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ABSTRACT

Retrieval-augmented generation (RAG) grounds large language models (LLMs) in
external evidence, yet multi-hop pipelines still suffer from redundant sub-queries,
shallow exploration, and premature or delayed stopping. We present EVO-
RAG, a phase-aware framework that couples a lightweight two-stage curriculum
(Discovery→Refinement) with seven step-level rewards and an in-episode time
scheduler. The scheduler decays exploration incentives as evidence accumulates
while increasing efficiency and correctness pressure as uncertainty shrinks. Be-
yond scalar rewards, we train a multi-head preference model and benchmark
DPO, PPO, and GRPO under identical rollouts and curricula for a controlled
comparison. Evaluated on HotpotQA, 2WikiMultiHopQA, MuSiQue, and Bam-
boogle with 8B-class backbones, EVO-RAG improves EM/F1 while reducing
redundant hops. Ablations show that (i) suppressing query overlap, (ii) rewarding
controlled backtracking and justified refusal, and (iii) time-dynamic weighting are
key to the accuracy–efficiency trade-off.

1 INTRODUCTION

Large language models (LLMs) deliver strong results in QA, dialogue, and text generation Brown
et al. (2020); Ouyang et al. (2022); Raffel et al. (2020), yet they still hallucinate when relying on
static pretraining. Retrieval-Augmented Generation (RAG) grounds responses in external docu-
ments Lewis et al. (2020), but multi-hop QA remains difficult: an agent must issue a sequence of
sub-queries, integrate partial evidence, and decide when to backtrack, answer, or refuse.
Modern RAG pipelines span query rewriting, retrieval, filtering/reranking, and answer generation
Chen et al. (2024b); Gao et al. (2024). End-to-end objectives that couple retriever and generator
reduce handoff errors Chen et al. (2024b); Gao et al. (2024); Xiong et al. (2025), but most supervi-
sion is static and phase-agnostic. As a result, systems often over-search early or fail to consolidate
late. RL-based approaches attempt to align modules to task rewards, yet many depend on episode-
level signals and fixed weight schedules, offering weak credit assignment for intermediate actions
and poor guidance on the transition from exploration to refinement Huang et al. (2025); Song et al.
(2025); Liu et al. (2025); Sun et al. (2025).
We introduce EVO-RAG, a phase-aware framework for multi-hop retrieval (Fig. 1). The agent oper-
ates in two stages—Discovery then Refinement—and receives seven interpretable step-level signals:
retrieval hit/miss, retrieval-action penalty, sub-query overlap, backtrack, refusal validity, step cost,
and answer correctness. A time-based scheduler adjusts signal weights within each episode, de-
caying exploration incentives as evidence accumulates while increasing efficiency and correctness
pressure as uncertainty shrinks. Beyond scalar rewards, we build a multi-head preference model
that scores trajectory prefixes along these aspects, enabling both preference alignment (DPO) and
scalarized policy gradients (PPO/GRPO) under identical rollouts.
Our design couples two time scales. Across training, a lightweight two-stage curriculum sets end-
points for each reward weight (discovery→refinement) without freezing behavior; within episodes,
linear interpolation by progress ratio p(t) produces smooth, phase-aware guidance. This separation
keeps implementation simple—no additional modules at inference time—while providing dense,
interpretable feedback for control-flow decisions such as BACKTRACK and REFUSE.
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Search / Backtrack / Answer / Refuse

Question:What retailer in ABQ Uptown is 
headquartered in Poole, Dorset, United 
Kingdom?
[Current Observation] None/Retrieve Context
History
→ Q1: Where is ABQ Uptown located?
→ Q2: Which stores are in ABQ Uptown?
→ Q3: Where is Lush headquartered?

Interaction 
Loop

[Document]
[D₁] ABQ Uptown is in 
Albuquerque.
[D₂] ABQ UPTOWN. New 
Mexico's destination for 
upscale shopping and 
entertainment and dining.

Signals + 
Scheduler

t=1 T

Objectives 
from the same 

rollouts

Refusal Reward ρ

Backtrack Penalty  δ

Retrieval Action 
Penalty λ

Sub-query 
Overlap Penalty γAnswer 

Correctness κ

Step Penalty η

Retrieve Bonus β

Question+History Retrieved Docs

same trajectories + scheduler weights

p(t)=t/Tmax

Rule based rewards LLM based  rewards

same trajectories + scheduler weights RL Models

Figure 1: EVO-RAG overview. Left: at hop t the agent rewrites a sub-query and retrieves ev-
idence; four actions are available (continue, backtrack, answer, refuse). Right: seven step-level
signals—Retrieval Bonus, Retrieval Action Penalty, Sub-query Overlap Penalty, Backtrack Penalty,
Refusal Reward, Step Penalty, Answer Correctness—with a time-based scheduler that shifts empha-
sis from exploration to refinement. Lower: we train the same rollouts with three policy objectives
(DPO/PPO/GRPO) for transparent per-dataset/per-backbone comparison.

We evaluate on HotpotQA, 2WikiMultiHopQA, MuSiQue, and Bamboogle Yang et al. (2018); Ho
et al. (2020); Trivedi et al. (2022b); Press et al. (2022) using 8B-class backbones. To probe general-
ization, we train on a small HotpotQA subset and test across datasets. EVO-RAG improves EM/F1
while curbing redundant hops; ablations show that (i) suppressing query overlap, (ii) rewarding
controlled backtracking and justified refusal, and (iii) time-based weighting are key to the accu-
racy–efficiency trade-off. We also report a controlled comparison of DPO, PPO, and GRPO on the
same rollouts and curricula, surfacing objective-dependent differences without confounds. Our code
is available at https://anonymous.4open.science/r/evorag-0C08/README.md..

2 RELATED WORK

RAG paradigms. RAG combines retrieval with generation to improve factuality and reduce hal-
lucinations Lewis et al. (2020). Comparative studies map retriever–generator trade-offs and explore
end-to-end/process supervision that tightens interaction between the two Chen et al. (2024b); Gao
et al. (2024); Xiong et al. (2025). These objectives are typically static and phase-agnostic; our
approach provides step-level, time-scheduled guidance within an episode to reflect evolving infor-
mation needs in multi-hop reasoning.

Query rewriting and multi-hop retrieval. Multi-hop QA requires issuing well-formed sub-
queries conditioned on partial evidence; errors propagate if later hops inherit poor queries. Methods
mitigate this with missing-entity completion, interleaved reasoning–retrieval (e.g., IRCoT), specu-
lative querying, and coherence-aware reranking Trivedi et al. (2022a); Wang et al. (2024); Zhang
et al. (2024); Wei et al. (2024); Zhu et al. (2025). These approaches seldom supervise when to diver-
sify versus consolidate. Our overlap and step-cost signals explicitly regulate duplication and chain
length, while backtrack/refusal signals shape control flow.

RL and preference optimization for RAG. RL has been used to align retrieval, reranking, and
generation (e.g., multi-agent or curriculum-based training) and to leverage preference objectives
such as DPO/GRPO Chen et al. (2025); Huang et al. (2025); Ramesh et al. (2024); Kaiser & Weikum
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(2025); Liu et al. (2025). Most rely on episode-level rewards with fixed schedules, which weakens
credit assignment for intermediate actions. EVO-RAG instead supplies seven step-level signals
with an in-episode scheduler and reports DPO/PPO/GRPO under identical rollouts for a controlled
comparison.

3 METHOD

3.1 PRELIMINARIES: AGENTIC RAG ON RAG-GYM

We build on the high-level MDP abstraction of agentic RAG popularized by prior toolkits (“RAG-
Gym”Xiong et al. (2025)). Each episode corresponds to one question x and unfolds as a sequence
(st, at, ot)

T
t=1: State st: the question, the history of sub-queries and retrieved snippets, and the

current scratchpad. Observation ot: the top-k passages returned by the IR system when at =
SEARCH, or ∅ for other actions.Action space A: {SEARCH, BACKTRACK, ANSWER, REFUSE}.
Termination: when the agent emits ANSWER or REFUSE, or t = Tmax.

This paper keeps the outcome reward on the final ANSWER (EM/F1) but decomposes process feed-
back at intermediate steps into seven interpretable signals (Sec. 3.3). A two-stage curriculum
(Discovery→Refinement) and an in-episode time scheduler (Sec. 3.6) shape the relative weights
of these signals.

3.2 REWARD SOURCES AND ACTION TRIGGERS

We use two feedback sources: (i) rule-based signals computable from the environment (hit gold doc,
query redundancy, step cost), and (ii) LLM-based judgments for semantics-heavy cases (whether the
current evidence suffices, thus REFUSE is justified). Table 1 summarizes when each signal fires and
who provides it; formal definitions follow in Sec. 3.3.

Table 1: Process signals, trigger, and source. All symbols are defined in Sec. 3.3.

Signal Action / Timing Source Intuition

rret (Retrieval Bonus) SEARCH Rule reward early hits on D∗

rdup (Overlap Penalty) SEARCH Rule penalize redundant queries
rbt (Backtrack Pen.) BACKTRACK Rule discourage blind backtracking
rref (Refusal Reward) REFUSE LLM judge refuse when evidence insufficient
rstep (Step Cost) every step Rule keep chains short
ract (Retrieval Act Pen.) late SEARCH Rule curb late redundant searches
rans (Answer Corr.) terminal ANSWER Rule EM/F1 w.r.t. A∗

3.3 STEP-LEVEL REWARD

Retrieval Bonus (rret). At each step t, if the agent issues a SEARCH action that successfully
retrieves any gold-supporting document D∗, it receives a positive reward; otherwise, a negative
reward:

rret(st, at) =


+1 at = SEARCH ∧Dt ∩D∗ ̸= ∅,

−1 at = SEARCH ∧Dt ∩D∗ = ∅,

0 otherwise.

This encourages early and effective retrieval.

Sub-query Overlap Penalty (rdup). To discourage redundant sub-queries, we penalize cosine sim-
ilarity between the current query qt and previous queries qj :

rdup(st, at) = −max
j<t

cos(qt, qj).

Backtrack Penalty (rbt). Whenever the policy selects BACKTRACK, we apply a fixed penalty:

rbt(st, at) = −1[at = BACKTRACK].

3
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Refusal Reward (rref). The agent is rewarded for refusing only when the retrieved evidence is
insufficient, as verified by an external LLM:

rref(st, at) =


+1 at = REFUSE ∧ unanswerable,

−1 at = REFUSE ∧ answerable,

0 otherwise.

Step Cost (rstep). We discourage unnecessarily long reasoning chains:

rstep(st, at) = −1,

modulated by a dynamic weight wstep(t) that increases with step count.

Answer Correctness (rans). At termination step T , correctness is measured by EM/F1 overlap
with the ground-truth answer A∗:

rans(sT , aT ) =
1
2 [EM(AT , A

∗) + F1(AT , A
∗)].

Retrieval Action Penalty (ract). To limit late or redundant searches:

ract(st, at) =


0 at = SEARCH, p(t) < 0.3,

−1[rdup < 0] at = SEARCH, p(t) ≥ 0.3,

0 otherwise.

The total reward is an adaptive weighted sum Rt =
∑

i wi(t)ri(st, at), with wi(t) annealed by
the scheduler (see Section 3.5). This ensures different objectives dominate at appropriate reasoning
phases.

3.4 PREFERENCE MODELING & POLICY OBJECTIVES

Multi-head preference model. Given rollouts with step-level labels {r(k)t }7k=1 and time weights
{wk(t)}, we construct preference pairs (x+, x−) at the trajectory-prefix level using the weighted
return

∑
t

∑
k wk(t)r

(k)
t . A shared encoder with seven linear heads {f (k)

ϕ }7k=1 scores each aspect;
the head-wise pairwise loss is

LRM = − 1
7

7∑
k=1

log σ
(
f
(k)
ϕ (x+)− f

(k)
ϕ (x−)

)
.

This factorization preserves interpretability and allows either preference- or reward-based policy
learning.

Path A: preference alignment (DPO). We feed (x+, x−) directly to the policy and optimize

LDPO = − log σ
(
βdpo[log πθ(x

+)− log πθ(x
−)]

)
.

No scalarization is required.

Path B: scalarized policy gradients (PPO / GRPO). When desired, aspect scores (or environ-
ment labels) are linearly combined into a scalar step reward r̃t =

∑
k wk(t)r

(k)
t . We compute

advantages with GAE and apply the PPO objective

LPPO = −E [min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] ,

and its group-normalized variant (GRPO) by replacing At with Â
(i)
t =

r̃
(i)
t −µt

σt+ε over candidates.

Objective summary. We report all three objectives under identical rollouts and curricula. DPO
consumes preferences; PPO/GRPO use the same per-step weights for scalarization. We refrain from
universal claims; effects depend on dataset/backbone and are analyzed in Sec. 4.5.

Retrieval-focused weights (β, λ) monotonically decrease, whereas efficiency-focused weights
(γ, η, κ) increase; the refusal weight ρ stays constant.This “gearbox” provides step-level guidance
that is missing from a static two-stage switch.

4
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Table 2: Reward weights for EVO-RAG training. ”Start” to ”Mid” columns represent the interpola-
tion range during Stage 1 (Discovery), and ”Mid” to ”End” represent Stage 2 (Refinement). Arrows
(↗, ↘) indicate increasing or decreasing weight trends.

Reward Component Stage 1: Discovery Stage 2: Refinement

Start Mid Trend Mid End Trend

Retrieval Bonus (β) 2.0 1.0 ↘ 1.0 0.5 ↘
Retrieval Action Penalty (λ) 1.5 0.8 ↘ 0.8 0.4 ↘
Sub-query Overlap Penalty (γ) 0.1 0.5 ↗ 0.5 1.2 ↗
Backtrack Penalty (δ) 0.3 0.5 ↗ 0.5 1.0 ↗
Refusal Reward (ρ) 0.5 0.5 – 0.5 0.5 –
Step Penalty (η) 0.02 0.05 ↗ 0.05 0.10 ↗
Answer Correctness (κ) 0.05 0.10 ↗ 0.10 1.00 ↗

3.5 TWO-STAGE CURRICULUM (ACROSS TRAINING)

We use two time scales for guidance: a training-time two-stage curriculum (Discovery → Re-
finement) and an in-episode time-based scheduler (Sec. 3.6). A “stage” does not fix weights;
it only specifies the interpolation endpoints—Start→Mid in Discovery and Mid→End in Refine-
ment—while the actual step-wise weights still evolve within each episode via p(t).

What each stage emphasizes. Discovery exposes the policy to a high-entropy evidence space.
We therefore set larger Start–Mid endpoints for retrieval-oriented terms (wβ , wλ) and smaller ones
for efficiency/precision (wγ , wη, wκ) to encourage breadth and early hits. Refinement shifts these
endpoints in the opposite direction (larger wγ , wη, wκ, smaller wβ , wλ), promoting consolidation,
controlled stopping, and precise answering. The refusal weight wρ stays constant across stages so
that safe refusal is always available.

When to switch stages. We switch from Discovery to Refinement once exploration no longer
increases the composite return. Concretely, let

R(τ) =

T∑
t=1

∑
k

wk(t) r
(k)
t

be the scalarized return of a trajectory τ on a held-out dev split (with wk(t) produced by the in-
episode scheduler in Sec. 3.6). We keep an exponential moving average Ĵ of episode-average returns
and trigger the stage change when the improvement over the best running Ĵ falls below a tolerance
ε for P consecutive checkpoints (patience). Intuitively, once exploration plateaus, endpoints are
shifted toward efficiency/accuracy for refinement.

Why two stages rather than a fixed two-block schedule. If one sets wearly
k = wlate

k inside each
stage, the scheme degenerates to a fixed two-block schedule. Our curriculum controls only the
endpoints; the actual behavior in each episode is governed by the time-based scheduler below.

3.6 TIME-BASED SCHEDULER (WITHIN EPISODE)

Progress ratio and interpolation. We schedule step-level weights within each episode using a
progress ratio

p(t) =
t− 1

Tmax − 1
∈ [0, 1],

where t is the current step and Tmax is the episode cap defined in §3.1. We then linearly interpolate
between stage-specific endpoints (wearly

k , wlate
k ):

wk(t) = (1− p(t))wearly
k + p(t)wlate

k .

5
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Dynamic Time-based 
Reward Scheduling

Question

Stage-1 
Discovery

Stage-2 
Refinement

Time-dynamic 
weight update

Overlap too high?      Retrieval miss? 
Backtrack justified?   Answer incorrect?

Backtrack

Refusal

Retrieve

Refinement with 
Explanation

With time increase

Retrieval Bonus β
Retrieval Action 

Penalty λ
Sub-query Overlap 

Penalty γ

Backtrack Penalty δ

Step Penalty  η

Refusal Reward ρ

Answer 
Correctness κ

Reward
Penalty

EVO-RAG

Efficiency & Accuracy Gains

Decrease
Increase
Not changc

(a) Search efficiency (avg. steps ↓) (b) Answer accuracy (EM ↑)

Figure 2: Time-based reward scheduling within an episode. Exploration weights (β, λ) decay with
progress p(t), while efficiency/accuracy (γ, η, κ) rise; refusal (ρ) remains constant.

Table 3: Comparison of RAG methods on multi-hop QA datasets. Metrics are EM/F1 (stacked).

Method Backbone HotpotQA
(EM / F1)

2Wiki
(EM / F1)

MuSiQue
(EM / F1)

Bamboogle
(EM / F1)

RAG-Gym (ReSearch + PRM) LLaMA-3.1-8B 44.1
56.8

50.2
57.9

48.0
60.0

51.2
63.1

IRCoT (Flan-T5-XXL) Flan-T5-XXL 45.0
56.2

45.4
56.8

19.9
24.9

44.0
55.0

EVO-RAG DeepSeek-8B 57.8
71.4

52.6
66.4

51.8
63.7

45.3
58.2

EVO-RAG LLaMA-3.1-8B 57.4
71.2

53.0
66.9

52.5
64.4

45.7
58.6

EVO-RAG Qwen-2.5-7B 57.6
71.5

53.2
67.1

52.2
64.0

46.0
59.0

This guarantees wk(1) = wearly
k and wk(Tmax) = wlate

k . If an episode terminates early
(ANSWER/REFUSE), the schedule stops at the current t. We choose endpoints such that exploration-
oriented (wβ , wλ) decrease, efficiency/accuracy (wγ , wη, wκ) increase, and wρ remains constant.
By choosing endpoints such that

wearly
β ≥ wlate

β , wearly
λ ≥ wlate

λ , wearly
γ ≤ wlate

γ , wearly
η ≤ wlate

η , wearly
κ ≤ wlate

κ ,

and wearly
ρ = wlate

ρ , we ensure exploration incentives (wβ , wλ) decay as evidence accumulates, while
efficiency/accuracy (wγ , wη, wκ) increase; wρ stays flat.

Rationale. (i) Uncertainty reduction: early steps face high-entropy evidence; rewarding early hits
(large wβ) is valuable, but the marginal utility of additional searches diminishes with p(t), so wβ

decays. (ii) Cost–benefit dynamics: late searches incur growing costs (latency, duplication, con-
text pollution), hence we gradually strengthen overlap/step penalties (wγ , wη) and answer accuracy
(wκ). (iii) Credit assignment: terminal-only rewards poorly supervise BACKTRACK/REFUSE/STOP;
reweighted step signals provide phase-appropriate gradients within the same episode.

Implementation notes. We use linear interpolation for reproducibility; other smooth monotone
maps (e.g., sigmoid) are drop-in replacements. Boundary conditions are wk(1) = wearly

k and
wk(Tmax) = wlate

k .
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Table 4: HotpotQA results under different reward schedules.

Backbone Strategy EM F1

DeepSeek-8B
No Reward 52.6 66.2
Two-stage 55.0 68.7
Time-dynamic 56.8 70.5

LLaMA-3.1-8B
No Reward 52.9 66.6
Two-stage 57.4 71.2
Time-dynamic 55.6 69.4

Qwen2.5-7B-Instruct
No Reward 53.1 66.7
Two-stage 55.9 69.5
Time-dynamic 57.6 71.5

Table 5: Single-Reward Ablation Results

Single Reward Type Eval Accuracy (%) Eval Loss

Backtrack 70.31 0.913
Refusal 60.58 1.018
Retrieve 55.24 1.089
Step 54.17 1.184
Sub-query Overlap 54.35 1.015

4 EXPERIMENTS

We systematically evaluate EVO-RAG on four prominent multi-hop QA benchmarks: HotpotQA,
2WikiMultiHopQA, MuSiQue, and Bamboogle. Our evaluation specifically targets the following
three research questions:

4.1 RESEARCH QUESTIONS

We evaluate EVO-RAG on four multi-hop QA benchmarks (HotpotQA, 2WikiMultiHopQA,
MuSiQue, Bamboogle) and focus on three aspects: (i) overall accuracy/efficiency vs. strong
RAG baselines across backbones; (ii) contribution of curriculum/scheduler and the interaction
among reward components; (iii) effects of policy objectives (DPO/PPO/GRPO) under identical roll-
outs/curricula. Results are summarized in Tables 3, 4, 5, 6, and 7.

Figure 3: Sub-query length (left) and step count (right) distributions under various reward configu-
rations.

7
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Table 6: Impact of different reward combinations on HotpotQA using Qwen2.5-7B-Instruct. Met-
rics: Exact Match (EM) / F1; Avg. Steps indicates average retrieval length.

Reward Combination EM (%) F1 (%) Avg. Steps

Baseline (No Reward) 53.1 66.7 8.2
Best-2 (Backtrack + AnsCorr) 56.2 70.0 11.3
Best-3 (+Overlap) 56.9 70.6 10.1
Exploration-Heavy 55.0 69.1 13.4
Efficiency-Heavy 55.4 68.8 9.0
Full (All Rewards) 57.6 71.5 10.4

Table 7: HotpotQA (LLaMA-3.1-8B) under different objectives.

Objective EM (%) F1 (%) Avg. Steps

PPO 55.1 69.0 11.7
DPO 55.9 69.4 11.1
GRPO 57.4 71.2 10.2

4.2 DATASETS AND SETUP

We evaluate EVO-RAG on four multi-hop QA benchmarks. All models are trained using 1,000
queries sampled from HotpotQA. Evaluation is conducted on official validation sets. Answer gener-
ation is evaluated using Exact Match (EM) and F1 scores. We intentionally keep training confined
to HotpotQA to test cross-dataset generalisation.

LLM Backbone and Retriever. We use Llama-3.1-8B-Instruct Touvron et al. (2023), Qwen2.5-
7B-Instruction ?, DeepSeek-R1-Distill-Llama-8B Guo et al. (2025) as the agent backbone, paired
with RRF-BGE Chen et al. (2024a) retriever (fusion of BM25 Robertson et al. (2009) and BGE
embeddings).

4.3 RQ1: DO WE IMPROVE OVER STRONG MULTI-HOP RAG BASELINES?

Main results. Table 3 compares EVO-RAG against RAG-Gym and IRCoT across three back-
bones. On HotpotQA, EVO-RAG (Qwen2.5-7B-Instruct) reaches 57.6/71.5, outperforming RAG-
Gym (44.1/56.8) by +13.5 EM / +14.7 F1 and IRCoT (45.0/56.2) by +12.6 / +15.3. On 2Wiki,
the best EVO-RAG score (53.2/67.1) exceeds RAG-Gym (50.2/57.9) by +3.0 / +9.2 and IRCoT
(45.4/56.8) by +7.8 / +10.3. As an exception, Bamboogle favors RAG-Gym (51.2/63.1), while
EVO-RAG trained only on HotpotQA scores 45–46 / 58–59 (Table 3), indicating that while EVO-
RAG generalizes across standard multi-hop QA, it can underperform on adversarially constructed
queries without target-domain tuning.Given Bamboogle’s small size (125 items), variance is high;
we therefore report bootstrap confidence and treat cross-domain shifts with caution.

Takeaway (RQ1). Across three datasets and multiple backbones, EVO-RAG materially improves
EM/F1 over strong RAG baselines; the remaining gap on Bamboogle highlights domain-shift sensi-
tivity for adversarial queries.

4.4 RQ2: WHAT DESIGN CHOICES MATTER—COMPONENTS AND SCHEDULING?

(a) Single-reward ablation (component strength). Time-dynamic scheduling generally helps
(DeepSeek/Qwen), with a small exception on Llama-3.1-8B where the fixed two-stage endpoints
slightly outperform the in-episode scheduler.

Table 5 trains with one signal at a time and reports internal decision quality (Eval Accuracy/Loss;
see Sec. 3.3 and §3.4 for the definition—accuracy of choosing the preferable retrieval action un-
der the preference model). Backtrack alone yields the highest internal accuracy (70.31%), indi-
cating that controlled reversibility is a strong driver for robust exploration. Refusal ranks second
(60.58%), supporting our design to explicitly reward safe abstention when evidence is insufficient.

8
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Pure Retrieve/Step/Overlap signals are weaker in isolation, suggesting they are most effective in
combination rather than alone.

Takeaway. Signals that regulate control flow (when to backtrack or refuse) carry disproportionate
value; more local efficiency signals need to be paired with them.

(b) Reward combinations and scheduling (Two-stage vs. Time-dynamic). Combinations.
On HotpotQA (Qwen2.5-7B-Instruct), Table 6 shows that moving from Baseline (No Reward)
(53.1/66.7, 8.2 steps) to Best-2 (Backtrack+AnswerCorrectness) already gives +3.1 EM; adding
Overlap (Best-3) both increases EM/F1 (56.9/70.6) and shortens chains (10.1 vs. 11.3). The Full
configuration (all rewards, time-dynamic) yields the best accuracy 57.6/71.5 at 10.4 steps—longer
than Baseline but substantially more accurate, indicating a better accuracy–efficiency trade-off.
Exploration-Heavy extends chains (13.4 steps) with lower EM (55.0); Efficiency-Heavy shortens
chains (9.0) but loses EM (55.4).

Schedules. Table 4 compares No Reward, Two-stage, and Time-dynamic: DeepSeek-R1-Distill-
Llama-8B: Time-dynamic ¿ Two-stage ¿ No-Reward (56.8/70.5 vs. 55.0/68.7 vs. 52.6/66.2), i.e.,
+1.8/+1.8 over Two-stage and +4.2/+4.3 over No-Reward. Qwen2.5-7B-Instruct: Time-dynamic
likewise wins (57.6/71.5 vs. 55.9/69.5 vs. 53.1/66.7), i.e., +1.7/+2.0 and +4.5/+4.8. LLaMA-3.1-
8B: Two-stage slightly outperforms Time-dynamic (57.4/71.2 vs. 55.6/69.4), while both clearly beat
No-Reward (52.9/66.6).

Interpretation. The in-episode scheduler consistently helps (DeepSeek/Qwen), while LLaMA-3.1-
8B-Instruct appears to benefit more from fixed stage endpoints. This suggests a backbone–schedule
interaction: when the model’s search policy is already stable, a smoother decay (Time-dynamic)
prevents over-search; otherwise, a stiffer stage separation (Two-stage) may be easier to learn. Fig-
ure 2 corroborates the efficiency story: dynamic scheduling suppresses long tails in step counts and
sub-query lengths.

Takeaway (RQ2). Component-wise, Backtrack + AnswerCorrectness (+Overlap) form a strong
core; curriculum-wise, the Time-dynamic scheduler is generally superior, with a small exception on
LLaMA-3.1-8B-Instruct, where Two-stage wins by a narrow margin.

4.5 RQ3: HOW DO POLICY OBJECTIVES COMPARE (DPO VS. PPO VS. GRPO)?

Across datasets/backbones. Trends are not universal (see Appendix B.1): GRPO tends to help
when sibling-action variance is high, DPO is robust when scalarization is brittle or weight tuning is
difficult, and PPO can be strong with careful weights.

Takeaway (RQ3). On HotpotQA/LLaMA-3.1-8B-Instruct we observe GRPO > DPO > PPO in
both accuracy and efficiency see in Table 7; the preferred objective can vary with dataset/backbone
and the variance structure of sibling actions.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Conclusion We presented EVO-RAG, a two-stage (Discovery→Refinement) agent for multi-
hop RAG with seven step-level signals and an in-episode scheduler. Under identical rollouts,
DPO/PPO/GRPO experiments show consistent EM/F1 gains while reducing redundancy; abla-
tions highlight the importance of overlap suppression, controlled backtracking, and time-dependent
weighting.

Limitations Results rely on automatic EM/F1 without human judgments. Reward weights were
tuned on HotpotQA and may need retuning elsewhere; refusal validity uses LLM judgments. Ac-
tions are prompted rather than learned latents. Compute is modest and performance on adversarial
queries (e.g., Bamboogle) is mixed; broader multi-seed statistics are desirable.

Future Work We will explore adaptive/meta-learned weights, calibrated uncertainty for stop-
ping/refusal, and latent action policies. Extensions to verification, summarization, and domain
retrieval (e.g., legal/patent), plus human evaluation and stronger statistics (multi-seed, paired boot-
strap), are planned.

9
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A REPORTING DETAILS

A.1 DATASETS AND SPLITS

Benchmarks: HotpotQA (7,404 dev), 2WikiMultiHopQA (12,575), MuSiQue (2,417), and Bam-
boogle (125); all evaluations use official dev splits.

Unless stated otherwise, we train on a subset of 1,000 HotpotQA training questions sampled uni-
formly at random, and evaluate on the official validation/dev splits of each dataset. To avoid leakage,
we deduplicate question strings and ensure that no evaluation item appears in the training subset.

A.2 BACKBONES, RETRIEVER, AND ACTION SPACE

Unless noted, the agent backbone is one of LLaMA-3.1-8B, Qwen-2.5-7B, or DeepSeek-R1-
Distill-Llama-8B (see Table 3). Retrieval uses RRF-BGE (Reciprocal Rank Fusion of BM25
and BGE embeddings). At hop t, the environment returns the top-k passages (constant k across
runs). The discrete action set is {SEARCH, BACKTRACK, ANSWER, REFUSE} with an episode cap
Tmax=20 steps.

A.3 REWARD INSTRUMENTATION AND SCHEDULER

We keep the final-answer reward (EM/F1) and decompose process supervision into seven step-level
signals (Sec. 3.3): Retrieval Bonus, Retrieval Action Penalty, Sub-query Overlap Penalty, Back-
track Penalty, Refusal Reward, Step Penalty, and Answer Correctness. Signals are either rule-based
(environment-computable) or LLM-verified (only for semantics-heavy cases, e.g., justified refusal).
We schedule step-level weights within each episode using a progress ratio

p(t) =
t− 1

Tmax − 1
∈ [0, 1], wk(t) = (1− p(t))wearly

k + p(t)wlate
k .

with stage-dependent endpoints (Table 2). Thus, Discovery uses exploration-leaning endpoints and
Refinement uses efficiency/accuracy-leaning endpoints, while the actual per-step weights continue
to evolve within every episode.

Training-time stage switch. We switch from Discovery to Refinement when the composite scalar-
ized return on a held-out dev split plateaus. Let R(τ)=

∑
t

∑
k wk(t) r

(k)
t . We track the exponential

moving average Ĵ of per-episode returns; when the improvement over the best running Ĵ is < ε for
P consecutive checkpoints (patience), we trigger the stage switch. Intuitively, once exploration no
longer increases composite return, endpoints are shifted toward precision and efficiency.
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A.4 PREFERENCE MODEL AND PAIR CONSTRUCTION

From rollouts labeled with step-level signals {r(k)t }7k=1 and weights {wk(t)}, we form trajectory-
prefix preference pairs (x+, x−) using the weighted return

∑
t

∑
k wk(t)r

(k)
t . A shared encoder with

seven linear heads {f (k)
ϕ }7k=1 predicts aspect-wise scores and is trained with a head-wise logistic

loss:

LRM = − 1
7

7∑
k=1

log σ
(
f
(k)
ϕ (x+)− f

(k)
ϕ (x−)

)
.

Sibling candidates at the same step are used to increase pair diversity; we keep positive/negative
balance close to 1:1 by down-sampling the majority side.

A.5 POLICY OBJECTIVES AND ADVANTAGE ESTIMATION

We benchmark three objectives under identical rollouts and curricula:

• DPO optimizes preferences directly, LDPO = − log σ
(
βdpo[log πθ(x

+)− log πθ(x
−)]

)
.

• PPO uses scalarized step rewards r̃t =
∑

k wk(t)r
(k)
t with GAE advantages and clipped updates.

• GRPO replaces At with group-normalized advantages across sibling candidates: Â(i)
t = (r̃

(i)
t −

µt)/(σt + ε).

Hyperparameters for each objective are held constant across backbones; exact configs are released
with the code.

A.6 TRAINING PROTOCOL AND COMPUTE

Unless stated otherwise, we report the mean over 3 random seeds (same seeds across all methods
and backbones). We use a single high-memory GPU and mixed-precision training. Each run alter-
nates (i) rollout collection with the current scheduler and (ii) policy updates (Algorithm 1). We save
checkpoints at fixed intervals and select the best dev EM for reporting.

A.7 EVALUATION PROTOCOL

All metrics use the official evaluation scripts of each dataset. HotpotQA, 2WikiMultiHopQA, and
MuSiQue are scored by EM and F1; Bamboogle by EM/F1 following prior work. We also track
Avg. Steps (average retrieval depth) to quantify efficiency. Unless explicitly noted, no target-domain
fine-tuning is performed (Table 3, †).

A.8 STATISTICAL TESTING AND UNCERTAINTY

For tables that aggregate over multiple seeds, we report mean±std. For pairwise method compar-
isons on EM/F1, we run a paired bootstrap with 10,000 resamples over per-question predictions
and mark differences significant at p<0.05. When box plots are shown (e.g., Fig. 3), whiskers mark
5th–95th percentiles.

A.9 ABLATIONS AND CONTROLS

We include: (i) single-signal training (Table 5), (ii) reward-combination studies (Table 6), and
(iii) schedule variants (No Reward, fixed Two-stage, Time-dynamic; Table 4). Unless specified, all
other settings are unchanged.

A.10 REPRODUCIBILITY ARTIFACTS

We release scripts to (a) materialize the training subset, (b) reproduce all rollouts, (c) run
DPO/PPO/GRPO with the same scheduler, and (d) evaluate and bootstrap metrics. All random
seeds, checkpoint hashes, and configuration files are included.
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Table 8: HotpotQA with LLaMA-3.1-8B-Instruct under different objectives. Mean over 3 seeds.

Method EM (%) F1 (%) Avg. Steps

PPO (scalarized reward) 55.1 69.0 11.7
DPO (multi-preference) 55.9 69.4 11.1
GRPO (group-normalized) 57.4 71.2 10.2

Table 9: Pilot study of adaptive reward weight tuning on HotpotQA (LLaMA-3.1-8B).

Method EM (%) F1 (%) Avg. Steps

Manual schedule (main paper) 57.4 71.2 10.2
Bayesian optimization (BO) 57.8 71.5 10.1
Bandit-based (UCB1) 57.6 71.3 10.4

B ADDITIONAL RESULTS AND ANALYSES

B.1 EFFECT OF POLICY OBJECTIVE (DPO VS. PPO VS. GRPO)

B.2 ADAPTIVE REWARD WEIGHT TUNING (PILOT STUDY)

Discussion. Adaptive methods yield comparable or slightly better accuracy than the manual sched-
ule. BO converged to weights close to our hand-tuned configuration with marginal EM/F1 gains;
UCB1 adapted weights online without manual intervention. These confirm the feasibility of adaptive
tuning for robustness and cross-domain transfer (e.g., MuSiQue, Bamboogle).

C PARAMETERS USED IN VERL
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Table 10: VERL training hyperparameters by objective (shared unless noted).

Hyperparameter PPO GRPO

Critic model path Qwen/Qwen2.5-0.5B-Instruct –
LR (actor / critic) 1e−6 / 1e−5 1e−6 / –
Train batch size (episodes) 128 16
PPO mini-batch size 64 8
Micro-batch / GPU 4 2
Max prompt / response length 2048 / 256 1330 / 256
KL coef (λKL) 0.001 0.0
Adv estimator PPO (GAE) GRPO
TP size (vLLM) 1 2
vLLM gpu mem util 0.4 0.4
Rollout n (per prompt) – 1
Critic warmup – 0
Epochs / save freq / test freq 15 / 10 / 10 15 / 10 / 10
GPUs (per node) 1 2
Seeds 3

D TRAINING LOOP (FOR COMPLETENESS)
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Algorithm 1 EVO-RAG training loop
1: Initialize policy πθ and preference model fϕ
2: for stage ∈ {Discovery,Refinement} do
3: for m = 1 to M episodes do
4: Roll out with dynamic weights wk(t); collect trajectories τ and sibling pairs (x+, x−)
5: end for
6: Update fϕ by minimizing LRM on collected (x+, x−)
7: Update πθ by minimizing LO with O ∈ {DPO, PPO,GRPO}
8: end for

E CASE STUDIES
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Table 11: Compact traces under different reward schedules. “Dup.” = near-duplicate; ♢ marks the
timestep preferred by the reward model. Correct answers are bold; wrong ones in red.

Baseline (No Reward) Two-stage (Fixed) Time-dynamic (EVO-RAG)

Q1: “In which year was the monarch who issued the 1925 Birthday Honours born?”
Steps 1 2 2
Main hops q1: direct ask → noisy list q1: same; q2: ask birth (Dup.♢) q1: identify monarch; q2: ask birth
Outcome 1867 1865 1865

Q2: “Which U.S. state contains the launch site of Mars Pathfinder?”
Steps 1 6 2
Main hops q1: “launch site state” → LC-17 q2..5: “launch pad” paraphrases (Dup.) q1: site → Cape; q2: “Which state?”
Outcome California Florida Florida

Q3: “Where was the 2021 Hugo Award ceremony hosted?” (unanswerable)
Steps 1 13 4
Main hops q1: host city; no citation many paraphrases (Dup.) tried a few; stopped timely
Outcome London Dublin REFUSE (✓)
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