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ABSTRACT

Modern recommendation systems frequently employ online learning to dynami-
cally update their models with freshly collected data. The most commonly used
optimizer for updating neural networks in these contexts is the Adam optimizer,
which integrates momentum (mt) and adaptive learning rate (vt). However, the
volatile nature of online learning data, characterized by its frequent distribution
shifts and presence of noises, poses significant challenges to Adam’s standard op-
timization process: (1) Adam may use outdated momentum and the average of
squared gradients, resulting in slower adaptation to distribution changes, and (2)
Adam’s performance is adversely affected by data noise. To mitigate these issues,
we introduce CAdam, a confidence-based optimization strategy that assesses the
consistence between the momentum and the gradient for each parameter dimen-
sion before deciding on updates. If momentum and gradient are in sync, CAdam
proceeds with parameter updates according to Adam’s original formulation; if not,
it temporarily withholds updates and monitors potential shifts in data distribution
in subsequent iterations. This method allows CAdam to distinguish between the
true distributional shifts and mere noise, and adapt more quickly to new data dis-
tributions. Our experiments with both synthetic and real-world datasets demon-
strate that CAdam surpasses other well-known optimizers, including the original
Adam, in efficiency and noise robustness. Furthermore, in large-scale A/B test-
ing within a live recommendation system, CAdam significantly enhances model
performance compared to Adam, leading to substantial increases in the system’s
gross merchandise volume (GMV).

1 INTRODUCTION

Modern recommendation systems, such as those used in online advertising platforms, rely on online
learning to update real-time models with freshly collected data batches (Ko et al., 2022). In online
learning, models continuously adapt to users’ interests and preferences based on immediate user in-
teractions like clicks or conversions. Unlike traditional offline training—where data is pre-collected
and static—online learning deals with streaming data that is often noisy and subject to frequent dis-
tribution changes. This streaming nature makes it challenging to effectively denoise and reorganize
training samples (Su et al., 2024; Zhang et al., 2021).

A widely adopted optimizer in these systems is the Adam optimizer (Kingma & Ba, 2015), which
combines the strengths of parameter-adaptive methods and momentum-based methods. Adam ad-
justs learning rates based on the averaged gradient square norm (vt) and incorporates momentum
(mt) for faster convergence. Its ability to maintain stable and efficient convergence by dynamically
adjusting learning rates based on the first and second moments of gradients has made it a reliable
choice for optimizing deep learning models across diverse applications, including image recognition
(Alexey, 2020), natural language processing (Vaswani, 2017), and reinforcement learning (Schul-
man et al., 2017). However, Adam faces significant challenges in online learning environments.
Specifically, it treats all incoming data equally, regardless of whether it originates from the original
distribution, a new one, or is merely noise. This indiscriminate treatment leads to two key problems:

1. Outdated Momentum and Averaged Squared Gradients: When the data distribution
shifts—a common occurrence in online systems due to factors such as daily cycles in shop-
ping habits, rapidly changing trends on social media, seasonal changes, promotional events,
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and sudden market dynamics—Adam continues to use momentum and averaged squared
gradients computed from previous data (Lu et al., 2018; Viniski et al., 2021). These out-
dated statistics can misguide the optimizer, resulting in slower adaptation to the new data
distributions.

2. Sensitivity to Noise: Online learning data often contains noisy labels (Yang et al., 2023).
For example, in advertisement systems, users might click ads by mistake (false positives)
or ignore ads they are interested in (false negatives) (Wang et al., 2021). Sensitivity to
such noise can affect convergence speed and may cause parameters to deviate from the
correct optimization direction, especially in scenarios where noisy data constitutes a large
proportion.

To address these issues inherent in online learning with Adam, we propose Confidence Adaptive
Moment Estimation (CAdam), a novel optimization strategy that enhances Adam’s robustness and
adaptability. CAdam introduces a confidence metric that evaluates whether updating a specific pa-
rameter will be beneficial for the system. This metric is calculated by assessing the alignment
between the current momentum and the gradient for each parameter dimension.

Specifically, if the momentum and the gradient point in the same direction, indicating consistency
in the optimization path, CAdam proceeds with the parameter update following Adam’s rule. Oth-
erwise, if they point in opposite directions, CAdam pauses the update for that parameter to observe
potential distribution changes in subsequent iterations. This strategy hinges on the idea that per-
sistent opposite gradients suggest a distributional shift, as the momentum (an exponential moving
average of past gradients) represents the recent trend. If the opposite gradients do not persist, it it
likely to be noise, and the model resumes normal updates, effectively filtering out the noise.

By incorporating this simple, plug-and-play mechanism, CAdam retains the advantages of
momentum-based optimization while enhancing robustness to noise and improving adaptability to
meaningful distribution changes in online learning scenarios.

Our contribution can be summarized as follows:

1. We introduce CAdam, a confidence-based optimization algorithm that improves upon the
standard Adam optimizer by addressing its limitations in handling noisy data and adapting
to distribution shifts in real-time online learning.

2. Through extensive experiments on both synthetic and public datasets, we demonstrate that
CAdam consistently outperforms popular optimizers in online recommendation settings.

3. We validate the real-world applicability of CAdam by conducting large-scale online A/B
tests in a live system, proving its effectiveness in boosting system performance and achiev-
ing significant improvements in gross merchandise volume (GMV) worth millions of dol-
lars.

2 RELATED WORK

Adam Extensions Adam is one of the most widely used optimizers, and researchers have pro-
posed various modifications to address its limitations. AMSGrad (Reddi et al., 2018) addresses
Adam’s non-convergence issue by introducing a maximum operation in the denominator of the up-
date rule. RAdam (Liu et al., 2019) incorporates a rectification term to reduce the variance caused
by adaptive learning rates in the early stages of training, effectively combining the benefits of both
adaptive and non-adaptive methods. AdamW (Loshchilov, 2017) separates weight decay from the
gradient update, improving regularization. Yogi (Zaheer et al., 2018) modifies the learning rate us-
ing a different update rule for the second moment to enhance stability. AdaBelief (Zhuang et al.,
2020) refines the second-moment estimation by focusing on the deviation of the gradient from its
exponential moving average rather than the squared gradient. This allows the step size to adapt
based on the “belief” in the current gradient direction, resulting in faster convergence and improved
generalization. Our method, CAdam, similarly leverages the consistency between the gradient and
momentum for adjustments. However, it preserves the original update structure of Adam and con-
siders the sign (directional consistency) between momentum and gradient, rather than their value
deviation, leading to better performance under distribution shifts and in noisy environments.
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Adapting to Distributional Changes in Online Learning In online learning scenarios, models
encounter data streams where the underlying distribution can shift over time, a phenomenon known
as concept drift (Lu et al., 2018). Adapting to these changes is essential for maintaining model
performance. One common strategy is to use sliding windows or forgetting mechanisms (Bifet &
Gavalda, 2007), which focus updates on the most recent data. Ensemble methods (Street & Kim,
2001) maintains a collection of models trained on different time segments and combine their predic-
tions to adapt to emerging patterns. Adaptive learning algorithms, such as Online Gradient Descent
(Zinkevich, 2003), dynamically adjust the learning rate or model parameters based on environmen-
tal feedback. Meta-learning approaches (Finn et al., 2017) aim to develop models that can quickly
adapt to new tasks or distributions with minimal updates. Additionally, (Viniski et al., 2021) demon-
strated that streaming-based recommender systems outperform batch methods in supermarket data,
particularly in handling concept drifts and cold start scenarios.

Robustness to Noisy Data General methods for noise robustness include robust loss functions
(Ghosh et al., 2017), which modify the objective function to reduce sensitivity to mislabeled or
corrupted data; regularization techniques (Srivastava et al., 2014), which prevent overfitting by in-
troducing noise during training; and noise-aware algorithms (Gutmann & Hyvärinen, 2010), which
explicitly model noise distributions to improve learning. In recommendation systems, enhancing
robustness against noisy data is crucial and is typically addressed through two main strategies: de-
tect and correct and detect and remove. Detect and correct methods, such as AutoDenoise (Ge
et al., 2023) and Dual Training Error-based Correction (DTEC) (Panagiotakis et al., 2021), identify
noisy inputs and adjust them to improve model accuracy by leveraging mechanisms like validation
sets or dual error perspectives. Conversely, detect and remove approaches eliminate unreliable data
using techniques such as outlier detection with statistical models (Xu et al., 2022) or semantic coher-
ence assessments (Saia et al., 2016) to cleanse user profiles. While these strategies can effectively
enhance recommendation quality, they often require explicit design and customization for specific
models or tasks, limiting their general applicability.

3 DETAILS OF CADAM OPTIMIZER

Notations We use the following notations for the CAdam optimizer:

• f(θ) ∈ R, θ ∈ Rd: f is the stochastic objective function to minimize, where θ is the
parameter vector in Rd.

• gt: the gradient at step t, gt = ∇θft(θt−1).

• mt: exponential moving average (EMA) of gt, calculated as mt = β1 ·mt−1+(1−β1) ·gt.
• vt: EMA of the squared gradients, given by vt = β2 · vt−1 + (1− β2) · g2t .

• m̂t, v̂t: bias-corrected estimates of mt and vt, respectively, where m̂t = mt

1−βt
1

and v̂t =
vt

1−βt
2

.

• α, ϵ: α is the learning rate, typically set to 10−3, and ϵ is a small constant to prevent division
by zero, typically set to 10−8.

• β1, β2: smoothing parameters, commonly set as β1 = 0.9, β2 = 0.999.

• θt: the parameter vector at step t.

• θ0: the initial parameter vector.

Comparison with Adam CAdam (Algorithm 1) and Adam both use the first and second moments
of gradients to adapt learning rates. The main difference between CAdam and Adam is that CAdam
introduces the alignment between the momentum and the gradient as a confidence metric to address
two common problems in real-world online learning: distribution shifts and noise.

In Adam, the update direction is determined by mt, the exponential moving average (EMA) of the
gradient gt, and vt, the EMA of the squared gradients g2t . This method assumes a relatively stable
data distribution, where mt serves as a good estimator of the optimal update direction. However, if
the data distribution changes, mt may no longer point in the correct direction. Adam will continue
to update using the outdated mt for several iterations until it eventually aligns with the new gradient
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Algorithm 1 Confidence Adaptive Moment Estimation (CAdam)
1: m0 ← 0, v0 ← 0, v̂max,0 ← 0, t← 0, θt = θ0
2: while θt not converged do
3: t← t+ 1
4: gt ← ∇θft(θt−1)
5: mt ← β1 ·mt−1 + (1− β1) · gt
6: vt ← β2 · vt−1 + (1− β2) · g2t
7: m̂t ← mt/(1− βt

1)
8: v̂t ← vt/(1− βt

2)
9: if AMSGrad then

10: v̂max,t ← max(v̂max,t−1, v̂t)
11: else
12: v̂max,t ← v̂t
13: end if
14: m̂t ← max(0,mt · sign(gt)) ▷ Element-wise mask out elements where mt · gt ≤ 0
15: θt ← θt−1 − α · m̂t/(

√
v̂max,t + ϵ)

16: end while
17: return θt

direction, leading to poor performance during this adaptation period. Additionally, when encoun-
tering noisy examples, Adam blindly updates using mt, which can be problematic as it equivalently
increases the learning rate, especially when the proportion of noisy data is high.

In contrast, CAdam dynamically checks the alignment between the current gradient gt and the mo-
mentum mt before proceeding with an update. If gt and mt point in the same direction, indicating
that the momentum aligns with the current gradient, CAdam performs the update using mt/

√
vt.

However, if gt and mt point in opposite directions, CAdam pauses the update for that parame-
ter to observe subsequent gradients. This pause allows CAdam to distinguish between a potential
distribution shift and noise.

If the reverse gradient signs persist in subsequent steps, it signals a distribution shift, and mt will
gradually change direction to reflect the new data pattern, while CAdam doesn’t update in these
iterations, avoiding incorrect updates. Conversely, if the gradient signs realign in the following steps,
it indicates that the previous opposite gradient was caused by noise. In this case, CAdam resumes
normal updates, effectively filtering out noisy gradients without making unnecessary updates in the
process.

In addition, CAdam also has an AMSGrad (Reddi et al., 2018) variant as described in 1 when
AMSGrad option is enabled.

Convergence Analysis Given a stream of functions ft : Rd → R, t = 1, 2, . . . , T , an online
learning algorithm chooses θt in each time step t and aims to minimize the T -step regret w.r.t. the
optimum, where the regret is defined as

RT :=

T∑
t=1

ft(θt)−
T∑

t=1

ft(θ
∗), θ∗ = argmin

θ

T∑
t=1

ft(θ). (1)

The online learning setting has been widely used to model real-world recommendation scenarios.
We show that CAdam has the same O(

√
T ) regret as Adam/AMSGrad under the same assumptions

made in Reddi et al. (2018). The detailed proofs can be found in the appendix.

Theorem 1 (Informal). Under the assumptions introduced in Reddi et al. (2018), the CAdam algo-
rithm (with AMSGrad correction) achieves a sublinear regret; that is,

RT = O(
√
T ). (2)

Remark: We follow the regret analysis in Reddi et al. (2018) and adopt the same set of assumptions.
In particular, Reddi et al. (2018) only considered convex functions and made bounded gradient
assumption. Recently, there is a body of work that has provided refined convergence analysis under
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Figure 1: Trajectory of Adam (top row) and CAdam (bottom row) under different distribution
changes: (Left) sudden change, (Middle) linear change, and (Right) sinusoidal change. The first
row corresponds to the L1 loss landscapes, while the second row corresponds to the L2 loss land-
scapes. Adam’s X and CAdam’s X denote the locations of the optimization trajectories for Adam
and CAdam, respectively, while X∗ represents the location of the optimal solution. CAdam shows
superior adaptability to distribution shifts.

nonconvex setting and much weaker assumptions (see e.g., Alacaoglu et al. (2020); Défossez et al.;
Zhang et al. (2022); Wang et al. (2024)). We leave the analysis of C-Adam under these more general
settings as an interesting future direction.

4 EXPERIMENT

In this section, we systematically evaluate the performance of CAdam across various scenarios, start-
ing with synthetic image data, followed by tests on a public advertisement dataset, and concluding
with A/B tests in a real-world recommendation system. We first examine CAdam’s behaviour under
distribution shift, and noisy conditions using the CIFAR-10 dataset(Krizhevsky et al., 2009) with
the VGG network(Simonyan & Zisserman, 2014). Next, we test CAdam against other popular opti-
mizers on the Criteo dataset(Jean-Baptiste Tien, 2014), focusing on different models and scenarios.
Finally, we conduct A/B tests with millions of users in a real-world recommendation system to val-
idate CAdam’s effectiveness in large-scale, production-level environments. The results demonstrate
that CAdam consistently outperforms Adam and other optimizers across different tasks, distribution
shifts, and noise conditions.

4.1 NUMERICAL EXPERIMENT

Distribution Change To illustrate the different behaviours of Adam and CAdam under distribu-
tion shifts, we designed three types of distribution changes for both L1 and L2 loss functions: (1)
Sudden change, where the minimum shifts abruptly at regular intervals; (2) Linear change, where
the minimum moves at a constant speed; and (3) Sinusoidal change, where the minimum oscillates
following a sine function, resulting in variable speed over time.

The loss functions are defined as:

L(x, t) =

{
|x− x∗(t)|, L1 loss,
(x− x∗(t))2, L2 loss,

5
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Figure 2: Trajectory of Adam (top row) and CAdam (bottom row) under noisy conditions on four
different optimization landscapes: (Left to Right) separable L1 loss, inseparable L1 loss, inseparable
L2 loss, and Rosenbrock function. Each column shows the optimization trajectory in the presence
of noise, where each dimension’s gradient is randomly flipped with a 50% probability. CAdam
demonstrates superior robustness, maintaining more stable convergence paths than Adam across all
tested functions.

where x∗(t) represents the position of the minimum at time t and is defined based on the type of
distribution change:

x∗(t) =


⌊ t
T ⌋ mod 2, sudden change,
t
T , linear change,
sin

(
2πt
T

)
, sinusoidal change.

The results of these experiments are presented in Figure 1. Across different loss functions and
distribution changes, CAdam closely follows the trajectory of the minimum point, being less affected
by incorrect momentum, exhibiting lower regret and demonstrating its superior ability to adapt to
shifting distributions.

Noisy Samples To compare Adam and CAdam in noisy environments, we conducted experiments
on four different optimization 2-d landscapes: (1) separable L1 loss, (2) inseparable L1 loss, (3)
inseparable L2 loss, and (4) Rosenbrock function. These landscapes are defined as follows:

1. Separable L1 Loss: f1(x, y) = |x|+ |y|.
2. Inseparable L1 Loss: f2(x, y) = |x+ y|+ |x−y|

10 .

3. Inseparable L2 Loss: f3(x, y) = (x+ y)2 + (x−y)2

10 .

4. Rosenbrock Function: f4(x, y) = (a− x)2 + b(y − x2)2, where a = 1 and b = 100.

To simulate noise in the gradients, we applied a random mask to each dimension of the gradient with
a 50% probability using the same random seed across different optimizers. Specifically, the gradient
components were multiplied by a uniformly distributed random value from the range [−1, 1] to
introduce noise:

∇noisy(x, y) =

{
∇f(x, y) · U(−1, 1), with probability p = 0.5,

∇f(x, y), otherwise,

The results of these experiments are shown in Figure 2. For comparison, the results without noise are
provided in Figure 5 in the appendix. The trajectory of CAdam exhibits fewer random perturbations
and lower regret, indicating its ability to resist noise interference.
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Figure 3: (Left) Performance of CAdam and Adam under different rotation speeds corresponding
to sudden distribution shift. CAdam demonstrates superior performance, with a more pronounced
advantage over Adam in the presence of rotation. (Right) A detailed view at a 60-degree rotation
between steps 1400 to 2300, showing the Alignment Ratio, Accuracy, and Loss. The red dashed
lines indicate the rotation points, where the alignment ratio decreases, resulting in fewer parameter
updates. This is followed by a gradual recovery in both the alignment ratio and accuracy, and a
decline in loss. CAdam’s accuracy drop is slower, and its recovery is faster than Adam’s, illustrating
its enhanced ability to adapt to distribution shifts.

4.2 CNN ON IMAGE CLASSIFICATION

We perform experiments using the VGG network on the CIFAR-10 dataset to evaluate the effec-
tiveness of CAdam in handling distribution shifts and noise. We synthesize three experimental
conditions: (1) sudden distribution changes, (2) continuous distribution shifts, and (3) added noise
to the samples. The hyperparameters for these experiments are provided in Section B.2.

Sudden Distribution Shift To simulate sudden changes in data distribution, we rotate the images
by a specific angle at the start of each epoch, relative to the previous epoch, as illustrated in Figure
3. CAdam consistently outperforms Adam across varying rotation speeds, with a more significant
performance gap compared to the non-rotated condition.

We define the alignment ratio as:

Alignment Ratio =
Number of parameters where mt · gt > 0

Total number of parameters
A closer inspection in Figure 3 reveals that, during the rotation (indicated by the red dashed line),
the alignment ratio decreases, resulting in fewer parameters being updated, followed by a gradual re-
covery. Correspondingly, the accuracy declines and subsequently improves, while the loss increases
before decreasing. Notably, during these shifts, CAdam’s accuracy drops more slowly and recovers
faster than Adam’s, indicating its superior adaptability to new data distributions.

Continuous Distribution Shifts In contrast to sudden distribution changes, we also tested the
scenario where the data distribution changes continuously. Specifically, we simulated this by rotating
the data distribution at each iteration by an angle. The results, shown in Figure 4, indicate that as
the rotation speed increases, the advantage of CAdam over Adam becomes more pronounced.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: (Left) Performance of CAdam and Adam under continuous distribution shifts with dif-
ferent rotation speeds. CAdam demonstrates superior performance, with its advantage becoming
more pronounced as the rotation speed increases. (Right) The effect of adding noise to the samples.
CAdam exhibits a slower accuracy drop compared to Adam, showcasing its enhanced robustness to
noisy data.

Noisy Samples To evaluate the optimizer’s robustness to noise, we introduced noise into the
dataset by randomly selecting a certain number of batches in each epoch (resampling for each epoch)
and replacing the labels of these batches with random values. The results are presented in Figure 4.
We observed that as the proportion of noisy labels increases, the consistency of CAdam decreases,
causing it to update fewer parameters in each iteration. Despite this, both CAdam and Adam experi-
ence a performance decline in test set accuracy as noise increases. Nevertheless, CAdam consistently
outperforms Adam, maintaining accuracy even with 40% noise, comparable to Adam’s performance
in a noise-free setting by the end of training.

4.3 PUBLIC ADVERTISEMENT DATASET

Experiment Setting To evaluate the effectiveness of the proposed CAdam optimizer, we con-
ducted experiments using various models on the Criteo-x4-001 dataset(Jean-Baptiste Tien, 2014).
This dataset contains feature values and click feedback for millions of display ads and is commonly
used to benchmark algorithms for click-through rate (CTR) prediction(Zhu et al., 2021). To simu-
late a real-world online learning scenario, we trained the models on data up to each timestamp in a
single epoch(Fukushima et al., 2020). This setup replicates the environment where new data arrives
continuously, requiring the model to adapt quickly.

Furthermore, for sparse parameters (e.g., embeddings), we update the optimizer’s state only when
there is a non-zero gradient for this parameter in the current batch using SparseAdam implemen-
tation in Pytorch(Paszke et al., 2019). This approach ensures that the optimizer’s state reflects the
parameters influenced by recent data changes. The hyperparameters are provided in Appendix B.3.

We benchmarked CAdam and other popular optimizers, including SGD, SGDM(Qian, 1999),
AdaGrad(Duchi et al., 2011), AdaDelta(Zeiler, 2012), RMSProp, Adam(Kingma & Ba, 2015),
AMSGrad(Reddi et al., 2018), and AdaBelief(Zhuang et al., 2020), on various models such as
DeepFM(77M)(Guo et al., 2017), WideDeep(77M)(Cheng et al., 2016), DNN(74M)(Covington
et al., 2016), PNN(79M)(Qu et al., 2016), and DCN(74M)(Wang et al., 2017). The performance
of these optimizers was evaluated using the Area Under the Curve (AUC) metric.
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Table 1: AUC performance of different optimizers on the Criteo dataset across various models.
Results are averaged over three seeds with mean and standard deviation (±) reported. CAmsGrad
denotes the AMSGrad variant of CAdam, which achieves the highest average performance.

DeepFM WideDeep DNN PNN DCN Avg
SGD 71.90±.006 71.88±.013 68.12±.043 67.61±.318 69.55±.026 69.81
SGDM 76.59±.044 76.32±.021 78.80±.014 76.17±.050 77.90±.018 77.16
AdaGrad 71.77±.032 71.50±.011 68.65±.022 67.49±.027 69.55±.020 69.79
AdaDelta 71.91±.071 71.64±.005 69.76±.004 67.59±.025 69.76±.024 70.13
RMSProp 71.82±.010 71.54±.021 68.72±.005 67.51±.004 69.60±.007 69.84
Adam 80.87±.011 80.90±.004 80.89±.003 80.90±.006 81.05±.005 80.92
AdaBelief 80.84±.008 80.90±.002 80.88±.011 80.89±.002 81.02±.044 80.91
AdamW 80.87±.008 80.90±.010 80.88±.010 80.90±.002 81.00±.047 80.91
AmsGrad 80.88±.004 80.92±.008 80.91±.001 80.92±.009 81.08±.009 80.94

CAdam 80.88±.008 80.93±.004 80.90±.002 80.93±.006 81.06±.009 80.94
CAmsGrad 80.90±.006 80.93±.007 80.92±.005 80.94±.009 81.09±.010 80.96

Main Results The results in Table 1 show that CAdam and its AMSGrad variants outperform
other optimizers across different models. While the AMSGrad variants perform better on certain
datasets, they do not consistently outperform standard CAdam. Both versions of CAdam generally
achieve higher AUC scores than other optimizers, demonstrating their effectiveness in the online
learning setting.

Robustness under Noise To simulate a noisier environment, we introduced noise into the Criteo
x4-001 dataset by flipping 1% of the negative training samples to positive. All other settings re-
mained unchanged. The results in Table 2 show that CAdam consistently outperforms Adam in
terms of both AUC and the extent of performance drop. This demonstrates CAdam’s robustness in
handling noisy data.

Table 2: Results of Adam and CAdam on the Noisy Criteo dataset, averaged over three seeds.
“Drop” indicates the decrease in performance compared to training on the original Criteo dataset.
CAdam shows a smaller performance drop, highlighting its robustness to noise.

DeepFM WideDeep DNN PNN DCN
Adam 80.51±.008 80.47±.006 80.48±.014 80.66±.006 80.51±.010

CAdam 80.81±.007 80.79±.006 80.78±.005 80.96±.026 80.77±.007

Adam Drop −0.36±.014 −0.43±.007 −0.41±.016 −0.23±.012 −0.54±.013

CAdam Drop −0.08±.014 −0.14±.009 −0.12±.004 +0.04±.031 −0.28±.015

4.4 EXPERIMENT ON REAL-WORLD RECOMMENDATION SYSTEM

In real-world recommendation scenarios, the differences from the Criteo dataset experiments are
quite significant. First, both data volume and model sizes are much larger, with models used in
the following experiments ranging from 8.3 billion to 330 billion parameters—100 to 10,000 times
larger. Second, as these are online experiments, unlike offline experiments with a fixed dataset, the
model’s output directly influences user behaviour. To test the effectiveness of CAdam in this setting,
we conducted A/B tests on internal models serving millions of users across seven different scenarios
(2 pre-ranking, 4 recall, and 1 ranking).

During these online experiments, we used a batch size of B = 4096 The evaluation metric was the
Generalized Area Under the Curve (GAUC). Due to limited resources, we compared only Adam and
CAdam, running the experiments for 48 hours.

The results, shown in Table 3, indicate that CAdam consistently outperformed Adam across all test
scenarios, demonstrating its superiority in real-world applications.
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Table 3: GAUC results for Adam and CAdam across seven internal experiment settings. ”Pr” de-
notes pre-ranking, ”Rec” represents recall, and ”Rk” indicates ranking. CAdam consistently outper-
forms Adam, highlighting its effectiveness in real-world recommendation scenarios.

Metric Pr 1 Pr 2 Rec 1 Rec 2 Rec 3 Rec 4 Rk 1 Average
Adam 87.41% 82.89% 90.18% 82.41% 84.57% 85.39% 88.52% 85.34%
CAdam 87.61% 83.28% 90.43% 82.61% 85.06% 85.49% 88.74% 85.64%
Impr. 0.20% 0.39% 0.25% 0.20% 0.49% 0.10% 0.22% 0.30%

5 CONCLUSION

In this paper, we addressed the inherent limitations of the Adam optimizer in online learning en-
vironments, particularly its sluggish adaptation to distributional shifts and heightened sensitivity to
noisy data. To overcome these challenges, we introduced CAdam (Confidence Adaptive Moment
Estimation), a novel optimization strategy that enhances Adam by incorporating a confidence-based
mechanism. This mechanism evaluates the alignment between momentum and gradients for each
parameter dimension, ensuring that updates are performed judiciously. When momentum and gradi-
ents are aligned, CAdam updates the parameters following Adam’s original formulation; otherwise,
it temporarily withholds updates to discern between true distribution shifts and transient noise.

Our extensive experiments across synthetic benchmarks, public advertisement datasets, and large-
scale real-world recommendation systems consistently demonstrated that CAdam outperforms
Adam and other well-established optimizers in both adaptability and robustness. Specifically,
CAdam showed superior performance in scenarios with sudden and continuous distribution shifts, as
well as in environments with significant noise, achieving higher accuracy and lower regret. More-
over, in live A/B testing within a production recommendation system, CAdam led to substantial
improvements in model performance and gross merchandise volume (GMV), underscoring its prac-
tical effectiveness.

Future work may explore further refinements of the confidence assessment mechanism, its integra-
tion with other optimization frameworks, and its application to a broader range of machine learning
models and real-time systems. Ultimately, CAdam represents a promising advancement in the devel-
opment of more resilient and adaptive optimization algorithms for dynamic learning environments.
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A PROOFS OF THEOREM 1

Given a stream of objectives ft : Rd → R, t = 1, 2, . . . , T , online learning aims to minimize the
regret w.r.t. the optimum; that is,

RT :=

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
∗), x∗ = argmin

x

T∑
t=1

ft(x). (3)

Recall that each update in CAdam can be characterized as follows1:

mt = β1,tmt−1 + (1− β1,t)gt, (4)

vt = β2vt−1 + (1− β2)g
2
t , (5)

mt,Ξt
=

{
mt,i, i ∈ Ξt

0, else , (6)

v̂t = max(v̂t−1, vt), (7)
xt+1 = xt − αtmt,Ξt

/v̂t. (8)

where Ξt := {i ∈ [d] : mt,i · gt,i ≥ 0} indicates the set of active entries at step t. For notation
clarity, let xt,Ξ be the vector of which the entries not belonging to Ξ are masked. Following the
AMSGrad (Reddi et al., 2018), we are to prove that the sequence of points obtained by CAdam
satisfies RT /T → 0 as T increases.

We first introduce three standard assumptions:
Assumption 1. Let ft : Rd → R, t = 1, 2, . . . , T be a sequence of convex and differentiable
functions with ∥∇ft(x)∥∞ ≤ G∞ for all t ∈ [T ].

Assumption 2. Let {mt}, {vt} be the sequences used in CAdam, αt = α/
√
t, β1,t = β1λ

t−1 <
1, γ = β1/

√
β2 < 1 for all t ∈ [T ].

Assumption 3. The points involved are within a bounded diameter D∞; that is, for the optimal
point x∗ and any points xt generated by CAdam, it holds ∥xt − x∗∥∞ ≤ D∞/2.

We present several essential lemmas in the following. Given that some of these lemmas have been
partially established in prior works (Kingma & Ba, 2015; Reddi et al., 2018), we include them here
for the sake of completeness.
Lemma 1. For a convex and differentiable function f : Rd → R, we have

f(x)− f(y) ≤ ⟨∇f(x), x− y⟩. (9)

Lemma 2. Under Assumption 1 and 2, we have〈
gt,Ξt

, xt,Ξt
− x∗

Ξt

〉
≤ 1

2αt(1−β1,t)

(
∥V 1/4

t (xt,Ξt
− x∗

Ξt
)∥2 − ∥V 1/4

t (xt+1,Ξt
− x∗

Ξt
)∥2

)
+

β1,t

2αt(1−β1,t)
∥V 1/4

t (xt − x∗)∥2

+ αt

2(1−β1,t)
∥V −1/4

t mt∥2 + αtβ1,t

2(1−β1,t)
∥V −1/4

t mt−1∥2,
(10)

where Vt := diag(v̂t).

Proof. CAdam updates the parameters as follows

xt+1,Ξt
= xt,Ξt

− αtmt,Ξt
/
√

v̂t = xt,Ξt
− αtV

−1/2
t

(
β1,tmt−1,Ξt

+ (1− β1,t)gt,Ξt

)
.

Subtracting x∗ from both sides yields

∥V 1/4
t (xt+1,Ξt

− x∗
Ξt
)∥22

=∥V 1/4
t (xt,Ξt

− x∗
Ξt
)− αtV

−1/4
t mt,Ξt

∥22
=∥V 1/4

t (xt,Ξt − x∗
Ξt
)∥22 − 2⟨αtV

−1/4
t mt,Ξt , V

1/4
t (xt,Ξt − x∗

Ξt
)⟩+ ∥αtV

−1/4
t mt,Ξt∥22

=∥V 1/4
t (xt,Ξt

− x∗
Ξt
)∥22 − 2αt⟨β1,tmt−1,Ξt

+ (1− β1,t)gt,Ξt
, xt,Ξt

− x∗
Ξt
⟩+ ∥αtV

−1/4
t mt,Ξt

∥22.
1Note that we omit the bias corrections for clarity purpose. It is not difficult to modify the proofs to obtain

a more general one.
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Rearranging the equation gives〈
gt,Ξt

, xt,Ξt
− x∗

Ξt

〉
=

1

2αt(1− β1,t)

(
∥V 1/4

t (xt,Ξt
− x∗

Ξt
)∥22 − ∥V

1/4
t (xt+1,Ξt

− x∗
Ξt
)∥22

)
− β1,t

1− β1,t

〈
mt−1,Ξt

, xt,Ξt
− x∗

Ξt

〉
+

αt

2(1− β1,t)
∥V −1/4

t mt,Ξt
∥22.

The results follow from the Cauchy-Schwarz inequality and Young’s inequality:

− β1,t

1− β1,t

〈
mt−1,Ξt , xt,Ξt − x∗

Ξt

〉
=

β1,t

1− β1,t

〈
mt−1,Ξt , x

∗
Ξt
− xt,Ξt

〉
=

β1,t

1− β1,t

〈√
αtV

−1/4
t mt−1,Ξt

,
1
√
αt

V
1/4
t (x∗

Ξt
− xt,Ξt

)
〉

≤ β1,t

1− β1,t

(√
αt∥V −1/4

t mt−1,Ξt
∥ · 1
√
αt
∥V 1/4

t (x∗
Ξt
− xt,Ξt

)∥
)

≤ β1,t

1− β1,t

(αt

2
∥V −1/4

t mt−1,Ξt∥2 +
1

2αt
∥V 1/4

t (xt,Ξt − x∗
Ξt
)∥2

)
≤ β1,t

1− β1,t

(αt

2
∥V −1/4

t mt−1∥2 +
1

2αt
∥V 1/4

t (xt − x∗)∥2
)
,

and the fact that ∥V −1/4
t mt,Ξt

∥22 ≤ ∥V
−1/4
t mt∥22.

Lemma 3. Under Assumption 1, 2, and 3, we have〈
gt, xt − x∗

〉
≤

〈
gt,Ξ, xt,Ξ − x∗

Ξ

〉
+

dβ1λ
t−1D∞G∞

1− β1
. (11)

Proof. If the i-th entry is not updated at step t, i.e., i ∈ [d] \ Ξt, it can be derived that(
β1,tmt−1,i + (1− β1,t)gt,i

)
· gt,i ≤ 0

⇒
(
β1,tmt−1,i + (1− β1,t)gt,i

)
· sgn(gt,i) ≤ 0

⇒− β1,t|mt−1,i|+ (1− β1,t)|gt,i| ≤ 0

⇒|gt,i| ≤
β1,t

1− β1,t
|mt−1,i|

⇒|gt,i| ≤
β1,t

1− β1,t
G∞ ← Assumption 1

⇒|gt,i| ≤
β1λ

t−1

1− β1
G∞, i ∈ [d] \ Ξt. ← Assumption 2

With Assumption 3, it immediately yields the desired inequality that〈
gt, xt − x∗

〉
=

〈
gt,Ξ, xt,Ξ − x∗

Ξ

〉
+

〈
gt,[d]\Ξ, xt,[d]\Ξ − x∗

[d]\Ξ

〉
≤

〈
gt,Ξ, xt,Ξ − x∗

Ξ

〉
+

d∑
i=1

β1λ
t−1D∞G∞

1− β1
.

Lemma 4. Given Assumption 1, 2, and 3, we have∑
t∈[T ]

β1,t

2αt(1− β1,t)
∥V 1/4

t (xt − x∗)∥2 ≤ dD2
∞G∞

2α(1− β1)(1− λ)2
. (12)
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Proof. ∑
t∈[T ]

β1,t

2αt(1− β1,t)
∥V 1/4

t (xt − x∗)∥2

≤ 1

2α(1− β1)

∑
t∈[T ]

√
tλt−1∥V 1/4

t (xt − x∗)∥2

≤ G∞

2α(1− β1)

∑
t∈[T ]

√
tλt−1∥xt − x∗∥2 ← Assumption 1

≤ dD2
∞G∞

2α(1− β1)

∑
t∈[T ]

√
tλt−1 ← Assumption 3

≤ dD2
∞G∞

2α(1− β1)

∑
t∈[T ]

λt−1t

≤ dD2
∞G∞

2α(1− β1)

1

(1− λ)2
.

Lemma 5 (Reddi et al. (2018) Lemma2). Under Assumption 2, we have∑
t∈[T ]

αt∥V −1/4
t mt∥2 ≤

αdG∞

(1− γ)(1− β1)
√
1− β2

√
T , (13)

where γ := β1/
√
β2.

We are ready to prove the final results now. Concretely, Theorem 1 is a straightfoward corollary of
the following conclusion.
Theorem 2. Under the Assumption 1, 2, and 3, the regret is converged with

RT ≤
dD2

∞G∞
√
T

2α(1− β1)
+

d(2α+D∞)D∞G∞

2α(1− β1)(1− λ)2
+

αdG∞
√
T

(1− γ)(1− β1)2
√
1− β2

. (14)

Proof. Based on Lemma 1, Lemma 2, and Lemma 3, the regret can be firstly bounded by

RT =
∑
t∈[T ]

(ft(xt)− ft(x
∗)) ≤

∑
t∈[T ]

⟨gt, xt − x∗⟩

≤
∑
t∈[T ]

⟨gt,Ξt
, xt,Ξt

− x∗
Ξt
⟩+

∑
t∈[T ]

dβ1λ
t−1D∞G∞

1− β1

≤
∑
t∈[T ]

1

2αt(1− β1,t)

(
∥V 1/4

t (xt,Ξt − x∗
Ξt
)∥2 − ∥V 1/4

t (xt+1,Ξt − x∗
Ξt
)∥2

)
︸ ︷︷ ︸

1⃝

+
∑
t∈[T ]

β1,t

2αt(1− β1,t)
∥V 1/4

t (xt − x∗)∥2

︸ ︷︷ ︸
2⃝

+
∑
t∈[T ]

αt

2(1− β1,t)
∥V −1/4

t mt∥2︸ ︷︷ ︸
3⃝

+
∑
t∈[T ]

αtβ1,t

2(1− β1,t)
∥V −1/4

t mt−1∥2︸ ︷︷ ︸
4⃝

+
∑
t∈[T ]

dβ1λ
t−1D∞G∞

1− β1︸ ︷︷ ︸
5⃝

.

Let us address each term in turn. For the first term, we are to separately bound each entry and the
results follows from the summation. For the i-th entry, let T i

+ = [t : i ∈ Ξt] be a sequence collecting
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all steps that xi is succesfully updated, and t̃k ∈ T i
+ be the k-th element of T i

+. For simplicity, we
will omit the superscript without ambiguity.

1⃝i =

t̃|T+|∑
t=t̃1

1

2αt(1− β1,t)

(
(v̂

1/4
t,i (xt,i − x∗

i ))
2 − (v̂

1/4
t,i (xt+1,i − x∗

i ))
2
)

≤
v̂
1/2

t̃1,i
(xt̃1,i

− x∗
i )

2

2αt̃1
(1− β1)

+
1

2

t̃|T+|∑
t=t̃2

[ v̂1/2t,i (xt,i − x∗
i )

2

αt(1− β1,t)
−

v̂
1/2
t−1,i(xt,i − x∗

i )
2

αt−1(1− β1,t−1)

]

=
v̂
1/2

t̃1,i
(xt̃1,i

− x∗
i )

2

2αt̃1
(1− β1)

+
1

2

t̃|T+|∑
t=t̃2

[ v̂1/2t,i (xt,i − x∗
i )

2

αt(1− β1,t−1)
−
v̂
1/2
t,i (xt,i − x∗

i )
2

αt(1− β1,t−1)
+

v̂
1/2
t,i (xt,i − x∗

i )
2

αt(1− β1,t)︸ ︷︷ ︸
≤0

−
v̂
1/2
t−1,i(xt,i − x∗

i )
2

αt−1(1− β1,t−1)

]

≤
v̂
1/2

t̃1,i
(xt̃1,i

− x∗
i )

2

2αt̃1
(1− β1)

+
1

2

t̃|T+|∑
t=t̃2

1

1− β1,t−1︸ ︷︷ ︸
≤1/(1−β1)

[ v̂1/2t,i (xt,i − x∗
i )

2

αt
−

v̂
1/2
t−1,i(xt,i − x∗

i )
2

αt−1

]
︸ ︷︷ ︸

≥0 by v̂t,i≥v̂t−1,i

≤
v̂
1/2

t̃1,i
(xt̃1,i

− x∗
i )

2

2αt̃1
(1− β1)

+
D2

∞
2(1− β1)

t̃|T+|∑
t=t̃2

[ v̂1/2t,i

αt
−

v̂
1/2
t−1,i

αt−1

]
← Assumption 3

=
v̂
1/2

t̃1,i
(xt̃1,i

− x∗
i )

2

2αt̃1
(1− β1)

+
D2

∞
2(1− β1)

[ v̂1/2t̃|T+|,i

αt̃|T+|

−
v̂
1/2

t̃1,i

αt̃1

]

≤ D2
∞

2(1− β1)

v̂
1/2

t̃|T+|,i

αt̃|T+|

≤ D2
∞G∞

√
T

2α(1− β1)
.

Hence,

1⃝ =
∑
i∈[d]

1⃝i ≤
dD2

∞G∞
√
T

2α(1− β1)
. (15)

2⃝ =
∑
t∈[T ]

β1,t

2αt(1− β1,t)
∥V 1/4

t (xt − x∗)∥2 ≤ dD2
∞G∞

2α(1− β1)(1− λ)2
← Lemma 4.

3⃝ =
∑
t∈[T ]

αt

2(1− β1,t)
∥V −1/4

t mt∥2 ≤
1

2(1− β1)

∑
t∈[T ]

αt∥V −1/4
t mt∥2

≤ αdG∞
√
T

2(1− γ)(1− β1)2
√
1− β2

. ← Lemma 5

4⃝ =
∑
t∈[T ]

αtβ1,t

2(1− β1,t)
∥V −1/4

t mt−1∥2 ≤
1

2(1− β1)

∑
t∈[T ]

αt∥V −1/4
t−1 mt−1∥2

≤ 1

2(1− β1)

∑
t∈[T ]

αt−1∥V −1/4
t−1 mt−1∥2 =

1

2(1− β1)

∑
t∈[T−1]

αt∥V −1/4
t mt∥2

≤ αdG∞
√
T

2(1− γ)(1− β1)2
√
1− β2

. ← Lemma 5
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5⃝ =
∑
t∈[T ]

dβ1λ
t−1D∞G∞

1− β1
=

dβ1D∞G∞

1− β1

∑
t∈[T ]

λt−1 ≤ dD∞G∞

(1− β1)(1− λ)2
.

Finally, we have

RT ≤
dD2

∞G∞
√
T

2α(1− β1)
+

d(2α+D∞)D∞G∞

2α(1− β1)(1− λ)2
+

αdG∞
√
T

(1− γ)(1− β1)2
√
1− β2

.

B HYPERPARAMETERS

B.1 NUMERICAL EXPERIMENT

Distribution Shift For the distribution shift experiments, we used the following hyperparameters:
a cycle length of 40, a learning rate α = 0.5, exponential decay rates for the first and second
moment estimates β1 = 0.9 and β2 = 0.999 respectively, and a small constant ϵ = 1 × 10−8 to
prevent division by zero. The number of time steps was set to T = 100.

Noisy Samples For the noisy samples experiments, the hyperparameters were set as follows: a
learning rate of 0.1, β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8, and a maximum number of iterations
T = 1500.

B.2 CNN ON IMAGE CLASSIFICATION

For the CNN-based image classification experiments on the CIFAR-10 dataset, we used a learning
rate of 3× 10−4, β1 = 0.9, β2 = 0.999, weight decay of 0.0005, and ϵ = 1× 10−8.

B.3 PUBLIC ADVERTISEMENT DATASET

Due to resource limitations, we performed a grid search over the learning rates for each opti-
mizer and model using the following range: {lr default/5, lr default/2, lr default, 2× lr default, 5×
lr default}, where lr default is the default learning rate specified in the FuxiCTR library. We re-
ported the best performance for each optimizer based on this search. All other hyperparameters
were kept the same as those in the FuxiCTR library (Zhu et al., 2021; 2022).

C ADDITIONAL EXPERIMENTS

C.1 NUMERICAL EXPERIMENTS

Figure 5 illustrate how both optimizers perform in a noise-free environment.

C.2 EXPERIMENT ON RESNET AND DENSENET

We perform experiments on Resnet(He et al., 2016) and Densenet(Huang et al., 2017) to further
illustrate the effectiveness of CAdam.

C.3 RELATIONSHIP BETWEEN LEARNING RATE, PERFORMANCE, AND ALIGNMENT RATIO

We tested different learning rates on the Criteo x4 001 dataset using the DeepFM model to under-
stand the relationship between the learning rate, performance, and alignment ratio. The results in
4 show that the performance initially increases with the learning rate but starts to decline as the
learning rate continues to rise. Conversely, the consistent ratio R steadily decreases as the learning
rate increases.
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Figure 5: Performance of Adam (top row) and CAdam (bottom row) on four different optimization
landscapes without noise: (Left to Right) separable L1 loss, inseparable L1 loss, inseparable L2
loss, and Rosenbrock function. This comparison highlights the natural behavior of both optimizers
in a noise-free environment.

Figure 6: Performance of CAdam and Adam under different rotation speeds corresponding to sudden
distribution shift. The results for Resnet are shown on the left, while those for Densenet are presented
on the right.
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Figure 7: Performance of CAdam and Adam under different rotation speeds corresponding to con-
tinuous distribution shift. The results for Resnet are shown on the left, while those for Densenet are
presented on the right.

Figure 8: Performance of CAdam and Adam under noisy data. The results for Resnet are shown on
the left, while those for Densenet are presented on the right.
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Learning Rate AUC Alignment Ratio (R)
0.0001 80.59% 63.02%
0.0003 80.77% 59.17%
0.0005 80.80% 55.78%
0.001 80.83% 46.45%
0.0015 80.83% 42.01%
0.002 80.75% 42.53%
0.0025 80.66% 41.28%
0.003 80.55% 37.97%
0.0035 80.46% 32.09%
0.004 80.28% 32.06%

Table 4: Performance Metrics and Alignment Ratio for Different Learning Rates.
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