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Abstract 

Background:  The increasing demands concerning stroke rehabilitation and in-home exercise promotion grew 
the need for affordable and accessible assistive systems to promote patients’ compliance in therapy. These assistive 
systems require quantitative methods to assess patients’ quality of movement and provide feedback on their perfor-
mance. However, state-of-the-art quantitative assessment approaches require expensive motion-capture devices, 
which might be a barrier to the development of low-cost systems.

Methods:  In this work, we develop a low-cost virtual coach (VC) that requires only a laptop with a webcam to moni-
tor three upper extremity rehabilitation exercises and provide real-time visual and audio feedback on compensatory 
motion patterns exclusively from image 2D positional data analysis. To assess compensation patterns quantitatively, 
we propose a Rule-based (RB) and a Neural Network (NN) based approaches. Using the dataset of 15 post-stroke 
patients, we evaluated these methods with Leave-One-Subject-Out (LOSO) and Leave-One-Exercise-Out (LOEO) cross-
validation and the F1 score that measures the accuracy (geometric mean of precision and recall) of a model to assess 
compensation motions. In addition, we conducted a pilot study with seven volunteers to evaluate system perfor-
mance and usability.

Results:  For exercise 1, the RB approach assessed four compensation patterns with a F1 score of 76.69% . For exercises 
2 and 3, the NN-based approach achieved a F1 score of 72.56% and 79.87% , respectively. Concerning the user study, 
they found that the system is enjoyable (hedonic value of 4.54/5) and relevant (utilitarian value of 4.86/5) for rehabili-
tation administration. Additionally, volunteers’ enjoyment and interest (Hedonic value perception) were correlated 
with their perceived VC performance ( ρ = 0.53).

Conclusions:  The VC performs analysis on 2D videos from a built-in webcam of a laptop and accurately identifies 
compensatory movement patterns to provide corrective feedback. In addition, we discuss some findings concerning 
system performance and usability.
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Background
Post-stroke patients often suffer from physical impair-
ment [1], with a weakened body side [2, 3], leaving them 
incapable of accomplishing daily tasks [4, 5]. Rehabili-
tation poses a crucial strategy to reduce stroke effects, 
prevent disability and stroke recurrence, demanding 
a lot of time investment [4–6]. However, the grow-
ing number of patients lead therapists to struggle in 
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giving them the necessary attention and rehabilitation 
administration [5, 7]. Therefore, therapists frequently 
recommend the repetition of specific exercises [4, 6, 8] 
as in-home rehabilitation [9] to improve patients’ func-
tional abilities. Nonetheless, patients have difficulty 
with keeping their motivation and engagement with in-
home exercises without professional supervision. Low 
adherence and incorrect execution of in-home exer-
cises negatively affect their recovery process [2, 10].

While exercising, patients regularly exhibit compen-
satory motions, using additional or new body joints, 
to aid in task accomplishment [3, 4, 11, 12]. The most 
typical compensation behaviors are trunk displace-
ments, rotation, and shoulder elevation [3, 11]. As the 
persistence of compensatory movements may obstruct 
real motor function recovery, patients require exercise 
instructions and feedback to reduce these movement 
patterns [3, 11, 12].

The escalating demands towards in-home rehabilita-
tion [1, 5] raised the need for quantitative measures to 
evaluate patients’ motor performance [9, 13]. Quantita-
tive assessment allows tracking patients’ progress and 
the formulation of standard therapy regimens [9, 14]. 
Assistive systems with quantitative assessment, as Vir-
tual coaches (VCs), can aid patients to perform in-home 
exercises [15, 16]. VCs must be adequate, affordable, and 
accessible, with an interaction model to keep the user 
engaged [15–17]. Also, they must evaluate patients’ per-
formance to provide therapists with the required data to 
track their progress and support clinical decisions [9, 13].

Previous works investigated computer-based solu-
tions for in-home upper extremity rehabilitation [17–19]. 
The proposed systems have complex interaction models 
which provide visual and audio feedback [17–19]. They 
utilize marker-based motion capture [19] or Kinect-based 
[17, 18] systems to assess patients’ exercise performance 
through motion kinematic analysis. Exercise instructions 
and feedback—such as error messages and direct perfor-
mance ratings—are displayed on screens [19] and tablets 
[17] using graphical interfaces [18].

Researchers identified kinematic variables to character-
ize impaired motion patterns [9, 13, 14, 20, 21]. They pro-
vided automated methods to produce assessment scores 
highly correlated with Fugl-Meyer Assessment (FMA) 
scores, a conventional assessment test. Global perfor-
mance scores provide patients with exercise ratings and 
therapists with clinically relevant information [9, 13, 20].

In addition, research teams conducted user stud-
ies with post-stroke patients to evaluate their systems’ 
impact on light supervised rehabilitation sessions [17–
19]. They pointed out the importance of simple technical 
setups and reliable performance evaluation for in-home 
and independent use.

Although prior works [17–19] demonstrate the poten-
tial of computer-based systems to improve movement 
quality, their systems’ technical setups are still very 
complex for massive in-home use, involving several 
devices and objects. Quantitative assessment methods 
are based on 3D pose data kinematic analysis requiring 
specific motion capture devices for 3D data acquisition 
as Kinect. Such systems are less affordable and accessible 
and of complicated use, being less suitable for in-home 
therapy. With the investigation of novel means to assess 
patient’s performance from built-in cameras from tab-
lets and laptops, systems would better fit in an affordable 
and accessible in-home therapy. However, there has been 
limited investigation on low-cost quantitative assessment 
methods to provide real-time feedback on compensation 
patterns.

In this work, we present a low-cost Virtual coach (VC) 
for stroke rehabilitation and a preliminary study to evalu-
ate its usability. This VC is composed of a single laptop 
with a built-in webcam to monitor exercises of a user 
and provide real-time feedback on compensatory move-
ments to assist user engagement in therapy. We present 
methods to assess quantitatively in real-time motor com-
pensation from rehabilitation exercises through 2D video 
analysis. To enable real-time assessment, we labeled data-
set videos frame-by-frame on compensation patterns. In 
addition, through an exploratory user study with seven 
volunteers, we collect some findings on VC usability.

Virtual coach
We describe a Virtual coach (VC) that monitors upper 
extremity stroke rehabilitation exercises, assessing motor 
compensation behaviors. From the related work [15, 
17–19] and therapists’ advice, we list a set of VC system 
requirements:

•	 Present an exercise demonstration;
•	 Display a patient’s image while exercising as if look-

ing at a mirror;
•	 Provide clear audio instructions, cues for posture 

correction, encouragement, and suggest task repeti-
tion;

•	 Display visual markers indicating the arm target posi-
tion and the existence of compensation.

Our VC is a Reflex Agent. It analyses body keypoints and 
quantitatively assesses patient’s exercises to update the 
state. Based on the user’s previous state, current state 
and a specified time interval, the agent selects an action. 
These actions include:

•	 Display of position markers—the rectangle indicating 
patient’s valid positioning;



Page 3 of 16Cóias et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:83 	

•	 Display of the hand target marker;
•	 Display of compensation indicator markers—shoul-

der and trunk markers;
•	 Audio speech and respective subtitles—instructions, 

suggestions, encouragement, and praise.

Tables 1 and 2 describe the states and actions of the 
VC with their trigger rules, respectively.

Compensation quantitative assessment methods
To assess different compensation patterns from 2D 
videos, we propose an approach composed of the fol-
lowing steps: Body Keypoint Extraction and Selection, 
Data Normalization, and Classification. We investigate 
two classification approaches—a Rule-based (RB), our 
baseline method, and a Neural Network (NN) based 
approach. As in previous works [9], we present a set of 
Kinematic Variables, revealing compensation descrip-
tion. Kinematic variables are given as features to the RB 
classifier. For the NN-based classifier, we provide nor-
malized body keypoints as features. We represent these 
methods with the mathematical notation specified in 
Table 3.

Table 1  Space state of VC state transition

State space S Description

Out (o) Patient not placed in the correct position

In (i) Patient placed in the correct position

Exercise (e) Exercise and movement trial beginning

Normal (n) Normal movement pattern

Trunk rotation (tr) Patient rotates the torso

Shoulder elevation (se) Patient elevates the shoulder

Trunk displacement (td) Patient displaces the torso

Target (tg) Patient reaches the target position

Table 2  Virtual coach actions related to state transitions and also permanence in the same state

State 
transition 
no.

Rules Actions

1 Stateprev = o  State = o 
Time > thpos

Patient not well-positioned: VC suggests body repositioning; position rectangle in red color.

2 Stateprev = S/{o, e, tg}  State = o Patient moves away from correct position: VC suggests body re-positioning; position rectangle in red 
color.

3 Stateprev = o  State = i Patient well-positioned: position rectangle in green color; VC gives exercise directions.

4 Stateprev = i  State = e Exercise beginning: VC displays target position marker (green).

5 Stateprev = S/{o, i, tg}  State = e Patients stops moving: VC proposes movement repetition.

6 Stateprev = e  State = n The VC starts evaluating patient’s performance and asks one to reach the target position.

7 Stateprev = {tr , se, td, n}  State = {tr , se, td, n} 
Time > thtg

Patient takes too much time reaching the target position: VC encourages patient to reach the target.

8 Stateprev = {tr , se, td, n}  state = tg Patient reaches the target: VC praises the patient; target position marker in blue color.

9 Stateprev = {tr , se, td, n}  State = tr Patient describes trunk rotation: VC suggests posture correction; it displays trunk compensation 
marker (red).

10 Stateprev = {tr , se, td, n}  State = se Patient describes shoulder elevation: VC suggests correction; VC displays shoulder compensation 
marker (red).

11 Stateprev = {tr , se, td, n}  State = td Patient describes displaces the torso: VC suggests posture correction; VC displays trunk compensation 
marker (red).

Table 3  Mathematical notation

Equation Description

ptj = [xtj y
t
j ]
′ [xtj y

t
j ]
′ denotes the transposed vector of 2D coordinates in the image of a body joint j from 

a set of joints J (Fig. 1); t denotes the frame number

Pt(j1, j2) = ptj2 − ptj1 = [xtj2 − xtj1 y
t
j2
− ytj1 ]

′ Vector directed from joint j1 to joint j2

‖Pt(j1, j2)‖ dt(j1, j2) = �ptj1 − ptj2� ‖Pt(j1, j2)‖ is the euclidean norm of vector Pt(j1, j2) and, alternatively, dt(j1, j2) is the euclid-
ean distance between two selected joints, j1 and j2

�xt(j1, j2) = xtj1 − xtj2 �yt(j1, j2) = ytj1 − ytj2
Displacement between two selected joints, j1 and j2 , in the X ( �x ) and Y ( �y ) axis

at(j1, j2, j3) = arccos
Pt (j2,j1)·P

t
(j2,j3)

�Pt (j2,j1)�·�Pt (j2,j3)�

Angle between two vectors, Pt(j2, j1) and Pt(j2, j3) , defined by two points, j2 to j1 and j2 to j3
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Body keypoints extraction and selection
To extract the body joints’ 2D pose data, we use Open-
Pose [22], a software library that provides the 2D posi-
tion of 25 body keypoints (body skeleton) in the image 
coordinate system, {I} (Fig. 1). Each keypoint provided is 
denoted by otj = [ptj s

t
j ]
′ = [xtj y

t
j s

t
j ]
′ . Here, ptj = [xtj y

t
j ]
′ 

denotes the 2D coordinates of a body keypoint j, t is the 
frame number, and stj  is a confidence score of keypoint 
detection. Following [9], we selected the following key-
points to describe patients’ movements: Nose, Eye, Neck, 
MidHip, Hip, Shoulder LeftEye, RightEye, RightHip.

When selecting the most relevant keypoints to describe 
patients’ movements, we consider the three scenarios 
(S1, S2, and S3) concerning patient positioning in front 
of the camera: a patient facing the camera (S1) and with 
the affected arm facing the camera in a perpendicular 
(S2) and oblique (S3) positions. For S2 and S3, only the 
affected side is completely visible in the image.

Data transformation and normalization
In a real-world setting, patients have body parts of dif-
ferent sizes and occupy different locations regarding the 
camera. Accordingly, we perform keypoint normalization 
in three steps: transformation, normalization, and mirror. 
First, we apply rigid body transformation to overcome 
distinct patient positions. We transform each keypoint 
from the image coordinate system, {I} , to the body coor-
dinate system, {B} , in which the patient’s joint MidHip 
( j = 8 ) is the origin.

Next, we normalize each keypoint coordinates in {B} to 
the patient’s spine length, d1(p1, p8) , measured in t = 1 , 
to overcome distinct body part dimensions. Finally, for 
the NN-based approach, to give the healthy side as a ref-
erence, we mirror the joints to the X axis, in {B} , positive 

side. For the RB approach, the mirror step is not applied 
since each keypoint moves regarding another specified 
keypoint.

Kinematic variables
To assess compensation patterns from 2D body key-
points, we explore a set of measures for the three sce-
narios (S1, S2, and S3). From discussion with therapists, 
we identified four types of compensation: Trunk Forward 
(TF), Trunk Rotation (TR), Shoulder Elevation (SE), and 
Other (O) trunk compensation patterns, such as trunk 
moving backward and trunk tilt. Given the compensation 
categories, Table 4 summarizes the respective kinematic 
variables.

Classification approaches
As we intend to identify multiple compensation pat-
terns from video frames, we deal with a Multilabel Clas-
sification (MLC) problem. We propose two classification 
approaches: a Rule-based (RB) and a Neural Network 
(NN) based. In RB classification models, a set of if-then 
rules is applied to a collection of features to provide a 
predicted label [23]. We apply a set of independent rules 
to each kinematic variable from Table  4 to assess each 
compensation category, shown in Table  5 for each sce-
nario (S1, S2, and S3). Table 5 details that a rule r (e.g., 
r = SE denotes Shoulder Elevation) predicts a label, 
Ŷr , when a feature or set of features, Xr , obey a certain 
threshold value thr , which limits the compensation pat-
tern existence. Otherwise, the movement pattern is clas-
sified as Normal ( ̂Y = 4 ). Additionally, multiple labels 
might be active (i.e., more than one compensation pat-
tern happening simultaneously).

As an RB model has the advantage of easy comprehen-
sion [23–25], our VC utilizes this method to determine 
when a user performs compensation. Additionally, we 
can change rules’ threshold values thr (Table 5) adjusting 
compensation assessment detection sensitivity.

While dealing with an MLC problem, we consider two 
situations: multiple label occurrence and label imbalance 
(labels more frequent than others). We apply binarization 
technique/one-hot encoding to the set of labels assigned 
to each frame (i.e., a vector of 0 s and 1 s, with 1 encod-
ing the active labels) [25]. Then, we apply One-vs-Rest, 
training a classifier for each label against all others [26] 
so that one label prediction does not influence the other. 
The model generates predictions on each label, which are 
then combined to produce a multilabel response.

For the NN-based approach, our classifier must be 
robust enough to not assign a label to a frame denot-
ing compensation and indicate good movement 
quality (Normal movement patterns, i.e., without com-
pensation). Also, we have a much higher number of 
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Fig. 1  OpenPose Body keypoints
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samples considered Normal than frames correspond-
ing to each compensation category. Thus, we divide our 
problem into two problems, a binary and a multilabel. 
First, a binary classifier (C1) determines compensation 
existence. Second, a multilabel classifier (C2) concludes 
the described compensation patterns from the frames 
with compensation detected by C1. Figure  2 represents 
our proposed approach.

User interface
To establish an interaction with the user, we developed a 
web-based UI using Flask framework [27]. The UI is com-
posed of four web pages: Init, Menu for exercise selec-
tion (Fig.  3), Demo (exercise demonstration), and Main 
(Figs. 4 and 5), in which the patient exercises and inter-
acts with the VC. The main processing to track patient’s 
movements (keypoint extraction and compensation 
assessment) is handled in a remote server, accessed via 
WiFi, for faster processing and result extraction.

Once the user chooses an exercise, the user can watch 
each exercise demonstration. The VC describes three 
exercises (Table  6) and monitors user compensation 
behaviors during their execution. First, the VC verifies 
if the patient is correctly positioned to enable motion 
capture. Once the user is well placed, the VC gives 
exercise instructions, displays visual markers identify-
ing the target position of an exercise (Fig. 4), and starts 

evaluating user movements. When the patient exhibits 
compensation, the VC suggests posture correction and 
displays a marker highlighting this behavior (Fig. 5). It 
also praises the user when one reaches the target posi-
tion and encourages movement repetition.

Experiments
Compensation quantitative assessment methods
The upper extremity rehabilitation dataset
This research uses the dataset from Lee et al. [9] work 
for the development and validation of proposed com-
pensation assessment methods. It is a dataset of vid-
eos of 15 post-stroke patients performing three upper 
extremity exercises introduced in Table  6. The post-
stroke profiles and respective Fugl-Meyer Assess-
ment scores are presented in [9]. In exercise 1 (E1), the 
patient simulates holding a cup and brings the hand to 
the mouth as drinking. In exercise 2 (E2), the patient 
behaves as turning on a light switch. In exercise 3 (E3), 
the patient moves a cane forward and then back to 
its initial position.Post-stroke patients with an aver-
age age of 63± 11.43 years old [9] performed an aver-
age of 10 movement trials per exercise. Table 6 relates 
each exercise and positioning scenario (S1, S2, and S3). 
Figure 6 shows examples from the dataset of E1 and E3 
exercises.

Table 4  Kinematic variables

Scenario Variable Description

Trunk forward/backward

 S1 �Ht Observed changes in patient’s head position, detect 
through patient’s head area, Ht ( t > 1)

 S2 and S3 at(p18, p
1
1, p

t
1) ∧ �xt(pt1, p

1
1)

Spine angular and linear displacements

Trunk rotation

 S1 at(p12, p
1
1, p

t
2) ∧ at(p15, p

1
1, p

t
5)

Simultaneous angular displacements of both shoulders

 S2 �xt(pt2/5, p
t
1) Shoulder displacement regarding joint 1 in BX

 S3 |�dt(pt2, p
t
5)| Absolute changes in the observed chest length

Shoulder elevation

 S1 at(p12/5, p
1
1, p

t
2/5)

Shoulder elevation angle

 S2 and S3 �yt(pt2/5, p
t
1)

Shoulder displacement regarding joint 1 in Y

Trunk tilt

  S1 at(p18, p
1
1, p

t
1)

Spine angular displacement

 S2 and S3 |�Ht | Absolute changes in patient’s head size

C1
Binary Classifier

C2
Multilabel Classifier

Normalized
Keypoints

Frames with
Compensation

Type of
Compensation

Fig. 2  NN-based approach to assess compensation patterns
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Table 5  Rules of the RB classification method to determine the different categories of compensation: Trunk Forward (TF), Y = 0 ; Trunk 
Rotation (TR), Y = 1 ; Shoulder Elevation (SE), Y = 2 ; Other (O), Y = 3 . For normal movements Y = 4

Scenario Rules

Trunk forward (TF)/Trunk backward (O)

 S1
Ŷ =







0 if �Ht
> thTF

3 if �Ht
< −thTF

4 otherwise   

 S2 and S3

Ŷ =











































0 if at
�

p18, p
1
1, p

t
1

�

> thTF

∧�xt
�

pt2/5, p
t
1

�

> 0

3 if at
�

p18, p
1
1, p

t
1

�

> thTF

∧�xt
�

pt2/5, p
t
1

�

< 0

4 otherwise   

 Trunk rotation (TR) and Shoulder elevation (SE)

 S1

Ŷ =



















































2 if (1) at(p12/5, p
1
1, p

t
2/5) > thSE

∧(2) at(p15/2, p
1
1, p

t
5/2) < thSE

1 if (1) > thSE
∧(2) > thSE ∧ (1)− (2) ≈ 0

1 ∧ 2 if (1) > thSE
∧(2) > thSE ∧ (1)− (2) ≫ 0

4 otherwise   

Trunk rotation (TR)

 S2
Ŷ =

{

1 if�xt(pt2/5, p
t
1) > thTR

4 otherwise   

 S3
Ŷ =

{

1 if |�dt(pt2, p
t
5)| > thTR

4 otherwise

Shoulder elevation (SE)

 S2 and S3
Ŷ =

{

2 if�yt(pt2/5, p
t
1) > thSE

4 otherwise

Trunk tilt (O)

 S1
Ŷ =

{

3 if at(p18, p
1
1, p

t
1) > thO

4 otherwise

 S2 and S3
Ŷ =

{

3 if |�Ht | > thTI
4 otherwise

Fig. 3  Virtual coach Menu web page Fig. 4  Virtual coach Main web page—display E1 target position
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Data labeling process
Our work explores the following four compensation 
categories. We specified a set of labels, Y, denoting each 
one—i.e., for Trunk Forward, Y = 0 ; Trunk Rotation, 
Y = 1 ; for Shoulder Elevation, Y = 2 ; for Other pat-
terns, Y = 3 ; and for Normal movements, Y = 4 . Label 
Y = 4 denotes Normal movement patterns, i.e., without 
compensation. We labeled all frames of each video in 
agreement with Physical and Occupational therapists’ 

advice. We assigned one or more labels to each frame 
according to the visible compensation patterns.

Dataset cleansing
Once we have the body keypoints extracted with Open-
Pose, it is crucial to consider three distinct situations 
concerning body skeleton detection: the presence of 
other people in the image beside the patient, extra skel-
etons, which do not necessarily belong to a person, and 
body keypoint misdetection (Fig. 7).

Considering a multi-person setting (e.g., the patient 
with a caregiver), the patient under evaluation is the clos-
est person to the center of the image, measured by the 
distance to the image center, d(p8, ci).

Extra skeletons often do not have spine joints (Nose, 
Neck, and MidHip). Therefore, their confidence score, stj  , 
is zero. Thus, we removed these skeletons.

For keypoint misdetection, we consider a relevant 
body keypoint (affected side and opposite shoulder) was 
well detected if it has a confidence score higher than a 
specified value ( stj > 0.36 ). The remaining joints must 
have stj > 0 . We removed every video frame with body 
keypoints not meeting these conditions. In the case of 
frames with mispositioned body keypoints, with a detec-
tion confidence score of stj > 0.36 , we corrected key-
points’ coordinates using the MATLAB imshow function, 
which enables to access the coordinates of every point in 
the image.

Multilabel dataset characteristics
Our Multilabel Dataset (MLD) is a set of keypoints, 
from each video frame (sample), with one or more labels 
assigned denoting the compensation patterns of post-
stroke patients. Before developing our classification 
models, we explore our MLD characteristics with two 
metrics: 1− Pmin and IRLbl. Metric Pmin is the percentage 

Fig. 5  Virtual coach Main web page—shoulder elevation in E1 and 
display shoulder compensation marker

Table 6  The three upper extremity exercises, E1, E2, and E3. 
Patients’ positioning scenarios and percentage of multi-labeled 
frames for each exercise

Upper extremity exercises Positioning scenario 1− Pmin

E1 ‘Bring a Cup to the Mouth’ S1 16.17%

E2 ‘Switch a Light On’ S1 8.6%

E3 ‘Move a Cane Forward’ S2 and S3 1.85%

Fig. 6  Examples of post-stroke patients performing exercises E1 and E3. E1 corresponds to S1 positioning scenario (a). In E3, patients are positioned 
according to S2 (b) and S3 (c) scenarios
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of data samples with only one label active. Inversely, 
1− Pmin corresponds to the percentage of samples with 
more than one label assigned. As shown in Table 6, the 
dataset is almost single labeled, i.e., it has a low percent-
age of multi-labeled frames (frames with multiple com-
pensation behaviors). Regarding label imbalance, the 
IRLbl metric shows the ratio between the occurrences of 
the most frequent label and each label [25]. Table 7 shows 
that, for the three exercises, label Y = 4 is the most fre-
quent, IRLbl = 1 . For E1 and E2, Y = 1 is poorly repre-
sented, IRLbl ≫ 1 , with only one patient exhibiting this 
compensation pattern. For E3, the less representative 
label is Y = 2.

Validation of kinematic variables for a rule‑based approach
The validation of kinematic variables is crucial to 
determine the most suitable threshold values for 
the RB method and assess its efficiency in assessing 

compensation. We obtained the thresholds, thr , through 
an error and trial methodology by observing the kin-
ematic variables as a starting point. In the following fig-
ures, we observe the trajectories of kinematic variables 

Fig. 7  OpenPose extra person (a) and incorrect keypoint detection, e.g., extra skeleton (b) and keypoint misdetection (c)

Table 7  Labels for each compensation and normal movements 
patterns and IRLbl metric for each one, for each exercise (E1, E2, 
and E3)

Compensation/Normal 
Pattern

Label IRLbl

E1 E2 E3

Trunk forward Y = 0 – – 3.54

Trunk rotation Y = 1 16.23 19.25 –

Shoulder elevation Y = 2 2.15 3.03 15.77

Other Y = 3 4.93 5.55 –

Normal Y = 4 1 1 1

Fig. 8  Patient shoulders’ elevation angles over time describing Trunk Rotation for E1
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over time. We filtered the keypoints signal (joints’ posi-
tion over time) with a moving average filter (filtered 
signal) with a window of five frames as in [9] to reduce 
noise.

Figure  8 shows we can assess trunk rotation from 2D 
pose data by tracking both shoulders (affected and unaf-
fected) angular behavior as we hypothesized in Table 4. 
Trajectories of both shoulders reveal elevation (affected 
side) and decay (unaffected side) during trunk rotation 
simultaneously. This shoulder behavior is valid for both 
exercises E1 and E2. Also, for these exercises, as in previ-
ous works [9], we assess shoulder elevation and trunk tilt 
(Other compensation patterns) through affected shoulder 
and trunk angular displacement, respectively (Figs. 9 and 
10). To evaluate trunk moving backward (Other) from 2D 
data, we assess variations in patients head area, �H . Fig-
ure 11 shows that when a patient moves backward, �H 
decreases as hypothesized.

For exercise E3, we assess the torso moving forward 
through its linear and angular displacements (Table  4) 
described in Fig.  12. Since we only have 2D pose data, 
we assess shoulder elevation through its displacement 
regarding the Neck joint ( j = 1 ). Figure 13 shows that a 
patient elevates the shoulder mainly when moving the 
cane back to its initial position.

Neural network based approach
We explore model architectures (i.e., one to three lay-
ers with 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, and 512 
hidden units) for a binary classifier (C1) and a multilabel 
classifier (C2) for the NN-based classification approach 
and with adaptive learning rate with several values for 
the initial learning rates (i.e., 0.0001, 0.0005, 0.001, 0.005, 
0.01, 0.05, and 0.1). We adopt ‘Adam Optimizer’ with a 
mini-batch size of 5 and a maximum of 550 iterations. 
For C1 we apply ‘ReLu’ activation function and for C2 

Fig. 9  Patient affected shoulder elevation angle revealing Shoulder Elevation for E2

Fig. 10  Patient tilted angle of the torso describing a trunk tilt (Other) for E2

Fig. 11  Head area over time, revealing trunk moving backward (Other) observed in the dataset for E2
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‘tanh’ activation function. We implement C1 and C2 
using the ‘Scikit-learn’ Python library [26].

Evaluation metrics and validation method
We use a set of metrics appropriated to an MLC problem 
to evaluate our classification models’ performance. We 
need metrics describing that a multilabel output result 
might be completely correct, partially correct, or incor-
rect [25]. We use Precision, Recall, F1 score, and Ham-
mingLoss [25, 26]. We calculate the first four according 
to a micro-averaging strategy that joins the counters of 
correct and incorrect predictions and then calculates the 
metric. This way, rare labels are diluted between the most 
frequent labels [25, 26].

Metric Precision is the percentage of predicted labels 
truly significant for the sample. Recall expresses the clas-
sifier’s ability to detect all positive samples. Score F1 is a 
weighted harmonic mean Precision and Recall, which 
measures classification accuracy. HammingLoss reveals 
the portion of mispredicted labels.

We resort to cross-validation to evaluate our mod-
els’ predictive ability and ensure generalization. Cross-
validation consists of partitioning the dataset into small 

subsets. In the validation loop, all the sets except one 
are used for training, and the remaining set is used for 
validation [26, 28]. In the end, the performance measure 
determined in each loop is averaged.

First, we apply Leave-One-Subject-Out (LOSO) cross-
validation since all patients in a post-stroke status have 
their specific motion pattern, Validating the models 
on each patient compensation pattern enables a better 
understanding of their classification performance and 
generalization capacity. Additionally, to verify model 
generalization to different exercises, we apply Leave-One-
Exercise-Out (LOEO) cross-validation to the NN-based 
approach with exercises E1 and E2, in which patients 
have similar positioning during data collection.

User study on the virtual coach
To achieve a preliminary evaluation of the VC usability, 
we performed experiments with a group of volunteers. 
We aim to investigate users’ perceptions of the VC on 
four dimensions: its Hedonic (H) value (i.e., users’ moti-
vation and enjoyment while exercising and interacting 
with the VC), Utilitarian (U) value (i.e., users’ percep-
tion of the gains of exercising autonomously with the VC 

Fig. 12  Patient tilted and of the spine and neck displacement over time, describing Trunk Forward in E3

Fig. 13  Patient shoulder displacement over time, describing Shoulder Elevation in E3
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for post-stroke patients), System’s Performance (SP) (i.e., 
users’ perception of the VC’s accuracy on detecting com-
pensation and correct feedback), and the Use Intention 
(IU) of VC users. In this study, we explore the following 
hypotheses:

H1	 Hedonic value perceptions are affected by the 
perception of Virtual Coach performance on moni-
toring exercise performance, detecting compensa-
tion, and by its interactive features;

H2	 There is a disparity on the VC perception 
between: 

a)	 Post-stroke volunteer and non-stroke affected 
volunteers;

b)	 Older adults and younger adults mainly concern-
ing VC U value.

Data collection and storage is in agreement with the 
General Data Protection Regulation (GDPR). To ensure 
these conditions, the Instituto Superior Técnico Ethics 
Committee reviewed and approved our experimental 
protocol.

Volunteers
We recruited seven volunteers to exercise their limbs 
with our system. When selecting the participants, we 
aimed to gather a diverse group concerning age, sex, and 
experience with the stroke thematic. Volunteers signed 
an Informed Consent authorizing the recording of their 
image necessary to the normal system operation. Table 8 
presents the volunteers’ profiles and general informa-
tion. The post-stroke volunteer has difficulty performing 
specific tasks (e.g., writing). Yet, he is fully recovered and 
does not perform compensatory movements.

Experimental setup
Motivated to provide an affordable and accessible solu-
tion with a simple technical infrastructure, we only use 
a laptop with 6GB RAM and i5-4210U 2.40 GHz 2 Cores 
CPU with a built-in webcam in this experiment. We use 
the RB classification algorithm to assess compensation, 
which enables easy result interpretation and the adjust-
ment of rules’ threshold values if necessary. The sessions 
took place in a domestic environment spacious enough 
to assure the placement of the laptop from the volunteer 
had a distance of ≈ 2.5m to capture the participant’s rel-
evant body joints.

Experimental procedure
At the beginning of a session, the researcher placed the 
laptop on a table or other support, giving the volunteer 

the possibility to be in front of the system exercising with 
enough space. She introduced the study, the entire pro-
cedure, and the functionalities of the UI. The volunteers 
were asked to perform the three exercises (E1, E2, and 
E3) with the arm from their affected side due to stroke or 
non-dominant body side. The researcher instructed vol-
unteers to simulate the different compensation strategies 
while exercising. Volunteers repeated the movements at 
least five times. During the exercise, volunteers followed 
the VC instructions, and the researcher intervened when 
necessary. In the end, each participant answered a ques-
tionnaire giving their feedback about the VC. The session 
did not exceed 30 min.

Questionnaires
We collected both quantitative and qualitative responses 
from study participants evaluating the VC on each 
dimension (H, U, SP, and IU). We collect responses on 
volunteers’ enjoyment, motivation, and interest during 
the exercise session with the VC (H value). The VC’s ben-
efits to health, aid on physical condition improvement, 
utility in autonomous exercises, and as a support to 
diminish struggles concerning rehabilitation administra-
tion (U value). Volunteers answered questions concern-
ing their willingness to use the system (IU) and system 
effectiveness and reliability (SP).

The volunteers responded to each question on a 
5-point Likert scale (quantitative)—from ‘1 = Strongly 
Disagree’ to ‘5 = Strongly Agree’. In addition, we asked 
a follow-up question to gather more information about 
their responses.

Results
Compensation assessment results
Table  9 presents the evaluation metrics for the two pro-
posed compensation assessment approaches,RB and NN-
based, over three exercises (E1, E2, and E3). We describe 
the hyperparameters for the NN-based approach in 
Table 10. For E1, the RB classifier performed better than the 
NN-based classifier with an F1 score of 76% . For E2 and E3, 
the NN-based classifier had a better performance than the 
RB approach with F1 = 73% and F1 = 80% , respectively. 
Later, we discuss the differences in performance observed 
for the two approaches. In addition, LOEO cross-validation 
for the NN-based approach with E1 and E2, the classifier 
detects compensation with an F1 score of 80%.

Virtual coach validation results
Figure  14 shows volunteers’ quantitative answers to the 
questionnaires on the usability and performance of the 
VC. Table 11 presents a set of descriptive statistics sum-
marizing quantitative results and Pearson Correlation 
between dimensions.
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From Fig.  14, concerning Hedonic (H) value 
( mean = 4.54 ± 0.51 ), most volunteers enjoyed exercis-
ing with the VC, felt motivated and interested in the 
exercises, and found the established interaction pleas-
ant. The most appreciated and motivating features of 
the system were the “posture corrections” (V01) and 
the “User Interface” (V05).

Regarding the Utilitarian (U) value, Fig.  14 shows 
volunteers find the system valuable for post-stroke 
rehabilitation. Volunteers reported the system 
( mean = 4.86± 0.38):

May be useful for autonomy in exercise practice. 
(V02)

It can help to motivate the correct exercise perfor-
mance. (V03)

Concerning Use intention (IU) ( 4.75± 0.50 ), volun-
teers, in the case of need, revealed interest in using 
the system (Figure  14). A volunteer mentioned that 

he would use the system to “practice more” (V01), 
enhancing recovery.

Volunteers perceived that the system performs prop-
erly and fulfills its purpose. They expressed system’s 
evaluation of their motor performance was trustwor-
thy. A mean score of 4.36 on the System’s Performance 
(SP) supports these affirmations. Volunteers revealed:

System proposed corrections matched the move-
ment. (V05)

Reliable, it asks to repeat the exercise and to be 
perfected. (V02)

However, volunteers provided comments on aspects 
that need to be improved, such as the VC response 
time (V06) and more flexibility regarding users’ initial 
position:

The square that detected my body could be a lit-
tle bigger because, when moving, the body could 
leave the square and it was necessary to repeat 
the exercise. (V07)

Virtual coach performance and Hedonic value
We compute the Pearson Correlation coefficient ( ρ ) to 
analyze the correlation between each dimension (H, U, 

Table 8  Profiles of the volunteers. General information: a Knows what (a) stroke is (b) Had a stroke (c) Some relative or close friend had 
a stroke (d) Followed the rehabilitation process closely

 VID-volunteer ID, ND-non-dominant, A-affected, F-female, M-male, Y-yes, N-no

VID Age Sex ND/A side (a) (b) (c) (d)

V01 25–34 M Left Y Y Y Y

V02 55–64 F Left Y N Y Y

V03 65–74 F Left Y N Y Y

V04 65–74 M Left Y N Y Y

V05 25–34 M Left Y N Y N

V06 55–64 M Left Y N Y N

V07 25–34 F Left Y N N N

Table 9  Average results and standard deviation for the Rule-
based (RB) and Neural Network (NN) methods for each exercise 
(E1, E2, and E3) with LOSO and LOES cross-validation

The results in bold correspond to the best classifiers’ performance for the 
different metrics for each exercise

F1 score is a measure of accuracy

Precision Recall F1score Hamming loss

Rule-based (RB) Approach

 Leave-One-Subject-Out (LOSO) cross-validation

  E1 0.75 ± 0.14 0.78 ± 0.12 0.76 ± 0.12 0.11 ± 0.07
  E2 0.54± 0.17 0.65± 0.17 0.59± 0.16 0.20± 0.08

  E3 0.69± 0.27 0.71± 0.26 0.70± 0.26 0.13 ± 0.11
Neural Network (NN) based Approach

 Leave-One-Subject-Out (LOSO) cross-validation

  E1 0.71± 0.23 0.70± 0.25 0.70± 0.24 0.18± 0.15

  E2 0.73 ± 0.21 0.73 ± 0.19 0.73 ± 0.19 0.15 ± 0.11
  E3 0.80 ± 0.22 0.80 ± 0.21 0.80 ± 0.22 0.14± 0.14

 Leave-One-Exercise-Out (LOEO) cross-validation with E1 and E2

0.78± 0.05 0.81± 0.01 0.80± 0.02 0.12± 0.01

Table 10  NN based approach classifiers’ hyperparameters

#layers #units/layer Learning Rateinit

C1

 E1 1 16 0.001

 E2 2 16 0.001

 E3 1 96 0.01

C2

 E1 1 64 0.001

 E2 1 16 0.01

 E3 1 16 0.001
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SP, and IU) based on questionnaires quantitative answers 
(Table 11).

Table 11 shows a correlation between H and SP with a 
coefficient of ρ = 0.53 , revealing that these dimensions 
are moderately correlated [29]. If the mean value of the 
perceived SP increases, it positively influences the per-
ceived H. A volunteer that mentioned “the system has a 
slow response” also mentioned this aspect when he was 
asked for the most/least pleasant or interesting system 
features:

Slow responsive system and interaction could be 
more stimulating for the participant. (V06)

Stroke survivor vs. other volunteers
We compared the post-stroke survivor’s perceptions with 
other volunteers’ mean perceptions, shown in Table  12. 
Concerning H perception, the stroke survivor and other 
volunteers equally enjoyed the training and interact 
with the system ( mean ≈ 4.5 ). However, stroke survivor 
reported a lower mean score for U ( mean = 4 ) and SP 
( mean = 3 ) and showing a less IU ( mean = 4):

Certain corrections might be tricky to apply alone. 
(V01)

Age and utilitarian value
Additionally, we analyze how volunteers from different 
age groups perceive VC utilitarian value U. Table 13 shows 
the mean perception of two age groups: older adults, vol-
unteers over 54 years old ( n = 4 ), and the remaining 
volunteers we consider as younger adults ( n = 3 ). Older 

adults found the system more useful (Table  13). How-
ever, despite the mean score difference between groups is 
0.3333, this difference is not statistically significant.

Discussion
Compensation assessment methods analysis
Table  9 describes the results of RB and NN-based pro-
posed classification approaches. From LOSO cross-vali-
dation for each exercise (E1, E2, and E3), we found our 
methods achieved comparable performance (72–79%) 
to the models with 3D pose data (74–82%) [20], giving 
evidence that assessing compensation patterns from 2D 
pose data is feasible. For E1, the RB approach performs 
better than NN-based, and for E2 and E3, the NN-based 
approach presents better results than RB. An evident dif-
ference between the datasets of these exercises is their 
percentage of multi-labeled samples, 1− Pmin . E1 has 
16.17% of multi-labeled samples. E2 and E3 have 8.6% 
and 1.85% , respectively, of samples with more than one 
label. This fact implies that the RB method handles multi-
labeled samples better than NN-based. On the other 
hand, the NN-based approach is more efficient than RB 
with binary problems. For E3, the NN-based approach 
performs better. However, it has a higher value of Ham-
mingLoss, meaning that this approach provides a higher 
number of mispredictions.

Additionally, standard deviation values (Table  9) are 
related to poor representation of some compensation 
patterns in the dataset. The RB and the NN-based classifi-
ers reveal an average standard deviation of 18% and 21.7% 
in F1 , respectively, for the three exercises. These standard 
deviation values, associated with the adopted validation 
method, LOSO, indicate that our classifiers detect with 
higher accuracy some compensation patterns than oth-
ers. The NN-based approach, which involves learning, 
has more difficulty identifying rarer compensation pat-
terns in the dataset. This approach would benefit from 
more data with a homogenous representation of the dif-
ferent compensation patterns. However, we consider our 
results for the F1 score comparable to the agreement level 
of annotators (i.e., 79.08± 21.46% for E1, 82.22± 15.34% 
for E2, and 71.96± 17.54% for E3) [20]. Personalized 

Table 11  Descriptive statistics and Pearson correlation

 SD-standard deviation

H U IU SP

H 1 0.03 1.00 0.53

U 0.03 1 1.00 0.75

IU 1.00 1.000 1 1.00

SP 0.53 0.75 1.00 1

Minimum 3.75 4.00 4.00 3.00

Maximum 5.00 5.00 5.00 5.00

Mean 4.54 4.86 4.75 4.36

SD 0.51 0.38 0.50 0.80

Table 12  Stroke survivor vs. other volunteers mean perceptions

H U IU SP

Stroke survivor 4.50 4.0 4.0 3.0

Other volunteers 4.54± 0.56 5.0± 0.0 5.0± 0.0 4.58± 0.58

Table 13  Older and younger adults mean perceptions

The results in bold correspond to the best classifiers’ performance for the 
different metrics for each exercise

Age n H U IU SP

25–34 3 4.25± 0.43 4.67± 0.58 4.0± 0.0 4.0± 0.87

55–64 2 4.5± 0.71 5.0± 0.0 5.0± 0.0 4.25± 1.1

65–74 2 5.0± 0.0 5.0± 0.0 5.0± 0.0 5.0± 0.0

< 55 3 4.25± 0.43 4.67 ± 0.58 4.0± 0.0 4.0± 0.87

≥ 55 4 4.75± 0.5 5.0 ± 0.0 5.0± 0.0 4.63± 0.75
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assessment techniques can improve performance evalu-
ation from patient to patient, as in [20]. These techniques 
promote the generation of personalized quality of move-
ment evaluation and corrective feedback in opposition to 
pre-defined rules and threshold values, which might not 
fit properly every patient.

Results from LOEO cross-validation for the NN-based 
approach ( F1 score of 79.59%± 1.86% ) show us that the 
models can generalize to other exercises as long as the 
setup for data collection is the same (i.e., patients’ posi-
tion in front of the camera).

Virtual coach experiment analysis
From the exploratory experiment with a group of volun-
teers, we collected a set of findings on VC usability and 
performance. Quantitative scores on each dimension 
perceptions (Fig.  14) and volunteers’ quotes show the 
low-cost VC has the potential to automatically monitor 
participants’ exercises and provide valuable feedback on 
compensatory motions. In general, volunteers enjoyed 
the exercise session with the VC, found it beneficial, and 
its movement analysis trustworthy.

By analyzing the impact of System Performance on 
volunteers perception of Hedonic Value (H1), we found 
some points requiring improvement: lack of flexibility 
concerning volunteers initial position; the slow response 
of the system to users’ movements; and motion pattern 
mispredictions.

Volunteer V07 (Table 8) referred system’s lack of flex-
ibility with her initial position as an unappreciated fea-
ture, negatively affecting her interest and enjoyment in 

the activity. In some sessions, due to space conditions, 
we were unable to assure subjects correct positioning to 
place one’s body inside the rectangle. For this reason, the 
system assumed the subject was incorrectly positioned to 
perform movement assessment.

Volunteer V06 (Table 8) pointed out the system’s slow 
response to his movements. In some cases, the system 
had a slower response when providing volunteers with 
feedback on their movements due to internet connection 
conditions since main processing steps occur in a remote 
server accessed through WiFi.

Additionally, during the study, we detected unexpected 
compensation mispredictions (RB approach). In some 
cases, when a user tilted the torso, the VC assumed the 
user was performing shoulder elevation since it detected 
shoulder angular displacement. This VC behavior sug-
gests a review in rule implementation and an improve-
ment of the RB approach to avoid the detection of 
shoulder compensation while a trunk compensatory 
movement occurs.

When comparing stroke survivor and other volun-
teers’ perceptions (H2.a), results reveal stroke survivor 
was more critical with the system than other volunteers 
(Table 12). The stroke survivor commented on compen-
sation detection sensitivity. In his opinion, the VC should 
not be too sensitive, i.e., give feedback on compensation 
immediately when a patient is just beginning to per-
form a compensatory movement, thus very pronounced 
yet. It should provide patients with time and opportu-
nity to perform the proposed movements and improve 
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themselves without being constantly and immediately 
corrected.

In our population sample, older adults find the VC 
more useful (U) than younger adults (H2.b). This differ-
ence is expected since stroke is more prevalent among 
older adults and the elderly. However, the mean differ-
ence between both groups in U perception difference is 
only 0.3333, and the independent sample t-test revealed 
it to be insignificant. It is important to note that both 
groups have small and unequal number of subjects 
(young volunteers n = 3 ; older volunteers n = 4 ), n, a 
condition that can lead to an untrustworthy p− value . 
To collect more significant results, we would need to 
conduct a user study with a larger group of volunteers 
and a homogeneous distribution of age categories.

Limitations and future work
To continue the investigation of motor compensation 
detection methods from 2D positional data, we aim to 
explore other assessment approaches and machine learn-
ing models. Our RB approach could be improved to avoid 
the detection of compensation patterns involving shoul-
der angular/linear displacement when trunk compensa-
tion occurs. Priority could be given to trunk displacements 
over shoulder elevation patterns to overcome some misde-
tections. Additionally, we intend to expand VC’s quality of 
movement assessment to other performance components, 
such as Range-of-Motion and Smoothness [9]. Further, we 
aim to achieve the generation of a performance score with 
clinical relevance, as in [9]. It would provide patients with 
exercise ratings promoting motivation and give therapists 
significant information to track patients’ progress.

Another relevant improvement of our VC is its response 
time to users’ movements (e.g., track arm movements 
and detect compensation), which is directly related to the 
connection via WiFi to the remote server in which main 
processing steps occur. Previous works [30] propose an 
architecture for a cognitive wearable assistive system 
that resorts to remote processing, having achieved faster 
response time. Additionally, to achieve faster processing, 
we might benefit from available frameworks, as Tensor-
Flow Lite, and hardware accelerators for AI computing, 
such as Google CORAL and Inter Neural Compute Stick 2.

We could give therapists the possibility to adjust the 
threshold values that control the RB method rules [31], 
managing compensation detection sensitivity through 
the UI. It could enable exercise level adaptation based on 
compensation detection sensitivity (more sensitive, more 
challenging).

Additionally, once we have improved the VC accord-
ing to the findings achieved in this study, the VC should 
be evaluated with post-stroke patients under a rehabili-
tation process and therapists.

Conclusions
This work contributes to the research of assistive sys-
tems for in-home rehabilitation. With the dataset of 
15 post-stroke patients, we demonstrate that the pro-
posed methods accurately assess motor compensa-
tion from 2D positional data. The proposed low-cost 
motion analysis approach using 2D videos can achieve 
comparable performance with compensatory motion 
assessment approaches using 3D pose data [20]. In 
addition, during the preliminary user study with a 
group of volunteers, as desired the VC provides helpful 
visual and audio feedback and accurately tracks users’ 
movements. Additionally, we identified some points 
for improvement and collected evidence towards the 
feasibility of the low-cost virtual coach (VC) for stroke 
rehabilitation.
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