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Abstract

Activity cliffs—pairs of structurally similar molecules that display large differences
in binding affinity—pose a fundamental challenge in structure-based drug discovery.
They highlight subtle yet critical determinants of protein-ligand recognition and
provide stringent test cases for computational methods. This proposal aims to
establish a large-scale, high-quality dataset of activity cliffs to enable systematic
study of structure-activity discontinuities and to benchmark both affinity prediction
and docking approaches. We have already curated a large-scale dataset containing
over 16k activity cliff pairs across 50 human protein targets from ChEMBL. Future
development will focus on validating affinity data under unified experimental
conditions and integrating structural annotations of representative molecular pairs.
The long-term goal is to develop an open, community-driven database of activity
cliffs that will accelerate method development and provide actionable insights for

drug discovery.

1 Introduction

In medicinal chemistry and structure-based drug
discovery (SBDD), a central challenge lies in ac-
curately capturing the relationship between molec-
ular structure and biological activity [2]. While
most structurally similar compounds tend to ex-
hibit comparable activities, there exist cases where
small, localized chemical modifications lead to dis-
proportionately large differences in potency [[7].
These cases, termed activity cliffs (ACs), repre-
sent abrupt discontinuities in the structure-activity
landscape [8]. Typically, an activity cliff is iden-
tified from a matched molecular pair (MMP), i.e.,
two compounds that differ only by a small chem-
ical substitution while sharing a common scaffold,
yet display a binding affinity difference exceeding
a predefined threshold [3]], as shown in Figure [I]
Such cliffs are of particular interest because they
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Figure 1: Two examples of activity cliffs shown
in [4].

encode critical insights into protein-ligand recognition and highlight subtle interaction determinants
that are often missed by global similarity-based models [9]].

A high-quality dataset of activity cliffs is therefore invaluable for advancing SBDD. At a mechanistic
level, ACs support understanding protein-ligand binding behaviors, by pinpointing local structural
features that drive affinity changes[5]. Methodologically, ACs have already been leveraged for
benchmarking machine learning-based affinity prediction models, highlighting their weaknesses in
regions of sharp structure-activity discontinuities [10]]. AC datasets also have the potential to open
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the door to benchmarking protein-ligand docking methods, where the task is not merely to reproduce
experimental poses but to predict relative affinity differences between similar ligands [6].

Despite these advances, current AC datasets suffer from important limitations [[12]]. Most existing
resources provide only affinity labels derived from heterogeneous experimental reports. These values
are subject to assay-specific conditions, measurement uncertainties, and inter-laboratory variability,
which complicate the interpretation of cliffs. Moreover, while affinity data highlight the outcome of
binding, they do not capture the structural basis of the cliff. As a result, computational methods trained
or benchmarked on such data may inherit experimental noise and fail to identify the fine-grained
interaction mechanisms underlying the cliffs.

To address these gaps, future development of activity cliff datasets should move toward multi-modal,
higher-fidelity resources. Three complementary directions are particularly promising:

* Wet-lab validation under unified conditions. Systematic measurement of MMP bind-
ing affinities using standardized assays would minimize inconsistencies and improve the
reliability of cliff labels.

* High-precision binding structures. Obtaining crystallographic or cryo-EM structures for
representative MMPs would directly reveal how small structural perturbations alter binding
geometry.

* Molecular dynamics (MD) simulations. High-quality MD studies of AC pairs could
provide atomistic insight into dynamic and entropic contributions that static docking and
affinity labels cannot capture.

Together, these directions would transform activity cliff datasets from affinity-only collections into
comprehensive interaction-aware benchmarks, enabling deeper understanding of protein-ligand
recognition, more robust evaluation of predictive models, and ultimately more effective structure-
based drug discovery.

2 Data Curation

We have already constructed a large-scale dataset of activity cliffs, curated from the ChEMBL
database [11]]. Specifically, matched molecular pairs (MMPs) were extracted by applying strict
structural filters: pairs differ only by a localized chemical substitution while sharing a common
scaffold, ensuring chemical interpretability and medicinal relevance. Activity cliffs were defined as
MMPs exhibiting at least a 100-fold difference in binding affinity toward the same human protein
target, based on high-confidence, direct binding assay measurements (K; values). To avoid ambiguity,
only pairs with <10-fold affinity differences were included as non-AC controls, while intermediate
cases were excluded.

The resulting dataset comprises over 55 498 protein-ligand binding pairs across 50 diverse human
protein targets, from which 16 386 activity cliff pairs and 271 196 non-AC MMPs are extracted to
form the dataset. All ligand SMILES were standardized and validated for 3D structure generation,
and protein structures were sourced from the AlphaFold Protein Structure Database [1]], ensuring
compatibility with structure-based modeling. The dataset is available at https://anonymous,
4open.science/r/ACDataset-1A4B, and more details are shown in Appendix

Looking forward, the dataset can be further developed into a more powerful resource by incorpo-
rating validated affinity data under unified experimental conditions and structural information for
representative MMPs, as discussed in Section[I} Such extensions will inevitably be costly, as they
require new wet-lab measurements and high-resolution structural determination, but the investment is
justified: a rigorously validated and structurally annotated AC dataset would provide unparalleled
insights into protein-ligand recognition and set a new standard for evaluating computational methods
in drug discovery.

To maximize accessibility and impact, it is also important to establish a public, online open-source
database of activity cliffs. By continuously updating the collection with newly validated cliffs, struc-
tural annotations, and simulation data, this platform would not only accelerate method development
in docking and affinity prediction but also serve as a shared knowledge base for medicinal chemists
and computational biologists.


https://anonymous.4open.science/r/ACDataset-1A4B
https://anonymous.4open.science/r/ACDataset-1A4B
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12 A Dataset Details

Table 1: Schema of the dataset of activity cliffs. Each row represents a matched molecular pair
(MMP) for a given protein target, including SMILES strings of the two ligands, their experimental
K; values from ChEMBL, and a binary activity cliff label.

Protein Target Ligand 1 K; Ligand 2 K; AC Label

ID1 my K1 (ml) mo Kz(mg) Yes
ID1 ms Ki (mg) my Ki (m4) No

D2 ms K;(ms) mg K;(mg) Yes

A) Number of Ligands per Target
3000+

2000 1

1000 1

B) Number of Activity Cliffs per Target
3000+
2000

1000

(c) Number of Non-AC MMPs per Target

20000 -

10000
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Figure 2: The distribution of ligands, AC pairs, and non-AC MMPs across the protein targets.
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