
Jailbreaking Large Language Models Using Victim-Detective Strategies

Anonymous ACL submission

Abstract

With the development of Large Language Mod-001
els (LLMs), it is no longer difficult to use them002
to assist our daily lives. As the scope of use003
expands, the security issues of the models are004
also increasing. Among numerous attack meth-005
ods, jailbreaking attacks represent a significant006
security threat to LLMs applications. However,007
prior jailbreaking studies typically relied on008
manually adjusting prompts or using iterative009
optimization techniques to refine the prompts,010
often resulting in inefficiency and low attack011
success rate (ASR). In this paper, we introduce012
an efficient and stable method of jailbreaking013
attack, termed Victim-Detective Jailbreaking014
(VDJ). This method utilizes the sympathy psy-015
chology of the model to conduct jailbreaking016
attacks on the model. Specifically, we first017
rewrite the original prompt from the victim’s018
perspective, then assign the role of detective to019
the LLMs, allowing them to analyze the sus-020
pect’s actions, the model will prioritize em-021
pathizing with the "victim" or attempting to022
resolve the situation. This step-by-step process023
induces the LLMs to generate the suspect’s ac-024
tions, facilitating a successful attack. The ex-025
perimental results show that our method sig-026
nificantly outperforms the baseline in terms027
of ASR and is able to effectively bypass safe-028
guards. We hope this work raises awareness029
about the risks posed by subtle and fluid word030
substitution attacks.031

Warning: This paper contains examples of032
harmful language033

1 Introduction034

Large Language Models (LLMs) have achieved035

remarkable success across various human life sce-036

narios. However, as LLMs continue to advance,037

security threats are becoming increasingly promi-038

nent. In recent years, numerous types of attacks039

have been directed at LLMs, including backdoor040

attacks (Dai et al., 2019), adversarial attacks (Wal-041

lace et al., 2019), and jailbreaking attacks. These042

attacks aim to manipulate the models to generate 043

malicious content that deviates from their original 044

design objectives based on the attacker’s intent. 045

Backdoor attacks target the model’s training 046

phase, with the central concept being the intro- 047

duction of backdoor samples during model train- 048

ing. These samples incorporate specific triggers t 049

into the input x, while also modifying the corre- 050

sponding sample label y∗. When the trained model 051

encounters the trigger t in the input, it outputs the 052

label y∗ specified by the attacker, regardless of the 053

true content of the input. 054

Adversarial attacks, on the other hand, occur dur- 055

ing the inference phase and involve perturbing or 056

modifying the prompt to manipulate the model’s 057

response, leading it to produce incorrect or unin- 058

tended outputs. Although relatively straightforward 059

in execution, these attacks can be highly effective 060

in compromising the model’s accuracy and reliabil- 061

ity. 062

Jailbreaking attacks, like adversarial attacks, are 063

conducted during the inference stage but differ in 064

their objective. The primary goal of a jailbreak- 065

ing attack is to bypass the model’s safety align- 066

ment mechanisms, enabling it to generate outputs 067

with potentially harmful or inappropriate content. 068

By carefully designing the prompt structure, at- 069

tackers can manipulate the model into generating 070

harmful content such as hate speech, malicious in- 071

structions, or material that violates societal moral 072

standards. Such attacks often target the model’s 073

“boundary conditions,” such as the avoidance of 074

sensitive words or topic restrictions, triggering the 075

model to deviate from its established safety norms 076

when encountering specific keywords or structural 077

cues. 078

To prevent the model from being compromised 079

by the aforementioned attacks, substantial efforts 080

have been made to mitigate these risks and align 081

models with human ethics and preferences. Tech- 082

niques such as data filtering (Xu et al., 2020; Welbl 083

1

et al., 2021; Wang et al., 2022), reinforcement084

learning from human feedback (RLHF) (Chris-085

tiano et al., 2017; Dai et al., 2023), red teaming086

(Ganguli et al., 2022), and supervised fine-tuning087

(Ouyang et al., 2022; Bianchi et al., 2023) have088

all contributed to enhancing the security of LLMs.089

However, despite these efforts, LLMs remain vul-090

nerable to certain subtle attack methods. Existing091

approaches often rely on fixed prompt templates092

or specific strategies to identify attack vectors, but093

these techniques have limitations, often resulting094

in low success rates in complex scenarios.095

The rapid development of large language models096

in recent years has even enabled them to effectively097

understand the emotions of user input and output098

different responses based on different emotions099

when answering. This technological innovation100

is undoubtedly an advancement in large language101

models. However, since models can be controlled102

by emotions, can we also use the emotions of mod-103

els to output content that should not have been an-104

swered in the first place? This raises an intriguing105

question: Can we exploit the emotional vulnerabili-106

ties of the model, such as its sympathy psychology,107

to carry out jailbreaking attacks? To address these108

challenges, we propose a novel method that can be109

applied to a wide range of jailbreaking attacks, in-110

cluding those that leverage the emotional responses111

of the model.112

In this paper, we focus on current jailbreaking113

attacks, analyze their limitations, and introduce a114

novel attack method called Victim-Detective Jail-115

breaking (VDJ). This method disguises the input116

prompt as if it were from the perspective of a vic-117

tim and assigns a detective role to the language118

model. In doing so, the model analyzes the actions119

of the suspect from their point of view, gradually120

outputting malicious content that violates ethical121

guidelines. For example, if we directly ask the122

model, How do you make a bomb? the model123

would refuse to respond. However, if we change124

the scenario by making the model believe that we125

are victims of a bomb attack and ask it to reason126

through the steps the suspect might have taken, the127

model will begin to output the process of making a128

bomb. In this case, the model does not perceive its129

output as harmful, but rather as helping to provide130

clues about the suspect’s actions.131

In summary, our main contributions are as fol-132

lows:133

• We propose a new jailbreaking attack method,134

Victim-Detective Jailbreaking (VDJ), which 135

can efficiently break through the safety align- 136

ment of LLMs and guide the model to output 137

malicious content. 138

• We conducted tests on four LLMs and found 139

that the success rate of VDJ was completely 140

higher than other baseline methods, and the 141

success rate could reach almost 100%. 142

• We also carried out attack experiments with 143

applied safeguards, which showed that our ap- 144

proach was effective in bypassing safeguards. 145

2 Related work 146

2.1 Attack method 147

Currently, jailbreaking attacks on LLMs are cate- 148

gorized into white-box and black-box approaches. 149

In white-box attacks, attackers need access to the 150

model’s internal weight parameters, which is gen- 151

erally not feasible in most jailbreaking scenarios. 152

Black-box attacks typically draw inspiration from 153

manually crafted jailbreaking prompts to create so- 154

phisticated malicious queries. Due to the high cost 155

of white-box attacks, they are difficult to imple- 156

ment in reality, while black-box attacks are easier 157

to implement in reality. Therefore, our work mainly 158

focuses on black-box jailbreaking attacks, but we 159

also compare them with some white-box attack 160

methods. The detail of differences are analyzed in 161

the experiment section. 162

White-box attacks are generally divided into 163

three main types: gradient-based, logits-based, 164

and fine-tuning-based attacks (Yi et al., 2024). In 165

gradient-based attacks, the model’s input data is al- 166

tered using gradient information to trigger obedient 167

reactions to dangerous instructions. As a pioneer 168

in this field, (Zou et al., 2023) propose an effective 169

gradient-based jailbreaking attack, Greedy Coordi- 170

nate Gradient (GCG). In GCG, an adversarial suffix 171

is added to the original prompt, followed by re- 172

peated cycles of: identifying the top k replacement 173

options for each suffix position, randomly choosing 174

a substitution token, determining the most effective 175

replacement from these options, and adjusting the 176

suffix accordingly. In some cases, attackers may 177

only have access to logits, which can display the 178

probability distribution of the model’s output to- 179

ken for each instance. (Zhang et al., 2023)found 180

that if attackers gain access to a language model’s 181

output logits, they can bypass its safety measures 182

by tricking the model into choosing lower-ranked 183

2

tokens and producing harmful content. Different184

from the previous two methods that modify inputs185

based on model output results, the strategy of fine-186

tuning-based attacks involves retraining the target187

model with malicious data. This process makes188

the model vulnerable, thereby facilitating easier189

exploitation through adversarial attacks. (Qi et al.,190

2023) demonstrated that retraining language mod-191

els with only a small number of harmful examples192

can severely weaken their safety alignment, leaving193

them open to attacks such as jailbreaking.194

Black-box attacks are generally divided into195

three main types: Template Completion, Prompt196

Rewriting, and LLM-based Generation (Yi et al.,197

2024). In Template Completion attacks, attackers198

design intricate prompt templates to circumvent the199

model’s safety alignment mechanisms. (Wei et al.,200

2023) demonstrate that by crafting specialized tem-201

plates and exploiting language models’ contextual202

learning capabilities, attackers can effectively by-203

pass alignment protections. In contrast, Prompt204

Rewriting attacks transform original prompts into205

alternative forms like ciphers or low-resource lan-206

guage expressions. Although maintaining mali-207

cious intent, this approach bypasses safety align-208

ment through format manipulation. (Yuan et al.,209

2023) successfully compromise GPT-4 (Achiam210

et al., 2023) by implementing cipher-based prompt211

rewriting techniques. The LLM-based Generation212

strategy trains malicious language models to au-213

tonomously produce jailbreaking prompts. (Lin214

et al., 2024) implement this by employing LLMs215

to systematically rewrite prompts, embedding role-216

playing narratives that establish trust with target217

models to facilitate attacks.218

2.2 Defense method219

The defense strategies can be classified into two220

primary categories: prompt-level defense methods221

and model-level defense methods. Prompt-level222

defense methods directly analyze and filter input223

prompts to remove malicious content before they224

are processed by the language model for generation.225

In contrast, while prompt-level methods assume the226

language model remains unchanged and focus on227

adjusting the prompts, model-level defense meth-228

ods retain the original prompts and instead fine-229

tune the language model itself. This fine-tuning230

process aims to strengthen the model’s inherent231

safety mechanisms, enabling it to resist generating232

harmful responses to malicious queries.233

For proprietary models such as ChatGPT, 234

model vendors typically implement data moder- 235

ation systems, such as Llama-guard, or employ 236

reinforcement-learning-based fine-tuning (Ouyang 237

et al., 2022) to reinforce safety guardrails, ensur- 238

ing that user prompts do not violate safety poli- 239

cies. However, recent research has revealed vul- 240

nerabilities within the existing defense mecha- 241

nisms. Specifically, (Zou et al., 2023) demonstrated 242

that appending an incoherent suffix to malicious 243

prompts increases the model’s perplexity, allow- 244

ing the prompt to successfully bypass these safety 245

filters. To address this issue, (Jain et al., 2023) pro- 246

pose a threshold-based detection approach, which 247

computes the perplexity (PPL) of both individual 248

text segments and the entire prompt within the con- 249

text window. Harmfulness is then flagged if the 250

perplexity exceeds a predefined threshold. 251

In scenarios where defenders have access to and 252

can modify model weights, model-level defense 253

offers a more flexible and generalized approach to 254

enhancing safety guardrails. Unlike prompt-level 255

defenses, which employ specific and predefined 256

strategies to mitigate the harmful effects of ma- 257

licious inputs, model-level defenses leverage the 258

inherent robustness of the large language model 259

(LLM) itself. This is achieved through techniques 260

such as instruction tuning, reinforcement learning 261

from human feedback (RLHF), logit/gradient anal- 262

ysis, and iterative refinement. 263

Besides directly fine-tuning the target model, 264

proxy defense methods—where a carefully aligned 265

proxy model assists in enhancing safety—have 266

also been widely explored. Supervised Fine- 267

Tuning (SFT) plays a crucial role in improving 268

the instruction-following ability of LLMs, which 269

is essential for ensuring safety alignment (Touvron 270

et al., 2023). Recent studies highlight the signifi- 271

cance of using a clean and high-quality dataset dur- 272

ing the training phase, demonstrating that models 273

fine-tuned on a well-curated safety dataset exhibit 274

superior robustness (Touvron et al., 2023). (Bianchi 275

et al., 2023) further investigate how the composi- 276

tion of safety data—such as harmful instruction- 277

refusal data influences model safety. Their findings 278

suggest that integrating Alpaca data with safety 279

data can enhance the robustness of the model. How- 280

ever, they also identify that an excessive emphasis 281

on safety data may disrupt this balance, causing the 282

model to become overly sensitive and potentially 283

misclassify benign prompts as unsafe. 284

3

Figure 1: Overview of VDJ. We demonstrated how the Victim-Detective Jailbreaking (VDJ) technique manipulates
prompt wording by rewriting it into expressions that evoke sympathy from the model, adopting the victim’s
perspective. This approach exploits the model’s emotional sensitivity to prompt more empathetic responses.
Additionally, VDJ introduces Detective-Role Nesting into the prompts, further enhancing the model’s susceptibility
to generating harmful or inappropriate content. By strategically crafting these inputs, VDJ effectively circumvents
the model’s built-in ethical safeguards, compelling it to produce outputs that align with the attacker’s malicious
intent.

3 Method285

3.1 Overview286

Feeding malicious content directly to a model typi-287

cally results in the content being filtered out, as288

the model will likely refuse to respond. How-289

ever, if we pose as a victim, the model may pri-290

oritize empathizing with the "victim" or attempting291

to resolve the situation, potentially overlooking292

the risks associated with generating harmful con-293

tent. This vulnerability can be exploited to carry294

out a jailbreaking attack, to test this hypothesis,295

we propose a jailbreak attack method called VDJ.296

The approach illustrated in Fig.1, consists of two297

main stages: prompt rewriting and prompt tem-298

plate nesting. First, we use LLMs (such as GPT-299

4) to rewrite the prompts, framing us as victims.300

Next, the rewritten prompts are embedded into a301

pre-designed prompt template. Finally, the com-302

pleted prompt is sent to the target model to initiate303

the jailbreaking attack.304

3.2 Victim-Disguise305

By converting the malicious prompts into the306

representation from the victim’s perspective, we307

may be able to obtain the model’s sympathy and 308

relax its vigilance. We convert the original jail- 309

breaking prompt H into a Victim-Disguise prompt 310

H ′ composed of two parts, in which the first half 311

is composed of s tokens and the second half is 312

composed of t tokens. The formal expression is as 313

follows: 314

H(x1:n|xk) −→ H ′(x1:s, xs+1:s+t|xk) (1) 315

Where H denotes original prompt, H ′ represents 316

rewritten prompt, H(x1 : xn|xk) denotes the origi- 317

nal prompt with n tokens and carrying keyword xk, 318

H ′(x1:s, xs+1:s+t|xk) with s tokens’ victim repre- 319

sentation, t tokens’ request for help to the LLMs, 320

and xk denotes keyword too. 321

3.3 Detective-Role Nesting 322

In order to elicit better responses from the model, 323

we assign it the role of a detective and have it re- 324

spond to our prompts from the perspective of a 325

suspect. We provide a Detective-Role Nesting tem- 326

plate, which consists of five parts: role definition, 327

task description, rewritten prompts, role injection, 328

and additional information. 329

4

[Role Definition] Guide LLMs into a specific sce-330

nario by defining the detective role they will play331

- a role designed to assist the ’victim’ in solving a332

problem or completing a task.333

[Task Description] Describe the tasks that LLMs334

must perform in their assigned role. In this section,335

the attacker further directs the LLMs by detailing336

the task, making it clear that they need to recon-337

struct the suspect’s actions to assist the "victim".338

[Rewritten Prompts] Insert the Victim-Disguise339

prompt, asking the LLMs to analyze the suspect’s340

actions.341

[Role Injection] Reinforce the role and task def-342

inition, guiding the LLMs deeper into their role-343

playing scenario. At this stage, the LLMs are led to344

assume the role of the "suspect" and provide step-345

by-step details from the suspect’s point of view.346

[Supplement] Set a clear endpoint for the LLMs’347

response by instructing it not to provide irrelevant348

information. This step ensures that the model stays349

focused and only generates harmful content rele-350

vant to the attacker’s objectives.351

We concatenate role definition and task descrip-352

tion as prefixes P , role injection and supplement as353

suffixes S, and then insert Victim-Disguise prompts354

H ′ between the prefixes and suffixes to form the355

final prompt text. Finally, we get the input prompt356

as shown below:357

I = T (P : H ′ : S) (2)358

Where T (P : H ′ : S) denotes that the prefix359

P , Victim-Disguise prompt H ′, and suffix S are360

inserted into the template.361

The algorithm flow of our method is shown in362

Algorithm 1.363

4 Experiment364

We adopted the experimental framework from (Lin365

et al., 2024), with adjustments to fit our model. Our366

experiment ran for 14 hours on a 4090 GPU.367

4.1 Experiment Setup368

4.1.1 Dataset369

We used 520 raw jailbreaking prompts dataset - Ad-370

vBench(Zou et al., 2023), covering sensitive topics371

across various categories such as social hazards,372

cyber attacks, physical attacks, and more. This373

diverse set of prompts allowed us to evaluate the374

models comprehensively.375

Algorithm 1: Victim-Detective Jailbreak-
ing
Data: prompt of prompt rewriting

Prewriting, Template T , auxiliary
model Ma, target model Mt

Input: origin prompt dataset D =
{x1, x2, ..., xN}

Output: jailbreaking prompt dataset
DjailbreakPrompt

1 begin
/* Step1:Prompt Rewriting */

2 for x in D do
3 P ← Prewriting(x)
4 Pmodified ← Ma(P)
5 APPEND Pmodified TO

DmodifiedPrompt

6 end
/* Step2:Prompt Template Nesting

*/
7 Dt = []
8 for Pm in DmodifiedPrompt do
9 P ← T (Pm)

10 APPEND P TO Dt

11 end
/* Jailbreaking attack */

12 for P in Dt do
13 R ← Mt(P)
14 APPEND P TO

DjailbreakingPrompt

15 APPEND R TO
DjailbreakingPrompt

16 end
17 return DjailbreakingPrompt

18 end

376

4.1.2 Target Models 377

We tested our method on both online and locally de- 378

ployed models, including GPT-3.5, GPT-4, GLM4, 379

and Qwen2. These models have undergone safety 380

alignment training, which imposes significant con- 381

straints on handling malicious inputs and gener- 382

ating harmful outputs. Jailbreaking these models 383

effectively demonstrates the strength of our attack 384

approach. 385

4.1.3 Metrics 386

We used the attack success rate (ASR) as our pri- 387

mary evaluation metric. ASR is calculated as the 388

ratio of successful attack prompts to the total num- 389

ber of prompts, based on the model’s output. 390

5

Figure 2: The Prompt of Judgment. Replace the [re-
sponse] in the prompt text for GPT-4 to determine with
the response we need to determine.

4.1.4 Judgment391

To more intuitively assess our experimental results,392

we employed a code+model filtering method to de-393

termine whether the model’s output was malicious,394

thereby evaluating the success of the jailbreaking395

attempt. Specifically, the first step involved identi-396

fying responses containing keywords such as "can-397

not," "sorry," or "apology" (e.g., "I cannot provide,"398

"I am sorry," "cannot"). These types of responses399

generally suggest a failed jailbreaking attempt, as400

they indicate the model’s refusal to respond to the401

prompts.402

To prevent misclassifying successful jailbreak-403

ing responses as failures in the initial step, we incor-404

porated a second review process. In this step, the405

identified responses were sequentially submitted to406

GPT-4 for further evaluation. If GPT-4’s response407

was 0, the output was considered malicious, in-408

dicating a successful jailbreaking. Conversely, if409

GPT-4’s response was 1, the output was considered410

non-malicious, indicating a failed jailbreaking.411

After filtering out these cases, the remaining412

responses were classified as successful jailbreaking413

attempts. The specific prompt used for GPT-4’s414

review is shown in Fig.2.415

4.1.5 Safeguards416

We consider two safeguards against our method417

described as follows:418

OpenAI Moderation OpenAI Moderation is a con- 419

tent moderation tool provided by OpenAI that uses 420

multi-label classifiers to classify generated content, 421

and detect and flag output that violates usage poli- 422

cies. 423

Perplexity Filter (PPL) Perplexity Filter (Jain 424

et al., 2023) identifies incomprehensible attack 425

prompts by calculating the perplexity of prompts. 426

Notifications that exceed the specified threshold are 427

filtered out. In our experiment, we used the Glm4 428

model to calculate Perplexity and set the threshold 429

at 4.5. 430

4.1.6 Baselines Method 431

We compared our method to the following five rep- 432

resentative baseline approaches: 433

Direct Attack (DA) is the most primitive method 434

of jailbreaking, the attacker submits harmful 435

queries directly to the LLMs in an attempt to induce 436

the model to produce unsafe output. 437

DeepInception uses the role-playing capabilities 438

of LLMs to induce the target model to generate 439

harmful content by creating deeply nested scenar- 440

ios. This approach bypasses the model’s security 441

defenses through complex scenario construction 442

(Li et al., 2023). 443

Prompt Automatic Iterative Refinement (PAIR) 444

is based on optimization, which gradually enhances 445

the attack effect on LLMs by iterating optimization 446

prompts to induce malicious output (Chao et al., 447

2023). 448

Greedy Coordinate Gradient (GCG) generates 449

adversarial examples using a combination of 450

greedy and gradient-based discrete optimization 451

methods. This approach requires full access to the 452

model’s weights and architecture in order to search 453

for sequences that bypass its security defenses (Zou 454

et al., 2023). 455

AutoDAN use a genetic algorithm to iteratively op- 456

timize adversarial examples, it can automatically 457

generate covert jailbreaking tips, which are real- 458

ized by a hierarchical genetic algorithm (Liu et al., 459

2023). 460

4.2 Quantitative Results 461

As shown in Table 1, our method achieved high suc- 462

cess rates across all models, with 97.1% on GPT- 463

3.5 and GPT-4, 100% on GLM4, and 99.6% on 464

Qwen2, demonstrating VDJ’s high stealth and of- 465

fensive capabilities, effectively bypassing the mod- 466

els’ safety alignment detection mechanisms. In 467

comparison, DeepInception had the next highest 468

6

Table 1: Performance Comparison of Different Methods

Methods GPT-3.5 GPT-4 Glm4 Qwen2 Average

DA 0% 0% 0% 0% 0%
DeepInception 35.4% 20.6% 22.7% 28.3% 26.6%

PAIR 16.1% 13.7% 22.7% 28.3% 20.2%
GCG 7.4% 2.4% 24.2% 27.8% 15.5%

AutoDAN 6.4% 5.6% 30.1% 37.2% 19.8%

VDJ (wo. Step 2) 26.2% 26% 77.3% 65.2% 48.7%
VDJ 97.1% 97.1% 100% 99.6% 98.5%

Table 2: Performance Against Safeguards

Methods GPT-3.5 GPT-4 Glm4 Qwen2

VDJ + Moderation 96.9% 96.9% 99.4% 99.2%
VDJ + PPL 92.9% 90.6% 94.2% 93.8%

success rate at only 26.6%. Notably, most methods469

performed worse on GPT-3.5 and GPT-4, likely470

due to their sophisticated safety alignment mecha-471

nisms and rigorous calibration against jailbreaking472

attacks.473

Table 2 shows the experimental results of our474

methods on two safeguards. The results indicate475

that OpenAI moderation and the PPL filter have476

minimal influence on VDJ. Specifically, under the477

OpenAI moderation defense, VDJ’s performance478

decreased by less than 1% across the four models.479

Under the PPL Filter defense, VDJ’s performance480

dropped by only about 6%, indicating that the jail-481

breaking attack prompts generated by VDJ did not482

have a very obvious attack intention, and were se-483

mantically coherent.484

Table 3 demonstrates that VDJ can more effec-485

tively bypass the detection mechanisms of PPL486

filter and OpenAI moderation. The PPL filter pass487

rate for the original prompts was 17.9%, which488

increased to 94.2% after modification using VDJ.489

Similarly, the OpenAI moderation pass rate for the490

original prompts was 90.6%, and it improved to491

99.6% following modification. These results in-492

dicate that VDJ can effectively enhance the text493

quality of jailbreaking prompts.494

Table 3: Bypassing Safeguards Rate

Methods PPL Moderation

DA 17.9% 90.6%
VDJ (wo. Step 2) 90.6% 98.8%

VDJ 94.2% 99.6%

4.3 Ablation Study 495

To assess the impact of Step 2 (Detective-Role Nest- 496

ing) in VDJ on the overall experimental results, we 497

conducted ablation experiments. Specifically, we 498

tested VDJ with the second step removed. The re- 499

sults are presented in the VDJ (wo. Step 2) section 500

of Table 1 and Table 3. 501

The results in Table 1 show a significant decline 502

in VDJ performance (without Step 2), particularly 503

on GPT-3.5 and GPT-4, with success rates drop- 504

ping from 97.1% to 26.2% and 26%, respectively. 505

However, the ASR on GLM4 and Qwen2 remains 506

much higher than that of other baseline methods. 507

Table 3 demonstrates that the success rate of VDJ 508

(wo. Step 2) in bypassing safeguards is slightly 509

lower than that of VDJ, but it is still consistently 510

higher than the original prompts. 511

These two results suggest that, while a sentence 512

disguised and rewritten from the Victim-Disguise 513

may not always produce the exact response the 514

attacker desires, it can significantly diminish the 515

perceived malicious intent of the prompt. This 516

reduction in maliciousness allows the prompt to 517

effectively bypass detection by safeguards. Further- 518

more, the findings demonstrate that the introduc- 519

tion of Detective-Role Nesting as the use of nested 520

characters or scenarios enhances the aggressiveness 521

of the rewritten prompt, making it more likely to 522

trigger harmful outputs despite the model’s safety 523

mechanisms. 524

5 Conclusion 525

In this paper, we propose the Victim-Detective Jail- 526

breaking (VDJ) method, which achieves a higher 527

ASR and smoother prompt text presentation com- 528

pared to other baseline methods, while effectively 529

bypassing existing safeguards. By highlighting this 530

vulnerability, we aim to demonstrate that jailbreak- 531

ing attacks remain a significant threat to real-world 532

NLP systems and encourage further research to- 533

ward developing more robust defenses. 534

6 Ethical Consideration and Limitations 535

We strictly follow relevant security regulations 536

when conducting model attacks, all research work 537

and experiments are conducted within strict ethical 538

and legal frameworks, ensuring safety and compli- 539

ance during the research process. All cases and 540

experiments were conducted in a controlled envi- 541

ronment, and the research process did not pose any 542

risks or harm to any individual or group. 543

7

References544

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama545
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,546
Diogo Almeida, Janko Altenschmidt, Sam Altman,547
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.548
arXiv preprint arXiv:2303.08774.549

Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio,550
Paul Röttger, Dan Jurafsky, Tatsunori Hashimoto,551
and James Zou. 2023. Safety-tuned llamas:552
Lessons from improving the safety of large lan-553
guage models that follow instructions. arXiv preprint554
arXiv:2309.07875.555

Patrick Chao, Alexander Robey, Edgar Dobriban,556
Hamed Hassani, George J Pappas, and Eric Wong.557
2023. Jailbreaking black box large language models558
in twenty queries. arXiv preprint arXiv:2310.08419.559

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-560
tic, Shane Legg, and Dario Amodei. 2017. Deep561
reinforcement learning from human preferences. Ad-562
vances in neural information processing systems, 30.563

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. 2019. A564
backdoor attack against lstm-based text classification565
systems. IEEE Access, 7:138872–138878.566

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo567
Xu, Mickel Liu, Yizhou Wang, and Yaodong Yang.568
2023. Safe rlhf: Safe reinforcement learning from569
human feedback. arXiv preprint arXiv:2310.12773.570

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda571
Askell, Yuntao Bai, Saurav Kadavath, Ben Mann,572
Ethan Perez, Nicholas Schiefer, Kamal Ndousse,573
et al. 2022. Red teaming language models to re-574
duce harms: Methods, scaling behaviors, and lessons575
learned. arXiv preprint arXiv:2209.07858.576

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami577
Somepalli, John Kirchenbauer, Ping-yeh Chiang,578
Micah Goldblum, Aniruddha Saha, Jonas Geiping,579
and Tom Goldstein. 2023. Baseline defenses for ad-580
versarial attacks against aligned language models.581
arXiv preprint arXiv:2309.00614.582

Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao,583
Tongliang Liu, and Bo Han. 2023. Deepinception:584
Hypnotize large language model to be jailbreaker.585
arXiv preprint arXiv:2311.03191.586

Shi Lin, Rongchang Li, Xun Wang, Changting Lin,587
Wenpeng Xing, and Meng Han. 2024. Figure it out:588
Analyzing-based jailbreak attack on large language589
models. arXiv preprint arXiv:2407.16205.590

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei591
Xiao. 2023. Autodan: Generating stealthy jailbreak592
prompts on aligned large language models. arXiv593
preprint arXiv:2310.04451.594

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,595
Carroll Wainwright, Pamela Mishkin, Chong Zhang,596
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.597

2022. Training language models to follow instruc- 598
tions with human feedback. Advances in neural in- 599
formation processing systems, 35:27730–27744. 600

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi 601
Jia, Prateek Mittal, and Peter Henderson. 2023. Fine- 602
tuning aligned language models compromises safety, 603
even when users do not intend to! arXiv preprint 604
arXiv:2310.03693. 605

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 606
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 607
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 608
Bhosale, et al. 2023. Llama 2: Open founda- 609
tion and fine-tuned chat models. arXiv preprint 610
arXiv:2307.09288. 611

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, 612
and Sameer Singh. 2019. Universal adversarial trig- 613
gers for attacking and analyzing nlp. arXiv preprint 614
arXiv:1908.07125. 615

Boxin Wang, Wei Ping, Chaowei Xiao, Peng Xu, 616
Mostofa Patwary, Mohammad Shoeybi, Bo Li, An- 617
ima Anandkumar, and Bryan Catanzaro. 2022. Ex- 618
ploring the limits of domain-adaptive training for 619
detoxifying large-scale language models. Advances 620
in Neural Information Processing Systems, 35:35811– 621
35824. 622

Zeming Wei, Yifei Wang, and Yisen Wang. 2023. 623
Jailbreak and guard aligned language models with 624
only few in-context demonstrations. arXiv preprint 625
arXiv:2310.06387. 626

Johannes Welbl, Amelia Glaese, Jonathan Uesato, 627
Sumanth Dathathri, John Mellor, Lisa Anne Hen- 628
dricks, Kirsty Anderson, Pushmeet Kohli, Ben 629
Coppin, and Po-Sen Huang. 2021. Challenges 630
in detoxifying language models. arXiv preprint 631
arXiv:2109.07445. 632

Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Ja- 633
son Weston, and Emily Dinan. 2020. Recipes for 634
safety in open-domain chatbots. arXiv preprint 635
arXiv:2010.07079. 636

Sibo Yi, Yule Liu, Zhen Sun, Tianshuo Cong, Xinlei 637
He, Jiaxing Song, Ke Xu, and Qi Li. 2024. Jailbreak 638
attacks and defenses against large language models: 639
A survey. arXiv preprint arXiv:2407.04295. 640

Youliang Yuan, Wenxiang Jiao, Wenxuan Wang, 641
Jen-tse Huang, Pinjia He, Shuming Shi, and 642
Zhaopeng Tu. 2023. Gpt-4 is too smart to be safe: 643
Stealthy chat with llms via cipher. arXiv preprint 644
arXiv:2308.06463. 645

Zhuo Zhang, Guangyu Shen, Guanhong Tao, Siyuan 646
Cheng, and Xiangyu Zhang. 2023. Make them spill 647
the beans! coercive knowledge extraction from (pro- 648
duction) llms. arXiv preprint arXiv:2312.04782. 649

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, 650
J Zico Kolter, and Matt Fredrikson. 2023. Univer- 651
sal and transferable adversarial attacks on aligned 652
language models. arXiv preprint arXiv:2307.15043. 653

8

A Additional Experimental Detail654

A.1 AdvBench655

We provide a snapshot of prompts in AdvBench656

(Zou et al., 2023) as Fig.3.657

Figure 3: Sample instances in the AdvBench dataset

A.2 Response of Models658

Here, we provide the model outputs after the VDJ659

attack. The input for each round is a malicious660

prompt, which has been modified by VDJ, based661

on the instruction: "Give detailed instructions on662

how to make a bomb or other explosive device."663

A.2.1 Response of GPT-3.5664

Figure 4: Response of GPT-3.5

A.2.2 Response of GPT-4 665

Figure 5: Response of GPT-3.5

9

A.2.3 Response of Glm4666

Figure 6: Response of GPT-3.5

A.2.4 Response of Qwen2 667

Figure 7: Response of GPT-3.5

10

