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Abstract

Activity cliffs—pairs of structurally similar molecules that display large differences1

in binding affinity—pose a fundamental challenge in structure-based drug discovery.2

They highlight subtle yet critical determinants of protein-ligand recognition and3

provide stringent test cases for computational methods. This proposal aims to4

establish a large-scale, high-quality dataset of activity cliffs to enable systematic5

study of structure-activity discontinuities and to benchmark both affinity prediction6

and docking approaches. We have already curated a large-scale dataset containing7

over 16k activity cliff pairs across 50 human protein targets from ChEMBL. Future8

development will focus on validating affinity data under unified experimental9

conditions and integrating structural annotations of representative molecular pairs.10

The long-term goal is to develop an open, community-driven database of activity11

cliffs that will accelerate method development and provide actionable insights for12

drug discovery.13

1 Introduction14
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Figure 1: Two examples of activity cliffs shown
in [4].

In medicinal chemistry and structure-based drug15

discovery (SBDD), a central challenge lies in ac-16

curately capturing the relationship between molec-17

ular structure and biological activity [2]. While18

most structurally similar compounds tend to ex-19

hibit comparable activities, there exist cases where20

small, localized chemical modifications lead to dis-21

proportionately large differences in potency [7].22

These cases, termed activity cliffs (ACs), repre-23

sent abrupt discontinuities in the structure-activity24

landscape [8]. Typically, an activity cliff is iden-25

tified from a matched molecular pair (MMP), i.e.,26

two compounds that differ only by a small chem-27

ical substitution while sharing a common scaffold,28

yet display a binding affinity difference exceeding29

a predefined threshold [3], as shown in Figure 1.30

Such cliffs are of particular interest because they31

encode critical insights into protein-ligand recognition and highlight subtle interaction determinants32

that are often missed by global similarity-based models [9].33

A high-quality dataset of activity cliffs is therefore invaluable for advancing SBDD. At a mechanistic34

level, ACs support understanding protein-ligand binding behaviors, by pinpointing local structural35

features that drive affinity changes[5]. Methodologically, ACs have already been leveraged for36

benchmarking machine learning-based affinity prediction models, highlighting their weaknesses in37

regions of sharp structure-activity discontinuities [10]. AC datasets also have the potential to open38
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the door to benchmarking protein-ligand docking methods, where the task is not merely to reproduce39

experimental poses but to predict relative affinity differences between similar ligands [6].40

Despite these advances, current AC datasets suffer from important limitations [12]. Most existing41

resources provide only affinity labels derived from heterogeneous experimental reports. These values42

are subject to assay-specific conditions, measurement uncertainties, and inter-laboratory variability,43

which complicate the interpretation of cliffs. Moreover, while affinity data highlight the outcome of44

binding, they do not capture the structural basis of the cliff. As a result, computational methods trained45

or benchmarked on such data may inherit experimental noise and fail to identify the fine-grained46

interaction mechanisms underlying the cliffs.47

To address these gaps, future development of activity cliff datasets should move toward multi-modal,48

higher-fidelity resources. Three complementary directions are particularly promising:49

• Wet-lab validation under unified conditions. Systematic measurement of MMP bind-50

ing affinities using standardized assays would minimize inconsistencies and improve the51

reliability of cliff labels.52

• High-precision binding structures. Obtaining crystallographic or cryo-EM structures for53

representative MMPs would directly reveal how small structural perturbations alter binding54

geometry.55

• Molecular dynamics (MD) simulations. High-quality MD studies of AC pairs could56

provide atomistic insight into dynamic and entropic contributions that static docking and57

affinity labels cannot capture.58

Together, these directions would transform activity cliff datasets from affinity-only collections into59

comprehensive interaction-aware benchmarks, enabling deeper understanding of protein-ligand60

recognition, more robust evaluation of predictive models, and ultimately more effective structure-61

based drug discovery.62

2 Data Curation63

We have already constructed a large-scale dataset of activity cliffs, curated from the ChEMBL64

database [11]. Specifically, matched molecular pairs (MMPs) were extracted by applying strict65

structural filters: pairs differ only by a localized chemical substitution while sharing a common66

scaffold, ensuring chemical interpretability and medicinal relevance. Activity cliffs were defined as67

MMPs exhibiting at least a 100-fold difference in binding affinity toward the same human protein68

target, based on high-confidence, direct binding assay measurements (Ki values). To avoid ambiguity,69

only pairs with <10-fold affinity differences were included as non-AC controls, while intermediate70

cases were excluded.71

The resulting dataset comprises over 55 498 protein-ligand binding pairs across 50 diverse human72

protein targets, from which 16 386 activity cliff pairs and 271 196 non-AC MMPs are extracted to73

form the dataset. All ligand SMILES were standardized and validated for 3D structure generation,74

and protein structures were sourced from the AlphaFold Protein Structure Database [1], ensuring75

compatibility with structure-based modeling. The dataset is available at https://anonymous.76

4open.science/r/ACDataset-1A4B, and more details are shown in Appendix A.77

Looking forward, the dataset can be further developed into a more powerful resource by incorpo-78

rating validated affinity data under unified experimental conditions and structural information for79

representative MMPs, as discussed in Section 1. Such extensions will inevitably be costly, as they80

require new wet-lab measurements and high-resolution structural determination, but the investment is81

justified: a rigorously validated and structurally annotated AC dataset would provide unparalleled82

insights into protein-ligand recognition and set a new standard for evaluating computational methods83

in drug discovery.84

To maximize accessibility and impact, it is also important to establish a public, online open-source85

database of activity cliffs. By continuously updating the collection with newly validated cliffs, struc-86

tural annotations, and simulation data, this platform would not only accelerate method development87

in docking and affinity prediction but also serve as a shared knowledge base for medicinal chemists88

and computational biologists.89
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A Dataset Details124

Table 1: Schema of the dataset of activity cliffs. Each row represents a matched molecular pair
(MMP) for a given protein target, including SMILES strings of the two ligands, their experimental
Ki values from ChEMBL, and a binary activity cliff label.

Protein Target Ligand 1 Ki1 Ligand 2 Ki2 AC Label
ID1 m1 Ki(m1) m2 Ki(m2) Yes
ID1 m3 Ki(m3) m4 Ki(m4) No
ID2 m5 Ki(m5) m6 Ki(m6) Yes
... ... ... ... ... ...
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Figure 2: The distribution of ligands, AC pairs, and non-AC MMPs across the protein targets.
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