
Object-centric architectures enable efficient causal
representation learning

Amin Mansouri
Mila, Quebec AI Institute

Jason Hartford
Mila, Quebec AI Institute

Yan Zhang
Samsung - SAIT AI Lab Montréal

Yoshua Bengio
Mila, Quebec AI Institute

Abstract

Causal representation learning has showed a variety of settings in which we can
disentangle latent variables with identifiability guarantees (up to some reasonable
equivalence class). Common to all of these approaches is the assumption that
(1) the latent variables are represented as d-dimensional vectors, and (2) that
the observations are the output of some injective generative function of these
latent variables. While these assumptions appear benign, we show that when
the observations are of multiple objects, the generative function is no longer
injective and disentanglement fails in practice. We can address this failure by
combining recent developments in object-centric learning and causal representation
learning. By modifying the Slot Attention architecture (Locatello et al., 2020b),
we develop an object-centric architecture that leverages weak supervision from
sparse perturbations to disentangle each object’s properties. This approach is more
data-efficient in the sense that it requires significantly fewer perturbations than
a comparable approach that encodes to a Euclidean space and we show that this
approach successfully disentangles the properties of a set of objects in a series of
simple image-based disentanglement experiments.

1 Introduction

Consider the image in Figure 1 (left). We can clearly see four different colored balls, each at a
different position. But asking, “Which is the first shape? And which is the second?" does not have a
clear answer: the image just depicts an unordered set of objects. This observation seems trivial, but it
implies that there exist permutations of the objects which leave the image unchanged. For example,
we could swap the positions of the two blue balls without changing a single pixel in the image.

In causal representation learning, the standard assumption is that our observations x are “rendered”
by some generative function g(·) that maps the latent properties of the image z to pixel space (i.e.
x = g(z)); the goal is to disentangle the image by finding an “inverse” map that recovers z from
x up to some irrelevant transformation. The only constraint on g(·) that is assumed by all recent
papers (for example Hyvarinen and Morioka, 2016, 2017; Locatello et al., 2020a; Khemakhem
et al., 2020a,b; Lachapelle et al., 2022; Ahuja et al., 2022a,b, 2023), is that g(·) is injective1, such
that g(z1) = g(z2) implies that z1 = z2. But notice that if we represent the latents z as some
d-dimensional vectors in Euclidean space, then whenever we observe objects like those shown in
Figure 1, this injectivity assumption fails: symmetries in the objects’ pixel representation imply that

1Some papers place stronger constraints on g(·), such as linearity Hyvärinen and Oja, 2000; Squires et al.,
2023, sparsity Moran et al., 2022; Zheng et al., 2022, or constraints on g’s Jacobian Gresele et al., 2021; Brady
et al., 2023 but injectivity is the weakest assumption common to all approaches.

Accepted to the NeurIPS 2023 Workshop on Causal Representation Learning.

1 2 3 4

Number of balls

0.0

0.2

0.4

0.6

0.8

1.0

M
C

C
sc

o
re

Injective ResNet

Non-injective ResNet

Disentangled Slot Attention

Figure 1: (Left) An example image of simple objects. (Right) Mean correlation coefficient (MCC)
score which measures the correlation between inferred latent variables and their associated ground
truth values. Ahuja et al. (2022b)’s approach achieves almost perfect MCC scores (i.e. a score
≈ 1) when the ball color is used to make the generative function injective (“Injective ResNet”), but
achieves an MCC score of at most 1

k where k is the number of objects when colors are selected
randomly (“Non-injective ResNet”). We show that it is possible to recover the injective performance
by disentangling object-centric representations (“Disentangled Slot Attention”).

there exist non-trivial permutation matrices Π, such that g(z) = g(Πz). This is not just a theoretical
inconvenience: Figure 1 (right) shows that when the identity of the balls is not distinguishable, the
disentanglement performance of a recent approach from Ahuja et al. (2022b) is upper-bounded by
1/k where k is the number of balls.

In parallel to this line of work, there has been significant progress in the object-centric learning
literature (e.g. van Steenkiste et al., 2018a; Goyal et al., 2019; Locatello et al., 2020b; Goyal et al.,
2020; Lin et al., 2020; Zhang et al., 2023) that has developed a suite of architectures that allow us
to separate observations into sets of object representations. Two recent papers (Brady et al., 2023;
Lachapelle et al., 2023) showed that the additive decoders used in these architectures give rise to
provable object-wise disentanglement, but they did not address the task of disentangling the objects’
associated properties. In this paper we show that by leveraging object-centric architectures, we
effectively reduce the multi-object problem to a set of single-object disentanglement problems which
not only addresses injectivity failures, but also results in a significant reduction in the number of
perturbations we need to observe to disentangle properties using Ahuja et al. (2022b)’s approach. We
illustrate these results by developing a property disentanglement algorithm that combines Zhang et al.
(2023)’s SA-MESH object-centric architecture with Ahuja et al. (2022b)’s approach to disentangle-
ment and show that our approach is very effective at disentangling the properties of objects on both
2D and 3D synthetic benchmarks.

In summary, we make the following contributions:

• We highlight two problems that arise from objects which violate standard assumptions used to
identify latent variables (Section 2).

• We show that these problems can be addressed by leveraging object-centric architectures, and
that using object-centric architectures also enables us to use a factor of k fewer perturbations to
disentangle properties, where k is the number of objects (Section 3).

• We implement the first object-centric disentanglement approach that disentangles object proper-
ties with identifiability guarantees (Section 4).

• We achieve strong empirical results on both 2D and 3D synthetic benchmarks (Section 5).

We will build on a recent line of work that leverages paired samples from sparse perturbations to
identify latent variables (Locatello et al., 2020a; Brehmer et al., 2022; Ahuja et al., 2022b). Our
approach generalizes Ahuja et al. (2022b) to address the non-injectivity induced by objects, so we
will briefly review their main results. Ahuja et al. assume that they have access to paired samples,
(x, x′) where x = g(z), x′ = g(z′), and zi is perturbed by a set of sparse offsets ∆ = {δ1, . . . , δk},
such that z′i = zi + δi for all i ∈ {1, . . . , k}. They show that if g(·) is an injective analytic function
from Rd → X , every δ ∈ ∆ is 1-sparse, and at least d linearly independent offsets are observed, then
an encoder, f that minimizes the following objective recovers the true z up to permutations, scaling

2

and an offset (Ahuja et al., 2022b, Theorem 1),

f̂ ∈ arg minf ′Ex,x′,δ

[
(f ′(x) + δ − f ′(x′))

2
]

⇒ f̂(x) = ẑ = ΠΛz + c (1)

where Π is a permutation matrix, Λ is an invertible diagonal matrix and c is an offset.

2 Objects result in non-identifiability

We begin by formally characterizing the challenges that arise when images contain multiple objects.

Data generating process. We assume that a set Z := {zi}ki=1 of k objects is drawn from some joint
distribution, PZ . In order to compare set and vector representations, let vecπ(Z) denote a flattened
vector representation of Z ordered according to some permutation π ∈ Sym(k), the symmetric
group of permutations of k objects; when π is omitted, vec(Z) simply refers to an arbitrary default
ordering (i.e. the identity element of the group). Each object is described by a d-dimensional vector
of properties zi ∈ Rd, and hence vec(Z) ∈ Rkd. We say objects have shared properties if the
coordinates of zi have consistent meaning across objects, and restrict our focus to such properties.

The non-injectivity problem. We observe images x which are generated via a generative function
g(·) that renders a set of object properties into a scene in pixel space, such that x = g(Z). While
g(·) is a set function, we can define an equivalent vector generative function, g, which, by definition,
produces the same output as g(Z); i.e. for all π ∈ Sym(k), g(vecπ(Z)) = g(Z). This generative
function g taking vectors as input is consistent with standard disentanglement assumptions except
that it is not injective:
Proposition 1. If g(vecπ(Z)) = g(Z) for all π ∈ Sym(k), then g(·) is not injective.

This proposition (Proof given in appendix A.1) simply states that if images are composed of sets of
objects, then if we model the generative function as a map from a Euclidean space, this map will
not be injective by construction. With the exception of Lachapelle et al. (2023), all of the causal
representation learning papers cited in appendix B (related work) assume the generative function
g is injective. To see why injectivity is necessary in general, consider an image with two objects.
If the two objects are identical, then there are two disentangled solutions corresponding to the two
permutations, so it is not possible to identify a unique solution.

The object identity problem. When applying sparse perturbations on Z, we are effectively perturb-
ing one coordinate of one object. However, how can we know which object of the multiple possible
objects in Z we have perturbed? In the case of injective mappings, this is simple: since there is a
consistent ordering for them, we know that a coordinate in vec(Z) corresponds to the same object
before and after the perturbation.

This is no longer the case in our setting. Since the objects are part of a set, we cannot rely on their
ordering. In fact, we know these ordering changes must be present due to the responsibility problem:
Proposition 2 (Zhang et al. (2020); Hayes et al. (2023)). If the data is generated according to the data
generating process described above with g(vecπ(Z)) := g(Z) and k > 1, then f(·) is discontinuous.

See appendix A.2 and Hayes et al. (2023) for a general proof. These discontinuities manifest them-
selves as changes in permutation from one vecπ1(Z) to another vecπ2 ̸=π1(Z). In disentanglement
approaches that leverage paired samples (e.g. Ahuja et al., 2022b; Brehmer et al., 2022), continuity
enables the learning algorithm to implicitly rely on the object identities to stay consistent. Without
continuity, one cannot rely on the fact that vec(Z) and vec(Z) + δ should be the same up to the
perturbation vector δ, because the perturbation may result in a discontinuous change of vec(Z) + δ
when an observation is encoded back to latent space. As a consequence, we lose track of which object
we have perturbed in the first place, so naïve use of existing disentanglement methods fails. Another
challenge is that the encoder f (Equation 1) has to map observations to vec(Z) in a discontinuous
way, which is traditionally difficult to model with standard machine learning techniques.

In summary, the unordered nature of objects in Z results in non-injectivity, losing track of object
identities, and the need for learning discontinuous functions. These all contribute to the non-
identifiability of traditional disentanglement methods in theory and practice.

3

3 Object-centric causal representation learning

A natural solution to this problem is to recognize that the latent representations of multi-object
images are sets and should be treated as such by our encoders and decoders in order to enforce
invariance among these permutations. Both Brady et al. (2023) and Lachapelle et al. (2023) showed
that architectures that enforce an appropriate object-wise decomposition in their decoders provably
disentangle images into object-wise blocks of latent variables. These results do not disentangle the
properties of objects, but they solve an important precursor: the assumption that there exists an
object-wise decomposition of the generative function is sufficient to partition the latents into objects.
Like these two papers, we will assume that natural images can be decomposed into objects, each of
which occupies a disjoint set of pixels. When this is the case, we say that an image is object-separable,
i.e., there exists an object-wise partition P and a bijection σ : IP → IZ that associates each subset
of pixels in P with a particular element of the set of latents, zi (See appendix C for more details).

Disentangling properties with object-centric encoding. In section 2 we showed that the assump-
tions underlying sparse perturbation-based disentanglement approach are violated in multi-object
scenes. But, the results from Brady et al. (2023) and Lachapelle et al. (2023) show that the objects
can be separated into disjoint (but entangled) sets of latent variables. This suggests a natural approach
to disentangling properties in multi-object scenes:

• we can reduce the multi-object disentanglement problem to a single-object problem with an
object-wise partition of the image. Within each patch of object pixels injectivity holds, and
so we no longer have multiple solutions at a patch level. This partition is identifiable and we
can use an object-centric architecture to learn the object-wise partition. We require that this
object-centric architecture can handle the responsibility problem.

• we leverage Ahuja et al. (2022b)’s approach to using weak supervision to disentangle the
properties of each object individually. Since we assume that properties between objects are
shared, this requires a factor of k fewer perturbations in the perturbation set ∆.

• we address the object identity problem where we lose track of object identities after perturbations
through an explicit matching procedure that re-identifies the object being perturbed.

This approach not only addresses the challenges outlined in Section 2, it also significantly reduces
the number of perturbations that we have to apply in order to disentangle shared properties (See the
following theorem and its proof in appendix A.3).
Theorem 1 (informal). If a data generating process outputs observations with k objects that have
shared properties, then an object-centric architecture of the form F (x) := {f(x(i))}x(i)∈P where P
is an object-wise partition and f : X → Rd will disentangle in k times fewer perturbations than an
encoder of the form f : X → Rkd.

4 Method

Object-wise partitions There exist a number of ways to decompose an image into objects, but for
our purposes, pixel segmentation-based approaches (Greff et al., 2019; Locatello et al., 2020b; Zhang
et al., 2023) let us directly adapt existing disentanglement techniques to work with object-centric
encoders. A pixel segmentation encoder f̂ maps from images x to a set of slot vectors {s1, . . . , sk},
each of which depends on a subset of the pixels x(i) ∈ P . Images are then reconstructed using
a slot decoder ĝ that maps from the set of slot representation back to pixel space. We use Zhang
et al.’s SA-MESH modification of the original Locatello et al. slot attention architecture, which
adds an entropy regularization term that encourages the subsets of pixels x(i) to be disjoint (for
details on the architectures, see Appendix D). Importantly for us, Zhang et al. (2023) is exclusively
multiset-equivariant (Zhang et al., 2022), which allows it to model discontinuous functions, thus
handling the responsibility problem.

Slot attention is usually trained with a reconstruction loss from relatively high-dimensional per-object
slot representations, si ∈ RD, but for the images that we work with, we want a relatively low
dimensional latent description (in the simplest case, just the two dimensions representing the (x, y)
coordinates of each object). To disentangle these high-dimensional slot representations, we simply
add a projection head, p̂ : si → ẑi, that is trained by a latent space loss.

4

Figure 2: (Left) An example image before any perturbation. (Right) Possible perturbations in the
synthetic 3D dataset, i.e. change in size, orientation, color, position, and shape.

Disentanglement via weak supervision with matching Ahuja et al. use a disentanglement
loss (section 1) that requires the latent representations of a pair of images differ by δ, such that
f̂(x) + δ = f̂(x′). When using a slot attention architecture, we introduce a matching step to infer
the object to which the offset δ was applied. With 1-sparse δ vectors, the matching step reduces to
a simple minimization over a cost matrix that measures ∥ẑ(x′(j))− (ẑ(x(i)) + δ)∥2 for all pairs of
slots i, j. In Appendix F, we provide a more general matching procedure that applies to settings with
dense offsets δ. We jointly optimize the following reconstruction and disentanglement loss,

f̂ , ĝ, p̂ ∈ argmin
f,g,p

Ex[∥x− g(f(x))∥2] + Ex,x′,δ[min
i,j

∥(p(f(x′)(j))− (p(f(x)(i)) + δt)∥2] (2)

The first term in this loss enforces that the encoder / decoder pair f̂ , ĝ capture enough information in
the slot representations si to reconstruct x. The second term ensures that the function that projects
from slot representation to latents p̂ disentangles the slot representations into individual properties.
The offset δ could be known or unknown to the model, and for the remainder of this paper, we focus
on the more challenging and natural case of unknown offsets. See appendix E for more details.

5 Empirical evaluation

Setup. We evaluated our method on 2D and 3D synthetic image datasets that allowed us to carefully
control various aspects of the environment, such as the number of objects, their sizes, shapes, colors,
relative position, and dynamics. Examples of our 2D and 3D datasets are shown in figures 1,2
respectively. The object-wise true latents in either dataset consist of z = (px, py, h, s, r, ϕ), where
px, py denote the coordinates of the center of an object, followed by color hue h, shape s, size r, and
rotation angle ϕ about the z-axis. Therefore, we deal with both discrete and continuous properties.
For further details on the dataset generation, see appendix H.6.

Table 1: Permutation Disentanglement (MCC) scores on 2D shapes test set under unknown fully
sparse perturbations. All results are averaged over 3 seeds except those requiring to train SA-MESH
from scratch that were trained only once. SA-LR (supervised) achieves a score of 1.0 in all settings.

posx, posy posx, posy, color, size, rotation

Model k = 2 k = 3 k = 4 k = 2 k = 3 k = 4
Ours 1.00 ±0.01 1.00 ±0.01 0.98 ±0.01 0.95 ±0.01 0.93 ±0.00 0.94 ±0.01

SA-RP 0.80 0.90 0.82 0.58 0.52 0.50
SA-PC 1.00 1.00 1.00 0.86 0.85 0.84
CNN† 0.96 ±0.02 0.99 ±0.01 0.98 ±0.02 0.91 ±0.01 0.89 ±0.01 0.90 ±0.01
CNN 0.40 ±0.01 0.25 ±0.03 0.21 ±0.01 0.58 ±0.00 0.42 ±0.00 0.27 ±0.01

Baselines. Our baselines were selected to use a series of linear probes to evaluate how much of
the property information is already present in the slot representations si of a vanilla SA-MESH
implementation which was only trained for reconstruction. We compare this with our approach which

5

Table 2: MCC scores on 3D shapes test set under unknown fully sparse perturbations. SA-LR achieves
a score of 1.0 in all settings.

posx, posy, color posx, posy, color, size, rotation

Model k = 2 k = 3 k = 4 k = 2 k = 3 k = 4
Ours 0.99 ±0.01 0.99 ±0.00 0.99 ±0.01 0.89 ±0.02 0.92 ±0.03 0.92 ±0.02

SA-RP 0.62 0.54 0.54 0.49 0.50 0.46
SA-PC 0.69 0.68 0.70 0.64 0.77 0.78

explicitly optimizes to disentangle the properties with the weakly supervised loss in Eq 2. For the
baselines, we mapped from the slot representations to a d-dimensional latent space with random
projections (RP)—which preserve distances in the projected space to obtain a crude estimate of
vanilla slot attention disentanglement—the first d principal components (PC), and linear regression
(LR) which provides a supervised upper-bound on what is achievable with linear maps. Finally,
we also included a standard ResNet18 (He et al., 2016) (denoted CNN) trained with Ahuja et al.
(2022b)’s procedure that does not address injectivity issues, and the same trained on a DGP which is
modified to be injective2 (denoted CNN†).

Disentanglement Metrics. We compared ẑ—the projections of non-background slots—to the true
latents z of objects to measure the disentanglement of the properties in ẑ. We evaluated identifiability
of ẑ either up to affine transformations or up to permutation and scaling. These two metrics were
computed by fitting a linear regression between z, ẑ and reporting the coefficient of determination
R2, and using the mean correlation coefficient (MCC) (Hyvarinen and Morioka, 2016, 2017).

Results. The results in Tables 1 (with additional results in appendix G.1) confirmed that as long
as the generative function is injective we can empirically achieve identification (see CNN†). But
the moment we drop any ordering over the objects and render x via a non-injective function, then
identification via ResNet18, which is suited only to injective generative functions, fails disastrously
(see the row corresponding to CNN). On the other hand, we can see that our method has no difficulty
identifying object properties because it treats them as a set by leveraging slot attention and a matching
procedure. Additionally, the shared structure of learned latents in our method significantly improves
the sample efficiency for disentanglement (see appendix G.3). The strong performance of the
principal components of vanilla SA-MESH on the position disentanglement task likely results from
the positional encoding. On the more complex task that also involves color, size and rotation, MCC
performance drops for SA-PC, though it is still surprisingly high given that the model is just trained
for reconstruction. This is likely because these are very simple images with properties that were
selected independently, uniformly at random so the slot principal components align with the ground-
truth axes of variation in the data. For 3D shapes we do not evaluate non-injective CNN since it failed
consistently in the simpler 2D dataset. The results in Table 2 and G.2 essentially confirm our findings
in the simpler 2D dataset, and demonstrate how treating the scene as a set with our method results in
perfect disentanglement of object properties.

6 Conclusion

This study establishes a connection between causal representation learning and object-centric learning,
and (to the best of our knowledge) for the first time shows how to achieve disentangled representations
in environments with multiple interchangeable objects. The importance of recognizing this synergy
is two-fold. Firstly, causal representation learning has largely ignored the subtleties of objects
in assuming injectivity and fixed Rd representations. Conversely, object-centric learning has not
dealt with the challenge of unsupervised disentanglement. Yet disentangled representations can
significantly improve a model’s generalization capabilities under distribution shifts, and could also
allow for learning parsimonious models of the dynamics when such proper representations are
achieved, which we deem as important avenues for future research. In this study we provided
empirical evidence showcasing the successful disentanglement of object-centric representations
through the fusion of slot attention with recent advances in causal representation learning.

2We make g injective by using the properties that are not the target of disentanglement, i.e., if x, y are the
target properties, we will uniquely color each object based on its order in the default permutation.

6

References
Ahuja, K., Hartford, J., and Bengio, Y. (2022a). Properties from mechanisms: an equivariance

perspective on identifiable representation learning. In International Conference on Learning
Representations.

Ahuja, K., Hartford, J., and Bengio, Y. (2022b). Weakly supervised representation learning with
sparse perturbations. In Neural Information Processing Systems.

Ahuja, K., Mahajan, D., Wang, Y., and Bengio, Y. (2023). Interventional causal representation
learning.

Brady, J., Zimmermann, R. S., Sharma, Y., Schölkopf, B., von Kügelgen, J., and Brendel, W. (2023).
Provably learning object-centric representations. arXiv preprint arXiv: 2305.14229.

Brehmer, J., De Haan, P., Lippe, P., and Cohen, T. (2022). Weakly supervised causal representation
learning. arXiv preprint arXiv:2203.16437.

Chang, M., Griffiths, T. L., and Levine, S. (2022). Object representations as fixed points: Training
iterative inference algorithms with implicit differentiation. In ICLR Workshop on Deep Generative
Models for Highly Structured Data.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio,
Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv: 1406.1078.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transportation distances.
NEURIPS.

Engelcke, M., Kosiorek, A. R., Jones, O. P., and Posner, I. (2019). Genesis: Generative scene
inference and sampling with object-centric latent representations. CoRR, abs/1907.13052.

Goyal, A., Lamb, A., Gampa, P., Beaudoin, P., Levine, S., Blundell, C., Bengio, Y., and Mozer, M.
(2020). Object files and schemata: Factorizing declarative and procedural knowledge in dynamical
systems. arXiv preprint arXiv:2006.16225.

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y., and Schölkopf, B. (2019).
Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893.

Greff, K., Belletti, F., Beyer, L., Doersch, C., Du, Y., Duckworth, D., Fleet, D. J., Gnanapragasam,
D., Golemo, F., Herrmann, C., Kipf, T., Kundu, A., Lagun, D., Laradji, I., Liu, H.-T. D., Meyer, H.,
Miao, Y., Nowrouzezahrai, D., Oztireli, C., Pot, E., Radwan, N., Rebain, D., Sabour, S., Sajjadi, M.
S. M., Sela, M., Sitzmann, V., Stone, A., Sun, D., Vora, S., Wang, Z., Wu, T., Yi, K. M., Zhong, F.,
and Tagliasacchi, A. (2022). Kubric: a scalable dataset generator. Computer Vision And Pattern
Recognition.

Greff, K., Kaufman, R. L., Kabra, R., Watters, N., Burgess, C., Zoran, D., Matthey, L., Botvinick, M.,
and Lerchner, A. (2019). Multi-object representation learning with iterative variational inference.
In International Conference on Machine Learning, pages 2424–2433. PMLR.

Gresele, L., Kügelgen, J. V., Stimper, V., Schölkopf, B., and Besserve, M. (2021). Independent
mechanism analysis, a new concept? In Advances in Neural Information Processing Systems.

Hayes, B., Saitis, C., and Fazekas, G. (2023). The responsibility problem in neural networks with
unordered targets.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Huang, Q., He, H., Singh, A., Zhang, Y., Lim, S.-N., and Benson, A. R. (2020). Better set representa-
tions for relational reasoning. In NeurIPS.

Hyvarinen, A. and Morioka, H. (2016). Unsupervised feature extraction by time-contrastive learning
and nonlinear ica. Advances in Neural Information Processing Systems, 29.

7

Hyvarinen, A. and Morioka, H. (2017). Nonlinear ica of temporally dependent stationary sources. In
Artificial Intelligence and Statistics, pages 460–469. PMLR.

Hyvarinen, A., Sasaki, H., and Turner, R. (2019). Nonlinear ica using auxiliary variables and
generalized contrastive learning. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 859–868. PMLR.

Hyvärinen, A. and Oja, E. (2000). Independent component analysis: algorithms and applications.
Neural Networks, 13(4):411–430.

Khemakhem, I., Kingma, D., Monti, R., and Hyvarinen, A. (2020a). Variational autoencoders and
nonlinear ica: A unifying framework. In International Conference on Artificial Intelligence and
Statistics, pages 2207–2217. PMLR.

Khemakhem, I., Monti, R., Kingma, D., and Hyvarinen, A. (2020b). Ice-beem: Identifiable con-
ditional energy-based deep models based on nonlinear ica. Advances in Neural Information
Processing Systems, 33:12768–12778.

Kipf, T., van der Pol, E., and Welling, M. (2020). Contrastive learning of structured world models.

Lachapelle, S. and Lacoste-Julien, S. (2022). Partial disentanglement via mechanism sparsity.

Lachapelle, S., Mahajan, D., Mitliagkas, I., and Lacoste-Julien, S. (2023). Additive Decoders for
Latent Variables Identification and Cartesian-Product Extrapolation. arXiv:2307.02598 [cs, stat].

Lachapelle, S., Rodriguez, P., Sharma, Y., Everett, K. E., PRIOL, R. L., Lacoste, A., and Lacoste-
Julien, S. (2022). Disentanglement via mechanism sparsity regularization: A new principle for
nonlinear ICA. In First Conference on Causal Learning and Reasoning.

Lin, Z., Wu, Y., Peri, S. V., Sun, W., Singh, G., Deng, F., Jiang, J., and Ahn, S. (2020). SPACE:
unsupervised object-oriented scene representation via spatial attention and decomposition. CoRR,
abs/2001.02407.

Lippe, P., Magliacane, S., Löwe, S., Asano, Y. M., Cohen, T., and Gavves, E. (2022). Citris: Causal
identifiability from temporal intervened sequences. arXiv preprint arXiv:2202.03169.

Lippe, P., Magliacane, S., Löwe, S., Asano, Y. M., Cohen, T., and Gavves, E. (2023a). Biscuit:
Causal representation learning from binary interactions. In The 39th Conference on Uncertainty in
Artificial Intelligence.

Lippe, P., Magliacane, S., Löwe, S., Asano, Y. M., Cohen, T., and Gavves, E. (2023b). Causal
representation learning for instantaneous and temporal effects in interactive systems.

Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., and Tschannen, M. (2020a). Weakly-
supervised disentanglement without compromises. In International Conference on Machine
Learning, pages 6348–6359. PMLR.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J., Dosovitskiy,
A., and Kipf, T. (2020b). Object-centric learning with slot attention. CoRR, abs/2006.15055.

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. International Conference
on Learning Representations.

Moran, G. E., Sridhar, D., Wang, Y., and Blei, D. (2022). Identifiable deep generative models via
sparse decoding. Transactions on Machine Learning Research.

Nguyen, T., Mansouri, A., Madan, K., Khuong, N. D., Ahuja, K., Liu, D., and Bengio, Y. (2023).
Reusable slotwise mechanisms. In Thirty-seventh Conference on Neural Information Processing
Systems.

Reddy, P., Wisdom, S., Greff, K., Hershey, J., and Kipf, T. (2023). Audioslots: A slot-centric
generative model for audio separation. IEEE International Conference on Acoustics, Speech, and
Signal Processing Workshops (ICASSPW).

8

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., and Bengio, Y. (2021).
Toward causal representation learning. Proceedings of the IEEE, 109(5):612–634.

Seitzer, M., Horn, M., Zadaianchuk, A., Zietlow, D., Xiao, T., Simon-Gabriel, C.-J., He, T., Zhang,
Z., Scholkopf, B., Brox, T., and Locatello, F. (2022). Bridging the gap to real-world object-centric
learning. International Conference on Learning Representations.

Shinners, P. (2011). Pygame. http://pygame.org/.

Sinkhorn, R. and Knopp, P. (1967). Concerning nonnegative matrices and doubly stochastic matrices.
Pacific Journal of Mathematics, 21:343–348.

Squires, C., Seigal, A., Bhate, S. S., and Uhler, C. (2023). Linear causal disentanglement via
interventions. In International Conference on Machine Learning. PMLR.

van Steenkiste, S., Chang, M., Greff, K., and Schmidhuber, J. (2018a). Relational neural expectation
maximization: Unsupervised discovery of objects and their interactions. CoRR, abs/1802.10353.

van Steenkiste, S., Chang, M., Greff, K., and Schmidhuber, J. (2018b). Relational neural expec-
tation maximization: Unsupervised discovery of objects and their interactions. In International
Conference on Learning Representations.

Zhang, Y., Hare, J., and Prügel-Bennett, A. (2020). FSPool: Learning set representations with
featurewise sort pooling. In International Conference on Learning Representations.

Zhang, Y., Zhang, D. W., Lacoste-Julien, S., Burghouts, G. J., and Snoek, C. G. (2022). Multiset-
equivariant set prediction with approximate implicit differentiation. In International Conference
on Learning Representations.

Zhang, Y., Zhang, D. W., Lacoste-Julien, S., Burghouts, G. J., and Snoek, C. G. M. (2023). Unlocking
slot attention by changing optimal transport costs. In International Conference on Learning
Representations.

Zheng, Y., Ng, I., and Zhang, K. (2022). On the identifiability of nonlinear ica: Sparsity and beyond.
Advances in Neural Information Processing Systems, 35:16411–16422.

9

http://pygame.org/

A Proofs

A.1 Proof of proposition 1

Proof. The contrapositive of the definition of injectivity states that z1 ̸= z2 implies g(z1) ̸= g(z2),
but by definition of g(·), there exist z1 ̸= z2 such that g(z1) = g(z2). In particular, for any set Z and
permutations π1 ̸= π2 ∈ Sym(k), the vectors vecπ1

(Z) = z1 ̸= z2 = vecπ2
(Z).

A.2 Proof of proposition 2

Proof Sketch. Consider Figure 3, notice that if we perform a 90◦ rotation in pixel space of the image,
the image is identical, but the latent space has been permuted, since each ball has swapped positions.
Because the image on the left and the image on the right are identical in pixel space, any encoder,
f : X → Rkd, will map them them to identical latents. There exists a continuous pixel-space rotation
from 0◦ to 90◦, but it must entail a discontinous swap in which latent is responsible for which part of
pixel-space according to the encoder.

A.3 Proof of theorem 1

We want to compare the number of perturbations needed to disentangle shared properties with a
standard encoder to those needed by an object-centric encoder. Our strategy will be as follows,

1. Setup a data generating process with multiple objects where injectivity holds by construction
so that we can restate Theorem 1 from Ahuja et al. (2022b) to show they need k × d
perturbations.

2. Define an object-centric architecture in terms of the object-wise partitions that we defined in
Definition 1.

3. Restate an analog of Theorem 1 from Ahuja et al. based on the object-centric encoder.
4. Theorem 1 in the main text will follow as a collary of the difference between the number of

perturbations used in the two theorems above.

We begin by defining a data generating process such that g(vecπ(Z)) is injective by construction.
We can achieve this by appending an id, i, to each zi in Z, such that Z = {zi ⊕ [i]}ki=1 where ⊕
denotes concatenation, and then choosing g such that x depends on i (for example, each i could
be rendered in a different color). Like Ahuja et al., we assume we have data that is perturbed by
∆ := {{δi,j}dj=1}ki=1, a set of 1-sparse perturbations that perturbs each of the d properties from each
of the k objects. Taken together, we have the following data generating process (DGP),

Z = {zi⊕[i]}ki=1 ∼ PZ , x := g(Z) z̃j,l := zj+δj,l ∀ δi,j ∈ ∆, x̃j,l := g({z1, . . . , z̃j,l, . . . , zk})
(3)

where each object has d shared properties, zi ∈ Rd, and zi,j and zi′,j are of the same type—e.g.
position x, hue, etc.— for all j. As before, assume g is injective, and define g∗ = g(vecπ∗(Z)) where
π∗ is the permutation that sorts Z by the index i, so that g∗ is injective by construction.

Now, Ahuja et al. show that if the encoder, f̂ : X → Rkd, is chosen to minimize the following loss,

f̂ ∈ arg minf ′Ex,x′,δ

[
(f ′(x) + δ − f ′(x′))

2
]

(4)

and the following assumptions hold,
Assumption 1. The dimension of the span of the perturbations in equation 3 is kd, i.e.,
dim

(
span

(
∆
))

= kd.

Assumption 2. a(z) := f ◦ g∗(z) is an analytic function. For each component i ∈ {1, · · · , kd}
of a(z) and each component j ∈ {1, · · · , kd} of z, define the set Sij = {θ | ∇jai(z + b) =
∇jai(z) + ∇2

jai(θ)b, z ∈ Rkd}, where b is a fixed vector in Rkd. Each set Sij has a non-zero
Lebesgue measure in Rkd.

Then we have,

10

Theorem 2 ((Ahuja et al., 2022b)). Assume we have data from the DGP in equation 3 and assumption
1 and 2 hold and the number of perturbations per example equals the latent dimension, m = kd,
then the encoder that solves equation 3 identifies true latents up to permutation and scaling, i.e.
ẑ = ΠΛz + c, where Λ ∈ Rkd×kd is an invertible diagonal matrix, Π ∈ Rkd×kd is a permutation
matrix and c is an offset.

Proof. See Ahuja et al. for the proof.

Now, consider an object-centric architecture encoder of the form F (x) := {f(xi)}xi∈P where P is
an object-wise partition and f : X → Rd. Let σ ∈ Σ denote a permutation of the latents from the set
of all k−permutations. Let:

F̂ (x) ∈ argmin
f

Ex,x′,δ[min
σ′∈Σ

∥((f(x′)σ
′(i))− ((f(x)(i)) + δ)∥2] (5)

Note that since δ is non-zero for only one pair of patches x(i), x(i)′ and zero otherwise, the minimizer
over Σ is almost surely unique. Assumptions 3 and 4 are analogs of 1 and 2 above, but make reference
to the dimensionality of the co-domain of f rather than f .
Assumption 3. The dimension of the span of the perturbations in equation 3 is d, i.e.,
dim

(
span

(
∆
))

= d.

Assumption 4. a(z) := f ◦ g∗(z) is an analytic function. For each component i ∈ {1, · · · , d}
of a(z) and each component j ∈ {1, · · · , d} of z, define the set Sij = {θ | ∇jai(z + b) =
∇jai(z)+∇2

jai(θ)b, z ∈ Rd}, where b is a fixed vector in Rd. Each set Sij has a non-zero Lebesgue
measure in Rd.

With this setup, the following theorem follows directly from Theorem 2 as a reduction from the
multi-object to single-object setting,
Theorem 3. Assume we have data from the DGP in equation 3 and assumption 3 and 4 hold and
the number of perturbations per example equals the latent dimension, m = d, then the encoder that
solves equation 5 for an object-wise partition P , identifies true latents up to permutation and scaling,
i.e. ẑ = ΠΛz+ c, where Λ ∈ Rkd×kd is an invertible diagonal matrix, Π ∈ Rkd×kd is a permutation
matrix and c is an offset.

Proof. Because P is an object-wise partition, the function that produces each x(i) ∈ P is injective
with respect to some zσ(i) (i.e. one of the object’s latents). Thus for each x(i), the solution to equation
5 is equivalent to the single object setting with k = 1, and thus theorem 2 applies, which implies that
f(x(i)) = ẑi = ΠΛzi + c for all i. Now let ẑ = vecπ({ẑi}ki=1). Because each ẑi is identified up
to a permutation, scaling and offset, and for any π, there exists a Π such that ẑ = ΠΛz + c which
completes the result.

Corollary 1. If the assumptions for Theorem 2 and 3 hold and a data generating process outputs
observations containing k objects with shared properties, then an object-centric architecture of the
form F (x) := {f(x(i)}x(i)∈P will disentangle in 1/k fewer perturbations than an encoder of the
form f : X → Rkd.

Proof. This follows directly from comparing the the number of perturbations required in Theorems 2
and 3.

B Related Work

Causal representation learning Our work builds on the nascent field of causal representation
learning (Schölkopf et al., 2021). In particular, our disentanglement approaches builds on ideas in
Ahuja et al. (2022b) which uses the same assumptions as Locatello et al. (2020a) but relaxes the
requirement that the latent variables are independently distributed. These approaches form part of a
larger body of recent work that shows the importance of sparsity and weak supervision from actions
in disentanglement (Lachapelle et al., 2022; Lachapelle and Lacoste-Julien, 2022; Brehmer et al.,
2022; Lippe et al., 2022, 2023b,a). This literature builds on the foundational work from the nonlinear

11

independent component analysis (ICA) literature (Hyvarinen and Morioka, 2016, 2017; Hyvarinen
et al., 2019; Khemakhem et al., 2020a).

Object-centric learning. Natural data can often be decomposed into smaller entities—objects—
that explain the data. The overarching goal of object-centric learning is to model such data in terms of
these multiple objects. The reason for this is simple: it is usually easier to reason over a small set of
relevant objects rather than, for example, a large grid of feature vectors. Representing data in this way
has downstream benefits like better robustness (Huang et al., 2020). An important line of research in
this area is how to obtain such objects from data like images and video in the first place. Typically, a
reconstruction setup is used: given an image input, the model learns the objects in the latent space,
which are then decoded back into the original image with a standard reconstruction loss (Locatello
et al., 2020b; van Steenkiste et al., 2018b). GENESIS (Engelcke et al., 2019) was introduced as the
first 3D object-centric generative model for visual scenes capable of both generating and decomposing
scenes. The Slot Attention (Locatello et al., 2020b) module is presented as an architectural component
to extract object-centric representations from perceptual features. It produces task-dependent abstract
representations called “slots” through competitive attention rounds, enabling generalization to unseen
compositions. Contrastively-trained Structured World Models (C-SWMs) (Kipf et al., 2020) utilize a
contrastive approach for object representation learning with graph neural networks modeling object
interactions to learn a structured world model from raw sensory data. Nguyen et al. (2023) propose
RSM, a conceptually close idea to our work. They jointly learn object-centric representations with a
modular dynamics model by minimizing a rolled out reconstruction loss. However, they do not obtain
any disentanglement of object properties, and the form of our proposed weak-supervision provides
insights to the effectiveness of their method for improving generalization.

We use slot attention since it makes very few assumptions about the desired data. For instance, some
methods model foreground differently from background. Additionally, DINOSAUR (Seitzer et al.,
2022) shows recent success on more complex images, which demonstrates the versatility of the slot
attention approach. While in general object-centric models operate on image inputs and thus identify
visual objects, it is in principle applicable to other domains like audio (Reddy et al., 2023) as well.

C Definition of object separability

To define object separability formally, we will need to consider a partition P of an image into k
disjoint subsets of pixels P = {x(1), . . . , x(k)} indexed by an index set IP = {1, . . . , k}; further,
denote an index set that indexes the set of latent variables Z as IZ . We can then say,
Definition 1. An image, x, is object-separable if there exists an object-wise partition P and a
bijection σ : IP → IZ that associates each subset of pixels in P with a particular element of the set
of latents, zi, such that each subset of pixels x(i) ∈ P is the output of an injective map with respect to
its associated latent zσ(i). That is, for all i, (x(i)′ ⊂ g(Z ′), x(i) ⊂ g(Z)), we have that x(i)′ = x(i)

implies z′σ(i) = zσ(i).

This definition says that an image can be separated into objects if it can be partitioned into parts such
that each part is rendered via an injective map from some latent zi. We can think of each x(i) as a
patch of pixels, with a bijection σ that relates each of the k patches of pixels in the partition {x(i)}ki=1

to a latent variable in Z = {zi}ki=1. Each patch “depends” on its associated latent via an injective
map.

Brady et al. (2023) and Lachapelle et al. (2023) give two different formal characterizations of
partitions P that are consistent with our object-wise definition. Brady et al.’s characterization requires
that a differentiable generative function g is compositional, in the sense that each x(i) ∈ P only
functionally depends3 on a single zj ∈ Z, and irreducible in the sense no x(i) ∈ P can be further
decomposed into non-trivial subsets that have functionally independent latents. Lachapelle et al.’s
assumption is weaker than ours in that they only require that the generative function is defined as
g(Z) = σ(

∑
zi∈Z gi(zi)) where σ is an invertible function, and that g is a diffeomorphism that is

“sufficiently nonlinear” (see Assumption 2 Lachapelle et al., 2023); object-separable images are a
special case with σ as the identity function and each gi(·) rendering a disjoint subset of x, and hence
their results apply to our setting.

3Functional dependence is defined by non-zero partial derivatives, i.e. ∂xi

∂zj
̸= 0.

12

x = g([z1, z2, z3, z4]) x = g([z2, z3, z4, z1])

Rotate

Permuted zOriginal z

Figure 3: An illustration of the object identity problem. Permuting the order of the latents
[z1, z2, z3, z3] is equivalent to a 90 degree rotation in pixel-space.

D Background on slot-attention-based architectures

Slot attention (Locatello et al., 2020b) is a neural network component that, intuitively, summarizes
the relevant information in the input set (most commonly, image features with position embeddings)
into a smaller set of so-called “slots”. Each slot is a feature vector that can be thought of as capturing
information about one “object” in the input set, which usually comprises multiple elements of the
input set. This is done by repeating cross-attention between the inputs and the slots to compute
per-slot updates.

In the traditional set-up, these slots are then used to reconstruct the input with an auto-encoder
objective: each slot is decoded into a separate image through a shared image decoder, which is
followed by merging these per-slot images into a single reconstructed image. Ideally, slot attention is
able to decompose the original image into distinct objects, each of which is modeled by a single slot.

More concretely, slot attention takes as input a matrix X ∈ Rn×c with n as the number of inputs and
c the dimensionality of each input. We also randomly initialize the slots Z(0) ∈ Rm×d. We start by
computing the query, key, and value matrices as part of cross-attention.

Q(t) = Z(t)WQ K = XWK V = XWV (6)
This is followed by the normalized cross-attention to determine the attention map A ∈ Rm×n, then a
GRU (Cho et al., 2014) to apply this update to the slots.

A(t) = normalize(Q(t)K⊤) (7)

Z(t+1) = GRU(Z(t),A(t)V) (8)

The function normalize encourages slots to compete for inputs by applying a softmax over slots and
normalizing the weights for each input to sum to one. After T steps, the algorithm outputs Z(T), a
set of m embedding vectors {z(T)

i }mi=1 that can be used as input to a shared image decoder.

SA-MESH. The specific version of slot attention we use in this paper is SA-MESH (Zhang et al.,
2023). It makes regular slot attention more powerful by giving it the ability to break ties between
slots more effectively. 4 In practice, this improves the quality of the individual slot representations
significantly due to less mixing of unrelated inputs into the same slot.

The key difference with regular slot attention is that it features an entropy minimization procedure to
approximate an optimal transport solution, which makes the attention map sparse. The connection to
optimal transport is made by the use of the standard Sinkhorn algorithm (Sinkhorn and Knopp, 1967;
Cuturi, 2013).

MESH(C) = argmin
C

H(sinkhorn(C)) (9)

A(t) = sinkhorn(MESH(Q(t)K⊤)) (10)
The optimization problem is solved by unrolling gradient descent, with a noisy initialization to ensure
that ties are broken.

4Concretely, it makes the mapping from the initial slots to the final slots exclusively multiset-equivariant
(Zhang et al., 2022) rather than permutation-equivariant/set-equivariant.

13

E Alternative perturbation mechanisms

Dense vs. Sparse. We can have a number of assumptions on the perturbation mechanisms and
the nature of model’s knowledge about those mechanisms. In the most general case, suppose
M = {m1(·),m2(·), ...,mk(·)} denotes the set of all possible perturbation mechanisms. To obtain
x′, the perturbed variant of x, we then select a subset of k′ ≤ k objects as targets that undergo
perturbations determined by a subset of k′ mechanisms M′ ⊂ M from the set of all possible
perturbation mechanisms. The correspondence between the k′ mechanisms and k′ perturbed objects
is decided by a random permutation πM

t , i.e. i = πM
t [j] means that mechanism i governs the

transition dynamics of object j to produce zjt+1 (for objects that are not supposed to change from
t → t + 1 a dummy mechanism with index −1 can be assumed which results in no change). A
mechanism mi(·) : Rd → Rd in M is a vector-valued function that operates on object-wise true
latents zjt and outputs zjt+1 = zjt + δi such that i = πM

t [j]. Perturbation vectors δi could be sparse or
not. The subset M′ can contain k′ = k mechanisms to perturb all of the k objects in the environment,
and if none of the k′ = k resulting perturbations is sparse, we denote the set M′ as fully dense
perturbations, i.e., all of the properties of all objects will change from t → t + 1. M′ can also
contain at least one object but not all of them (1 ≤ k′ < k) with sparse or dense perturbations, or it
may consist of only a single object (k′ = 1) that is perturbed by a fully sparse mechanism, one that
only alters a single property and leaves the rest unchanged. We denote this scenario as fully sparse
perturbation.

F Matching

Perturbations alter the properties of objects from t → t+ 1 and the model has to infer which object’s
properties were perturbed to update its representations and minimize the latent loss equation 1. But
recall that the model has no direct access to objects. It receives the observations at t, t + 1 and
encodes each of them to a set of slots St,St+1. These slots do not follow any fixed ordering, and
moreover, there is no guarantee that each slot binds to exactly one unique object. Slots can also
correspond to the background. Each perturbation δi changes the properties of some object zjt , so the
model requires to find a pair of slots (sut , s

v
t+1) that are bound to object zj at t and t+1, respectively.

Once the model figures out such a matching, then the latent loss that results in disentanglement can
be computed via the projections of these slots ẑ:

Lz =

m∑
i=1

∥ẑit + δ
πM′
t [i]

t − ẑit+1∥2, ẑit = p(sut), ẑit+1 = p(svt) (11)

The problem of finding a correspondence between slot projections at t, t+ 1 and the perturbations is
an instance of the 3-dimensional matching. However, recall that we use fully sparse perturbations for
our mechanisms, thus, the problem is significantly simplified.

When the model is presented with fully sparse perturbations, the 3-dimensional matching reduces
to finding the minimum element in a 1−d cost array of size |S|2, where |S| is the number of slots.
The reason is that since only one property of a single object zit is being altered (and the model knows
perturbations are fully sparse), the model can apply that 1-sparse perturbation δt (or the transformed
version in the unknown setting) to all of slot projections ẑjt for j ∈ {1, . . . , |S|} at time t, and only
find one pair of slots from the set of |S|2 possible pairs at t, t+ 1, which correspond to the perturbed
object:

(i, j) = argmin
i′,j′

∥ẑj
′

t+1 − (ẑi
′

t + δt)∥2 (12)

However, this minimization can be made simpler if we use the slots obtained at t to initialize the slots
at t+ 1. This way, in practice, the order of slots at t, t+ 1 is very likely to be preserved, not only
since the slots at t+1 are initialized with hints from t, but also the sparse perturbation makes it much
easier for all slots to bind to the same object as only a small subset of the scene needs to be readjusted
among the slots. Therefore the matching would reduce to a simple minimization over |S| elements:

i = argmin
i′

∥ẑi
′

t+1 − (ẑi
′

t + δt)∥2 (13)

14

Note however that we still would use all slot projections for evaluation, the only difference with this
matching scheme is that gradient signals are only propagated from the perturbed object (as they also
should, since there is no change in other slots, there is nothing there to be learned that could help
disentanglement.)

G Further Experimental Results

G.1 2D Shapes

Table 3 gives the linear disentanglement scores for the same experiment as that shown in table 1 in
the main text.

Table 3: Linear Disentanglement (LD) scores on 2D shapes test set under unknown fully sparse
perturbations. All results are averaged over 3 seeds except those requiring to train SA-MESH from
scratch that were trained only once. SA-LR, which is supervised by the ground truth latents, and is
an upper bound on the disentanglement performance, achieves a score of 1.0 in all settings.

posx, posy posx, posy, color, size, rotation

Model k = 2 k = 3 k = 4 k = 2 k = 3 k = 4
Ours 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.95 ±0.01 0.93 ±0.01 0.94 ±0.02

SA-RP 0.92 0.96 0.94 0.75 0.70 0.68
SA-PC 1.00 1.00 1.00 0.93 0.88 0.86
CNN† 0.94 ±0.05 0.99 ±0.00 0.96 ±0.03 0.87 ±0.01 0.84 ±0.01 0.86 ±0.01
CNN 0.24 ±0.01 0.13 ±0.01 0.07 ±0.01 0.35 ±0.00 0.19 ±0.00 0.08 ±0.01

Tables 4,5 extend our results under unknown fully sparse perturbations on the 2D shapes dataset to
more combinations of disentanglement target properties. We can observe that our results stay very
close to the upper bound on the achievable performance which uses a supervised linear regression
from slot projections ẑ to ground truth latents z. These tables highlight once again the pivotal role
of the injectivity assumption in achieving identification with conventional encoders that ignore the
object-centricity of the environment (see the performance drop from CNN† to CNN, where the latter
drops the unrealistic injectivity assumption).

Table 4: Linear Disentanglement (LD) scores on 2D shapes test set under unknown fully sparse
perturbations. All results are averaged over 3 seeds except those requiring to train SA-MESH from
scratch that were trained only once. SA-LR achieves a score of 1.0 in all settings.

posx, posy, color posx, posy, shape

Model k = 2 k = 3 k = 4 k = 2 k = 3 k = 4
Ours 1.00 ±0.01 0.98 ±0.01 0.99 ±0.00 1.00 ±0.01 0.98 ±0.01 0.99 ±0.01

SA-RP 0.77 0.61 0.60 0.71 0.68 0.70
SA-PC 0.97 0.98 0.99 0.80 0.66 0.87
CNN† 1.00 ±0.00 0.99 ±0.01 0.98 ±0.00 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00
CNN 0.35 ±0.00 0.15 ±0.00 0.07 ±0.01 0.32 ±0.01 0.15 ±0.01 0.11 ±0.01

posx, posy, color, shape
Model k = 2 k = 3 k = 4
Ours 0.99 ±0.00 0.98 ±0.01 0.99 ±0.00

SA-RP 0.69 0.73 0.60
SA-PC 0.74 0.75 0.52
CNN† 1.00 ±0.00 0.99 ±0.01 1.00 ±0.00
CNN 0.40 ±0.00 0.21 ±0.00 0.11 ±0.00

G.2 3D Shapes

Quantitative Results. Tables 6, 7, 8 extend our results under unknown fully sparse perturbations
on the 3D shapes dataset to more combinations of disentanglement target properties. Again, we can

15

Table 5: Permutation Disentanglement (MCC) scores on 2D shapes test set under unknown fully
sparse perturbations. All results are averaged over 3 seeds except those requiring to train SA-MESH
from scratch that were trained only once. SA-LR achieves a score of 1.0 in all settings.

posx, posy, color posx, posy, shape

Model k = 2 k = 3 k = 4 k = 2 k = 3 k = 4
Ours 1.00 ±0.01 0.95 ±0.05 0.97 ±0.02 0.99 ±0.01 0.99 ±0.01 0.99 ±0.01

SA-RP 0.74 0.60 0.60 0.66 0.63 0.59
SA-PC 0.87 0.89 0.90 0.83 0.81 0.89
CNN† 1.00 ±0.00 0.99 ±0.01 0.99 ±0.01 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00
CNN 0.55 ±0.01 0.35 ±0.01 0.24 ±0.01 0.52 ±0.02 0.33 ±0.02 0.28 ±0.02

posx, posy, color, shape
Model k = 2 k = 3 k = 4
Ours 0.99 ±0.01 0.98 ±0.01 0.99 ±0.01

SA-RP 0.54 0.68 0.55
SA-PC 0.64 0.63 0.57
CNN† 1.00 ±0.00 0.99 ±0.01 1.00 ±0.00
CNN 0.61 ±0.00 0.43 ±0.00 0.30 ±0.00

observe the applicability of our method to this more complex 3D dataset that contains artifacts related
to depth, occlusion, and lighting, to name a few. Again our results stay very close to the upper bound
on the achievable performance which uses a supervised linear regression from slot projections ẑ to
ground truth latents z.

Table 6: Linear Disentanglement (LD) scores on 3D shapes test set under unknown fully sparse
perturbations. All results are averaged over 3 seeds except those requiring to train SA-MESH from
scratch that were trained only once. SA-LR achieves a score of 1.0 in all settings.

posx, posy, size posx, posy, color, rotation

Model k = 2 k = 3 k = 4 k = 2 k = 3 k = 4
Ours 0.98 ±0.01 0.98 ±0.01 0.98 ±0.00 0.98 ±0.00 0.97 ±0.01 0.98 ±0.01

SA-RP 0.61 0.62 0.53 0.59 0.54 0.55
SA-PC 0.78 0.84 0.78 0.70 0.72 0.69

Table 7: Permutation Disentanglement (MCC) scores on 3D shapes test set under unknown fully
sparse perturbations. All results are averaged over 3 seeds except those requiring to train SA-MESH
from scratch that were trained only once. SA-LR achieves a score of 1.0 in all settings.

posx, posy, size posx, posy, color, rotation

Model k = 2 k = 3 k = 4 k = 2 k = 3 k = 4
Ours 0.96 ±0.02 0.96 ±0.05 0.96 ±0.03 0.98 ±0.01 0.98 ±0.02 0.97 ±0.01

SA-RP 0.60 0.57 0.52 0.55 0.51 0.49
SA-PC 0.87 0.90 0.86 0.73 0.76 0.74

Qualitative Results. Figures 4-6 illustrate the learned disentangled (object-centric) representations.
Each figure shows a sequence of 3D samples evolving over 5 steps (shown on the left), and how
the learned representations respond to the perturbations (shown on the right). Perturbations include
changing the object’s posx, posy, color, ϕ (rotation). The model used here is trained with 3 slots, and
the learned representations are the result of a projection layer learned via our weakly-supervised
method applied to 64−dimensional object-centric representations. The projection maps each slot
from R64 → R4, i.e., the disentanglement target space. In figures 4-6, the 4 dimensions of such
projections for object slots are presented over 5 steps, i.e., each set of colored lines shows the
evolution of the projection of a slot corresponding to the object with the same color. Please refer
to the figures for details of the perturbations. Lastly, we have kept the number of objects in these

16

Table 8: LD scores on 3D shapes test set under unknown fully sparse perturbations. SA-LR achieves
a score of 1.0 in all settings.

posx, posy, color posx, posy, color, size, rotation

Model k = 2 k = 3 k = 4 k = 2 k = 3 k = 4
Ours 0.99 ±0.01 0.99 ±0.00 1.00 ±0.01 0.91 ±0.03 0.95 ±0.01 0.93 ±0.01

SA-RP 0.67 0.58 0.58 0.51 0.56 0.60
SA-PC 0.64 0.62 0.64 0.56 0.76 0.76

scenes to two for clarity of the presentation, however tables 8,2, 6,7 show that we achieve similar
performances with other sets of properties and number of objects in the scene.

Figure 4: (Left) From top to bottom, each steps perturbs the posx coordinate of the red object by 0.2
in the ground-truth latent space, (Right) which is reflected (through an affine transform) as a linear
increase in posx, while the rest of the properties for both objects remain the same, demonstrating
that the learned representations are indeed disentangled. In generating these samples, camera has
some non-zero angle w.r.t. the origin, therefore, perturbations in the x direction appear as vertical
displacements.

G.3 Comparison of Sample Efficiency

Figure 7 demonstrates the sample efficiency of our object-centric model compared to a ResNet that
achieves disentanglement with an injective DGP. Both models are trained with varying number of
training samples that contain k = 4 objects for which posx, posy, color, shape are the disentanglement
target properties. Since we sample 1-sparse perturbations uniformly, the training dataset size could be
thought of as a proxy for the number of different perturbations a given configuration of objects would
encounter. Although according to theory, the injective ResNet should require at least k times more
perturbations to identify the latents up to affine transformations, we observe that the advantage of our
object-centric model in terms of sample efficiency is much more pronounced in practice. Our method
can achieve close to perfect disentanglement with as few as 100 training samples, while an injective
ResNet takes 100 times more samples to raise to a comparable performance. This highlights the
practical importance of exploiting the inherent set structure of objects in a scene for representation
learning.

17

Figure 5: (Left) From top to bottom, the objects are perturbed as follows; Red: Downward perturbation
so it sits at the same x coordinate as the Blue cube (1-2), Rotates counterclockwise along the z−axis
to be at the same orientation as the Blue cube (2-4), Further downward perturbation (2 times the
displacement from step 1 to 2). Blue: Rotates counterclockwise along the z−axis (4-5). (Right) Note
how the learned representations mapping correctly reflects the similar positions and rotations in the
ground-truth, i.e., both by having properties of objects coincide at the same value, and by preserving
the ratio of perturbations.

H Implementation and Experimental Details

H.1 SA-MESH Architecture

For the slot attention architecture, we closely follow Locatello et al. (2020b), in particular, we use the
same CNN encoder and decoder as they use for CLEVR, except for the initial resolution of the spatial
broadcast decoder with 3D shapes where we use 4× 4 since we are dealing with 64× 64 images. We
use a slot size of 64 and always use n+ 1 number of slots, where n is the number of objects in the
scene. We use 3 iterations for the recurrent updates in SA-MESH. For details concerning SA-MESH
we follow Zhang et al. (2023). Additionally, we also truncate the backpropagation through slot
updates as suggested by Chang et al. (2022) to improve training stability.

H.2 Disentanglement Heads

SA-MESH outputs n + 1 slots that are of size 64, yet we need to project each of these slots to a
d−dimensional space so we can leverage the disentanglement method from Ahuja et al. (2022a,b).
We can simply achieve this projection by a single MLP, however, we decided to allocate more
parameters for this projection and use d separate projection heads mapping 64-dimensional vectors to
d separate scalars. This way identification of different properties will not affect one another due to
model capacity constraints. We stack the layers shown in table 9 to obtain a projection head per each
property. The same set of d projections will be shared among all slots.

H.3 ConvNet Baseline

As a baseline for injective scenarios, we use a ResNet18 (He et al., 2016) with an output width of 128
that is passed through LeakyReLU activation, which is then followed by d linear projection heads (for
the same reason we use separate disentanglement heads) that map the 128-dimensional output of the

18

Figure 6: (Left) From top to bottom, the objects are perturbed as follows; Since the objects change
color, let us call the red cube in the top frame to be object 1, and the blue one to be object 2. Object 1:
The color is perturbed to be equal to object 2 (1-2), Moves to the right as its posy is perturbed by
0.2 (2-3), The color hue is once again perturbed to become purple (3-4). Object 2: Moves toward
right (perturbation in posy by 0.2) to be at the same y coordinate as object 1 (1-2), The color hue is
decreased so now the colors of objects 1,2 are swapped (2-3). Moves by 0.2 in the y direction to align
with the other object once again (3-4), Change its color hue twice the previous color perturbation with
the opposite sign to match the color of the other object (4-5). (Right) Red curves correspond to object
1, and the blue curves correspond to object 2. Again, notice the sections where the curves coincide,
as well as the ratio of jumps in the properties, showing consistency of the learned representations
with the ground-truth causal representation that gives rise to these observations.

Table 9: Layers in a projection head for disentanglement.

Layer Input Size Output Size Bias Activation
Linear (1) 64 32 True ReLU
Linear (2) 32 32 True ReLU
Linear (3) 32 16 False ReLU
Linear (4) 16 1 False ReLU

CNN encoder to d separate 1-dimensional scalars that should correspond to the target d−dimensional
space.

H.4 Training

For each k and for each set of disentanglement target properties, we first train SA-MESH for 2000
epochs with a batch size of 64 for 2D shapes (as the images are 128× 128), and a batch size of 128
for 3D shapes (since images are 64× 64) on a single A100 GPU with 40GB of memory. We used
a fixed schedule for the learning rate at 2 × 10−4, and we used AdamW (Loshchilov and Hutter,
2017) with a weight decay of 0.01 along with ϵ = 10−8, β1 = 0.9, β2 = 0.999. SA-MESH was
first solely trained by minimizing reconstruction error on the training set, then its disentanglement
performance was reported on the test set for projection-based baselines (RP, PC, LR). Due to the high
number of combinations of target disentanglement properties and k, we just trained SA-MESH for
each configuration only once.
Unsupervised disentanglement with our method has an additional stage which takes the aforemen-
tioned pre-trained SA-MESH models and jointly minimizes the loss in equation 2. Note that at this

19

Figure 7: Comparing the disentanglement performance of an injective ResNet vs. our object-centric
method based on the number of training samples. The dataset contains four 2D objects in which
posx, posy, color, shape can vary.

stage, the SA-MESH model is not frozen, so the gradients flow through its network as well and help
adjust the slot representations with the signal from the latent loss. Under known perturbations, we
use the actual perturbations from the DGP as δt to guide the model via equation 2, however, under
unknown perturbations setting, we replace all perturbations δt by a hyperparameter C (see section 4).
CNN baselines were trained similar to SA-MESH but for much shorter, i.e., 200 epochs, and usually
converge very fast in less than 50 epochs.

H.5 Hyperparameter Optimization

We started around the hyperparameters used by Locatello et al. (2020b) and Zhang et al. (2023) where
applicable, and tuned on small subsets of the 2D shapes training data based on linear and permutation
disentanglement metrics. We considered 5 values for the learning rate [2×10−3, 2×10−4, 10−4, 6×
10−5, 2× 10−5]. Larger batch sizes were always better and we were only constrained by memory
in the case of 128× 128 images of the 2D shapes dataset. We considered 2 values [0.1, 0.5] for |C|,
the fixed value representing all unknown perturbations, and found |C| = 0.1 to perform better. We
also considered slot sizes [64, 128] on a small subset of the 2D shapes training dataset. Lastly we
considered 9 combinations for the relative importance of latent loss and reconstruction loss when
training the disentanglement heads, i.e., we considered all combinations of wlatent ∈ {1, 10, 100},
wrecons ∈ {1, 10, 100}, and found the combination of wrecons = 100, wlatent = 10 to strike the optimal
balance between maintaining good reconstructions and allowing the slot representations to give rise
to disentangled projections.

H.6 Datasets

2D Shapes. We use pygame engine (Shinners, 2011) for generating multi-object 2D scenes. Object
properties in both datasets include px, py, color, shape, size, and rotation angle. Based on object
properties, they are each rendered and placed on a white background (for the 2D dataset) or placed
on a floor that is illuminated by source lights and is being visited from somewhere above the floor
(for the 3D dataset), and then aggregated to produce xt. We discretized the range of color hues in
order to test the model’s ability to obtain disentangled representations in the simultaneous presence
of both continuous (position, size, and rotation angle) and discrete properties (color and shape).

In the 2D dataset:

20

• px, py are generated randomly and uniformly in the [0, 1] range, i.e., the boundaries of
the scene, such that no two objects overlap and no object falls even partially outside the
boundaries. Positional coordinates can be perturbed by any value in [−0.2, 0.2].

• For color, we use HSV color representations and fix saturation (S) and value (V) at
0.6 and choose hue (H) from a set of values predefined before training (for instance
[0.0, 0.25, 0.5, 0.75]). We adopted this 1-d representation to be consistent and have each
property be represented by a scalar. Additionally we wanted to test the model’s capacity
when dealing with mixed discrete properties. Also, training Slot Attention or SA-MESH
with discrete colors is computationally advantageous since the model will not have to deal
with reconstructing all colors. However it should be noted that HSV is a cylindrical geometry
with color hues being the angular dimension which results in values that have a distance
of 1.0 being exactly the same color (given a fixed saturation and value). That is why a list
of color hues such as [0.0, 0.33, 0.66, 1.00] would not work since 0.0 and 1.0 are the same
color, yet our model interprets the difference as a perturbation with the amount of 1.0, which
is clearly wrong. A change of color from color i to j where i, j index the list of color hues
H would be provided to the model as a perturbation in the amount of (H[j]−H[i])/|H|,
where |H| denotes the number of colors in H .

• Shape is also clearly discrete and is selected at random uniformly from the following set
of shapes S = {circle, square, triangle, heart, diamond}. Note however, that the effects
of perturbations need to be visible in the pixel space, and we should be wary of the dis-
entanglement target properties; for instance if the rotation angle ϕt is a property we aim
to disentangle with perturbations, then we should exclude circle from the set of possible
shapes since a circle does not reflect in the pixel space the angle perturbations. A shape
transformation from shape i to j where i, j index S, would be provided to the model as a
perturbation with the amount of (j − i)/|S|.

• Size is a continuous property in the range [0.12, 0.24] of the height or width of the image
which is 1. It can be perturbed by any amount in [−0.02, 0.02].

• Rotation angle is also another continuous property in [0, π/4]. Similar to color hues, since
this property is also angular, we have limited the range not to encounter situations that
appear the same in the pixel space but have very different rotation angles (a square that is
rotated π/2 clockwise seems unaltered, or π/4 and 3π/4 rotations both look the same for a
square.). Angular perturbations can vary in the [−0.2, 0.2] range.

We generate samples in pairs corresponding to t, t+ 1. For fully dense perturbations, we generate
k vectors of dimension d, where k is the number of objects. We repeat the generation until the
conditions of non-overlapping objects and non-identifiability are met, i.e., no two objects at either
t or t + 1 should overlap (before and after the perturbations), no object should fall in whole or
partially out of the scene, and no two objects should be perturbed by d-dimensional offsets that
are closer than some ϵ. The last condition is necessary for fully dense perturbations as otherwise
the matching has no way of distinguishing which perturbation to assign to which object since the
matching solely relies on the difference between t, t + 1. For fully sparse perturbations, we are
not constrained by the latter, and we only need to choose perturbations that do not push the chosen
object out of boundaries, or make it overlap with another object. For any experiment we can have a
subset of {posx, posy, color, shape, size, rotation angle} as the properties we wish to disentangle by
observing perturbations in the pixel space, and we call them disentanglement target properties. In
the generation process, any non-target property will be fixed for all objects in the whole dataset to
avoid introducing unwanted variance to the disentanglement of target properties, i.e., if we choose
{posx, posy, color, shape, rotation angle} as target properties, then all the objects in all samples would
have the same fixed size. Lastly, we can choose to make a DGP injective or not. If we choose to make
a DGP injective, we would index the objects and choose a property to be set for objects according to
the indices, i.e., we can choose to make the DGP injective by color; Suppose k = 4 and the list of our
color hues is [0.0, 0.25, 0.5, 0.75]. We would color the objects, which are now ordered according to
some index set I , according to I . Non-target properties (excluding the injectivity imposing property)
will again be kept fixed for the whole dataset, and target properties are generated according to fully
dense or fully sparse perturbation schemes. The perturbations to all properties are signed, and this is
especially crucial for discrete properties such as shape. The reason is that disentanglement is achieved
through observing relative distances in the pixel space, and having only positive or only negative
perturbations deprives the model of having a reference for each property.

21

For training we generate 1000 pair per target property such that the model on average sees at
least 500 samples for either positive or negative perturbations to each property, i.e., if we choose
{posx, posy, color} as target properties, we will generate 3000 samples for training. The validation
and test sets always have 1000 samples. For the 2D dataset, we generate 128× 128 images for better
visual quality that is not distorted due to artifacts caused by perturbations. We then normalize and
clip the image features (RGB values) to be in [−1, 1] range.

3D Shapes. For generating the 3D datasets we leverage kubric library (Greff et al., 2022) to obtain
realistic scenes which we can highly customize. Objects sit on a floor, a perspective camera is situated
at (2.5, 0, 3.0) and looks at (0.0, 0.0, 0.0). Directional light illuminates the scene from (1.0, 0.0, 1.0)
towards the center. The set of possible target properties are similar to 2D shapes, and the range of
properties in which each object is spawned is as follows:

• posx, posy are generated randomly and uniformly in the [−1.5, 1.5] and [−1.0, 1.0] ranges
respectively, such that no two objects overlap and no object falls even partially outside the
boundaries. Note however, by overlap we mean that objects are spawned such that they do
not mutually fill a volume in the 3D space, and we only prevent such occurrences, but we
do allow occlusions from the perspective of the camera, which adds to the complexity of
this synthetic dataset. posz is never a disentanglement target property and is always set such
that objects sit on the floor (except when rotated). The reason for fixing the z coordinate is
that any possible perturbation to the 3D coordinates is always going to be interpreted on a
2D scene that is observed by a camera that is placed somewhere above the floor. Therefore,
introducing a third coordinate in the DGP and target properties has no point. Positional
coordinates can be perturbed by offsets in [−0.3, 0.3] range.

• color is similarly parameterized by a scalar in HSV format as in 2D.
• Shape can be any of {sphere, cube, cylinder, cone}. Again, since the effects of perturbations

need to be visible in the pixel space, we will not use spheres if the rotation angle ϕ is a
property we aim to disentangle with perturbations, as sphere rotations do not reflect in the
pixel space. For rotation in the 3D space we choose the z-axis as the axis of rotation so that
angular perturbations are maximally visible (w.r.t. the perspective camera’s location).

• Size is a continuous property in the range [0.3, 0.7] and can be perturbed by offsets in
[−0.15, 0.15] range.

• Rotation angle follows the convention of 2D shapes DGP, except that the rotations are
around the z-axis for better visual quality.

Since kubric already generates high fidelity images, we use 64× 64 images to lower the computa-
tional burden of SA-MESH autoencoder. The number of samples is always fixed at 20, 000 regardless
of the target properties since the 3D dataset is more complex. We use a similar transformation as in
2D, and normalize and clip the image features (RGB values) to be in [−1, 1] range.

22

	Introduction
	Objects result in non-identifiability
	Object-centric causal representation learning
	Method
	Empirical evaluation
	Conclusion
	Proofs
	Proof of proposition 1
	Proof of proposition 2
	Proof of theorem 1

	Related Work
	Definition of object separability
	Background on slot-attention-based architectures
	Alternative perturbation mechanisms
	Matching
	Further Experimental Results
	2D Shapes
	3D Shapes
	Comparison of Sample Efficiency

	Implementation and Experimental Details
	SA-MESH Architecture
	Disentanglement Heads
	ConvNet Baseline
	Training
	Hyperparameter Optimization
	Datasets

