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Abstract
Cost of serving long-sequence large language
models (LLM) is high, but the expensive and
scarce GPUs are poorly efficient when generat-
ing tokens sequentially, unless the batch of se-
quences is enlarged. However, the batch size
is limited by some constantly reused intermedi-
ate results, namely KV-Cache. They occupy too
much memory to generate more and longer se-
quences simultaneously. While they could be
offloaded to host memory, the CPU-GPU band-
width is an inevitable bottleneck.

We find a way to decompose the transformer
models into two parts of different characteris-
tics, one of which includes the memory-bound
KV-Cache accessing. Our key insight is that
the aggregated memory capacity, bandwidth,
and computing power of CPUs across multi-
ple nodes is an efficient option to process this
part. Performance improvement comes from re-
duced data transmission overhead and boosted
GPU throughput to process the other model part.
Evaluation results show that our system achieves
1.88 × −5.04× the throughput of vLLM when
serving modern LLMs with the same GPU.

1. Introduction
The large language models (LLM) are gaining high atten-
tion. These transformer-based models are very hardware-
friendly when training and evaluating (Narayanan et al.,
2021; Ma et al., 2022), because the main computation
workload is matrix multiplication, a highly optimized op-
eration to run on accelerators, e.g., GPUs. However, when
using the models, the auto-regressive procedure, i.e., de-
coding, is inefficient. Because tokens in a long sequence
are generated one-by-one, one of the operand matrices is in
fact a vector. Multiplying a vector with a matrix achieves
much lower throughput due to poor utilization of GPUs.
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Figure 1. Memory footprint of KV-cache stops increasing GPU
utilization by enlarging batch size

Enlarging batch size, i.e., generating tokens for multiple re-
quests simultaneously, is the most feasible way to increase
GPU utilization. However, generating a new token depends
on huge intermediate results of generating the previous to-
kens, namely KV-cache (Pope et al., 2023). Processing
batched requests results in a much larger memory footprint,
far beyond the capacity of GPU memory. Figure 1 shows
the dilemma instantiated on a common 7b model and sev-
eral different GPUs. Increasing batch size makes the GPUs
significantly better utilized, but the memory footprint of the
KV-cache is much larger than the GPU memory. To make
it worse, the KV-cache becomes even larger as more tokens
are generated and the sequences get longer.

To solve this, host memory has naturally become the place
to offload the KV-cache (Kwon et al., 2023), as it is larger
and cheaper than GPU memory. However, the KV-cache is
not cold data: the complete KV-cache is loaded into GPU
memory to generate every token, leading to a large amount
of data movement and overhead.

However, as shown in Figure 2, we find that compared with
the huge gap in compute power, GPUs and CPUs have a
much closer gap in memory bandwidth. Therefore, instead
of just offloading KV-cache to CPU memory, we should
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compute near KV-cache on CPUs. The transmitted ten-
sors then change from KV-cache data to activation tensors,
which are orders of magnitudes smaller than KV-cache. On
the other hand, our approach totally removes intermediate
data of sequences, the KV-cache, from GPU memory. So
the batch size can be greatly increased, and the GPUs can
be optimally utilized.
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Figure 2. Performance characteristics of typical GPUs and CPUs,
matching the need of two parts of the model

2. Challenges and Solutions
To enable KV-cache computation and storage on the CPU
side, there are three challenges.

Challenge 1: The CPU is busy but slow. It runs multiple
tasks, including batch gathering, tokenization, and coordi-
nating the GPUs. Performing extra computation interferes
with these tasks. To add to the difficulty, the memory band-
width of a CPU is lower than GPU.

Challenge 2: The pattern of workload variation, as the gen-
erated sequences get longer, differs between the two parts.
In our solution, the CPU and the GPU take turns to per-
form computation, and pass the results to each other. A
basic pipeline of multiple batches of requests is used to uti-
lize both of them. However, computation on the CPU takes
longer time as the generated sequence gets longer, while
the latency of its counterpart on GPU does not change at all.
This makes it hard to always utilize both CPU and GPU.

Challenge 3: Careful orchestration is needed to balance the
performance of both types of hardware. Bottleneck may be
either of the GPU or CPU, because they are tightly coupled.
We need to balance the two considering the heterogeneous
hardware and token generation workload. We seek for a
minimum CPU requirement that can fully exploit the com-
pute power of the GPU.

Our system, FASTDECODE, is a CPU-GPU heterogeneous
pipeline for LLM inference that addresses the challenges
by the following innovations.

Solution 1: We employ multiple out-of-chassis remote
CPUs for KV-cache and the related computation. The ag-
gregated memory capacity and bandwidth of the system
are scaled up. The distributed CPUs can achieve sufficient
throughput to saturate the GPU, with moderate communi-

cation overhead.

Solution 2: We invent a sequence-level load-stabilizing
schedule to minimize idling and better utilize both types
of hardware. The workload on a CPU is proportional to the
total length of sequences it maintains. To keep the latency
stable, sequences are fed into the system following a work-
load control algorithm. Short and long sequences are si-
multaneously processed by CPU workers, leaving the total
length of sequences stable. As a result, the overall latency
of CPUs changes more gently, and both types of hardware
are better utilized.

Solution 3: We adopt a model-guided approach to orches-
trate the GPU with CPUs. It quantitatively characterizes
the performance bottleneck considering different aspects
of the LLM inference tasks. Aggregated memory band-
width is identified as the key metric in selecting the CPUs.
For a given model and GPU setup, based on profiling re-
sult of a micro-benchmark, we can estimate the minimum
required aggregated CPU memory bandwidth for different
batch sizes.

Overall, the throughput of a single GPU is saturated with a
significantly larger batch size. Thanks to the scalability and
aggregated power of CPUs across nodes, high overall token
generation throughput is achieved with affordable GPU re-
sources. In our evaluation, up to 5× throughput of vLLM
is achieved on the same GPU with acceptable latency.

3. System Design
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Figure 3. FASTDECODE system design

Figure 3 shows the basic design of FASTDECODE, which
consists of two types of workers, related to two parts of the
inference process of a transformer model.
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• R-Part denotes the memory-intensive attention opera-
tion over the query vector and KV-cache.

• S-Part denotes the rest dense layers, where the
throughput can benefit from increasing batch size.

An S-worker computes S-Part of an LLM. It may use one
or multiple GPUs. All weights of the model are on the
S-worker, and partitioned by a certain way of model par-
allelism if using multiple GPUs. It acts as a typical token
generation worker simply using GPUs, except for its much
larger batch size and the behavior of computing R-Part.
To generate a new token, it goes through the transformer
blocks. After Qi,Ki, Vi are produced by fully connected
layers in S-Part, instead of computing R-Part locally, the
S-worker sends different parts of them related to different
sequences to the R-workers, and retrieve the output, Oi,
from them. Then, it feeds Oi to succeeding layers in S-Part
on the GPU.

The R-workers may use CPUs on remote nodes to compute
R-Part with high aggregated throughput. These R-workers
are light-weight, because no model parameter is involved in
R-Part of LLMs. The functionality of a R-worker is sim-
ple. It receives Qi,Ki, Vi of a batch of tokens. Ki and Vi

are appended to the existing KV-cache. Qi is used to in at-
tention computation with the local KV-cache data, and the
output is returned. The R-workers may also drop KV-cache
of a certain sequence upon its generation ends.

As GPU resource is scarce, the system maximizes the
throughput of the S-worker via maximizing the batch size.
As KV-cache is excluded from the S-worker, there is lit-
tle tension on GPU memory capacity. Beside the model
weight, it only needs memory for a small scratchpad of the
current layer. The batch size can be up to millions of se-
quences. While a large batch leads to high latency, it is now
possible to increase the GPU utilization in certain cases.

(a) No pipeline

S-worker S-Part 1 S-Part 2
R-worker 1 R-Part 1 R-Part 2
R-worker 2 R-Part 1 R-Part 2

(b) Ideal case of the basic 2-stage pipeline

S-worker S-Part A-1 S-Part B-1 S-Part A-2 S-Part B-2
R-worker 1 R-Part A-1 R-Part B-1 R-Part A-2
R-worker 2 R-Part A-1 R-Part B-1 R-Part A-2

(c) Possible bubbles in a real pipeline

S-worker S-Part A-1 S-Part B-1 S-Part A-2 S-Part B-2
R-worker 1 R-Part A-2
R-worker 2 R-Part A-2

Figure 4. Temporal view of FASTDECODE

In this system, the S-worker and the R-workers work in

turns to generate a token. When one type of worker is
working, the other idles, as shown in Figure 4(a).

Therefore, a basic two-stage pipeline at token level is ap-
plied. As Figure 4(b) shows, the S-worker starts with two
separate mini-batches: A and B. After it finishes the first
S-Part of mini-batch A, it starts working on the first S-Part
of mini-batch B. At the same time, the R-workers are work-
ing on the R-Part of mini-batch A. Overall, the two mini-
batches are processed by each type of worker in turns.

This token-level pipeline only achieves optimal utilization
of all workers if computation latency of S-Part and R-Part
are equal. Otherwise, there are still bubbles in the pipeline,
as Figure 4(c) suggests. In fact, the pipeline can barely be
free of bubbles, because the workload and the hardware are
both of high heterogeneity. Specially, the latency of S-Part
is related to the number of sequences, while the latency of
R-Part is related to the total length of the sequences. As
the sequences get longer, R-Part takes more time, while the
latency of S-Part remains unchanged.

We apply a load-stabilizing schedule over the decoding task
of sequences. The schedule focuses on keeping the total
length of the sequences being generated stable. It controls
when the system starts to generate tokens for sequences in
a batch, targeting on avoiding bursts of workload on the
R-workers. It can provide up to 20% throughput gain.

Then, with better predictable load of both parts, we calcu-
late the optimal orchestration of S-worker and R-workers
using a fixed formula for each given generation task and
hardware configuration.

4. Evaluation
4.1. Setup

Models and tasks We choose two state-of-the-art open-
source LLMs, Llama (Touvron et al., 2023b) and
OPT (Zhang et al., 2022). We evaluate our system over
Llama-7b, and Llama-13b. We reduce the number of layers
to reduce evaluation cost, and report the estimated through-
put and latency of the original model.

Hardware We use a NVIDIA A10 GPU with 24 GB de-
vice memory as the S-worker. The node has 256 GB host
memory as swap space of vLLM. Up to 4 additional nodes
with dual sockets of AMD Epyc CPUs are used as the R-
workers. The cluster is connected via Infiniband network.

Baselines We use vLLM (Kwon et al., 2023), TensorRT-
LLM (Ten), FastLLM (fas), and a Vanilla implementa-
tion (van) of Llama (Touvron et al., 2023a;b) as our base-
lines. Different from FASTDECODE, these popular LLM
serving systems only use GPUs for computation.
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4.2. Performance
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Figure 5. Token generating throughput

Maximum Throughput Figure 5 shows the measured
throughput of all the systems. The number in brackets after
ours indicates the batch size of FASTDECODE. The pos-
sible batch size is enormous in our system, because the
distributed host memory is large enough for thousands of
sequences. Increasing the batch size can increase the uti-
lization of GPUs, and thus the overall throughput. How-
ever, as there may be constraint on the latency, the batch
size should be set properly. Also, we observe that the per-
formance gain of increasing batch size gets less when the
batch size is large enough. When the batch size increases
by 8× from 128 to 1024, we only get 2× throughput.
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Figure 6. Token generating latency

Token Generating Latency Figure 6 shows the mea-
sured latency to generate a new token by all the systems.
The wide bar indicates the average latency between gener-
ating two adjacent token, and the three narrow bars show
P = 0.01/0.5/0.99 latency, respectively. When we max-
imize our batch size to target on highest throughput, the
latency is about 3.5× the latency when using 8× smaller
batch size. This also implies the GPU utilization improve-
ment of increased batch size.
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Figure 7. Strong scalability of FASTDECODE

Scalability Figure 7 shows the strong scalability experi-
ment results of FASTDECODE over the 7b and 13b model.
When the length of sequences is 1024, FASTDECODE
achieves 72.8% and 84.1% efficiency when scaling up from
1 socket to 8 sockets, on the 7b and 13b models, respec-
tively. As the total latency is smaller in the 7b model, over-
head of the pipeline is more significant, leading to lower
efficiency with 8 sockets. When sequence is as short as
128, the efficiency is 37.6% for the 13b model. Using 8
sockets achieves even lower throughput than using 4 sock-
ets with 75.9% efficiency. This is implied by our perfor-
mance model. Shorter sequences require less R-workers.
Employing more R-workers does not increase the perfor-
mance when the S-worker is the bottleneck.

5. Conclusion
In this paper, we propose FASTDECODE, a system that
achieves high throughput of generating tokens with long-
context LLMs using affordable GPU resources. Different
from typical solutions that fully use GPUs for computa-
tion, we decompose the model into two parts, and move
both storage and computation of the memory-bound part to
distributed out-of-chassis CPUs, utilizing their aggregated
compute power. Performance challenges brought by het-
erogeneity in both temporally varying workload and hard-
ware are addressed by a sequence-level load-stabilizing
schedule and a performance model. Finally, as the GPU
is better utilized thanks to greatly enlarged batch size, and
the overall throughput is competitive.
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