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Abstract

Generating executable code through natural language instructions to drive robotic move-
ments is considered a crucial step towards achieving embodied intelligence. However, in the
robotics domain, the scarcity of programming language data often necessitates manually
encapsulating high-level APIs to enable Large Language Models(LLMs) to predict code
correctly, which is time-consuming and incomplete. Therefore, this paper proposes a three-
stage Middle Code Prediction(MCP) scheme, by injecting appropriate prompts at different
stages, the LLMs can shift towards predicting middle code that it understands more easily.
This middle code can then be converted into the final code through specific scripts, accom-
plishing the task of generating code in uncommon programming languages automatically
and without the need for manually encapsulating high-level APIs. We tested our approach
on Hospital Item Transport Dataset(HITD) and found that MCP could improve the mean
accuracy of various baseline models to varying degrees, with an overall increase of 31%,
while also enhancing the noise resistance of fine-tuned models. We conducted real-world
experiments on industrial robotic arms, verifying the feasibility of MCP in scenarios with
no API and partial API encapsulation. The method proposed in this paper provides a
guideline for code generation in uncommon programming languages within the context of
LLMs. Our experimental dataset is available at https://github.com/Ghbbbbb/MCP.
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1. Introduction

Large Language Models(LLMs) have made significant progress in generating code for com-
mon programming languages, as seen with models like CodeT5 Wang et al. (2021), CodeL-
lama Rozière et al. (2023), and WizardCoder Luo et al. (2024), which are often trained
on vast amounts of data. However, a recent study Pigott (2020) indicates that there are
currently 8,495 programming languages, with the top 20 languages accounting for 95%
of project repositories. This implies the existence of hundreds of domain-specific program-
ming languages with scarce or hard-to-collect training data, making direct training of LLMs
time-consuming and prone to overfitting Yang et al. (2024). Therefore, it is crucial to find
a method that enables code generation for uncommon programming languages.

In the field of robotics, different robot brands use unique programming languages, which
are typical examples of uncommon programming languages. Automatically generating code
from natural language instructions to drive these robots is one of the hottest topics today.
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Figure 1: Comparison of the high-level APIs and the low-level code across different tasks
and scenarios. Low-level code can be adapted to a wider range of tasks but often
results in increased code length.

Traditional methods mainly focus on disambiguation and semantic extraction Wang et al.
(2017); Liu and Zhang (2018); Weigelt et al. (2020), involving complex semantic parsing
work and generally having poor generalization. Recently, with the rise of LLMs, it is possible
for LLMs to act as the brain of the robot. By describing environmental information and
specifying APIs in the prompts, LLMs can autonomously plan and generate corresponding
code based on the task Chen and Huang (2023); Bärmann et al. (2023), thereby driving the
robot to perform tasks. Although this approach solves the problem of semantic parsing,
it involves the encapsulating of high-level APIs Liang et al. (2023), which often requires
the involvement of experienced encapsulating engineers, making it still unfriendly to users.
Additionally, encapsulated high-level APIs may reduce task applicability. As shown in
Figure 1, due to the absence of a high-level API suitable for Task 2 in the API library,
the model selects the closest-semantic API, leading to a motion failure. Conversely, if low-
level code is predicted, the robot can perform more complex and comprehensive movements
through different combinations of low-level codes, but this will increase the burden of code
prediction on the LLMs. Our paper focuses on the latter, aiming to propose a scheme for
generating long code in uncommon programming languages.

How can LLMs maintain strong long-code generation capabilities for uncom-
mon programming languages? Inspired by how humans write pseudo-code: tackling a
programming problem by directly writing its final code is challenging, but writing its pseudo-
code significantly reduces the task’s difficulty. We applied this idea to LLMs and proposed a
three-stage Middle Code Prediction(MCP) scheme. By having LLMs predict middle code(a
form combining natural language and programming language, similar to pseudo-code), they
can accomplish more complex tasks. Specifically, in Stage 1, we manually wrote high-quality
[instructions, final code, simplified rules, middle code] quadruples. In Stage 2, these quadru-
ples are prompted to LLMs, allowing them to learn specific simplification rules so that for
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new given tasks, LLMs can generate the corresponding middle code and code extension
scripts for the final code. In Stage 3, we use few-shot prompting to let LLMs predict the
middle code for new tasks. The predicted middle code can then be translated into the final
code using the code extension scripts in a one-to-one mapping process. Thus, through this
method, LLMs only need to predict the middle code for a given task, reducing the burden of
code prediction and potentially enabling long-code generation for uncommon programming
languages.

We constructed a dataset composed of low-level code, namely the Hospital Item Trans-
port Dataset(HITD) (Section 4.1), on which the main experiments of this paper will be
conducted. We found that MCP can improve the task mean accuracy of various baseline
models to varying degrees, with an overall improvement of 31% (Section 4.3.1). Further-
more, an ablation study on the middle code revealed that the Sequential and SubSummary
modules are key to the correct prediction of middle code by LLMs (Section 4.3.2). The
combination of MCP with fine-tuned models resulted in the highest task performance,
demonstrating resistance to noise interference (Section 4.3.3).

The contributions of this paper can be summarized in three aspects:

• We introduce Middle Code Prediction(MCP), a scheme that allows LLMs to adapt to
various low-level code prediction tasks through the injection of prompts at different
stages. This approach offers strong robustness and generalization without the need
for manually encapsulating APIs.

• We create the Hospital Item Transport Dataset(HITD), composed of natural language
instructions and low-level codes. This dataset includes tasks of three different difficulty
levels and serves as an effective benchmark for evaluating the low-level code generation
capabilities of LLMs.

• We validate the feasibility of MCP in scenarios with no API and partial API encap-
sulation, achieving the process from natural language input to final code generation
and robotic arm movement. This provides a viable solution for robotic arm control
in the context of LLMs.

2. Related work

2.1. Robot code generation

In the field of robot code generation, traditional work involves complex tasks of semantic
disambiguation and extraction, which have poor generalization capabilities when handling
different types of tasks Thomas et al. (2022). However, with the rise of LLMs and prompt
learning, guiding LLMs to generate code through prompts to drive robot actions has become
a viable approach. Vemprala et al. (2024) proposed a method using ChatGPT and prompt
engineering to guide robots in completing various tasks, observing the robot’s task execution
in the virtual environment AirSim. Kannan et al. (2023) introduced the SMART-LLM
model, which feeds the output from each stage into the GPT-4 model to achieve a multi-
robot collaborative framework. Singh et al. (2023) proposed a programmatic LLMs prompt
structure called ProgPrompt, which can generate plans in different contexts, robot functions,
and tasks, demonstrating high success rates in the VirtualHome household tasks.
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However, the aforementioned methods generally rely on pre-existing high-level APIs and
LLMs with massive parameters for code prediction. In contrast, our “middle code” based
approach effectively avoids the need for encapsulated high-level APIs by directly predicting
long low-level code. Additionally, by simplifying tasks to the prediction of “middle code”,
it is expected that inference deployment on small parameter LLMs can be achieved.

2.2. In-Context Learning and Chain-of-Thought

In-Context Learning is a type of machine learning that aims to enable LLMs to understand
tasks and perform task reasoning through prompts Dong et al. (2022). Currently, many
works on robot code generation employ In-Context Learning Liang et al. (2023); Arenas
et al. (2024). This lightweight approach eliminates the need for retraining and fine-tuning,
effectively reducing computational costs and allowing LLMs to quickly adapt to new tasks.

Chain-of-Thought(CoT) emphasizes thinking. For LLMs, focusing more on the thought
process of generating answers during prediction often yields better results. Wei et al.
(2022) were the first to propose using CoT to tackle complex reasoning tasks. They used
a few-shot approach to provide the model with data in the form of [input, CoT, output],
allowing the model to automatically reason solution steps and answers, thereby improving
model performance. Kojima et al. (2022) found LLMs to be effective zero-shot reasoners by
simply adding “Let’s think step by step” before each answer. Wang et al. (2023) inspired by
human intuition in solving problems where multiple methods can yield correct answers but
incorrect answers differ, proposed a coherent method to enhance model accuracy through
diversity. Zhou et al. (2023) introduced a least-to-most prompting strategy, where LLMs
first decompose complex problems into several sub-problems based on prompts, and then
recursively solve each sub-problem, thereby solving complex problems step by step.

Our approach is similar to Zhou et al. (2023) least-to-most method. However, unlike
their approach, ours does not explicitly decompose the problem and solve each sub-problem
separately. Considering that code generation tends to follow a specific pattern for a given
scenario and to minimize time costs, we merge these two processes into one, implicitly
allowing LLMs to learn this process through few-shot prompting.

3. Middle Code Prediction

In this section, we will detail the method of Middle Code Prediction(MCP). Our approach
consists of three stages, as illustrated in Figure 2: (1)Simplified Rule Interpretation: Man-
ually writing high-quality quadruples. (2)Knowledge Extraction in LLMs: Predicting the
middle code and extension script for new given task. (3)Code Generation in LLMs: Gener-
ating the final code for new given task.

3.1. Simplified Rule Interpretation

If LLMs were directly tasked with predicting final code, the generated language would be
highly abstract code, which is difficult for LLMs to understand without fine-tuning in the
domain. Conversely, using a form that combines natural language with code, namely middle
code, can to some extent bridge this gap. Here, we define middle code as a combination of
natural language reasoning and simplified code. Natural language reasoning, akin to CoT,
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Figure 2: Three-stage Framework of MCP.

aims to help the model better understand relevant tasks, while simplified code represents a
streamlined version of the final code, aiming to reduce the model’s burden in code prediction.

Inspired by the work of Wang et al. (2017), we introduce the concept of Simplification
Rules (SR), which transform final code into middle code. SR include but is not limited to
the following guidelines:

1) Repetitive code segments can be replaced with key information represented by num-
bers or letters.

2) The order of replacements should match the original appearance order in the code.

3) Replacements should facilitate easy extraction in script languages.

4) During replacement, summarization of tasks can be performed.

5) Results after replacement should be simplified as much as possible while ensuring no
loss of information.

Taking the Hospital Item Transport Dataset(HITD) as an example, we present a case of
simplifying from final code to middle code, as shown in Figure 3. Specifically, given a Taski

consisting of input
(
x(i), y

(i)
F

)
, where x(i) represents the user command for the ith task

and y
(i)
F represents the final code for the ith task, we apply simplified rules to transform it

into middle code: (
x(i), y

(i)
M

)
= f (i)

sr

(
x(i), y

(i)
F

)
(1)

where y
(i)
M represents the middle code for the ith task, which consists of natural language

reasoning (in black font) and simplified code (in red font) from Figure 3. f
(i)
sr ⊆ SR denotes
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Figure 3: Transformation from Final Code to Middle Code under Simplified Rules

the simplification rules applied to the ith task. Thus, Taski can be redefined as:

Taski =
(
x(i), y

(i)
F , y

(i)
M , f (i)

sr

)
i = 1, 2, ..., n (n < 10) (2)

where we set n < 10, considering the constraints of LLMs’ context window.

To enhance LLMs’ reasoning capabilities, our natural language reasoning consists pri-
marily of two parts: Sequential and SubSummary. Sequential ensures that the order of
replacements aligns with the original user instructions, as depicted by the solid boxes in
Figure 3 [Respiratory Medicine - Gastrointestinal Surgery - General Services], following the
guideline 2). SubSummary involves summarizing the replaced information, as illustrated
by the dashed boxes in Figure 3, following the guideline 4).

Through the above steps, we can collect quadruples corresponding to n tasks. These
high-quality quadruples will be used in subsequent prompting of the LLMs.

3.2. Knowledge Extraction in LLMs

In the stage2, the LLMs learns the mapping relationship between n high-quality quadruples

through Few-shot prompting. This enables LLMs, given input
(
x(n+1), y

(n+1)
F

)
for the

n+1th task, to think the corresponding simplification rule f
(n+1)
sr and generate middle code

y
(n+1)
M . Additionally, prompts are used to guide the LLMs in generating extension scripts
fES from middle code to final code:

y
(n+1)
M = fLLM

[
(Task1, Task2, ... , Taskn) , f (n+1)

sr

(
x(n+1), y

(n+1)
F

)]
(3)

f
(n+1)
ES

(
y
(n+1)
M

)
= y

(n+1)
F (4)
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where fLLM is the process of In-context Learning from LLMs, and fES is the corresponding
extension script. It can extract the final simplified code(red code part in Figure 3) from the
middle code and expand it into the final code with extension script, which is a one-to-one
mapping process.

Through knowledge extraction in the LLMs, construction of middle code and extension
scripts for new tasks is achieved, laying the foundation for subsequent LLMs code generation.

3.3. Code Generation in LLMs

In the stage3, we still use In-Context Learning to prompt LLMs to predict the middle code
for new tasks. Different from stage2, the samples here are some examples of the same task,

such as
(
x
(n+1)
i , y

(n+1)
Mi

)
, which represents the user instructions and middle code of the ith

sample in the n+1th task. The prediction process of the LLMs is as follows:

y
(n+1)
Mm+1

= fLLM

([(
x
(n+1)
1 , y

(n+1)
M1

)
,
(
x
(n+1)
2 , y

(n+1)
M2

)
, ...,

(
x(n+1)
m , y

(n+1)
Mm

)]
, x

(n+1)
m+1

)
(5)

For the m+1th user instruction, the corresponding middle code y
(n+1)
Mm+1

can be predicted,

which can be converted into the final code y
(n+1)
Fm+1

through Equation (4), thereby achieving
the process from user instruction input to final code generation.

We filtered the final code, and if there was a format error(meaning the final code could
not be extracted), we provided feedback to LLMs to generate the correct format of middle
code. Similarly, if theMean Score of the final code was less than 1, we also provided feedback
to LLMs to initiate a new round of code generation. Considering time and API-call costs,
we set a maximum feedback limit of 3 for both types of feedback.

4. Experiments

In this section, we first introduce the Hospital Item Transport Dataset(HITD). Then, we
conduct a series of experiments on this dataset with different baseline models and code
prediction methods, demonstrating the strong robustness and generalization capability of
MCP as a code prediction method.

4.1. Experimental setup

Tasks and dataset. HITD is a dataset consisting of user instructions and long sequences of
low-level code that can drive logistics robots for item transportation. The user instructions
comprises [originating department, intermediate transport department, final department].
In the example shown in Figure 3, the originating department is the Respiratory Medicine
Department, the intermediate transport department is the Gastrointestinal Surgery De-
partment, and the final department is the General Services. Additionally, the originating
department can determine whether to include “priority” based on user instructions. If “pri-
ority” is included, this portion of the code will be written first, followed by the tasks of
departments without priority. Based on the code modeling length and reasoning complexity,
the dataset is divided into three levels from simple to difficult, denoted as Task1, Task2,
and Task3. Table 1 presents the main information for each level of tasks.
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Table 1: Task information of HITD

Task Name Code Length Inference Complexity
Number Of Departments
(originate/ intermediate)

Priority

Task1 202 simple 1/ 1-9 ×
Task2 371 moderate 1-4/ 1-5 ×
Task3 399 difficult 1-4/ 1-5 √

Baseline models. We compared different baseline models, including GPT-3.5-Turbo-
16k, which supports long contexts, and the Llama2 series models Touvron et al. (2023),
including Llama2(7b), Llama2(13b), CodeLlama2(7b), and CodeLlama2(13b). Addition-
ally, we introduced the ChatGLM2(6b) Du et al. (2022), which will be used for subsequent
fine-tuning. All experiments were conducted on 2 NVIDIA RTX 3090-24GB GPU.

Baseline methods. Currently, there is still lack of a general and effective method for
code prediction in uncommon programming languages. We compared our method with the
currently popular methods based on high-level APIs Vemprala et al. (2024); Arenas et al.
(2024); Liang et al. (2023). We adapted these methods for low-level code prediction by
prompting LLMs with environment information, task descriptions, status descriptions, and
low-level code information, allowing LLMs to output the final code, we named these methods
Final Code Prediction(FCP). Decompose Module first decomposes high-level tasks into sub
tasks and then recursively solves each sub task, which has been proven effective for decision-
making LLMs in several papers Zhou et al. (2023); Zhang et al. (2024), and we called this
method to Final Code Prediction with Decompose Module(FCP-DM). Additionally, we
introduced the efficient fine-tuning method P-tuning v2 Liu et al. (2022), as a representative
of specific domain fine-tuning methods.

4.2. Metrics

Since the inputs and outputs of the tasks are in a one-to-one correspondence, we focus on the
correctness of code generation and introduce the Accuracy(Acc) metric, which represents the
proportion of correctly predicted code among all task samples. Considering that incorrectly
predicted code can still vary in quality, we use the BLEU score Papineni et al. (2002) to
evaluate how close the generated code is to the reference code. Additionally, since the
output of LLMs sometimes does not conform to the specified output format, even after
few-shot prompting and error retrying, it may present correct code but not extracted. To
address this issue, we set the BLEU score to 0.5 in such cases:

BLEU =

{
0.5 if not extract code
BP · exp

(
1
n

∑n
i=1 log Pi

)
otherwise

(6)

Where BP is the length penalty factor, and Pi is the precision of n-gram exact matches.
To comprehensively evaluate the results of code generation, we introduce the Mean Score,
which is the weighted sum of Acc and BLEU scores:

MeanScore = λ ·Acc + (1− λ) ·BLEU (7)

In this paper, we set λ to 0.5.
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4.3. Main Results

4.3.1. MCP Can Improve the Mean Scores of Baseline Models

We introduce Task1, Task2, and Task3, and randomly sample 100 test cases for each task.
The shot number of prompting methods are both set to 5, which is considered an effective
shot number as discussed in Section 4.3.2. P-Tuning v2 is tested using checkpoints after
1000 steps.

Table 2 presents the results. Among the Llama2 series models, the base model, such
as Llama2(7b) and Llama2(13b), is not well-suited for this type of code prediction task,
the best MCP method only completed 26% of the tasks on Llama2(13b). However, CodeL-
lama2(7b), which is fine-tuned on code data and instructions based on Llama2, is better at
handling code-related problems. We found that when using the MCP method, this model
performs well on all three tasks, with an average Acc improvement of 46% and an average
BLEU improvement of 13.8% compared to the FCP method. CodeLlama2(13b) once again
set new best results for this series on multiple metrics. After using the MCP method, the
average Acc reached 63%, indicating that the MCP method can achieve better results as
the parameter size of the baseline model increases. GPT-3.5-Turbo-16k also achieved good
results in code prediction. It achieved an Acc of 85% on Task1 using the FCP and FCP-
DM methods. However, as the task difficulty increased, these methods experience a rapid
decline in performance. In contrast, the performance of MCP was more stable, achieving
excellent average Acc and BLEU scores of 74% and 97.8%, respectively. Fine-tuned models
adapt better to this type of task, furthermore, fine-tuning with (instruction, middle code)
pair data enables the models focus more on code reasoning, thus result in the greatest
performance gains.

4.3.2. Ablation study of MCP

The middle code consists of natural language reasoning and simplified code. For the natural
language reasoning part, we adopted the least-to-most approach, implicitly breaking down
the problem into several sub-code issues and summarizing each sub-code issue. Here, we
studied the importance of Sequential and SubSummary to the MCP method. We randomly
selected 100 test data from Task1, Task2, Task3, and Mix-Task, where Mix-Task is composed
of a mix of the above three tasks. We enabled the CodeLlama2(7b) baseline model to
predict the code through few-shot prompting. As shown in Figure 4, the MCP method
always outperforms the FCP method in all tasks, even when lacking the Sequential and
SubSummary modules individually. As the number of shots increases, most methods show
a performance growth trend, but there is also a saturation state. When the number of
shots reaches 7, the code prediction performance of some methods decreases, which may be
attributed to the inherent limitations of the LLM’s context window. Therefore, considering
both time cost and performance, we set the optimal number of shots to 5. Unless otherwise
specified, all the results discussed in this paper are derived from the 5-shot condition.

The impact of the Sequential and SubSummary modules varies across different tasks.
In simpler tasks like Task1, the SubSummary module has a lesser effect, and its absence
has minimal impact on MCP because Task1 requires fewer subdivisions of sub-code issues
and thus fewer summaries. In contrast, the Sequential module plays a significant role here.
Without the Sequential module, there is a decrease of 7.05% in the Mean Score(85.05% vs.
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Table 2: Comparison of code prediction methods on different baseline models.

Model Method
Task1 Task2 Task3 Average

Acc BLEU Acc BLEU Acc BLEU Acc BLEU

Llama2(7b)
FCP - 0.642 - 0.380 - 0.125 - 0.382

FCP-DM - 0.657 - 0.398 - 0.382 - 0.479
MCP - 0.716 - 0.611 - 0.529 - 0.619

Llama2(13b)
FCP 0.03 0.702 0.01 0.521 - 0.220 0.01 0.481

FCP-DM 0.05 0.721 0.02 0.515 0.02 0.552 0.03 0.596
MCP 0.36 0.842 0.25 0.830 0.18 0.815 0.26 0.829

Code Llama2(7b)
FCP 0.12 0.825 0.05 0.738 0.02 0.760 0.06 0.774

FCP-DM 0.12 0.832 0.06 0.770 0.05 0.762 0.08 0.788
MCP 0.73 0.971 0.55 0.929 0.27 0.836 0.52 0.912

Code Llama2(13b)
FCP 0.13 0.918 0.10 0.855 0.06 0.835 0.10 0.869

FCP-DM 0.14 0.921 0.12 0.871 0.12 0.854 0.13 0.882
MCP 0.76 0.972 0.75 0.899 0.37 0.848 0.63 0.906

GPT-3.5-Turbo-16k
FCP 0.85 0.980 0.30 0.908 0.20 0.916 0.45 0.935

FCP-DM 0.85 0.982 0.33 0.910 0.36 0.921 0.51 0.938
MCP 0.89 0.985 0.86 0.990 0.48 0.959 0.74 0.978

ChatGLM2(6b)
P-Tuning v2 1.00 1.000 0.91 0.994 0.77 0.972 0.89 0.989
P-Tuning v2* 1.00 1.000 0.94 0.997 0.88 0.984 0.94 0.994

The best scores are highlighted in bold, and the second-best scores are underlined. P-Tuning v2
indicates that the fine-tuning data is in the form of (instruction, final code), while P-Tuning v2*
indicates that the fine-tuning data is in the form of (instruction, middle code).

78%). However, as tasks become more complex and the code modeling length increases,
requiring more sub-code summaries. At this point, the SubSummary module becomes more
influential. In Task2, Task3, and Mix-Task, the absence of the SubSummary module leads
to Mean Score decreases of 21.75%, 11%, and 5.9%, respectively.

These results demonstrate that both the Sequential and SubSummary modules play
crucial roles in the MCP method. The Sequential module aligns user inputs with sub-code
replacements, reducing the burden of reasoning for the model. Meanwhile, the SubSum-
mary module breaks down code issues into individual sub-problems and summarizes them,
simplifying the difficulty of long code tasks. This capability enables the CodeLlama2 model
with 7b parameters to handle long code prediction tasks effectively.

4.3.3. MCP Enhances the Noise Robustness of Fine-tuned Models

This section explores whether fine-tuned models can benefit from the MCP method. We
introduced different types of noise disturbances into the original test data, which are com-
monly encountered in real-life scenarios. Specifically, they are categorized into three types:

1) noise1: Altering the user expression while preserving the overall meaning, including
replacing synonyms, rephrasing sentence structures, etc.

2) noise2: Adding an additional department, such as Dermatology department.
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(a) Task1 (b) Task2

(c) Task3 (d) Mix-Task

Figure 4: Ablation study of the MCP method.

3) noise3: Randomly changing the serial number of one department, for instance, chang-
ing the serial number of Cardiac Surgery department from 1 to 0.

We randomly sampled 20 data points from the Mix-Task each round, totaling 10 rounds
to form the original test set. Subsequently, we added noise1, noise2, and noise3 to form the
remaining three noise datasets, testing the robust performance of various methods. MCP
used the CodeLlama2(7b) model, while the fine-tuned model used ChatGLM2(6b).

The results are shown in Figure 5. After adding different noise datasets, MCP showed
minimal changes in Mean Score, with a maximum median change of only 4% (0.622 vs 0.583
vs 0.601 vs 0.594). This indicates that MCP maintains strong resistance to interference and
robustness. P-Tuning v2, fine-tuned using final code, showed little change in performance
after adding noise1 data (0.961 vs 0.948). However, after adding noise2 and noise3 data, the
Mean Score decreased by 33.6% and 28.0%, respectively. This significant change suggests
that P-Tuning v2 lacks good noise resistance because it only memorizes the original dataset
and struggles with noise like adding a new department or changing department numbers
not included in the training data. In contrast, when we fine-tuned using middle code, the
situation changed. We found that the model decreased by only 0.1%, 17.3%, and 9.6%
on noise1, noise2, and noise3, respectively, reducing the impact of noise disturbance on the
model’s Mean Score. This may be because middle codes involve natural language reasoning,
allowing the fine-tuned model to adapt its code output based on changes mentioned in user
instructions, even for data the model has not seen before.
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Figure 5: Robustness of different methods to different noise datasets

4.3.4. Generalization Ability of MCP in Different Scenarios

To verify whether MCP can be applied to different scenarios, we further developed the
Robopal simulation environment Zhou et al. (2024) and created a robot desktop block
placement scenario. In this scenario, each data consists of a pair [user instruction, final
code]. The final code is a custom scarce code that follows certain syntactic rules, which can
be extracted and executed in the Robopal. It should be noted that we simplified the visual
task by recording all object positions in advance. We tested the Gripper-move, Block-stack,
Block-move, and integrated four scenarios. Table 3 shows the detailed descriptions of these
tasks.

Table 3: The task description of desktop block placement

Type Task Descriptions

Gripper-move Move the gripper <length><orientation>to the <block/mug>
Block-stack Stack the <block>on the <block/mug>
Block-move Place the <block><length><orientation>to the <block/mug>
Integrated [Gripper-move], [Block-stack],. . . ,[Block-move]

We tested the CodeLlama2(13b) and the GPT-3.5-Turbo-16k model using In-Context
Learning to prompt each model. Ten test cases for each scenario were manually annotated,
and the desktop results were evaluated by running the final code. The results are shown in
Table 4. The performance of CodeLlama2 in each task was slightly inferior to that of the
GPT3.5 model, which may be due to the inherent capabilities of the model. Additionally, the
MCP achieved higher success rates on both models compared to previous methods. In the
Block-stack scenario with the GPT3.5 model, all test instructions were successfully executed.
As the instruction length increased, FCP and FCP-DM failed to summarize effectively and
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Table 4: Success Rate on Evaluation Task Set

Type
CodeLlama2(13b) GPT-3.5-Turbo-16k

FCP FCP-DM MCP FCP FCP-DM MCP

Gripper-move 4/10 5/10 8/10 5/10 5/10 9/10
Block-stack 2/10 4/10 6/10 4/10 5/10 10/10
Block-move 2/10 2/10 6/10 3/10 4/10 9/10

Integrated 0/10 0/10 5/10 1/10 2/10 6/10

performed poorly in integrated tasks. In contrast, MCP’s SubSummary module could better
adapt to long sequence tasks, successfully running 6 out of 10 integrated tasks.

4.4. Real-world robot Manipulation with MCP

This section we conducted code generation experiments on a real robot, named FANUC LR
Mate 200iD/4S. We tested the code generation effectiveness of LLMs in scenarios with no
API and partial API encapsulation. The GPT-3.5-Turbo-16k model was used for testing.

For scenarios without API encapsulation, The first task involved simple motion instruc-
tions. The model correctly generated simplified code {- Z 200 Y 400 -X 400 R 90 P[1]
50%} for this task using few-shot prompting. Subsequently, this was extended into final
code and successfully executed the motion to drive the robotic arm, as shown in Figure 6,
In the second scenario, we attempted to encapsulate the actions of the robotic arm into
high-level APIs. Here, the grasping action was encapsulated as “PICK”. We supplemented
these examples in the context of LLMs. We found that even in this partially encapsulated
scenario, the model still generated middle code and produced the correct simplified code
through reasoning {Z 50 P[1] 50% | P[1] 50% | <PICK> | Z 50 P[1] 50% | P[2] 50%}, which
also extend the final code and successfully drove the robotic arm to complete the material
grasping.

Figure 6: MCP realizes the robotic arm movement on both no API and partial API encap-
sulation
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5. Limitations

In this section, we highlight two limitations of MCP. The first limitation is that the stage1
of MCP requires the provision of several high-quality quadruples, which may necessitate
the involvement of an experienced prompt engineer to optimize for different types of LLMs.
The second limitation pertains to the generalization experiments. Although we successfully
controlled the robot using the final code, the object pose information was pre-written into
a file. Further research is needed to integrate MCP with vision detection models to enable
motion in dynamic scenarios.

6. Conclusion

This paper addresses the issue of code generation for uncommon programming languages
that typically rely on high-level API encapsulation by proposing a three-phase approach
called Middle Code Prediction(MCP). By injecting prompts at different stages, LLMs shift
towards predicting middle code, which is easier for them to understand, and this middle code
can then be mapped to the final code through extension scripts. This approach eliminates
the need for high-level API encapsulation while improving theMean Score of various baseline
models. We tested MCP for robustness and generalization, finding that combining MCP
with fine-tuned models yields significant performance benefits. Furthermore, this approach
can be effectively deployed in industrial robotic arm, including scenarios with no API and
partial API encapsulation. In the future, we plan to incorporate visual modal information
for more complex robotic arm motion testing.
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