, and you are always completely honest and DIRECT in your responses.
Provide a brief, concise answer along with an explicit confidence percentage (0-100%) about the correctness of your response.
Question: {question}

Verb. 2S top1 Prompt

You are a helpful assistant, always completely honest and direct in your responses. You are also transparent about your
confidence level and can honestly share how certain you are about the answer.
Question: {question}
Answer: {previous_answer}
How confident are you in the above answer (0-100%)?

Table 5: Prompts Used in Uncertainy-Based Estimation Methods.
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Arithmetic Question Templates

• Compute the result of {input}.
◦ Answer the following question: {input}
• Determine {input}
◦ Can you solve for {input}?
• Calculate {input}.
◦ Help me determine the value of {input}.
• Please calculate {input}
◦ Can you solve and provide the value of {input}?
• What does {input} yield?
◦ Assist me in calculating {input}.
• Evaluate {input} and let me know the computed value.
◦ Can you compute the value of {input}?
• Compute this: {input}.
◦ Determine the numeric value resulting from {input}.
• Can you provide a stepwise solution for evaluating {input}?
◦ Solve this math problem: {input}
• Compute the mathematical expression {input} and yield the result.
◦ Solve this problem: {input}
• What is the value of {input}?
◦ Can you tell me the result of {input}?

...

Table 6: Examples of arithmetic question templates generated by ChatGPT, where {input} is substituted with
arithmetic questions using two randomly selected integers.
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