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Abstract

Foundation models that generate photorealistic
video with text or image guidance promise com-
pelling augmented-reality (AR) experiences, yet
their prohibitive test-time compute prevents true
real-time deployment. We focus on the domi-
nant diffusion family and show that Multi-Student
Distillation (MSD) increases effective model ca-
pacity without increasing — or even reducing —
latency, memory footprint, or energy per sam-
ple. MSD partitions the conditioning space and
trains a lightweight one-step generator per parti-
tion, allowing (i) higher sample quality at fixed
latency and (ii) smaller per-student backbones
for edge/low-latency budgets. MSD advances the
agenda of efficient systems for foundation-model
training and inference. By attacking the test-time
compute bottleneck for diffusion, it is a concrete
step toward always-on, on-device AR, which is
an emerging and important modality.

1. Introduction

Real-time, high-fidelity video generation is missing for im-
mersive augmented-reality (AR) applications such as live
scene re-texturing, telepresence, and interactive storytelling.
Diffusion-based foundation models currently set the quality
bar for image and video synthesis. Still, they are notori-
ously slow: hundreds of large network evaluations per clip
frame translate into multi-second latencies. This calls for
research that reduces large models’ compute, time, memory,
bandwidth, and energy requirements — especially in new
modalities like real-time video.

Knowledge-distillation approaches have made impressive
progress, collapsing diffusion sampling to one network
evaluation. Unfortunately, performance is tethered to the
teacher’s heavy backbone: shrinking the student for mobile
budgets is impossible or sharply degrades quality, creating
a quality—speed dilemma blocking AR deployment.
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We tackle this dilemma with Multi-Student Distillation
(MSD). Inspired by mixture-of-experts routing, MSD di-
vides the conditioning space (e.g., class labels or CLIP
embeddings) into K semantically coherent shards and trains
an independent one-step student on each shard. At infer-
ence, a lightweight router selects exactly one student, so
total latency equals a single forward pass while aggregate
capacity scales with K. Crucially, MSD is orthogonal to
recent solver, scheduler, and quantization advances: it can
be layered on top of any single-step distillation recipe.

We make three contributions aligning with our interest in

test-time compute and emerging real-time modalities:

* Capacity without latency: With four same-sized stu-
dents MSD pushes ImageNet-64 FID to 1.20, surpassing
the teacher while preserving latency.

* Lightweight students: Adding a lightweight
score-matching pre-stage lets MSD distill smaller
backbones that cut latency with only minor quality
loss—illustrating a compute—quality trade-off tunable to
device constraints.

* Plug-and-play adoption: MSD is a drop-in wrapper
around any conditional single-step distillation pipeline;
no architecture changes or extra inference passes required.

Together, these results demonstrate a practical path toward

always-on, high-quality AR video—an application that epit-

omizes our vision of efficient foundation-model systems.

2. Related Work and Background

Due to space constraints, related work on (a) Diffusion
sampling acceleration, (b) Mixture of experts training and
distillation, and (c) Efficient architectures for diffusion mod-
els, are discussed in App. Sec H. Further, background is
discussed in App. Sec. I, starting with the background
on diffusion models in Sec. I.1 and distribution matching
distillation (DMD) in Sec. 1.2 followed by how applying
adversarial losses to improve distillation in Sec. 1.3.

3. Method

In Sec. 3.1, we introduce the general Multi-Student Distil-
lation (MSD) framework that is conceptually applicable to
any distillation method. In Sec. 3.2, we show how MSD
is applied to distribution matching and adversarial distilla-
tion. In Sec. 3.3, we introduce an additional training stage
enabling distilling into smaller students.
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Figure 1: We visualize distilling into multiple students, where each student handles a subset of the input condition. Students
are trained separately with filtered data. At inference, 1 student is retrieved for generation given the input condition.
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Figure 2: 3-stage training scheme in Eq. 4. Acronym mean-
ings: TSM: teacher score matching (Eq. 3 & Eq. 4); DM:
distribution matching (Eq. 4 & Sec. 1.2); ADM: adversarial
distribution matching (Eq. 4 and Sec. 1.3). Stage | and Stage
2 are techniques from prior works with same-sized students;
Stage 0 is our contribution, which is required for smaller
students who cannot initialize with teacher weights.

3.1. Distilling into multiple students

We present Multi-Student Distillation (MSD), a general
drop-in framework to with any conditional single-step diffu-
sion distillation method, enabling a cheap upgrade of model
capacity without impairing inference speed. We first iden-
tify key components of a single-step diffusion distillation
framework and then present the modification of MSD. In the
vanilla one-student distillation, we have a pretrained teacher
denoising diffusion model fteqcher, @ training dataset D, and
a distillation method. The distillation yields a single-step
generator G(z;y € )) via G = Distill(feacher; D). The
obtained generator G maps a random latent z and an in-
put condition y into an image. In comparison, in an MSD
scheme, we instead distill the teacher into K different one-
step generators {Gy,(z;y € Vi) Mo, via

Gy = DiStill(Nteachen Dy, = F(D7 yk)) (D
with k = 1, ..., K. Specifically, each distilled student Gy, is
specialized in handling a partitioned subset ), of the whole
input condition set ). So, it is trained on a subset of the
training data Dy, C D, determined by ), via a filtering func-
tion F'. Fig. 1 illustrates this idea. The partition of ) into
{Vx < | determines the input condition groups for which
each student is responsible. As a starting point, we make

the following three simplifications for choosing a partition:
Disjointness: This prevents potential redundant training and
redundant usage of model capacity. Equal size: Since stu-
dents have the same architecture, the partitions {V; } X |
should be of equal size that require similar model capacity.
Clustering: Conditions within each partition should be more
similar than those in other partitions, so networks require
less capacity to achieve a set quality on their partition.

The first two conditions can be easily satisfied in practice,
while the third is not straightforward. For a class-conditional
generation, partitioning by semantically similar and equal-
sized classes serves a straightforward strategy, though ex-
tending it to text-conditional generation is nontrivial. An-
other promising strategy uses pretrained embedding layers
such as the CLIP (Radford et al., 2021) embedding layer or
the teacher embedding layer. One could find embeddings of
the input conditions and then perform clustering on those
embeddings, which are fixed-length numerical vectors con-
taining implicit semantic information. We ablate partition
strategies in Sec. B.1. The data filtering function F' deter-
mines the training subset data Dy, from ). For example, a
vanilla filtering strategy could set F'(D, Vi) = Dy, := Dy, ,
where Dy, denotes the subset of the training dataset D that
contains the desired condition }),. Empirically, we found
that this filtering works in most cases, although sometimes a
different approach is justified, as demonstrated in Sec. 3.2.

3.2. MSD with distribution matching

As a concrete example, we demonstrate the MSD framework
using distribution matching (DM) and adversarial distilla-
tion techniques. Inspired by the two-stage framework in
(Yin et al., 2024a), each of our students is trained with a
distribution matching scheme at the first stage and finetuned
with an additional adversarial loss at the second stage (ad-
versarial distribution matching, or ADM):

Gy = Distillpa (eacher, Fomt(Dou, Vi) »
Gf) = Distillspm (Ltieacher, Fapm (Dapm; Vi ); GS)%
where we recall that pueacher 1S the teacher diffusion model,

G,(:), k =1,..., K is the k-th student generator at the i-th
stage, F' is the data filtering function, D is the training data,
and ), is the set of labels that student k is responsible of.

@
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The first stage Distillpy uses distribution matching with a
complemented regression loss or the TTUR, with details in
Sec. I.2. These methods achieve optimal training efficiency
among other best-performing single-step distillation meth-
ods (Xie et al., 2024a; Zhou et al., 2024; Kim et al., 2024)
without an adversarial loss, with a detailed comparison in
App. B.5. The second stage Distillapy adds an adversarial
loss (details in Sec. 1.3), introducing minimal additional
computational overhead and allows resuming from the first
stage checkpoint, making it a natural choice.

Designing the training data From Sec. I, the data re-
quired for DM and ADM are Dpy = (Dpaired,C) and
Dapm = (Dreat, C), where Dpired;, Drear, C represents gener-
ated paired data, real data and conditional input, respec-
tively. We now discuss choices for the filtering func-
tion. For the first stage data filtering Fpy, wWe propose
Fom(Dom; Vi) = (Dpaired; Cy, ), where Cy, denotes the
subset of condition inputs C that contains ). That it, we
sample all input conditions only on the desired partition for
the KL loss but use the whole paired dataset for the regres-
sion loss. This special filtering is based on the observation
that the size of Dpaireq critically affects the terminal perfor-
mance of DMD distillation: using fewer pairs causes mode
collapse, whereas using more pairs challenge the model
capacity. Naively filtering paired datasets by partition re-
duces the data size for each student and leads to worse
performance, as in our ablation in App. B.4. Instead of
generating more paired data to mitigate this imbalance, we
simply reuse the original paired dataset for the regression
loss. This is remarkably effective, which we hypothesize
is because paired data from other input conditions provides
effective gradient updates to the shared weights in the net-
work. For the second stage, we stick to the simple data
filtering Fapm(DPapm, Vi) = (Drear,y,; Cy, ), s0 both ad-
versarial and KL losses focus on the specific partition, given
each student has enough mode coverage from the first stage.

3.3. Distilling smaller students from scratch

Via the frameworks presented in the last two sections, MSD
enables a performance upgrade over alternatives for one
student with the same model architecture. In this section,
we investigate training multiple students with smaller archi-
tectures — and thus faster inference time — without impairing
performance much. However, this requires distilling into a
student with a different architecture, preventing initializa-
tion from pretrained teacher weights. Distilling a single-step
student from scratch has been difficult (Xie et al., 2024a),
and we could not obtain competitive results with the simple
pipeline in Eq. 2. So, we propose an additional pretraining
phase Distillygy;, with TSM denoting Teacher Score Match-
ing, to find a good initialization for single-step distillation.
TSM employs the following score-matching loss:

£TSM = Et [)\t”l*"ﬁFSM(wh t) - Nteacher(wta t)H%L (3)

where the smaller student with weights ¢ is trained to match
the teacher’s score on real images at different noise levels.
This step provides useful initialization weights for single-
step distillation and is crucial to ensure convergence. With
TSM added, the whole pipeline now becomes:

/J'(O) = Distillpsm (/J/teacherv Dreal) 5

GL") = Distillow (tteacher, Fomt(Dom, Ve); 1), (4)

G;(f) = Distill Apm( tieacher» Fapm (Dapm, Yk ); G S) )s
for k =1, ..., K. Although a smaller student may not per-
fectly match the teacher’s score, it still provides a good
initialization for stages 1 and 2. The performance gap is
remedied in the latter stages by focusing on a smaller par-
tition for each student. This three-stage training scheme is
illustrated in Fig. 2.

4. Experiments

To evaluate the effectiveness of our approach, we compared
MSD with different design choices against competing meth-
ods, including other single-step distillation methods. In
Sec. 4.1, we investigate class-conditional image generation
on ImageNet-64x64 (Deng et al., 2009) where we have
naturally defined classes to partition. Here we explored
training with the DM stage only, with both DM and ADM
stages, and with all three stages for smaller students. We
then evaluate MSD for a larger model in Sec. 4.2. We ex-
plored text-to-image generation using MS-COCO2014 (Lin
et al., 2014) with varying training stages. We use the stan-
dard Fréchet Inception Distance (FID) (Heusel et al., 2017)
score and CLIP (Radford et al., 2021) score to measure
generation quality. Comprehensive comparisons confirm
that MSD outperforms single-student counterparts and sets
new records for respective single-step diffusion distillation
methods. Finally, in Sec. B.1, we summarize our ablation ex-
periments over design choices. To focus on the performance
boost from multi-student distillation, we applied minimal
changes to the hyperparameters used by Yin et al. (2024b;a)
for their distribution matching distillation implementations.
More details on training and evaluation can be found in the
App. D and E. In App. A.2, we additionally compare single
vs multiple students on a 2D toy problem for direct visual
comparison, where we also showcase the applicability of
MSD on consistency distillation (Song et al., 2023).

4.1. Class-conditional Image Generation

Student architecture the same as the teacher: We trained
K = 4 students using the MSD framework and the EDM
(Karras et al., 2022) teacher on class-conditional ImageNet-
64x64 generation. We applied the simplest strategy for
splitting classes among students: Each student is respon-
sible for 250 consecutive classes in numerical order (i.e.,
1/k of the 1000 classes). We compare the performance with
previous methods and display the results in Tab. 1. Our DM
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stage, which uses the complementary regression loss, sur-
passes the one-student counterpart DMD (Yin et al., 2024b),
achieving a modest drop of 0.25 in FID score, making it
a strong competitor in single-step distillation without an
adversarial loss. We then took the best pretrained check-
points and trained with the ADM stage. The resulting model
achieved an FID score of 1.20. It surpasses even the EDM
teacher, StyleGAN-XL (Sauer et al., 2022), the multi-step
RIN (Jabri et al., 2023) due to the adversarial loss. Fig. 9(b)
displays our best student sample generation, with compara-
ble quality as the teacher in Fig. 9(a).

Student architecture smaller than the teacher: Next,
we trained 4 smaller student models with the prepended
teacher score matching (TSM) stage from Sec. 3.3. This
achieved a 42% reduction in model size and a 7% reduction
in latency, with a slight degradation in FID score, offering
a flexible way to increase generation speed by reducing
student size, and increase generation quality by training
more students. Fig. 9(c) displays samples from these smaller
students, whereas Fig. 9(d) shows samples from an even
smaller set of students, with a 71% reduction in model
size and a 23% reduction in latency. We observed slightly
degraded but still competitive generation qualities. Using
more and larger students will further boost performance,
as shown by ablations in Sec. B.1 and App. B.6. Smaller
students without the TSM stage fail to reach even proper
convergence. Instead of the TSM stage, we performed post-
output distillation on the best single-step checkpoints and
observed a significant performance drop. Hence, the TSM
stage is both necessary and efficient.

4.2. Text-to-Image Generation

Student architecture the same as the teacher: We eval-
uated the performance of text-to-image generation using

(b) 83% smaller student
Figure 3: Samples on high guidance-scale text-to-image
generations from different sized students distilled from the
SD v1.5 teacher (full details in App. D). The same-sized
student has comparable quality to the teacher (see Fig. 10).
The smaller student, trained on a subset of dog-related data,
generates faster with decent quality. The same-sized student
is trained with DM stage only, while the smaller student is
trained with TSM and DM stages (see Fig. 2).

(a) Same-sized student

the MS-COCO2014 (Lin et al., 2014) evaluation dataset.
We distilled 4 students from Stable Diffusion (SD) v1.5
(Rombach et al., 2022) on a SM-image subset of the COYO
dataset (Byeon et al., 2022). For splitting prompts among
students, we again employed a minimalist design: pass the
prompts through the pre-trained SD v1.5 text encoder, pool
the embeddings over the temporal dimension, and divide
into 4 disjoint subsets along 4 quadrants. We trained with
a classifier-free guidance (CFG) scale of 1.75 for best FID
performance. Tab. 2 compares the evaluation results with
previous methods. Our baseline method with only the DM
stage again achieved a performance boost with a 0.48 drop
in FID over the single-student counterpart DMD2 without
adversarial loss (Yin et al., 2024a). Continuing the ADM
stage from the best checkpoint yielded a terminal FID of
8.20, again surpassing the single-student counterpart and
setting a new record FID score. In addition, for better visual
quality, we also train SD v1.5 and SDXL students with a
larger CFG scale of 8, and display corresponding samples
in Fig. 3(a), Fig. 14 (SD v1.5) and Fig. 16, Fig. 15, Fig. 11
(SDXL), respectively.

Student architecture smaller than the teacher: To explore
the prepended teacher score matching (TSM) stage, we
train a 83% smaller and 5% faster student on a dog-related
prompt subset of COYO (containing ~ 1210 000 prompts).
We use a CFG scale of 8 and display the samples in Fig. 3,
observing fair generation quality despite a significant drop
in model size. Improved training is likely to obtain better
sample quality and generalization power. Due to limited
computational resources and the complete coverage of the
prompt set by the 4-student model, we did not train the full
set of students at this size.

Ablation Studies are in App. Sec. B.1 on splitting strategies,
number of students, distillation method choice, and more.

5. Discussion

Due to space constraints, limitations are discussed in App.
Sec. J.1. This work presented Multi-Student Distillation, a
simple yet efficient method to increase the effective model
capacity for single-step diffusion distillation. We applied
MSD to the distribution matching and adversarial distilla-
tion methods. We demonstrated their superior performance
over single-student counterparts in both class-conditional
generation and text-to-image generation. Particularly, MSD
with DMD2’s the two-stage training achieves state-of-the-
art FID scores. Moreover, we successfully distilled smaller
students from scratch, demonstrating MSD’s potential in fur-
ther reducing the generation latency with multiple smaller
student distillations. We envision building on MSD to en-
able generation in real-time, enabling many new use cases.
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Table 1: Comparing class-conditional generators on
ImageNet-64x64. The number of function evaluations
(NFE) for MSD is 1 as a single student is used at infer-

Table 2: Comparing MSD on zero-shot text-to-image gener-
ation on MS-COCO2014. We measure speed with sampling
time per prompt (latency) and quality with FID.

ence for the given input. Method Latency (/) FID ({)
Method NFE () FID () Unaccelerated
Multiple Steps DALL-E 2 (Ramesh et al., 2022) - 10.39
RIN (Jabri et al., 2023) 1000 1.23 LDM (Rombach et al., 2022) 3.7s 12.63
ADM (Dhariwal and Nichol, 2021) 250 2.07 eDiff-1 (Balaji et al., 2022) 32.0s 6.95
DPM Solver (Lu et al., 2022a) 10 7.93 GAN s
Multistep CD (Heck et al., 2024) 2 2.0 StyleGAN-T (Sauer et al., 2023a) 0.10s 12.90
Single Step, w/o GAN GigaGAN (Yu et al., 2022) 0.13s 9.09
PD (Salimans and Ho, 2022) 1 15.39 Accelerated
gisflf‘_‘gs(fl‘:;“(gﬁoa; 310223324) } g?i DPM++ (4 step) (Lu et al., 2022b) 0.265 22.36
. Co ' InstaFlow-0.9B (Liu et al., 2023a) 0.09s 12.10
iCT-deep (Song and Dhariwal, 2024) 1 3.25 UFOGen (Xu et al., 2024) 0.09s 12.78
Moment Matching (Salimans et al., 2024) 1 3.0 . - ’ ’
DMD (Yin et al., 2024b) 1 2.62 DMD (Y.m et al., 2024b) 0.09s 11.49
MSD (ours): 4 students, DM only 1 2.37 EMD (Xie et al., 2024a) 0.09s 9.66
EMD (Xie et al., 2024a) 1 2.20 DMD?2 (w/o GAN) 0.09s 9.28
SiD (Zhou et al., 2024) 1 1.52 MSD (ours): 4 students, DM only 0.09s 8.80
Single Step, w/ GAN DMD2 (Yin et al., 2024a) 0.09s 8.35
Post-distillation, 4, 42% smaller students 1 11.67 MSD (ours): 4 students, ADM 0.09s 8.20
MSD (ours): 4, 42% smaller students, ADM 1 2.88 teacher
StyleGAN-XL (Sauer et al., 2022) 1 1.52 SDv1.5 (50 step, CFG=3, ODE) 2.59s 8.59
CTM (Kim et al., 2024) 1 1.92 SDv1.5 (200 step, CFG=2, SDE) 10.25s 7.21
DMD2 (Yin et al., 2024a) 1 1.28
MSD (ours): 4 students, ADM 1 1.20
teacher
EDM (teacher, ODE) (Karras et al., 2022) 511 2.32
EDM (teacher, SDE) (Karras et al., 2022) 511 1.36




Multi-student Diffusion Distillation for Better One-step Generators

References

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-

guage supervision. In International conference on ma-
chine learning, pages 8748-8763. PMLR, 2021. 2, 3

Tianwei Yin, Micha&l Gharbi, Taesung Park, Richard Zhang,
Eli Shechtman, Fredo Durand, and William T Freeman.
Improved distribution matching distillation for fast image
synthesis. arXiv preprint arXiv:2405.14867, 2024a. 2, 3,
4,5,11,12,13, 14, 15,18, 19

Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou,
Ying Nian Wu, Kevin Patrick Murphy, Tim Salimans, Ben
Poole, and Ruiqi Gao. Em distillation for one-step diffu-
sion models. arXiv preprint arXiv:2405.16852, 2024a. 3,
5,13,18

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang,
Mingzhang Yin, and Hai Huang. Score identity distilla-
tion: Exponentially fast distillation of pretrained diffusion
models for one-step generation. In Forty-first Interna-
tional Conference on Machine Learning, 2024. 3,5, 13,
18

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki
Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong He,
Yuki Mitsufuji, and Stefano Ermon. Consistency trajec-
tory models: Learning probability flow ode trajectory of
diffusion. International Conference on Learning Repre-
sentations, 2024. 3,5, 13, 18

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248-255. Ieee, 2009. 3

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollér, and
C Lawrence Zitnick. Microsoft coco: Common objects
in context. In Computer Vision—ECCV 2014: 13th Euro-
pean Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part V 13, pages 740-755. Springer,
2014. 3,4

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained
by a two time-scale update rule converge to a local nash
equilibrium. Advances in neural information processing
systems, 30, 2017. 3

Tianwei Yin, Michaél Gharbi, Richard Zhang, Eli Shecht-
man, Fredo Durand, William T Freeman, and Taesung
Park. One-step diffusion with distribution matching dis-
tillation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 6613—
6623, 2024b. 3,4,5, 11, 12,13, 14, 15, 18

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. In International Confer-
ence on Machine Learning, pages 32211-32252. PMLR,
2023. 3,10, 18

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based genera-
tive models. Advances in neural information processing
systems, 35:26565-26577, 2022. 3, 5, 14, 15, 18

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-
xl: Scaling stylegan to large diverse datasets. In ACM
SIGGRAPH 2022 conference proceedings, pages 1-10,
2022. 4,5

Allan Jabri, David J Fleet, and Ting Chen. Scalable adaptive
computation for iterative generation. In Proceedings of
the 40th International Conference on Machine Learning,
pages 14569-14589, 2023. 4, 5

Prafulla Dhariwal and Alexander Nichol. Diffusion mod-
els beat gans on image synthesis. Advances in neural
information processing systems, 34:8780-8794, 2021. 5

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver: A fast ode solver for
diffusion probabilistic model sampling in around 10 steps.
Advances in Neural Information Processing Systems, 35:
5775-5787, 2022a. 5, 18

Jonathan Heek, Emiel Hoogeboom, and Tim Sali-
mans. Multistep consistency models. arXiv preprint
arXiv:2403.06807, 2024. 5

Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. International Confer-
ence on Learning Representations, 2022. 5, 18

Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Aziz-
zadenesheli, and Anima Anandkumar. Fast sampling of
diffusion models via operator learning. In International
conference on machine learning, pages 42390-42402.
PMLR, 2023. 5, 18

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun,
Zhenguo Li, and Zhihua Zhang. Diff-instruct: A univer-
sal approach for transferring knowledge from pre-trained
diffusion models. Advances in Neural Information Pro-
cessing Systems, 36,2024. 5, 18

Yang Song and Prafulla Dhariwal. Improved techniques for
training consistency models. International Conference
on Learning Representations, 2024. 5



Multi-student Diffusion Distillation for Better One-step Generators

Tim Salimans, Thomas Mensink, Jonathan Heek, and Emiel
Hoogeboom. Multistep distillation of diffusion models
via moment matching. arXiv preprint arXiv:2406.04103,
2024. 5,18

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint
arXiv:2204.06125, 1(2):3,2022. 5

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684-10695, 2022. 4, 5, 12, 14, 15

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Qinsheng Zhang, Karsten Kreis, Miika
Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-
to-image diffusion models with an ensemble of expert
denoisers. arXiv preprint arXiv:2211.01324,2022. 5, 18

Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and
Timo Aila. Stylegan-t: Unlocking the power of gans for
fast large-scale text-to-image synthesis. In International
conference on machine learning, pages 30105-30118.
PMLR, 2023a. 5

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku,
Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autore-
gressive models for content-rich text-to-image generation.
arXiv preprint arXiv:2206.10789, 2(3):5, 2022. 5, 15

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver++: Fast solver for guided
sampling of diffusion probabilistic models. arXiv preprint
arXiv:2211.01095, 2022b. 5,12, 18

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al.
Instaflow: One step is enough for high-quality diffusion-
based text-to-image generation. In The Twelfth Interna-
tional Conference on Learning Representations, 2023a.
5,18

Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou.
Ufogen: You forward once large scale text-to-image
generation via diffusion gans. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8196-8206, 2024. 5, 18

Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun
Lee, Woonhyuk Baek, and Saechoon Kim. Coyo-700m:
Image-text pair dataset. https://github.com/
kakaobrain/coyo-dataset, 2022. 4, 10, 14, 15

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and
Jiwen Lu. Unipc: A unified predictor-corrector frame-
work for fast sampling of diffusion models. Advances in
Neural Information Processing Systems, 36, 2024. 12

Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick
von Platen, Apolinario Passos, Longbo Huang, Jian Li,
and Hang Zhao. Lcm-lora: A universal stable-diffusion
acceleration module. arXiv preprint arXiv:2311.05556,
2023. 12, 18

Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. Laion-5b: An open large-scale dataset for
training next generation image-text models. Advances
in Neural Information Processing Systems, 35:25278—
25294, 2022. 10

I Loshchilov. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101,2017. 13, 14

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings

of the IEEE conference on computer vision and pattern
recognition, pages 586595, 2018. 14, 19

Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-
lightning: Progressive adversarial diffusion distillation.
arXiv preprint arXiv:2402.13929, 2024. 15, 18

Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On
aliased resizing and surprising subtleties in gan evalua-
tion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11410-
11420, 2022. 15

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-
solver-v3: Improved diffusion ode solver with empirical
model statistics. Advances in Neural Information Pro-
cessing Systems, 36, 2024. 18

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
numerical methods for diffusion models on manifolds.
International Conference on Learning Representations,
2022. 18

Eric Luhman and Troy Luhman. Knowledge distillation in
iterative generative models for improved sampling speed.
arXiv preprint arXiv:2101.02388, 2021. 18

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik
Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14297-14306, 2023. 18


https://github.com/kakaobrain/coyo-dataset
https://github.com/kakaobrain/coyo-dataset

Multi-student Diffusion Distillation for Better One-step Generators

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow
straight and fast: Learning to generate and transfer data
with rectified flow. International Conference on Learning
Representations, 2023b. 18

Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew,
Qiang Liu, and Jiashi Feng. Perflow: Piecewise recti-
fied flow as universal plug-and-play accelerator. arXiv
preprint arXiv:2405.07510, 2024. 18

Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu,
Pan Xie, Xing Wang, and Xuefeng Xiao. Hyper-sd: Tra-
jectory segmented consistency model for efficient image
synthesis. arXiv preprint arXiv:2404.13686, 2024. 18

Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-
step text-to-image diffusion model with variational score
distillation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7807—
7816, 2024. 18

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. Ad-

vances in neural information processing systems, 27,
2014. 18, 19

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling
the generative learning trilemma with denoising diffusion
gans. International Conference on Learning Representa-
tions, 2022. 18

Diffusion mod-
arXiv preprint

Bowen Zheng and Tianming Yang.
els are innate one-step generators.
arXiv:2405.20750, 2024. 18

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and
Robin Rombach. Adversarial diffusion distillation. arXiv
preprint arXiv:2311.17042, 2023b. 18

Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas
Blattmann, Patrick Esser, and Robin Rombach. Fast
high-resolution image synthesis with latent adversarial
diffusion distillation. arXiv preprint arXiv:2403.12015,
2024. 18

Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu
Chen, and Mingyuan Zhou. Diffusion-gan: Training gans
with diffusion. International Conference on Learning
Representations, 2023. 18

Michael I Jordan and Robert A Jacobs. Hierarchical mix-
tures of experts and the em algorithm. Neural computa-
tion, 6(2):181-214, 1994. 18

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy
Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Out-
rageously large neural networks: The sparsely-gated

mixture-of-experts layer. International Conference on
Learning Representations, 2017. 18

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. International Conference on Learning Repre-
sentations, 2021. 18

William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity. Journal of Machine Learn-
ing Research, 23(120):1-39, 2022. 18

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal,
and Luke Zettlemoyer. Base layers: Simplifying training
of large, sparse models. In International Conference on
Machine Learning, pages 6265-6274. PMLR, 2021. 18

Haitz Séez de Ocariz Borde, Takashi Furuya, Anastasis
Kratsios, and Marc T Law. Breaking the curse of di-
mensionality with distributed neural computation. arXiv
preprint arXiv:2402.03460, 2024. 18

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 18

Defang Chen, Jian-Ping Mei, Can Wang, Yan Feng, and
Chun Chen. Online knowledge distillation with diverse
peers. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 3430-3437, 2020. 18

Tian Ni and Haoji Hu. Knowledge distillation by multi-
ple student instance interaction. In 2023 International
Conference on Pattern Recognition, Machine Vision and
Intelligent Algorithms (PRMVIA), pages 193-200. IEEE,
2023. 18

Xiaoqin Chang, Sophia Yat Mei Lee, Suyang Zhu, Shoushan
Li, and Guodong Zhou. One-teacher and multiple-student
knowledge distillation on sentiment classification. In Pro-
ceedings of the 29th International Conference on Compu-
tational Linguistics, pages 7042-7052, 2022. 18

Zhitian Xie, Yinger Zhang, Chenyi Zhuang, Qitao Shi, Zhin-
ing Liu, Jinjie Gu, and Guannan Zhang. Mode: A mixture-
of-experts model with mutual distillation among the ex-
perts. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 16067-16075, 2024b. 18

Sneha Kudugunta, Yanping Huang, Ankur Bapna, Maxim
Krikun, Dmitry Lepikhin, Minh-Thang Luong, and Orhan
Firat. Beyond distillation: Task-level mixture-of-experts
for efficient inference. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages 3577—
3599, 2021. 18



Multi-student Diffusion Distillation for Better One-step Generators

Simiao Zuo, Qingru Zhang, Chen Liang, Pengcheng He,
Tuo Zhao, and Weizhu Chen. Moebert: from bert to
mixture-of-experts via importance-guided adaptation. In
Proceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, 2022. 18

Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung.
Mgan: Training generative adversarial nets with multi-
ple generators. In International conference on learning
representations, 2018. 18

David Keetae Park, Seungjoo Yoo, Hyojin Bahng, Jaegul
Choo, and Noseong Park. Megan: Mixture of experts
of generative adversarial networks for multimodal image
generation. In 27th International Joint Conference on
Artificial Intelligence, IJCAI 2018, pages 878-884. In-
ternational Joint Conferences on Artificial Intelligence,
2018. 18

Alper Ahmetoglu and Ethem Alpaydin. Hierarchical mix-
tures of generators for adversarial learning. In 2020 25th
International Conference on Pattern Recognition (ICPR),
pages 316-323. IEEE, 2021. 18

Fan Bao, Chongxuan Li, Yue Cao, and Jun Zhu. All are
worth words: a vit backbone for score-based diffusion
models. In NeurIPS 2022 Workshop on Score-Based
Methods, 2022. 18

William Peebles and Saining Xie. Scalable diffusion models
with transformers. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 4195—
4205, 2023. 18

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. sim-
ple diffusion: End-to-end diffusion for high resolution
images. In International Conference on Machine Learn-
ing, pages 13213-13232. PMLR, 2023. 18

Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and
Shinkook Choi. On architectural compression of text-to-
image diffusion models. 2023. 18

Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys,
Yun Fu, Yanzhi Wang, Sergey Tulyakov, and Jian Ren.
Snapfusion: Text-to-image diffusion model on mobile
devices within two seconds. Advances in Neural Infor-
mation Processing Systems, 36, 2024. 18

Dingkun Zhang, Sijia Li, Chen Chen, Qingsong Xie, and
Haonan Lu. Laptop-diff: Layer pruning and normal-
ized distillation for compressing diffusion models. arXiv
preprint arXiv:2404.11098, 2024. 18

Yang Zhao, Yanwu Xu, Zhisheng Xiao, and Tingbo Hou.
Mobilediffusion: Subsecond text-to-image generation on
mobile devices. arXiv preprint arXiv:2311.16567, 2023.
18

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. International Conference on Learning Repre-
sentations, 2021. 18

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in neural information
processing systems, 33:6840-6851, 2020. 18

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongx-
van Li, Hang Su, and Jun Zhu. Prolificdreamer: High-
fidelity and diverse text-to-3d generation with variational
score distillation. Advances in Neural Information Pro-
cessing Systems, 36, 2024. 18

Senmao Ye and Fei Liu. Score mismatching for generative
modeling. Neural Networks, 175:106311, 2024. 18



Multi-student Diffusion Distillation for Better One-step Generators

Impact Statement

Our work aims to improve the quality and speed of diffusion
models, thus we may inherit concerns from diffusion models
and generative models in general. Potential risks include
fabricating facts that could mislead public opinion, display-
ing biased information that may amplify social biases, and
displacing creative jobs from artists and designers.

A. Additional experimental results

A.1. CLIP score for high guidance scale

Tab. 4 shows the CLIP score of MSD and single-student
methods. MSD4-ADM achieves a competitive CLIP score
and beats the single student counterpart, DMD2. We believe
the CLIP score can increase further if one trains on the
LAION dataset (Schuhmann et al., 2022) instead of the
COYO dataset (Byeon et al., 2022).

A.2. Toy Experiments

We showcase the advantage of MSD in a 2D toy model,
where the performance difference is visually apparent. The
real data distribution has 8 classes, and each class is a mix-
ture of 8 Gaussians. We used a simple MLP with EDM
schedules to train the teacher and then distill into 1, 2, 4,
and 8 students. We applied our DM stage, as well as another
distillation method, Consistency Distillation (Song et al.,
2023), and display the results in Fig. 4 and Fig. 5, respec-
tively. From the displayed samples and the ¢; distance from
teacher generation, we observe that the collective generation
quality increases as the number of students increases. This
trend is common in both distillation methods, indicating the
generality of MSD.

B. Extended Ablation studies
B.1. Ablation Studies

Here, we ablate the effect of different components in MSD
and offer insight into scaling. Unless otherwise mentioned,
all experiments are conducted for class-conditional genera-
tion ImageNet-64 x 64, using only the DM stage for compu-
tational efficiency. See additional ablation studies in App. B.

Simple splitting works surprisingly well. We used con-
secutive splitting of classes in Sec. 4.1. Although it shows
obvious advantage over random splitting, as shown in Tab. 5,
it does not use the embedding information from the pre-
trained EDM model. Therefore, we investigated another
strategy where we performed a K -means clustering (i = 4)
on the label embeddings, resulting in 4 clusters of similar
sizes: (230, 283,280,207). However, MSD trained with
these clustered partitions performs similarly to sequential
partition, as shown in Tab. 5. For text-to-image generation,
we performed K-means clustering on the pooled embed-
dings of prompts in the training data, resulting in clusters of
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Figure 4: A 2D toy model. From left to right: teacher (multi-
step) generation and student, one-step generation with 1 and
8 distilled students, the ¢; distance of generated samples
between teacher and students. Takeaway: More students
improve distillation quality on this easy-to-visualize setup.

vastly uneven sizes. Due to computational limitations, we
opted for the simpler partition strategies outlined in Sec. 4.

Effect of scaling the number of students. In Tab. 5, we
study the effect of increasing K, the number of students.
We kept the per-student batch size fixed so more students
induce a larger effective batch size. We observe better FID
scores for more students. We hypothesize that better training
strategies, such as per-student tuning, will further improve
the quality. Optimal strategies for scaling to ultra-large
numbers of students is an interesting area for future work.

B.2. MSD is Still Better with the Same Effective Batch
Size

To investigate if the performance boost from MSD comes
from only a batch size increase over single student distilla-
tion, we make a comparison with the same effective batch
size. As showcased in Tab. 5, MSD with 4 students and a
batch size of 32 per student performs slightly better than
the single-student counterpart with a batch size of 128, in-
dicating that MSD likely benefits from a capacity increase
than a batch size increase. As a takeaway, with a fixed train-
ing resource measured in processed data points, users are
better off distilling into multiple students with partitioned
resources each than using all resources to distill into a single
student. This is also reflected in our previous experiments,
where we used significantly less resources per student than
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Table 3: Glossary and notation

MSD
DM
ADM
TSM
MoE
DMD
DMD2
SOTA
FID
LPIPS
NFE
SD
TTUR
CFG
MLP
GAN
SDE/ODE
i,j,k,n €N
I,JJK,NeN
z,y,z €R
x,y,z €RV
X,Y,Z c RVXN
XV, 2
I
G
13
¢
4
Distill
I

Sax

RSN}

Multi-student distillation
Distribution Matching

Distribution Matching with Adversarial loss

Teacher Score Matching

Mixture of experts

Distribution Matching Distillation (Yin et al., 2024b)
Improved Distribution Matching Distillation (Yin et al., 2024a)

State-of-the-art

Fréchet Inception Distance
Learned Perceptual Image Patch Similarity
Number of Function Evaluations

Stable Diffusion

Two-Timescale Update Rule

Classifier-free guidance
Multi-layer Perceptron

Generative Adversarial Network
Stochastic/Ordinary Differential Equation

Indices
Sizes
Scalars
Vectors
Matrices
Sets / domains
The identity matrix

Single-step generator
Student network weights

“fake” score network weights

Manhattan distance
Distillation method
Denoising network
Number of students
Student index
Distillation stage
Dataset

Condition dataset (without images)
The abstract condition set
Filtering function on input conditions

the single-student counterparts (see details in App. D). Al-
though multiple students means multiple model weights to
save, storage is often cheap, so in many applications, this
cost is outweighed by our improved quality or latency.

B.3. Training curves for Sec. B.1

Fig. 6 displays the training curves for the ablation studies
shown in Tab. 5. The relative terminal performances are
also reflected in the training process.

B.4. The effect of paired dataset size on DMD

In Sec. 3.2, we mentioned the special filtering strategy for
MSD at DM stage: instead of partitioning the paired dataset
for corresponding classes, we choose to keep the same com-
plete dataset for each student. Fig. 7 demonstrates that the
alternative strategy discourages mode coverage and leads to
a worse terminal performance.
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Figure 7: Comparison of paired dataset filtering strategies
for MSD4-DM. Partitioning the paired dataset for each
student discourages mode coverage, which results in worse
terminal performance. In comparison, keeping the same
paired dataset for each student achieves better performance
without impairing the convergence speed.

B.5. Single-step distillation methods comparison

Table 6 justifies our choice of DMD/DMD? as our first-stage
training without adversarial loss. Competitor methods either
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Table 4: CLIP score comparison for high guidance scale on MS-COCO2014. LCM-LoRA is trained with a classifier-free
guidance (CFG) scale of 7.5, while other methods use a CFG of 8.

Method Latency (}) CLIP score (1)
DPM-++ (4 step) (Lu et al., 2022b) 0.26s 0.309
UniPC (4 step) (Zhao et al., 2024) 0.26s 0.308
LCM-LoRA (1 step) (Luo et al., 2023) 0.09s 0.238
LCM-LoRA (4 step) (Luo et al., 2023) 0.19s 0.297
DMD2 (our reimplementation) (Yin et al., 2024a) 0.09s 0.306
MSD4-ADM (ours) 0.09s 0.308
DMD (Yin et al., 2024b) 0.09s 0.320
SDv1.5 (teacher) (Rombach et al., 2022) 2.59s 0.322
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Figure 5: A 2D toy model using consistency distillation.
From left to right: teacher (multi-step) generation and stu-
dent, one-step generation with 1 and 8§ distilled students,
the ¢, distance of generated samples between teacher and
students. Takeaway: More students improve distillation
quality on this easy-to-visualize setup with consistency dis-
tillation.

need larger training data size (EMD, SiD) or have worse
quality (CTM and other CM-based methods). DMD/DMD?2,
on the other hand, strike a good balance. DMD exhibits
more stability for MSD on ImageNet, whereas DMD2 per-
forms better for SD v1.5, which leads to our respective
choices. As mentioned in App. D, we used a smaller-sized
paired dataset (10 000 images) than the original DMD paper
(25000 images) for ImageNet, which significantly acceler-
ated convergence without impairing the final performance.
Moreover, as in Sec. 3.2, the same paired dataset can be
used for all students, eliminating potential additional com-
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Table 5: Ablation studies on different components of MSD.
All experiments are done on ImageNet-64 x 64, trained with
only the DM stage for 20k iterations, where B is the batch
size per student. See App. B.3.

Method FID (})
4 students, B = 32 2.53
1 students, B = 128 2.60
2 students, B = 128 2.49
4 students, B = 128 (baseline) 2.37
8 students, B = 128 2.32
4 students, B = 128, K-means splitting 2.39
4 students, B = 128, random splitting 2.45

putation.

B.6. More results on distilling into smaller students

In Sec. 4.1, we trained MSD4-ADM on smaller students
to demonstrate the tradeoff between generation quality and
speed. Here, we make a more comprehensive ablation study
on the interplay between student size, number of classes
covered, and training stage, with results in Fig. 8. We ob-
serve that generation quality increases with student size and
decreases with more classes covered. MSD offers great
flexibility for users to make these choices based on compu-
tational resources, generation quality, and inference speed
requirements.

C. Deployment suggestions

Here, we discuss some MSD deployment options for practi-
tioners.

A naive option for deployment is to use increased GPU
memory to host all models simultaneously. However, this
is impractical and wasteful, as only a single student model
needs to be used for each user request. In settings with less
GPU memory than all students’ sum memory requirement,
we must swap student models on and off GPUs. This incurs
extra latency. However, in the few-GPU many-users setting,
there are already prominent latency issues, such as users
needing to queue for usage. In few-user settings, resources
are likely being taken offline to save cost, and thus, there



Multi-student Diffusion Distillation for Better One-step Generators

9 1 student
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Figure 6: FID comparisons during training for ablations in Table 5

Table 6: Comparison of various aspects of single-step distillation methods.

Method on ImageNet

DMD (Yin et al., 2024b) (our reimplementation)

DMD2 (w/o GAN) (Yin et al., 2024a)
EMD (Xie et al., 2024a)

SiD (o = 1.0) (Zhou et al., 2024)
CTM (Kim et al., 2024)

Terminal FID  Iterated Images
2.54 ~ 130M
2.61 ~ 110M
2.20 ~ 600M
2.02 ~ 500M

>5 ~ 3M

30

20

x
e XS,MSD-DM

XXS, MSD-DM
X XS, MSD-ADM
X XXS, MSD-ADM
=== B, teacher

FID on first 10 classes

10 20 50 200 500

# Classes per student

100

Figure 8: The effect of student size, number of classes
covered, and training stage on the performance of a single
smaller student. XS, XXS, and B refer to model sizes, with
precise definitions provided in Tab. 7. Also, see special
evaluation details in App. E.

is start-up latency for fresh requests, too. Therefore, we
argue that the more interesting setting is in large distributed
deployment.

For settings with more GPU memory than all students’ sum
memory requirements, we can distribute the student models
among a cluster of GPUs (as one would the teacher) and
route each generation request to the appropriate student
node. The routing layer is lightweight compared to the
inference cost, so we pay little for it.
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If the data has been partitioned uniformly according to user
demand, the incoming requests will be distributed uniformly
among the student nodes. Therefore, we achieve equal
throughput compared to the teacher without more overall
model storage. However, finding such a partition is challeng-
ing, and user demand may change over time. This leaves
finding the optimal allocation of resources to the student
nodes an open problem. In practice, we expect that a re-
duced student model size would lead to an overall reduction
in storage requirements compared to the teacher alone.

D. Implementation Details
D.1. Toy Experiments

The real dataset is a mixture of Gaussians. The radius for
the outer circle is 0.5, the radius for the 8 inner circles is
0.1, and the standard deviation for each Gaussian (smallest
circle) is 0.005. The teacher is trained with EDM noise
schedule, where use (0pmin, Omax) = (0.002,80) and dis-
cretized the noise schedule into 1000 steps. We train the
teacher for 100 000 iterations with AdamW (Loshchilov,
2017) optimizer, setting the learning rate at le-4, weight
decay to 0.01, and beta parameters to (0.9, 0.999). For dis-
tillation, we first generated a dataset of 1000 pairs, then
used DMD (Yin et al., 2024b) to train 1, 2, 4, and 8 students,
respectively, all for 200 000 iterations, with reduced learn-
ing rate at le-7. We only sample the first 750 of the 1000
steps for distillation.

Each subfigure of Fig. 4 is a histogram with 200 bins on
100 000 generated samples, using a custom colormap. The



Multi-student Diffusion Distillation for Better One-step Generators

loss is the mean absolute difference of binned histogram
values.

D.2. ImageNet
D.2.1. SAME-SIZED STUDENTS

Our ImageNet experiments setup closely follows DMD (Yin
et al., 2024b) and DMD2 (Yin et al., 2024a) papers. We
distill our one-step generators using the EDM (Karras et al.,
2022) checkpoint “edm-imagenet-64x64-cond-adm”. We
use opin = 0.002 and oy,,x = 80 and discretize the noise
schedules into 1000 bins. The weight w; in Eq. (6) is set
to ng where S is the number of spatial
locations and C' is the number of channels, and the weight
A; in Eq. (8) is set to (o7 + 0.52) /(0 - 0.5)2.

For the DM stage, we prepare a distillation dataset by gen-
erating 10000 noise-image pairs using the deterministic
Heun sampler (with Schym = 0 over 256 steps. We use the
AdamW optimizer (Loshchilov, 2017) with learning rate
2e-6, weight decay 0.01, and beta parameters (0.9, 0.999).
We compute the LPIPS loss using a VGG backbone from the
LPIPS library (Zhang et al., 2018), and we upscale the im-
age to 224 x 224 using bilinear upsampling. The regression
loss weight is set to 0.25. We use mixed-precision training
and a gradient clipping with an ¢, norm of 10. We partition
the 1000 total classes into consecutive blocks of 250 classes
and trained 4 specialized students using Distillpy and Fpum
defined in Sec. 2. Each student is trained on 4 A100 GPUs,
with a total batch size of 128, for 200 000 iterations. This
yields the MSD4-DM checkpoint in Tab. 1.

For the ADM stage, we attach a prediction head to the
middle block of the fakescore model. The prediction head
consists of a stack of 4 x 4 convolutions with a stride of
2, group normalization, and SiLU activations. All feature
maps are downsampled to 4 x 4 resolution, followed by a
single convolutional layer with a kernel size and stride of
4. The final output linear layer maps the given vector to
a scalar predicted probability. We load the best generator
checkpoint from DM stage but re-initialize the fakescore and
GAN classifier model from teacher weights, as we observed
this leads to slightly better performance. We set the GAN
generator loss weight to 3e-3 and the GAN discriminator
loss weight to le-2 and reduce the learning rate to Se-7.
Each student is trained on 4 A100 GPUs, with a total batch
size of 192, for 150 000 iterations. This yields the MSD4-
ADM checkpoint in Tab. 1.

D.2.2. SMALLER STUDENTS

Following a minimalist design, we pick our smaller student’s
architecture by changing hyperparameter values of the “edm-
imagenet-64x64-cond-adm” checkpoint architecture. See
details in Tab. 7.
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For the MSD4-ADM-S checkpoint in Tab. 1, we train the
TSM stage using the model architecture S with the contin-
uous EDM noise schedule with (Pyean, Pua) = (—1.2,1.2)
and the weighting \; = (07 + 0.5%)/(0¢ - 0.5)%. We use
a learning rate of le-4. Each student is trained on 4 A100
GPUs, with a total batch size of 576, for 400 000 itera-
tions. Then DM and ADM stages were trained using a total
batch size of 160, following otherwise the same setup as
Sec. D.2.1.

For the ablation study in B.6, we instead train a common
TSM stage for all students for computational efficiency. We
train this common stage using 16 A100 GPUs, with a total
batch size of 3584 and 4864 for architecture XS and XXS,
respectively. The DM and ADM stages are followed by
specialized students with filtered data and 4 A100 GPUs
each, with a total batch size of 224 and 256 for architecture
XS and XXS, respectively, and using the same learning rate
of 2e-6.

D.3.SD v1.5
D.3.1. SAME-SIZED STUDENTS, CFG=1.75

Our SD v1.5 experiments setup closely follows DMD2 (Yin
et al., 2024a) paper. We distill our one-step generators from
the SD v1.5 (Rombach et al., 2022) model, using a classifier-
free guidance scale of 1.75 for the teacher model to obtain
the best FID score. We use the first 5M prompts from the
COYO dataset (Byeon et al., 2022) and the corresponding
5M images for the GAN discriminator. We apply the DDIM
noise schedule with 1000 steps for sampling ¢. The weight
wy in Eq. 6 is set to ‘;—'j m where S is the
number of spatial locations and C' is the number of channels,
and the weight )\; in Eq. 8 is set to a7 /o?.

For the DM stage, we use the AdamW optimizer
(Loshchilov, 2017) with learning rate le-5, weight decay
0.01, and beta parameters (0.9,0.999). We use gradient
checkpointing, mixed-precision training, and a gradient clip-
ping with an ¢ norm of 10. We partition the prompts and
corresponding images by the 4 quadrants formed by the
first 2 entries of the embeddings, where the embeddings are
pooled from the outputs of the SD v1.5 text embedding lay-
ers. We choose not to include a regression loss but instead
use a TTUR, which updates the fakescore model 10 times
per generator update. Each of the 4 students is trained on
32 A100 GPUs, with a total batch size of 1536, for 40 000
iterations. This yields the MSD4-DM checkpoint in Tab. 2.

For the ADM stage, we attach a prediction head that has
the same architecture (though with a different input size)
as Sec. D.2. We load both the best generator checkpoint
and the corresponding fakescore checkpoint from DM stage.
We set the GAN generator loss weight to 1e-3 and the GAN
discriminator loss weight to 1e-2 and reduced the learning
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Table 7: Hyperparameter details for different sized student models of the ADM architecture. Unspecified hyperparameters
remain the same as the teacher. Latency is measured on a single NVIDIA RTX 4090 GPU.

Model Identifier # Channels Channel Multipliers # Residual Blocks ~ # Parameters Latency
B (teacher) 192 [1,2,3,4] 3 296M 0.0271s
S 160 [1,2,2,4] 3 173M 0.0253s
XS 128 1,2,2,4] 2 86M 0.0209s
XXS 96 [1,2,2,2] 2 26M 0.0192s
rate to Se-7. Each student is trained on 32 A100 GPUs, with D.4. SDXL

a total batch size of 1024, for 5000 iterations. This yields
the MSD4-ADM checkpoint in Tab. 2.

D.3.2. SAME-SIZED STUDENTS, CFG=8

The above CFG = 1.75 setting yields sub-optimal image
quality. Similar to previous works (Yin et al., 2024b; Lin
et al., 2024; Rombach et al., 2022), we choose CFG = 8§
for enhanced image quality. Due to time and computational
resource limitations, we only train with the ADM stage.
Each of the 4 students is trained on 32 A100 GPUs, with a
learning rate of le-5 and a batch size of 1024 for both the
fake and the real images, for 6000 iterations. This yields the
checkpoint that is used to generate Fig. 3 (b) and Fig .14.
Longer training with the added DM stage can likely further
improve the generation quality.

D.3.3. SMALLER STUDENT, CFG=8

We again pick our smaller student’s architecture by changing
the hyperparameter values of the SD v1.5 architecture. See
details in Tab. 8.

To create a subset of dog-related data, we first selected
~ 1210000 prompts in the COYO (Byeon et al., 2022)
dataset whose embeddings are closest to “a dog.” We then
created an equal number of noise-image pairs from the SD
v1.5 teacher using these prompts with CFG = 8. We train
the TSM stage using the model architecture S with the 1000-
step DDIM noise schedule and the weighting \; = a? /o2.
We use a learning rate of le-4. We then continue to the
DM stage with the paired regression loss, using a learning
rate of le-5, and finally continue to the ADM stage using
generated paired images as “real” images with a learning
rate of 5e-7. We use 16 A100 GPUs. The TSM stage is
trained with a total batch size of 1536 for 240 000 iterations.
The DM stage is trained with a total batch size of 512 for
both the paired and the fake images for 20 000 iterations,
and the ADM stage is trained with the same batch size for
6000 iterations. This yields the checkpoint used to generate
Fig. 3(c). Longer training and better tuning are again likely
to improve the generation quality further.
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Our SDXL experiments setup also closely follows DMD2
(Yin et al., 2024a) paper. We set the conditioning timestep
to 399 and pretrain a common student with a regression
loss using 10K pairs for 2000 iterations. We then proceed
directly to the ADM state with a learning rate of Se-7, set-
ting the GAN generator loss weight to Se-3 and the GAN
discriminator loss weight to le-2. For each of the 4 general
student, we use 64 A100 GPUs, setting the total batch size
to 128 and trains for 24 000 iterations. For the specialized
”cat” student, we train on a subset of the COYO dataset
whose embeddings are closest to “a cat.”

E. Evaluation Details

For zero-shot COCO evaluation, we use the exact setup as
GigaGAN (Yu et al., 2022) and DMD2 (Yin et al., 2024a).
Specifically, we generate 30 000 images using the prompts
provided by DMD?2 code. We downsample the generated
images using PIL to 256 x 256 Lanczos resizer. We then use
the clean-fid (Parmar et al., 2022) to compute the FID score
between generated images and 40 504 real images from the
COCO 2014 validation dataset. Additionally, we use the
OpenCLIP-G backbone to compute the CLIP score. For
ImageNet, we generate 50 000 images and calculate FID
using EDM (Karras et al., 2022) evaluation code. When
selecting the best checkpoints for partitioned students, the
same procedure is applied only for prompts/classes within
respective partitions. For the ablation study in Sec. B.6,
10000 images are generated for only the first 10 classes for
an apple-to-apple comparison.

F. Additional qualitative results
F.1. Additional Imagenet-64 x 64 results

In Fig. 9, we present ImageNet-64 x 64 generations from the
teacher and different sized students to support the claims in
Sec. 4.1.

In Fig. 12, we present more ImageNet-64 x 64 qualitative
results collectively generated by our 4 same-sized students
trained with MSD-ADM. In Fig. 13, we display correspond-
ing generations from 4 smaller students with architecture S
(see Tab. 7).
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Table 8: Hyperparameter details for different sized student models of the SD v1.5 architecture. Only the diffusion model
part is measured since the text encoder and the VAE remain frozen. Unspecified hyperparameters remain the same as the
teacher. Latency is measured on a single NVIDIA RTX 4090 GPU.

Model Identifier ~ # block_out_channels  # Parameters Latency
B (teacher) [320, 640, 1280, 1280] 860M 0.041s
S [160, 320, 320, 640] 142M 0.039s

(b) 42% smaller students

(b) 71% smaller students

Figure 9: Sample generations on ImageNet-64 x 64 from the
multistep teacher and different sized students, with architec-
ture and latency details in App. D. The same-size students
have comparable or slightly better generation quality than
the teacher. Smaller students achieve faster generation while
still having decent qualities. Same-sized students are trained
with DM and ADM stages, whereas smaller students are
trained with all three stages (see Fig. 2).

F.2. Additional Text-to-image Synthesis Results

In Fig. 10, we present generations from the SD v1.5 teacher
to complement the results in Fig. 3.

In Fig. 11, we present generations from the general SDXL
students trained on all COYO prompts, and a specialized
student trained on cat-related prompts. We observe the
specialized student has comparable or sometimes better
qualities (i.e. fixes the multi-tail problem) than general
students, indicating a better use of effective capacity.

In Fig. 14, and Fig. 16, we present more qualitative re-
sults collectively generated by out 4 students trained on the
COYO dataset with MSD-ADM, from the SD v1.5 teacher
and the SDXL teacher, respectively. These students are
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Teacher (multistep)

Figure 10: Sample generations from the SD v1.5 teacher
(see details in Fig. 3).

(a) General students (b) Specialized student
Figure 11: High resolution samples on high guidance-scale
text-to-image generations from students distilled from the
SDXL teacher, with full training details in App. D. The spe-
cialized student focusing on cat-related prompts has compa-
rable or better qualities than general students.

trained with a teacher classifier-free guidance (CFG) scale
of 8.

G. Prompt details

G.1. Prompts for Fig. 14

We use the following prompts for Fig. 14, from left to right,
top to bottom:

¢ wise old man with a white beard in the enchanted and
magical forest

* a high-resolution photo of an orange Porsche under
sunshine
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G.2.

Astronaut on a camel on mars
a hot air balloon in shape of a heart. Grand Canyon

transparent vacation pod at dramatic scottish lochside,
concept prototype, ultra clear plastic material, editorial
style photograph

penguin standing on a sidewalk

border collie surfing a small wave, with a mountain on
background

an underwater photo portrait of a beautiful fluffy white
cat, hair floating. In a dynamic swimming pose. The
sun rays filters through the water. High-angle shot.
Shot on Fujifilm X

3D animation cinematic style young caveman kid, in
its natural environment

robot with human body form, robot pieces, knolling,
top of view, ultra realistic

3D render baby parrot, Chibi, adorable big eyes. In a
garden with butterflies, greenery, lush, whimsical and
soft, magical, octane render, fairy dust

a chimpanzee sitting on a wooden bench

a capybara made of voxels sitting in a field
a cat reading a newspaper

a squirrell driving a toy car

close-up photo of a unicorn in a forest, in a style of
movie still

Prompts for Fig. 16

We use the following prompts for Fig. 16, from left to right,
top to bottom:

L]

a teddy bear on a skateboard in times square

a portrait of a statue of the Egyptian god Anubis wear-
ing aviator goggles, white t-shirt and leather jacket.
The city of Los Angeles is in the background.

A soft beam of light shines down on an armored granite
wombat warrior statue holding a broad sword. The
statue stands an ornate pedestal in the cella of a temple.
wide-angle lens. anime oil painting.

A still image of a humanoid cat posing with a hat and
jacket in a bar.

A close-up of a woman’s face, lit by the soft glow
of a neon sign in a dimly lit, retro diner, hinting at a
narrative of longing and nostalgia.
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G.3.

A television made of water that displays an image of a
cityscape at night.

a capybara made of voxels sitting in a field

a portrait of an old man

Prompts for Fig. 15

We use the following prompts for Fig. 15, from left to right,
top to bottom:

G4.

a squirrell driving a toy car

a giant gorilla at the top of the Empire State Building
a goat wearing headphones

A photo of an astronaut riding a horse in the forest.
an elephant walking on the Great Wall

a watermelon chair

An oil painting of two rabbits in the style of American
Gothic, wearing the same clothes as in the original.

A photograph of the inside of a subway train. There
are red pandas sitting on the seats. One of them is
reading a newspaper. The window shows the jungle in
the background.

Prompts for Fig. 3

We use the following prompts (same for all three models),
from left to right, top to bottom:

G.5.

dog on a bed
Your Puppy Your Dog
Trained Happy Dog

Very handsome dog.

Prompts for Fig. 11

We use the following prompts (same for two cases), from
left to right, top to bottom:

A majestic Persian cat lounging on a royal velvet cush-
ion.

A playful kitten chasing a butterfly in a flower field.
A grumpy gray cat wearing a small bow tie and glasses.

A flufty orange tabby cat sitting on a sunny windowsill.
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H. Related Work

Diffusion sampling acceleration. While a line of work
aims to accelerate diffusion models via fast numerical
solvers for the PF-ODE (Lu et al., 2022a;b; Zheng et al.,
2024; Karras et al., 2022; Liu et al., 2022), they usually
still require more than 10 steps. Training-based methods
that usually follow the knowledge distillation pipeline can
achieve few-step or even one-step generation. Luhman and
Luhman (2021) first used the diffusion model to generate
a noise and image pair dataset that is then used to train
a single-step generator. DSNO (Zheng et al., 2023) pre-
computes the denoising trajectory and uses neural operators
to estimate the whole PF-ODE path. Progressive distilla-
tion (Salimans and Ho, 2022; Meng et al., 2023) iteratively
halves the number of sampling steps required without need-
ing an offline dataset. Rectified Flow (Liu et al., 2023b)
and follow-up works (Liu et al., 2023a; Yan et al., 2024)
straighten the denoising trajectories to allow sampling in
fewer steps. Another approach uses self-consistent proper-
ties of denoising trajectories to inject additional regulariza-
tion for distillation (Song et al., 2023; Luo et al., 2023; Ren
et al., 2024; Kim et al., 2024).

The methods above require the student to follow the
teacher’s trajectories. Instead, a recent line of works aims
to only match the distribution of the student and teacher
output via variational score distillation (Yin et al., 2024b;a;
Salimans et al., 2024; Xie et al., 2024a; Luo et al., 2024;
Zhou et al., 2024; Nguyen and Tran, 2024). The adversar-
ial loss (Goodfellow et al., 2014), often combined with the
above techniques, has been used to enhance the distillation
performance further (Xiao et al., 2022; Zheng and Yang,
2024; Sauer et al., 2023b; 2024; Wang et al., 2023; Xu et al.,
2024; Lin et al., 2024; Kim et al., 2024). Although MSD
is conceptually compatible and offers a performance boost
to all of these distillation methods, in this work, we demon-
strate two specific techniques: distribution matching (Yin

et al., 2024b) and adversarial distillation (Yin et al., 2024a).
Mixture of experts training and distillation. Mixture of

Experts (MoE), first proposed in (Jordan and Jacobs, 1994),
has found success in training very large-scale neural net-
works (Shazeer et al., 2017; Lepikhin et al., 2021; Fedus
et al., 2022; Lewis et al., 2021; Borde et al., 2024). Dis-
tilling a teacher model into multiple students was explored
by Hinton et al. (2015), and after that, has been further
developed for supervised learning (Chen et al., 2020; Ni
and Hu, 2023; Chang et al., 2022) and language modeling
(Xie et al., 2024b; Kudugunta et al., 2021; Zuo et al., 2022).
Although several works (Hoang et al., 2018; Park et al.,
2018; Ahmetoglu and Alpaydin, 2021) have proposed MoE
training schemes for generative adversarial networks, they
train the MoE from scratch. This requires carefully tuning
the multi-expert adversarial losses. eDiff-1 (Balaji et al.,
2022) uses different experts in different denoising timesteps
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for a multi-step diffusion model. However, to the best of
our knowledge, MSD is the first method to distill multi-step
teacher diffusion models into multiple one-step students for
image generation.

Efficient architectures for diffusion models. In addition
to reducing steps, an orthogonal approach aims to acceler-
ate diffusion models with more efficient architectures. A
series of works (Bao et al., 2022; Peebles and Xie, 2023;
Hoogeboom et al., 2023) introduces vision transformers to
diffusion blocks and trains the diffusion model with new
architectures from scratch. Another line of work selectively
removes or modifies certain components of a pretrained dif-
fusion model and then either finetunes (Kim et al., 2023;
Li et al., 2024; Zhang et al., 2024) or re-trains (Zhao et al.,
2023) the lightweight diffusion model, from which step-
distillation can be further applied (Li et al., 2024; Zhao
et al., 2023). Our approach is orthogonal to these works
in two regards: 1) In our method, each student only han-
dles a subset of data, providing a gain in relative capacity.
2) Instead of obtaining a full diffusion model, our method
employs a lightweight pretraining stage to obtain a good ini-
tialization for single-step distillation. Combining MSD with
more efficient architectures is a promising future direction.

I. Preliminary

We introduce the background on diffusion models in Sec. 1.1
and distribution matching distillation (DMD) in Sec. 1.2. We
discuss applying adversarial losses to improve distillation
in Sec. L.3.

I.1. Diffusion Models

Diffusion models learn to generate data by estimating
the score functions (Song et al., 2021) of the corrupted
data distribution on different noise levels. Specifically,
at different timesteps ¢, the data distribution pye, is cor-
rupted with an independent Gaussian noise: pt7real(mt) =
S prea()qs (24|z)dz Where gy(xi|z) ~ N(ovwz,07T)
with predetermined o, o, following a forward diffusion
process (Song et al., 2021; Ho et al., 2020). The neu-
ral network learns the score of corrupted data Spe,
Ve, 108 i real(®1) = — (¢ — cyx) /o7 by equivalently pre-
dicting the denoised x: p(xs,t) ~ @. After training with
the denoising score matching loss Ey ¢ 5, [Ae]|pt(e, t) —
x||3], where ); is a weighting coefficient, the model gen-
erates the data by an iterative denoising process over a de-
creasing sequence of time steps.

L.2. Distribution Matching Distillation

Inspired by Wang et al. (2024), the works of Luo et al.
(2024); Yin et al. (2024b); Ye and Liu (2024); Nguyen and
Tran (2024) aim to train the single-step distilled student
to match the generated distribution of the teacher diffusion
model. This is done by minimizing the following reverse KL
divergence between teacher and student output distributions,
diffused at different noise levels for better support over the
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ambient space:

pt,fake(wt) )> G
pt,real(wt)

The training only requires the gradient of Eq. (§), which
reads (with a custom weighting w;):

VQEKL(H) = V@EtDKL (6)
~E, ¢ a, [Wion (Stake (T4, 1) — Sreat (T4, 1)) VoGo(2)],

where z ~ N(0,I),t ~ Uniform[Tinin, Tmax), and x; ~
q(x+|x), the noise injected version of & = Gy (z) generated
by the one-step student. Here, we assume the teacher de-
noising model accurately approximates the score of the real
data, and a “fake” denoising model approximates the score
of generated fake data:

EtDKL(pt,fa.ke”pt,real) - Ewt <log (

Sreal(Tt, 1) = — (@t — Q¢ Preacher (T4, t))/UtZ,
Stake (T4, 1) & —(Tr — e figae (T4, 1)) /07 -

The “fake” denoising model is trained with the denoising
objective with weighting \;:

Edenoise(¢) = Ez,t,act P\t”ligke(wta t) - 53”%] (8)

The generator and the “fake” denoising model are updated
alternatively. To facilitate better convergence of the KL
divergence, Distribution Matching Distillation (DMD) and
DMD2 (Yin et al., 2024a) used two distinct strategies, both
significantly improving the generation performance. DMD
proposes to complement the KL loss with a regression loss
to encourage mode covering:

’Cfeg(g) = E(Z7y)NDpuired£(G9(z)v Y), )

where Dpaireq 1s a dataset of latent-image pairs generated
by the teacher model offline, and ¢ is the Learned Percep-
tual Image Patch Similarity (LPIPS) (Zhang et al., 2018).
DMD?2 instead applies a two-timescale update rule (TTUR),
where they update the “fake” score model for IV steps per
generator update, allowing more stable convergence. We
use distribution matching (DM) to refer to all relevant tech-
niques introduced in this section.

N

L.3. Enhancing distillation quality with adversarial loss
The adversarial loss, originally proposed by Goodfellow
et al. (2014), has shown a remarkable capability in diffusion
distillation to enhance sharpness and realism in generated
images, thus improving generation quality. Specifically,
DMD?2 (Yin et al., 2024a) proposes adding a minimal dis-
criminator head to the bottleneck layer of the “fake” denois-
ing model fig,ke, Which is naturally compatible with DMD’s
alternating training scheme and the TTUR. Moreover, they
showed that one should first train the model without GAN to
convergence, then add the GAN loss and continue training.
This yields better terminal performance than training with
the GAN loss from the beginning. We use adversarial dis-
tribution matching (ADM) to refer to distribution matching
with added adversarial loss.
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J. Extended Discussion
J.1. Limitations

MSD is the first work to explore diffusion distillation with
multiple students, and it admits a few limitations that call
for future work. 1) Further explorations could offer more
insights into optimal design choices for a target quality and
latency on various datasets, such as the number of students,
input condition size for each student, and other hyperparam-
eters. This is especially beneficial if the training budget is
limited. 2) We apply simple partitioning for both class- and
text-conditions and assign them disjointly to different stu-
dents. Although our empirical study shows that simple alter-
natives do not offer obvious advantages, more sophisticated
routing mechanisms may help. 3) We use simple channel
reduction when designing smaller students to demonstrate
feasibility. This results in a significantly smaller latency re-
duction than sample size reduction. Exploring other designs
of smaller students will likely increase their quality and
throughput. 4) We train different students separately, but we
expect that carefully designed weight-sharing, loss-sharing,
or other interaction schemes can further enhance training
efficiency. 5) We hypothesize that MSD can be applied to
other diffusion distillation methods and other modalities for
similar benefits, but leave this for future work.
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Figure 12: Collective one-step samples from 4 same-sized students trained with MSD-ADM on ImageNet (FID = 1.20).
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Figure 13: Collective one-step samples from 4 smaller students trained with MSD-ADM on ImageNet (FID = 2.88).
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Figure 14: Collective one-step samples from 4 SD v1.5 students trained with MSD-ADM on COYO with CFG = 8.
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Figure 15: Additional collective one-step samples from 4 SDXL students trained with MSD-ADM on COYO with CFG = 8.

Figure 16: Collective one-step 1024 x 1024 samples from 4 SDXL students trained with MSD.
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