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Abstract

Large Language Models (LLMs) are increasingly deployed
in real-world scenarios where they may lack sufficient infor-
mation to complete a given task. In such settings, the abil-
ity to actively seek out missing information becomes a crit-
ical capability. However, existing approaches to enhancing
this ability often rely on simplifying assumptions that de-
grade worst-case performance. This is an issue with serious
implications in high-stakes applications. In this work, we in-
troduce and formalize the Strategic Language Search (SLS)
problem along with its variants as a two-player zero-sum ex-
tensive form game. This formulation provides a principled
framework for evaluating the information-seeking capabil-
ity of LLMs. We propose Game of Thought (GoT), a sim-
ple yet effective framework that applies game-theoretic tech-
niques to approximate a Nash equilibrium strategy for the re-
stricted variant of the game. Empirical results demonstrate
that our approach consistently improves worst-case perfor-
mance compared to (1) direct prompting-based methods and
(2) heuristic-guided search methods across all tested settings.

1 Introduction

Large language models (LLMs) are increasingly being de-
ployed in high-stakes environments like planning (Zhang
et al. 2024), medical diagnosis (Li et al. 2024), as well as
other tasks exhibiting partial observability (Li, Kim, and
Wang 2025). In such environments, the LLM may not have
sufficient information to complete the its assigned task. This
necessitates an information-seeking process, typically via
the use of clarification questions. To quantitatively assess an
LLM’s information-seeking ability, we turn to the Game of
20 Questions (Siegler 1977). Here, an item is first chosen
from a known set. The player then sequentially asks up to
twenty Yes/No questions about the item, aiming to identify
the item using as few questions as possible.

Information seeking often requires some degree of
lookahead. Well-known methods involve a combination
of prompting and LLM-based reasoning, such as Self-
Consistency (SC) (Wang et al. 2022) and Tree of Thought
(ToT) (Yao et al. 2023). More recently, Hu et al. (2024)
propose Uncertainty of Thought (UoT), which utilizes tree
search to explicitly model and optimize for the information
gained from clarification questions. However, their approach
assumes that the item is chosen uniformly at random. This

assumption is unlikely to hold in the real-world, either be-
cause (i) the application itself does not naturally admit a
probabilistic interpretation, or (ii) even if such a distribution
existed, it might not be easily obtained, and likely not uni-
form. Particularly for high-stakes environments, we argue
that one should assume that the worst-case item is chosen.
That is, the item is chosen adversarially, and our goal is to
utilize a questioning strategy that maximizes the worst case
performance, regardless of how the item is chosen.

Motivated by this, we propose Game of Thought (GoT),
a game-theoretic framework designed to handle such adver-
sarial environments. We model the information-seeking pro-
cess as a two-player, zero-sum extensive form game with
imperfect information. In this formulation, the item (distri-
bution) is assumed selected by an adversary seeking to im-
pede the information seeker. GoT then optimizes for the best
worst-case performance by approximating the Nash equilib-
rium of this game, avoiding any need for strong prior as-
sumptions on item distribution.

Contributions (i) We formulate the Strategic Language
Search (SLS) problem and its variants. (ii) We establish
game theoretic solutions that are able to solve the SLS and
its variants optimally, and highlight that these strategies are
necessarily randomized. (iii) We propose GoT to approxi-
mate the Nash equilibrium in the SLS-restricted variant. (iv)
Empirically, we demonstrate that GoT is superior to (a) di-
rect prompting and (b) UOT-based methods in the worst
case. The improvements over these methods become more
significant in the more realistic weighted variant of SLS.

2 Related Work

Uncertainty of Thought GoT can be regarded as an ex-
tension of Uncertainty of Thought (UoT) by Hu et al. (2024).
The authors propose performing depth limited search over
possible questions asked, seeking to maximize expected in-
formation game under the assumption that the items are
chosen uniformly at random. GoT performs similar ex-
plicit lookahead, but obviates this assumption applies game
solvers to optimize for the best worst-case item chosen.

Two Player Zero-Sum Games Game of Thought mod-
els the robust information-seeking problem as a two-player
zero-sum imperfect information extensive form games
(Shoham and Leyton-Brown 2008). Scalable game solvers



have led to strong or even superhuman performance in vari-
ous recreational games such as poker (Brown and Sandholm
2018, 2019; Moravcik et al. 2017), starcraft (Vinyals et al.
2019), stratego (Perolat et al. 2022), diplomacy ( FAIR),
dark chess (Zhang and Sandholm 2021), as well numer-
ous real-world security applications (Jain, An, and Tambe
2013; Pita et al. 2008; Shieh et al. 2012; An, Tambe, and
Sinha 2017). Recently, Liu et al. (2025) show that fine-
tuning LLMs with simple zero-sum games leads to improved
performance in several reasoning benchmarks.

Information-seeking ability of LLMs Prior studies ex-
amined the information-seeking ability in the context of am-
biguous queries or under-specified tasks, and utilize clari-
fication questions to identify either user intent (Kuhn, Gal,
and Farquhar 2022; Zhang et al. 2024; Xu et al. 2019) or
elicit user preferences (Handa et al. 2024; Li et al. 2023).
In such contexts, it can be roughly seen as a reasoning
task, where many well-established methods have shown that
exploration (Wang et al. 2022; Yao et al. 2023) can im-
prove LLMs’ abilities. Other methods are primarily moti-
vated by heuristics such as information gain (Grand et al.
2024; Piriyakulkij, Kuleshov, and Ellis 2023), similar to
UoT (Hu et al. 2024). Various benchmarks for evaluating
information-seeking ability of LLMs have been constructed
in the context of underspecified tasks (Li, Kim, and Wang
2025) and medical diagnosis (Li et al. 2024). We do not ex-
plicitly evaluate GoT in these contexts, but believe that it can
be applied to them with some modifications.

3 Problem Formulation

A Strategic Language Search (SLS) game is played over a
finite set S of n distinct items. The game is played between
two competitive (zero-sum) players, the Answerer and Ques-
tioner. We will assume a countable set of binary (i.e., true-
false) questions Q. Each question is uniquely specified by a
finite-length natural language string. For every item s € S,
we denote by f : Q x § — {0, 1} the answer to ¢ € Q
for some s € S. A natural but degenerate Q is one which
we denote by Q.. A possible textual representation of Q.
would be the set of questions stated in boolean form “Is the
Item 1, Item 3, or Item 5, but not Item 2 and 4?7

A SLS is defined by (S, Q, f) and proceeds in two phases.
In the first phase, the Answerer privately selects a single item
s* € S. In the second phase, the Questioner elicits informa-
tion about s* by sequentially asking and obtaining answers
to a series of questions g1, a1, . - ., gr, ar and where ¢; € Q
and a; = f(q¢, s), i.e., the answer to g; for s*.

The history of questions and answers up to and includ-
ing time ¢ > 0 is given by H; = (Q4, A¢), where Q; =
(Q17 ce 7qt)7 At = (a17 s ,Clt) such that Qt(T) = qr and
Ai(T) = a,. Given history H, we denote by H'(gq,a) the
new history when a new question ¢ is asked with answer
a. The Questioner selects its questions online, i.e., ¢; may
depend on its observed history H;_1. The length of history
H is denoted by | H|. The set of items consistent with some
observed history H = (@, A) is denoted by

S(H) = {s € SIvr € [|H]], f(Q(7),5) = A(T)} C S.

Note that S(H) is never empty, since it must contain at least
s*. The game continues until time 7', when the Questioner
can identify s* with certainty, i.e., |S(H)| = 1, after which
the game ends with the Answerer (resp. Questioner) incur-
ring a total reward (resp. cost) of |H|. The objective is to
find a strategy (or equivalently, policy) for the Questioner to
minimize its expected cost incurred regardless of how the
Answerer chooses s*. This strategy corresponds to the Nash
equilibrium of a zero-sum game and will typically be ran-
domized. We will define the solution concept formally after
stating several assumptions and variants.

Assumption 1. Each question-item pair (q,s) € Q x S has
a definite, unique answer f(q, s) independent of history.

Assumption 2. After fixing s*, the Answerer cannot lie with
regard to its answers to questions.

Assumption 3. S, Q and [ are common-knowledge.
Assumption 4. We have constant time oracle access to f.

Assumption 5. For every pair of distinct items s,s' € S,
there exists some g € Q where f(q,s) # f(q,s").

Assumptions 1 and 2 are implicit, informal assumptions
baked into the definition of f while Assumption 5 is a tech-
nical assumption imposed on Q and f. It is needed to ensure
that there exists a strategy that allows the Questioner to find
the correct item in finite time. Note that Assumption 5 is
trivially satisfied when Q includes “identity” questions such
as “is the item equal to s?”.

Example 1. Consider the SLS with S and Q:
KO

5@

q(l) : ‘Related to codes?’

: ‘Alan Turing’ ) q(z) : ‘Is it a movie?’

s : ‘A Beautiful Mind’ q<3> : ‘Is it a person?’

: ‘Oppenheimer’

Then f(q\9,59)) = 0if j =4, 1 otherwise.

It is easy to verify that Assumption 5 holds in Exam-
ple 1. Clearly, by selecting ¢'*) and ¢(®) in sequence, one
can guarantee that the Questioner asks no more than 2 ques-
tions. The best the Answerer can do against such a strategy
is to select s* = s or s, since doing so guarantees that
there are always two items consistent after the first question,
i.e., |S(H1)| = 2. However, the Questioner can do better by
choosing the first question uniformly at random. This guar-
antees that regardless of the Answerer’s choice of s*, there
is 1/3 probability that the item can be determined with ex-
actly one question, thus the expected number of questions
asked is 1/3 -1+ 2/3 - 2 < 2. This strategy minimizes the
worst-case cost regardless of what s* the Answerer chose.
In this example, we are lucky that the optimal strategy for
the Questioner is symmetric due to the circular symmetric
nature of Q and f. This is not true for more general Q, f.

So far, SLS has been presented mostly as a combinatorial
problem. Indeed, when Q is finite, we have:

Theorem 1. Given a known (deterministic) s*, deciding if
there is a sequence of k questions Q C Q such that S(H) =
{s*} is NP-complete.



The reduction is straightforward from set-cover and in-
cluded in the appendix. Indeed, a very similar problem
known as reaching dimension was studied by Goldman and
Kearns (1995), and is in turn closely related to other related
concepts in learning theory such as the VC-dimension. In
game theoretic parlance, this implies that the best-response
of the Questioner to any deterministic Answerer strategy is
hard to compute.

Theorem 2. Let (S,Qu, f) be a SLS, where |S| =
2k for some positive integer k. An “even-split” strategy
where Vt,qi11 is selected such that |S(H[(qg141,0))| =
|S(H{(gt+1,1))| minimizes the number of questions asked in
the worst case for the Questioner and costs exactly k ques-
tions.

Theorem 2 states that in the special case where Q@ = Q.
the problem becomes easy, agreeing with the intuition that
“binary search” could be optimal. We show in the appendix
that the even-split strategy is optimal in the UoT where s*
is chosen uniformly at random (Hu et al. 2024); in fact, they
constitute a Nash equilibrium in game setting. This justifies
their implicit approach of maximizing entropy loss and us-
age of LLM prompts that encourage even splits.

SLS-Restricted (SLSR) Vanilla SLS can be quite cum-
bersome to reason about for larger n and Q. As such, we pro-
pose a SLSR, a restricted variant where questions are gener-
ated (typically from a language model) based on the remain-
ing items S(H). A SLSR is formally given by (S, 9, f, g),
where g : 2°\¢ — 29 is a set function taking a nonempty
set of items S C S and outputs a nonempty set of no
more than m > 1 questions; here m is a parameter asso-
ciated with g. The rules and payoffs in SLSR are identical
to SLS, except that the Questioner is restricted to selecting
gt € g(S(H;—1)). To ensure that progress can always be
made, we impose a stronger version of Assumption 5 and
require that g outputs at least one question that strictly re-
duces the set of consistent items.

Assumption 6. For every subset S C S, there exists some
q € g(S) for and a pair of distinct items s,s' € S where

fg,5) # fla, ")

Weighted-SLS (WSLS) In many real-world scenarios,
certain items carry greater importance than others and
should be prioritized during the information-seeking pro-
cess. For instance, in medical diagnosis, delays in identify-
ing life-threatening conditions can have more severe con-
sequences. Hence, we propose weighted-SLS, a variant of
SLS defined by (S, Q, f,w), where w : & — RT. The
cost incurred by the Questioner with s* as the selected
item is redefined to be w(s*) - | H|, imposing greater penal-
ties for prolonged interactions involving high-weight items.
Weighted SLSR (WSLSR) is defined in a similar manner by
(87 Qafag7w)'

Example 2. Define the SLSR (S, Q, f, g) where S, Q, f are
identical to Example 1 and g(S) = {q", ¢} when S = S
and Q otherwise.

In Example 2, the first question is restricted to be either
g or ¢@. Regardless of how the Questioner randomizes

between them, the Answerer can always select s* = 53,
this guarantees that a; = 1 and hence |S(H;)| = 2. Thus,
the Questioner requires at least one additional question, tak-
ing 2 questions in total.

Example 3. Define the WSLS (S, Q, f,w) with S,Q, f
identical to Example 1 and w(sM) = 3 w(s?) =
w(s®) = 2.

In Example 3, the Questioner can chose ¢; to be equal
to ¢V, ¢?,¢® with probability 3/4,1/8,1/8. This en-
sures the expected cost is no greater than 15/4. In contrast,
choosing g; uniformly incurs a cost of 5 when the Answerer
chooses s* = s(1).

Remark. In SLS and its variants, the game only ends when
the Questioner is perfectly sure of the s*. Another alterna-
tive formulation permits the Questioner to explicitly guess
the item at any stage, with penalties for incorrect guesses.
We chose the current formulation since it captures the con-
straints in high-stakes environments better, e.g., in medical
diagnosis, one wishes to rule out all other possibilities be-
fore moving on to treatment. Roughly speaking, our formu-
lation penalizes incorrect guesses with “infinite” penalty.

Defining SLS via Large Language Models. For many
applications, S is too large for us to realistically hand-curate
a set of Q, noting that we would like to avoid “unnat-
ural” questions that involve long, complicated boolean
expressions. Therefore, in this paper we define Q, f, and
g implicitly using Large Language Models (LLM). Specif-
ically, Q is the set of questions that a LLM can propose
asking based on certain prompts, and f is the response of a
LLM to a prompt of ¢ when asked about s*. For instance, Is
Oppenheimer a movie?. Furthermore, g in SLSR and
WSLSR can be defined as the output of a LLM with respect
to a prompt asking for m > 1 questions after defining the
rules of SLS and S(H), the items remaining. An example
of this is We are playing a game with the
following rules <Rules of SLSR/WSLSR>.
Currently the set of possible items is
{Oppenheimer, Alan Turing}. Propose m
best questions the Questioner can ask.

Assumption 7. The LLM for f makes no mistakes when
used as an oracle for f(q, s*).

Assumption 7 and 1 enable the practical usage of LLMs
as a black-box for defining SLS. For most LLMs, Assump-
tion 4 is also satisfied, though the constant factor may be
very large. We discuss all assumptions made in the appendix.

4 SLS as Zero-sum Extensive Form Games

A vanilla SLS (S, Q, f) may be expressed as a two-player
zero-sum extensive form game (EFG) with imperfect infor-
mation. EFGs are rooted game trees, where each vertex cor-
responds to the game’s entire history. Edges represent ac-
tions available to the player-to-move at that vertex. EFGs are
endowed with information sets (infosets), which partition
vertices belonging to the same player; vertices in the same
infoset are indistinguishable to the player owning them, this
captures the notion of imperfect information.
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Figure 1: EFG representation of Example 1. The root node
A belongs to the Answerer and the other nodes V belong to
the Questioner. Edges in black correspond to the choice of
item s*. Colored edges in red, blue, and respectively
refer to questions ¢!, ¢(®), and ¢ respectively. Vertices
connected by dotted lines belong to the same infoset. Payoffs
(resp. costs) to the Answerer (resp. Questioner) are shown
in the leaves. We omit edges (and their descendant subtrees)
where the same question is asked more than once; these are
never optimal and correspond to dominated actions.

In the EFG formulation, the Answerer only takes an ac-
tion at the root, after which the Questioner asks up ton — 1
questions in sequence.! Every state apart from the root can
be uniquely identified by the tuple (s*, H) which describes
item s* chosen and a (potentially empty) history of past
questions and answers. Leaf vertices are those where either
() |H| = n — 1, where the maximum number of questions
are asked, or (ii) | S(H)| = 1, where s* is identified. The leaf
the rewards (resp. cost) to the Answerer (resp. Questioner)
is | H|. All non-leaf vertices with the same history H belong
to the same information set, which we denote by I(H ). Fig-
ure 1 illustrates the SLS for Example 1.

A deterministic strategy 7 of the questioner is given by a
mapping from every infoset I (H) to some question g € Q to
be chosen for g 7|1 1. Following m when s* is chosen yields
the following history Hy, ... Hr, given by

qt+1 = W(I(Ht))’at-kl = f(7T<I(Ht))7 S*)a

where T is the time the game ends, i.e., |[S(Hr)| = 1. The
corresponding utility for the Answerer (resp. cost for the
Questioner) at the end of the game is u(r, s*) = |Hr|.

Let the set of all deterministic strategies be II, Ay the
probability simplex over I1, Ag the probability simplex over
S. Then the expected utility under random policies z € A
and y € Ag for Questioner and Answerer respectively is
(with some abuse of notation) denoted by

w(@,y) = Ergp sy [u(m, s¥)].

The Nash equilibrium (NE) of this zero-sum game is
given by the solution to the bilinear saddle-point problem

min max u(x = max min u(x (1)
zEAT yEAS (@,y) yEAs zEAL (@.y)

IThis keep the game tree finite, and is justified since asking the
same question more than once is suboptimal.

where equality holds as a consequence of Von Neumann’s
minimax theorem (v. Neumann 1928). The solution (z*, y*)
yields optimal randomized strategies for each player, i.e.,
each player is best-responding to the other. In particular,
z* is the distribution over Questioner policies that is robust
against the worst case choice of s*. EFGs for SLSR, WSLS
and WSLSR may also be constructed similarly by one or
both of (i) restricting the actions available at each infoset to
g(S(H)) or (i) adjusting leaf payoffs to depend on w and
s*.

Solving EFGs. In general, two-player zero-sum EFGs
with perfect recall (including SLS and its variants) can be
solved in time polynomial to the size of the game tree. Some
classical methods include linear programming (Von Sten-
gel 1996) and counterfactual regret minimization (Zinkevich
et al. 2007). Note that the definition of strategy given for the
Questioner was in normal (also known as strategic or matrix)
form. This leads to an exponentially sized action space, so
in practice solvers usually operate (implicitly) in the strate-
gically equivalent behavioral or sequence form (Von Stengel
1996). Efficient game-solving and strategy representation in
EFGs is a well studied topic and beyond the scope of this
paper, though we give a brief overview in the appendix. In-
stead, we will simply employ off-the-shelf solvers (Liu, Fa-
rina, and Ozdaglar 2024; Lanctot et al. 2019). As it turns out,
the bottleneck in our proposed solution is not game solving
but LLM queries for f and g.

5 Game-of-Thought and Subgame Search

For a SLS game tree with maximum depth D (with a lower-
bound? of log,(|S|)), the total number of information sets
is O((2|Q|)P). This leads to the number of infosets grow-
ing at a rate of O((2|S| — 2)'°22I51)3 which is far too large
to reason about even for a relatively small |S|. For practical
reasons, we study the Restricted variants of SLS and WSLS
with |g(S(H))| = m = 3, limiting the number of infosets
to O(|S|?59). Nonetheless, constructing the full (W)SLSR
game tree explicitly and solving it is still unpractical, since
this requires querying a LLM at each infoset to generate
questions and answers, with each query typically incurring
a latency of several seconds.

To address this challenge, GoT employs an iterative, on-
demand strategy construction paradigm, computing strate-
gies only when an information set is visited. Inspired by
the subgame search techniques used in chess and poker Al,
GoT constructs a subgame rooted at the current information
set and truncates it to a fixed depth d. The leaf nodes of
this subgame are evaluated using heuristic functions. This
truncated subgame is then solved to obtain a local strategy
for the questioner, which informs the selection of the next
question and determines the transition to the subsequent in-
formation set. An overview of this approach is provided in
Figure 2.

This is a rather optimistic lowerbound, which occurs only
when every every ¢ € Q splits the items evenly. In most cases
D > log,(IS)).

19| > |S| — 1 due to Assumption 5



2. Translation to EFG

1. Depth Limited Simulation

S(H) Beagle, Bulldog,

Persian, Siamese
Is it a dog? Is it a cat?
(e1, 1))

‘ Beagle Yes. ™. No PN
Bulldog | O o g
Persian,
el el Siamese @ * . .
O O s o

d+h(items)  d + h(items)

3. Solving EFG

Isita dog? Isitacat? i | RNG Isita dog? Is it a cat?
p=0.5 =0.5 p=0.5 =0.5
Solver
0.341

Yes.”* No Yes. No

o o O 10 o o

4. Selecting the Next Question

Figure 2: An overview of GoT. To choose the question at time step ¢, we (1) Explore the possible outcomes and future questions
(2) Construct the truncated EFG tree (3) Solve the game for a local strategy (4) Use that strategy to choose the question. Steps
1 to 4 are repeated until we reach the end of the game. Steps 1 to 3 are used to devise the strategy, while step 4 is playing the

actual (W)SLS(R) game.

1. Depth Limited Simulation We begin by exploring the
possible future outcomes and questions for the Questioner
necessary to construct the truncated subgame. At infoset
I(Hy), assuming the game has not ended, the set g(S(H))
is generated using a LLM. For each ¢; € g(S(H;)), a LLM
is used to identify the set of items for which the answer to ¢;
is yes denoted by Y (S(H;), ¢;), where

Y(S,¢)={s € S|f(c,s) =1} forsome S CS.

and the complement set denoted by Y (S(H,;), ¢;), defined
in a similar manner. This pair of sets represents the two pos-
sible outcomes of asking the candidate question c; at step t.
The simulated histories H}(c;, 1), H{(c;,0) and the corre-
sponding infosets I(H/(c;, 1)), I(H;(c;,0)) are constructed
based on this pair of sets. This process is repeated to recur-
sively construct the infosets for up to ¢ + d steps, resulting
in a simulation tree as seen in step 1 of Figure 2.

2. Translation to EFG  Next, we construct the two-player
zero-sum extensive form subgame based on the simulation
tree. The tree is converted into an EFG representation of the
truncated subgame, as shown in step 2 of Figure 2. In par-
ticular, the tree is augmented with the Answerer choosing
one of the remaining items from S(H:), even if I(H) is
not at the beginning of the SLSR game. Each leaf node in
the game tree [ is assigned a payoff of d(I) — 1 + h(l) for
the Answerer (and the negative of that for the Questioner)
where d(I) is the depth of node [ in the tree representing the
number of questions asked after step ¢ before reaching the
node [, and h is a heuristic function used to estimate the re-
maining number of questions that remain to be asked for the
Questioner to identify the correct item. In our experiments
we set h(l) := log,(]S(1)]) where S(I) is the set of items
remaining at leaf node [.

3. Extensive Form Game Solving To solve the resulting
extensive form subgame, we used LiteEFG’s (Liu, Farina,
and Ozdaglar 2024) implementation of counterfactual regret
minimization (Zinkevich et al. 2007) to obtain an approxi-
mate of the Nash Equilibrium for the Questioner.

4. Selecting the Next Question To choose the question
to ask at step ¢ + 1, one question ¢, is sampled from
9(S(H,)) using the resulting randomized strategy for the

Questioner. We move to the next infoset I(H(gt1,0) if
f(qe41,8*) =0, and I(H{(qs+1,1) otherwise.

This process is repeated until an infoset I(H,) where
|S(Hy,)| = {s*} is reached.

At first glance, allowing for the Answerer to “re-choose”
a new distribution over s* every iteration in Step 2 seems
to accord the Answerer significantly more power, since it
would be able to “switch items” depending on the questions
asked in actual play. In fact, what we have done is a sim-
ple implementation of maxmargin resolving, a crucial step
in performing safe subgame search (Moravcik et al. 2016) in
general zero-sum EFGs. Safety implies a performance guar-
antee with respect to some blueprint strategy or state value
estimate. Note that due to the simplicity of SLS, newer tech-
niques and extensions (Brown and Sandholm 2017; Zhang
and Sandholm 2021) reduce to maxmargin resolving here.

Theorem 3. GoT is safe with respect to value estimates that
only depend on S(Hy).

Since safety follows directly from maxmargin search, we
defer details to the appendix. In practice, we see a huge im-
provement over unsafe variants of subgame search.

6 Experiments and Results
We are mainly interested in answering the following:

Does GoT improve the worst case performance com-
pared to other methods in SLSR and WSLSR games?

Secondarily, we examine how the (i) quality of the questions
(ii) simulation depth d, and (iii) difficulty of the dataset af-
fect the performance of GoT.

Experiment Setup

Due to space constraints, specific details and prompts are
deferred to the appendix.

Datasets For SLSR and WSLSR, each dataset is a collec-
tion of distinct items. Prior studies (Bertolazzi et al. 2023;
Zhang, Lu, and Jaitly 2024) used datasets such as Things
(Hebart et al. 2019) and Celebrities, which we found to be
too large for this study. This led to us constructing several
datasets: (i) COMMON+: A set of 136 items built upon the
COMMON dataset collected for UoT(Hu et al. 2024), which
we further modified by adding more items. (ii) Breeds: A




set of 25 popular cat and dog breeds collected by us. (iii)
Skewed 128: A set of 128 items, consisting of 2 weapons, 6
scientists, 24 dishes, and 96 animals collected by us.

Baselines We primarily compare with UoT (Hu et al.
2024). We additionally consider Direct Prompting (DP)
where the LLM is allowed to directly generate the next ques-
tion, and Direct Choice (DC) where the LLM is asked to
choose from a set of candidate questions. Each strategy is
played against all possible s* in each dataset and the worst
performance across all items is taken.

Models and Prompts We mainly experimented on GPT
4.1(OpenAl 2024) (gpt—-4.1-2025-04-14 checkpoint)
and Qwen 2.5 72B Instruct (Yang et al. 2024). We utilized
two different prompts for sampling questions for SLSR. The
even prompt, adopted from (Hu et al. 2024), explicitly in-
structs the LLM to ask questions that splits items as evenly
as possible. When using even prompts, we noticed unnatural
questions (e.g., Does this item begin with a letter from A-M?
). This is ill-suited for actual applications as the respondent
may find it difficult to answer such questions. This leads to
the natural prompt, which instructs the LLM to refrain from
asking such questions. This led to fewer unnatural questions.

Accounting for Randomness (1) When a LLM is used
as g to generate questions, the set of candidate questions
Q(S(H:)) may differ across runs. To ensure fair compar-
isons across methods, we first play the game using GoT and
cache the questions used in the simulation tree. The cached
questions are reused for UoT and DC. (2) The Questioner
strategy designed by GoT is nondeterministic. To obtain the
performance for each s*, we take the average over five plays
of the game using the same strategy.

SLSR

As seen in Table 1, GoT provides a consistent, albeit minor,
improvement over UoT in all settings, improving the worst-
case performance by around one turn. Prompting-based DP
occasionally outperform UoT, indicating that although UoT
can enhance average performance, it may do so at the ex-
pense of degraded worst-case performance.

As mentioned, when using the even prompt, we occasion-
ally observe “unnatural” questions being sampled that are
often effective at splitting item sets into even halves. We sus-
pect this to be why a noticeable improvement in DP can be
observed when even is used over natural. This is less no-
ticeable in GoT and UoT, possibly due to both performing
planning via lookahead. This could reduce the influence of
the few “unnatural” questions on the overall performance.

From Theorem 2, we know that if a LLM is able to pro-
pose questions that perfectly splits S(H) into even halves,
there is no need to perform any planning since choosing
any of the questions is optimal. However, we see that this
is not the case: all methods fall short of the theoretical op-
timal performance of log,(|S|) by around 2 to 3 turns of
interaction. Out of the three datasets, Skewed 128 is inten-
tionally designed to guide LLMs to generate questions with
more skewed split ratios. The effect of this can be observed
in the decrease in DP (and to a lesser dgree DC) performance

Method Number of Items/Dataset
COMMON+ Skewed 128 Breeds
GPT 4.1 + Even split prompt

GoT 9.4 9.2 6.4
UoT 10 10 7
DP 11.7 12.9 7.8
DC 12.3 12.6 9.0
GPT 4.1 + Natural prompt
GoT 10.2 11.8 7.4
UoT 11 13 9
DP 13.8 16.2 7.8
DC 12.9 14.6 9.3
Qwen 2.5 72B Instruct + Even split prompt
GoT 10.2 10.2 6.2
UoT 11 11 7
DP 11.9 14.6 8.0
DC 12.4 13.6 8.3
Qwen 2.5 72B Instruct + Natural prompt
GoT 10.0 10.8 6.6
UoT 11 12 8
DP 12.7 19.2 8.0
DC 12.7 17.9 7.8

Table 1: Worst case interaction length for various LLMs
on SLSR. We set d = 3.

when compared to the COMMON+ dataset of a similar size.
Although the same can be observed for UoT and GoT, the
decrease is less significant, possibly mitigated by the vari-
ous forms of exploration and planning employed by both.

SLSR with Synthetic Splits

The quality of a candidate question ¢ in SLSR at some
infoset I(H) can be roughly measured using the ratio
[Y(S(H),q)| : |[Y(S(H),q)|, representing how evenly ¢ is
able to split S(H) into two. Given the difficulty in control-
ling the quality of LLM-sampled questions, we wish to study
SLSR in a more controlled environment. Instead of using a
LLM for question generation, we define a question gener-
ating function g’ : 25 \ ¢ x (0,1) — 25 which takes as
input S(H) and a split ratio » € (0, 1), and outputs the set*
Y’ C S(H) (and consequently Y = S(H)\Y"’) at the fixed

ratio % = r. Two implementations of g’ were consid-

ered: (i) Random Splits: Sample and return r - |S(H)| items
uniformly at random from S(H) without replacement. (ii)
Feature Based Splits: For each s € S(H), generate k fea-
tures F; = (f1, ..., fr), f; € [0, 1] at the start of the game. ¢’
randomly selects one of & features, and sorts S(H ) based on
the selected feature. The top 7 - |S(H)| items are returned.’

The results are shown in Table 2. GoT consistently
achieves superior performance compared to UoT, partic-
ularly as r decreases and the splits become increasingly
skewed. This suggests that GoT provides the most improve-

“The question itself does not matter in this case, as both UoT
and GoT is language agnostic.

SRandom splits can be seen as Feature Based Splits with a very
large k.



r

Method —, 4 0.33 0.25
3 Features

GoT 94 10.0 13.8

UoT 10.0 11.0 15.0
5 Features

GoT 9.2 10.2 13.2

UoT 10 11.0 15.0

Random Splits
GoT 8.8 9.8 11.6
UoT 10 11 15

Table 2: Worst case interaction length on SLSR with Syn-
thetic splits with COMMON-+. d is set to be 3.
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Figure 3: Performance of various methods in WSLSR on
COMMUON+ and Breeds. The x-axis is d, the y-axis is the
payoff for the Answerer w; - | H]|.

ment when the candidate questions are not optimal. This
however does not translate well when actual questions are
used due to other confounding factors not captured.

WSLSR

We further examine the performance in the WSLSR. Due
to the change in payoffs in the full WSLSR game, we
need to replace GoT’s heuristic function used in the trun-
cated games in a similar manner. The new heuristic func-
tion h(l) = max,e gy w(s) - (d(l) +1logy(|S(1)])) is formu-
lated by multiplying the weight of the most important item
with the estimated length of the game, thereby reflecting the
structure of the payoff w(s*) | H|. UoT remains unchanged,
as it was unclear how it should be appropriately modified.
The question sampling prompt is modified to include the
item weights and the payoff calculation. The item weights
for each dataset is sampled from a lognormal distribution
with parameters 4 = O and o = 1.

The results can be seen in Figure 3. GoT outperforms UoT
in most settings, with improvement ranging from 25% to
40%. We also noticed UoT being outperformed by DP and
DC more frequently in WSLSR than in SLSR, possibly due

With Added Question Without Added Question
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Figure 4: Performance in WSLSR with artificially
skewed weights on Breeds. Graph on the left shows the per-
formance when the additional question is included.

to UoT not accounting for the weight of items. This may
lead to situations where questions yielding higher informa-
tion gain (under the assumption of a uniform distribution)
are preferred over those that more efficiently isolate heavily
weighted items, a less optimal strategy in WSLSR.

We also examined the effect of increasing the simula-
tion depth d to up to 6 using the smaller Breeds dataset. In
general performance of GoT improves as d increases, but
plateaus when it approaches what we hypothesize to be the
theoretical best strategy for the given game.

A brief study on the effect of question quality in WSLSR
was also conducted. An artificially skewed item weight dis-
tribution for the Breeds dataset is constructed by assigning
all but one item with a weight of 1, and the remaining item
being assigned a weight of 100. The optimal strategy in this
case is to ask if the item with the heaviest weight is the cor-
rect item as the first question. We confirmed this by manu-
ally adding this question to the set of candidates at the start
of the game and as seen in Figure 4, GoT consistently arrives
at the aforementioned optimal strategy. However when this
question is not manually added, the performance falls short
of our expected performance by a large margin. Indicating
that the quality of the questions can significantly affect the
the performance of GoT.

7 Limitations and Future Work

We defined f to have a output of either O or 1, limiting the
candidate questions to have strictly binary answers. How this
can be extended to include questions with open ended re-
sponses is left as future work. We only experimented with
three candidate questions at each infoset. The effect of more
candidate questions was not studied due to time constraints.

8 Conclusion

In this study we formalized the definition of SLS and its vari-
ants as a way to quantitatively measure LLM’s information-
seeking abilities, and proposed GoT, a simple yet effective
approach to play the SLSR game. We show that GoT is able
to improve the worst case performance as compared to some
prior methods. Our approach of optimizing for the worst
case performance can often be more valuable than to opti-
mize for the average performance in certain scenarios.
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A Strategy Representation

There are several ways to represent strategies (up to payoff
equivalence) in imperfect information games with perfect re-
call. For computational reasons, the sequence form is often
used . We briefly describe the other representations.

1. Normal/Strategic Form. The was what was presented in
the paper. The set of deterministic strategies is the carte-
sian product of actions at each infoset IT = [, A(I).
Thus, every policy m € 1I tells us exactly what action to
take at every information set that could be encountered.
Randomized strategies are distributions over determinis-
tic policies, i.e., Ar. The size of II is exponential in the
number of infosets.

2. Reduced Normal Form. The reduced normal form prunes
the number of normal form strategies by grouping to-
gether strategically equivalent ones. See any textbook
in game theory, or the work by Von Stengel (1996) for
a more complete discussion. Let I be an infoset and
a,a/ € A(I) be distinct actions in I. Let I’ be an
infoset that o/ precedes. Then, normal form strategies
that choose « in I have payoffs (regardless of opponent
strategy) is independent of what action is taken in I,
since to enter I’ at all would require choosing «’. Thus,
two strategies 7,7 that choose « in I but differ in ac-
tions taken in I’ are strategically equivalent. The mini-
mal set of strategies that are obtained by forming such
equivalence classes forms the set of reduced-normal form
strategies, which can be significantly smaller than normal
form ones. As before, strategies can be randomized in re-
duced normal form as well. Unfortunately, the size of re-
duced normal form strategies can still be exponential in
the number of infosets.

3. Behavioral Form. The behavioral strategies involve plac-
ing a distribution of actions (possibly not deterministic)
at each information set, thus the size is linear in the to-
tal number of actions summed over all infosets, which
in turn is no larger than the size of the game tree. It can
be shown using Kuhn'’s theorem that under perfect recall,
the set of behavioral strategies are strategically equiva-
lent to (reduced) normal form strategies. Unfortunately,
while behavioral strategies are intuitive and compact, op-
timizing in behavioral form is difficult as payoffs are non-
linear in the strategy representation.

4. Sequence Form. The sequence form strategy alleviates
the problems assigning probabilities to sequences o (es-
sentially actions when the game has perfect recall) of tak-
ing a particular sequence in isolation from chance and
other players. At each infoset I, the sequence form is es-
sentially identical to the behavioral form (a probability
simplex) except that they are normalized by the probabil-
ities given by the infoset’s parent sequence o([), which
is the last action (sequence) taken before reaching I —
this is guaranteed to be unique because of perfect recall.
Thus, the sequence form is the same size as behavioral
strategies (except for an extra “empty sequence” ¢ set to
1.0 that is the parent of all initial infosets. The sequence

form strategy space is sometimes known as the treeplex

X:{xeRf

2[g] = 1; Y alo] =x[o(I)] VI € I}

o=Ia

where N = 1+ >, ., |I] and T are the set of infosets,
Ia refers to the sequences ending with action ¢ starting at
infoset 7, and ¢ is the empty sequence. The vertices of 11
are correspond to (reduced) normal form strategies. using
the sequence form, we can write the Nash equilibrium of
a zero-sum game as the bilinear saddle point problem

min max z’ My

reX yey
where M is the sequence form payoff matrix. Observe
that the objective is linear in both x or y. This saddle
point can be found efficiently using a variety of meth-
ods, including first order methods such as the counter-
factual regret minimization (Zinkevich et al. 2007), lin-
ear programming or other first order methods (e.g., mir-
ror prox). The library which we use (Liu, Farina, and
Ozdaglar 2024) uses counterfactual regret minimization.

B Detailed Derivations
Proof of Theorem 1

This problem is equivalent to the following set-intersection
problem.

Set intersection problem. Let S be a finite set and K C
25 a set of sets Given some fixed s € S, we want to find
if there is a set J C K such that | 7| < k and ﬂJejJ =
{s*},1i.e., can we find a small subset of K C K such that its
intersection contains exactly s*. One can see that /C contains
the set of questions that can be asked about s*. We can safely
assume that s* € K € K.

Set cover. Let A and B C 24. The decision problem is
whether one can find some set B* C B of size k or smaller
such that | B* = A.

NP-completeness. We show that a solution to the set in-
tersection problem corresponds to a solution to set cover
and vice versa. We define A = S\ {s*} and B contains
subsets that are the complements of the elements of /C,
B = {Bi =K; | K; € IC}. Take a set cover B* C Bof A
and its corresponding set K* in K. Since B* covers A, i.e.,
UB* = A, its corresponding K* = {K; | B; € B*} has
intersection ;.5 cp. Ki = {s*} UNg,cp- Bi = {5}
Similarly, any solution K™ to the set intersection problem
corresponds to a solution to set cover, since U K CK* B; =
Uik, e Ki = Nik,exc- Ki = {s*} = A. Finally, any
solution to the set intersection problem can also be checked
in polynomial time.

Proof of Theorem 2

It is clear that the even-split strategy uses exactly k£ ques-
tions. Furthermore, every question yields exactly one bit of
information, so at least k questions are needed. This shows
that the even-split strategy is a NE (that this is a minimax



solution). To show that the uniform strategy is a maximin
solution, simply apply symmetry. Let y* € A,, be some (po-
tentially non-uniform) NE for the answerer. We know that
the set of maximin solutions for a zero-sum matrix game
forms a non-empty convex set. Take all permutations of y*.
By symmetry, they must all be NE as well. Let the average
over all permutations be be y*, again by symmetry this is
equal to the uniform distribution. But by the aforementioned
convexity of the set of maximin solutions this is also a Nash
equilibrium for the Answerer.

Discussion of Theorem 3

We give a very brief overview of subgame search and max-
margin resolving. The finer details and mathematical formu-
lation is omitted. The main goal is to establish that GoT is
implemented in the same way that maxmargin resolving is,
which in turn implies safety.

Safe subgame search Subgame search (also known as
subgame resolving or continual resolving) is a class of meth-
ods used to perform depth-limited search in a principled
manner in imperfect information extensive form games. The
idea behind subgame search is to play a blueprint strategy
until the player enters a subgame (an imperfect informa-
tion subgame is a forest of trees, closed under both the de-
scendant relation and membership within augmented infor-
mation sets for any player, (Burch, Johanson, and Bowling
2014)). The blueprint strategy is typically the solution to a
coarse, abstract version of the full game. Once inside the
subgame, the player resolves for a better solution for the
subgame that was reached (and that subgame only). This is
analogous to the perfect information case where one only
performs search (or refinement) of a strategy in the state that
was reached in actual play, since solving the original full
game is intractable.

A safe subgame solving algorithm is one that is guaran-
teed to perform no worse than the blueprint strategy. Naive
subgame solving attempts to solve the subgame by con-
structing a gadget game starting with a chance node which
leads to all initial states in the subgame based on the proba-
bilities (under the blueprint and the opponent strategy whens
solving the blueprint) of reaching them. This however, ne-
glects the fact that resolving just the subgame that was
reached could entice the opponent to change their action,
rendering these chance probabilities incorrect, leading to a
worse performance than the blueprint.

Maxmargin resolving Maxmargin resolving (Moravcik
et al. 2016) is one such approach to perform subgame solv-
ing in a more principled fashion. The idea is to augment
the gadget game such that the opponent first chooses which
infoset (of the opponent) it would like to begin from, after
which, a chance node enforces the probabilities of reaching
each of those states (belonging to the opponent’s infoset) is,
based on the blueprint strategy of the main player. Letting
the opponent choose which infoset (note that we may have
to add dummy infosets if the opponent does not move at the
beginning of the subgame) they want to begin the subgame
with ensures that the main player optimizes for the mini-
mum margin. Here, the margin for each of the opponent’s in-

foset is the difference between the value in the infoset under
the blueprint strategy versus the refined strategy. If the main
player optimizes the value of a particular head infoset (of
the opponent) too much at the expense of performing poorly
at other infosets, then the opponent would choose those in-
fosets instead, resulting in unsafe resolving. By allowing the
opponent to choose initial infosets, Maxmargin avoids this
explicitly by ensuring that all of the infosets are equally im-
proved (for the main player) after refinement.

In practice, we do not actually know the values of initial
states of the subgame under the best-response of the oppo-
nent is (without expanding the entire subgame to its leaves)
and have to resort to approximate value functions. Note that
it is not immediately clear what constitutes a good value
function, since the value of a state will depend on play from
both players and is complicated by imperfect information.
See Kovarik, Seitz, and Lisy (2021) for a more thorough dis-
cussion.

GoT as maxmargin resolving First, observe that SLSR
is a relatively simple EFG in that the Answerer only moves
once at the beginning, after which there are no further in-
teractions from it. In fact, we could allow the Answerer
to have perfect information. Furthermore, the proper sub-
games (i.e., not the full game) are simply the histories H, or
equivalently, the subgame beginning at I(H), which com-
prise all questions asked but not what s* was chosen. Note
that each proper subgame only has the Questioner taking ac-
tions. Since the Answerer has perfect information the “head
infosets” of a subgame I(H) for the Answerer simply cor-
responds to the initial states of that history H. Note that
we don’t actually need to explicitly construct these head in-
fosets: since the Answerer has full information, these are
“dummy” infosets have essentially one action only, which
lead to the corresponding state in the lead infoset of the
Questioner. This shows that the structure of the gadget game
of maxmargin is exactly the same as what we propose. An
example of this construction is shown in Figure 5.

In maxmargin, the payoffs under each head infoset of the
subgame is shifted by the payoffs under the blueprint (or
function approximation). This ensures that the margin is op-
timized as opposed to absolute payoffs. Thankfully, no such
shift is necessary in our case because the approximated val-
ues at each state is log, (|S(H)|), i.e., the log of the number
of items remaining. This value is the same for every state in
the infoset I(H ), thus the value of the shift is the same over
the entire subgame, which, as far as solving the subgame
goes has no bearing on the refined strategy.

This same argument also extends to our choice of value
function for WSLSR, h(l) = max,cgq)w(s) - (d(l) +
log,(|S(1)])), which depends only on the set of items re-
maining, S(H). However, if our value function was chosen
to also depend on the Answerer’s precise choice of s*, then
such an argument would no longer hold and we would have
to perform these shifts in payoffs accordingly.

Remark. In theory, maxmargin resolving only performs re-
solving upon entering a subgame (e.g., after d = 3 questions
are asked). In practice, GoT performs resolving at every in-
foset that is encountered during actual play.
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Figure 5: Left: example of a subgame based on Example 1 and Figure 1. Bounded region by thick dark lines form an example
of a subgame corresponding to the history of asking ¢(?) and getting an answer of 1. Right: the gadget game used for solving
the subgame shown on the left. Note that it is the Answerer who takes the first action, not chance (which would be the case for
naive subgame solving), and the actions only include the items that are consistent with H, in this case s(!) and s(3).

C Implementation Details
General Implementation

Method Hyperparameters Since UoT shares a similar
simulation procedure with GoT, we use the same values for
the simulation depth d and the number of candidate ques-
tions m for both methods within each experiment, although
these values may vary across different experiments. For DC,
we similarly provide a set of m candidate questions which it
may choose from.

Question Generation When There Are Two Items Left
In instances during a (W)SLSR game where the current
history H satisfies |S(H)| = 2, we deterministically con-
struct two candidate questions of the form “Is x the correct
item?” for each remaining item, instead of sampling ques-
tions from the LLM. While not strictly required, it is imple-
mented primarily for efficiency. Under Assumption 6, any
question that satisfies the assumption will successfully dis-
tinguish between the two remaining items, thereby termi-
nating the game. This eliminates the need to query an LLM
at such states, thereby reducing the latency associated with
constructing the simulation tree.

Question Caching and Reuse During each execution of
GoT, the set of candidate questions g(S(H)) generated by
the LLM for any explored history H is cached for reuse. In
the case of UoT and DC, if the current history has previ-
ously been explored by GoT, the corresponding cached set
of candidate questions is reused in place of sampling new
questions from the LLM. This is done to ensure a fair com-
parison across methods, as variations in the quality of can-
didate questions can substantially impact performance.

Handling erroneous LLM outputs For ease of parsing,
we require the LLMs to produce outputs in JSON format.
While the model occasionally fails to adhere to this for-
mat, we address such cases by retrying the generation. In
our experiments, this retry mechanism proved effective, and
no further issues were observed.

GoT Specific

When Simulation Tree is Terminal During Simulation
Step (1), after constructing the local simulation tree, we ver-
ify whether each leaf node corresponds to a terminal state,
i.e., whether |S(1)| = 1 holds for all leaf nodes. If this con-
dition is met, the strategy derived from the current subgame
is adopted for all subsequent question selections until the
end of the game, rather than being used solely for the next
question followed by resolving a new subgame at the next
step. This is justified by the fact that the current subgame
extends to the end of the game, thereby obviating the need
for iterative strategy construction in subsequent steps.

D Additional Results
Item Weights

Figure 6 presents a histogram of item weights for the Breeds
and COMMON+ datasets used in WSLSR. The weights
were assigned randomly, as there was no clear method for
determining meaningful valuations for each item, given the
nature of the datasets.

It is important to note that the performance of GoT in a
WSLSR game may be sensitive to the underlying distribu-
tion of item weights. In particular, when the weights were
sampled from a uniform distribution, we observed that the
relative performance of GoT compared to UoT mirrored the
results in the standard SLSR setting, providing a consistent
but smaller improvement.

Randomization of GoT’s strategies

We quantified the randomness of GoT’s strategy using en-
tropy, as shown in Figure 7. In general, the resulting strate-
gies exhibit higher entropy in the standard SLSR game com-
pared to the WSLSR variant. This is likely due to the item
weight distribution being tail-heavy, which encourages the
strategy to favor candidate questions that more efficiently
isolate the heavily weighted items. Nonetheless the strate-
gies remain sufficiently random, suggesting that we do not
encounter degenerate cases in which a deterministic strategy
would be optimal.
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Figure 6: Distribution of item weights used in our exper-
iments. Weights are sampled from a lognormal distribution
with parameters y = 0,0 = 1.

Full SLSR Games

For each SLSR game, there exists a lower bound on the ex-
pected worst case number of questions required. This bound
can be obtained by solving the fully specified game. As this
is only feasible for smaller datasets, we constructed com-
plete SLSR games on the smaller Breeds dataset and exper-
imented on GoT and UoT by setting the simulation depth
d to game tree depth D. Since constructing the full game
tree is required, we enforce Assumption 8 to ensure that all
branches eventually terminate. The results are shown in ta-
ble 3, where GoT’s performance aligns with the lower bound
on the performance. On the other hand, UoT’s performance
showed minimal improvement even when provided with the
full game tree during simulation, suggesting that achieving
the lower bound requires a non-deterministic strategy.

Experiment
Method g 1 oame (0= 3) Full Game (d — D)

GPT 4.1 + Even split prompt
GoT 6.4 5.84
UoT 7 7

GPT 4.1 + Natural prompt
GoT 7.4 5.64
UoT 9 8
Qwen 72B Instruct + Even split prompt
GoT 6.2 5.44
UoT 7 7
Qwen 72B Instruct + Natural prompt

GoT 6.6 5.88
UoT 8 8

Table 3: Worst case interaction length for on full SLSR
Game. Dataset used is the Breeds Dataset.

E Discussion on Assumptions

As noted, Assumptions 1 to 3 are inherent in the formal def-
inition of the game. The remaining assumptions are either
naturally satisfied by the experimental setup or are explic-
itly enforced during the execution of our method.

SLSR Breeds WSLSR Breeds
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Figure 7: Entropy of the strategies obtained using GoT
at each infoset. As m = 3, the maximum entropy of the
strategy is log,(3) a2 1.58 when every candidate question is
chosen with equal probability. Strategies for when there are
only two items left are not included.

Assumption4 We employed LLMs, accessed both via on-
line APIs and locally hosted instances, to implement the
function f. For online API-based queries, the average la-
tency per query is approximately 1 second, while for locally
hosted models, the latency is slightly lower, typically falling
just below 1 second.

Assumption 5 This assumption naturally follows from
Assumption 6 in the (W)SLSR version of the game.

Assumption 6 This assumption holds in nearly all cases
when LLMs are used as the question generator g. To enforce
this, we verify whether there exists at least one question
that permits progression of the game; if no such question
is found, we resample the candidate questions. For certain
experiments (such as full SLSR game solving) we impose a
stronger version of this assumption:

Assumption 8. For every subset S C S, for every q € g(S),
there exists a pair of distinct items s, s' € S where f(q, s) #
fla,s")

This guarantees that the game tree will be finite, thereby
enabling the complete construction of the game tree. To
enforce this condition, we explicitly remove any candidate
question that fails to satisfy the assumption from the set of
candidate questions.

Assumption 7 This assumption is made to mitigate po-
tential inaccuracies arising from LLM-based classifications.
Although LLMs may produce erroneous outputs, handling
such errors is beyond the scope of our method and is there-
fore not the primary focus of this work. Without this as-



sumption, classification errors during the simulation process
could, in the worst case, require a restart of the game. Specif-
ically, if the target item s* is misclassified, it may be incor-
rectly eliminated from the set of possible items upon receiv-
ing a contradictory response from the answerer. Moreover,
we observed that such misclassifications and consequently
restarts occurred frequently when attempting to reproduce
the results of (Hu et al. 2024), which drastically affected the
worst case performance. Since this does not influence the
Questioner’s strategy under any of the evaluated methods,
we believe it does not compromise the fairness of the ex-
perimental results. To enforce this assumption for both GoT
and UoT, we depart from the approach used in (Hu et al.
2024), where a separate LLM instance was employed to
simulate the Answerer. Instead, we cache the item set splits
generated during the simulation step corresponding to each
question and reuse them as the Answerer’s response. This
strategy ensures consistency between the item classifications
performed during the simulation phase and the responses ob-
served during actual execution of the (W)SLSR game.

F Dataset Details

The all constructed datasets (along with the weights for
Breeds and COMMON+ used for WSLSR) are released
alongside the accompanying code. To construct the datasets,
we relied on publicly available sources. For example, the
American Kennel Club for the Breeds dataset, and ChatGPT
for the Skewed 128 dataset. All Al-generated datasets were
subsequently verified to ensure that each item included cor-
responds to a real-world entity.

G Prompts Used

The prompts used for sampling questions (to implement the
function g) for the SLSR and WSLSR games are shown in
tables 4 and 5 respectively. DP uses the same prompts for
asking questions by setting m = 1. DC additionally uses the
prompt in table 6 to choose the question from the candidate
set. The prompts used to generate answers to questions for
items (to implement the function f) is shown in table 7.

H Examples of Questions Asked

Unnatural Questions A typical question posed in a
(W)SLSR game, using the COMMON+ dataset, resembles
the following:

 Is the item something a person can physically pick up
with their hands (assuming average human size and
strength)?
¢ Is the item man-made?
¢ Is the item an animal?
Such questions generally pertain to intrinsic properties of the
items themselves.
In contrast, when the even prompt was used, we occasion-
ally observed the generation of more “unnatural” questions:
¢ Is the breed’s name made up of only one word?
¢ Is the name of the item longer than 7 characters?
* Does the name of the item contain the letter *a’?

* Is the item’s name longer than four letters?

¢ Does the item’s name start with a letter from A-M (inclu-
sive)?

These questions typically reference the item names directly,
rather than the underlying items themselves, and can be in-
terpreted as the LLM’s attempt to optimize the question for
the SLSR game. These occurrences were primarily observed
when GPT-4.1 was used as the LLM, we did not observe this
when using Qwen 2.5.

Ambiguous Questions In our formulation of the SLS
problem, we assume that (i) the codomain of f is binary,
and (ii) each item s € S has a unique, well-defined answer
under f, as stated in Assumption 1. However, this assump-
tion may not hold in real-world scenarios due to the inherent
ambiguities and interpretive variability commonly present in
natural language. One source of such ambiguity arises when
an item name refers to multiple distinct entities. For exam-
ple, consider the question: Is the Titanic something a person
can pick up with their hands? The answer would be no if re-
ferring to the actual ship, but yes if referring to a DVD of the
movie Titanic. While language ambiguity is a well-studied
phenomenon in the field of Natural Language Processing,
addressing such ambiguities remains challenging when ap-
plied to the more formal and rigorous framework of Game
Theory. We believe that addressing this challenge presents a
promising direction for future research.

I Experiment Hardware

Running the EFG solver was done on a AMD Ryzen 5 5500
CPU with 32 GB ram. Hosting the local instance of Qwen
2.5 72B Instruct LLM was done via the vLLM(Kwon et al.
2023) library on either 2 Nvidia H200 GPUs each with 141
GB memory, or 4 Nvidia H100 GPUs each with 80 GB
memory.



Even Prompt

We are playing the game of ask and seek, where I am the answerer and you are the questioner.

I have chosen one item from a list of items, and your goal is to identify the correct item from a list of items
by asking a series of yes or no questions.

Your should try to ask as few questions as possible.

Here are all the items:
[items]

One of the items is the correct item, please design questions about those items that helps you find the right
item and can only be answer by Yes or No.

Notably, this question should fulfill that the count of YES items and NO items are almost the same with a
permissible discrepancy of no more than one!

You should respond with the best [m] questions you can think of.

Please follow the JSON template:

{

"questions" : [
{
"question" : "<question>"
"reason" : "<reason>"
b
]
}
Natural Prompt

We are playing the game of ask and seek, where I am the answerer and you are the questioner.

I have chosen one item from a list of items, and your goal is to identify the correct item from a list of items
by asking a series of yes or no questions.

Your should try to ask as few questions as possible.

Here are all the items:
[items]

One of the items is the correct item, please design questions about those items that helps you find the right
item and can only be answer by Yes or No.

You should avoid asking unnatural questions such as ones about the number of words the item has, or any
such similar questions.

You should respond with the best [m] questions you can think of.

Please follow the JSON template:

{

"questions" : [
{
"question" : "<question>"
"reason" : "<reason>"

by

Table 4: Prompts used to sample candidate questions for SLSR. The main difference between the two prompts are italicized.
The items are represented as a python list, e.g. [‘Oppenheimer’, ‘Alan Turing’, ‘A Beautiful Mind’], while m is an integer



Weighted Prompt

We are playing the game of ask and seek, where I am the answerer and you are the questioner.

I have chosen one item from a list of items, and your goal is to identify the correct item from a list of items
by asking a series of yes or no questions.

Each item has a value associated with it, and your penalty score will be the number of questions asked until
you find the right item multiplied by the value of the correct item. You should try to minimize this score.

Here are all the items and their values: [items with weights]

One of the items is the correct item, please design questions about those items that helps you find the right
item and can only be answer by Yes or No.

You should avoid asking unnatural questions such as ones about the number of words the item has, or any
such similar questions.

You should respond with the best [m] questions you can think of.

Please follow the JSON template:

{

"questions" : [
{
"question" : "<question>"
"reason" : "<reason>"

Hy

Table 5: Prompt used to sample candidate questions for WSLSR. Items with weights are represented as a python dictionary,
e.g. {‘Oppenheimer’ : 3, ‘Alan Turing’ : 2, ‘A Beautiful Mind’ : 2}, while m is an integer



DC Choosing Prompt for SLSR

We are playing the game of ask and seek, where I am the answerer and you are the questioner.

I have chosen one item from a list of items, and your goal is to identify the correct item from a list of items
by asking a series of yes or no questions.

Your should try to ask as few questions as possible.

Here are all the items:
[items with weights]

Here are some Yes or No question about them:
[question]

One of the items is the correct item, please choose one question from the list of questions that helps you
find the right item.

Please follow the JSON template:

{
"quesiton_choice" : int
"reason" : "<reason>"

}

DC Choosing Prompt for WSLSR

We are playing the game of ask and seek, where I am the answerer and you are the questioner.

I have chosen one item from a list of items, and your goal is to identify the correct item from a list of items
by asking a series of yes or no questions.

Each item has a value associated with it, and your penalty score will be the number of questions asked until
you find the right item multiplied by the value of the correct item. You should try to minimize this score.

Here are all the items:
[items with weights]

Here are some Yes or No question about them:
[question]

One of the items is the correct item, please choose one question from the list of questions that helps you
find the right item.

Please follow the JSON template:
{

"quesiton_choice" : int
"reason" : "<reason>"

Table 6: Prompts used by DC to choose questions. Questions are represented as a python dictionary, e.g. {0 : ‘Related to
codes?’, 1 : ‘Is it a movie?’, 2 : ‘Is it a person?’ }



Response Prompt
Here are some items:
[items]

Here is a Yes or No question about them:
[question]

Please classify the items above based on this question. You should ensure that each item should only appear
once in the final classification. If you are unsure about any item, you can mention it in the elaboration.

Please follow the JSON template:

{{
yes" : [
"<yes_item>",
1,
"noll : [
"<no_item>",
1,
"elaboration" : "<elaboration>"

H}

Table 7: Prompt used to get answers to questions. This is used for both SLSR and WSLSR.



