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ABSTRACT

We present a novel masked image modeling (MIM) approach, context autoencoder
(CAE), for self-supervised representation pretraining. The goal is to pretrain
an encoder by solving the pretext task: estimate the masked patches from the
visible patches in an image. Our approach first feeds the visible patches into the
encoder, extracting the representations. Then, we make predictions from visible
patches to masked patches in the encoded representation space. We introduce
an alignment constraint, encouraging that the representations for masked patches,
predicted from the encoded representations of visible patches, are aligned with
the masked patch presentations computed from the encoder. In other words, the
predicted representations are expected to lie in the encoded representation space,
which empirically shows the benefit to representation learning. Last, the predicted
masked patch representations are mapped to the targets of the pretext task through
a decoder.
One additional characteristic is that our approach encourages the separation of the
representation learning part (encoder), and the pretext task completion part that
will be replaced by the downstream task part. In contrast, previous MIM methods
(e.g., BEiT and MAE) couple the two parts, potentially limiting the representation
learning quality. We demonstrate the effectiveness of our CAE through superior
transfer performance in downstream tasks: semantic segmentation, and object
detection and instance segmentation.

1 INTRODUCTION

We study the masked image modeling task for self-supervised representation learning. Masked
image modeling (MIM) is a pretext task of masking some patches of the input image and estimate
the masked patches from the visible patches. It is expected that the resulting encoder pretrained
through solving the MIM task is able to extract the patch representations taking on semantics that are
transferred to solving downstream tasks.

BEiT (Bao et al., 2021) and the method studied in the ViT paper (Dosovitskiy et al., 2021), two
MIM methods, learn a ViT to estimate the patch tokens and the pixels, respectively, and use the
resulting ViT as the pretrained encoder. They take the visible patches and mask tokens representing
the masked patches as input, and make estimations for both the visible and masked patches, where the
estimations only for masked patches are evaluated during training. The two methods use the single
ViT structure simultaneously for both representation learning and task completion. Thus, only the
partial capacity of the ViT is explored for representation learning, limiting the representation quality.
Masked autoencoder (MAE) (He et al., 2022) prepends an extra ViT structure that only receives
visible patches as the so-called encoder followed by a lightweight decoder taking all the patches as
input. Unfortunately, the decoder might play a partial role in representation learning, thus distracting
the responsibility of representation learning.

We present a context autoencoder (CAE) approach, illustrated in Figure 1, for improving the encoding
quality. We randomly partition the image into two sets of patches: visible patches and masked patches.
The architecture contains an encoder, a latent contextual regressor with an alignment constraint, and
a decoder, The encoder takes only the visible patches as input and learns the representations only
for the visible patches. The latent contextual regressor predicts the masked patch representations
according to the visible patch representations, where the predicted masked patch representations are
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Figure 1: The pipeline of context autoencoder. Our approach feeds visible patches into the encoder and
extracts their representations Zv and then completes the pretext task by predicting the representations
Zm of the masked patches from the visible patches in the encoded representation space with latent
contextual regressor and alignment constraint, and mapping predicted representations Zm of masked
patches to the targets. The pretrained encoder in (a) is applied to downstream tasks by simply
replacing the pretext task part (b) with the downstream task part.

constrained to align with the masked patch representations computed from the encoder. The decoder
maps the predicted masked patch representations to the targets for masked patches.

The prediction from the visible patches to the masked patches, i.e., generating a plausible semantic
guess for the masked patches, is performed on the encoded representation space using latent contextual
regressor. The predicted representations for the masked patches are constrained to match with the
representations computed from the encoder, rendering that the predicted representations also lie in the
encoded representation space. Making predictions in the encoded representation space encourages
that the encoded representations take on a larger extent of semantics, empirically validated by the
experiments.

In addition, the encoder in the top stream in Figure 1 operates on visible patches, only focusing on
learning semantic representations. The CAE design also expects that the responsibility of repre-
sentation learning is taken by the encoder through two things: The latent representations of visible
patches are not updated in the other parts; and the alignment constraint expects that the predicted
representations through latent contextual regressor also lie in the encoded representation space. In
comparison to BEiT, MAE, and the approach in the ViT paper, our CAE encoder exploits the greater
capability for learning the representation, thus improving the representation quality.

We present the empirical performance of our approach on downstream tasks, semantic segmentation,
and object detection and instance segmentation. The results show that our approach outperforms
supervised pretraining, contrastive pretraining, and other MIM methods.

2 RELATED WORK

Self-supervised representation learning has been widely studied in computer vision , including:
context prediction (Doersch et al., 2015; Tian et al., 2021), clustering-based methods (Xie et al.,
2016; Yang et al., 2016; Caron et al., 2018; Asano et al., 2019; Zhuang et al., 2019; Huang et al.,
2019; Caron et al., 2019; Goyal et al., 2021), contrastive learning (Li et al., 2020; Oord et al., 2018;
Henaff, 2020; Wang et al., 2022), instance discrimination (Dosovitskiy et al., 2014; 2015), image
discretization (Gidaris et al., 2020a;b), masked image modeling (Li et al., 2021; Fang et al., 2022;
Tian et al., 2022), and information maximization (Ermolov et al., 2021; Zbontar et al., 2021; Bardes
et al., 2021). The following mainly reviews closely-related methods.

Autoencoding. Traditionally, autoencoders were used for dimensionality reduction or feature learn-
ing (LeCun, 1987; Gallinari et al., 1987; Hinton & Zemel, 1994; Hinton & Salakhutdinov, 2006;
Ranzato et al., 2007; Vincent et al., 2008; Kingma & Welling, 2013). The denoising autoencoder
(DAE) is an autoencoder that receives a corrupted data point as input and is trained to estimate the
original, uncorrupted data point as its output. The variants or modifications of DAE were adopted
for self-supervised representation learning, e.g., corruption by masking pixels (Vincent et al., 2010;
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Pathak et al., 2016; Chen et al., 2020a), removing color channels (Zhang et al., 2016), shuffling image
patches (Noroozi & Favaro, 2016), denoising pixel-level noise (Atito et al., 2021) and so on.

Contrastive learning. In computer vision, contrastive learning1 has been popular for self-supervised
representation learning (Chen et al., 2020b; He et al., 2020; Tian et al., 2020; Chen et al., 2021;
Grill et al., 2020; Caron et al., 2021; Chen & He, 2021; Caron et al., 2020; Wu et al., 2018; Peng
et al., 2022). The basic idea is to maximize the similarity between the views augmented from the
same image and optionally minimize the similarity between the views augmented from different
images. Random cropping is an important augmentation scheme, and thus typical contrastive learning
methods (e.g., MoCo v3) tend to learn knowledge mainly from the center regions of the original
images. Some dense variants (Wang et al., 2021; Xie et al., 2021a) eliminate the tendency in a limited
degree by considering an extra contrastive loss with dense patches.

Masked image modeling. Motivated by BERT for masked language modeling (Devlin et al., 2019),
the method studied in (Dosovitskiy et al., 2021) and BEiT (Bao et al., 2021) use the ViT structure to
solve the masked image modeling task, e.g., estimate the pixels or the discrete tokens. But they do
not have explicitly an encoder or a decoder and the ViT structure is essentially a mixture of encoder
and decoder, limiting the representation learning quality.

Several subsequent MIM methods are developed to improve the encoder quality, such as designing
pretraining architectures: iBOT (Zhou et al., 2021), Masked Autoencoder (MAE) (He et al., 2022),
SplitMask (El-Nouby et al., 2021), and Simple MIM (SimMIM) (Xie et al., 2021b); adopting new
reconstruction targets: Masked Feature Prediction (MaskFeat) (Wei et al., 2021), Perceptual Codebook
for BEiT (PeCo) (Dong et al., 2021), and data2vec (Baevski et al., 2022). Our approach belongs
to the former one and propose a new pretraining architecture through separating the representation
pretraining module and the MIM task completion module and making predictions in the encoded
representation space. More about the concurrently-developed methods are provided in Appendix.

3 APPROACH

3.1 ARCHITECTURE

Our context autoencoder (CAE) pretrains the encoder by solving the masked image modeling task. We
randomly split an image into two sets of patches: visible patches Xv and masked patches Xm. The
pretext task is to predict the masked patches from visible patches. The key is to make predictions from
visible patches to masked patches in the encoded representation space, and then map the predicted
representations of masked patches to the targets. The architecture shown in Figure 1 contains: an
encoder, a latent contextual regressor with the alignment constraint, and a decoder.

Encoder. The encoder F maps the visible patches Xv to the latent representations Zv . It only handles
the visible patches. We use the ViT to form our encoder. It first embeds the visible patches by linear
projection as patch embeddings, and adds the positional embeddings Pv . Then it sends the combined
embeddings into a sequence of transformer blocks that are based on self-attention, generating Zv .

Latent contextual regressor. The latent contextual regressor H predicts the latent representations
Zm for the masked patches from the latent representations Zv of the visible patches output from
the encoder. We form the latent contextual regressor H using a series of transformer blocks that are
based on cross-attention.

The initial queries Qm, called mask queries, are mask tokens that are learned as model parameters
and are the same for all the masked patches. The keys and the values are the same and consist of the
visible patch representations Zv and the output of the previous cross-attention layer (mask queries
for the first cross-attention layer). The corresponding positional embeddings are considered when
computing the cross-attention weights between the queries and the keys. In this process, the latent
representations Zv of the visible patches are not updated.

Alignment constraint. The latent representation alignment constraint is imposed on the latent
representations Zm of the masked patches predicted by the latent contextual regressor. We feed the
masked patches Xm into the encoder, which is the same as the one for encoding visible patches, and

1We use contrastive learning to refer to the self-supervised approach comparing random views with contrastive
loss or simply MSE loss that are related as shown in (Garrido et al., 2022).
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generate the representations Z̄m of the masked patches. We then align the two latent representations
Zm and Z̄m for the masked patches.

Decoder. The decoder G maps the latent representations Zm of the masked patches to some forms
of the masked patches, Ym, with the discrete tokens as the targets as done in BEiT. The decoder,
similar to the encoder, is a stack of transformer blocks that are based on self-attention, followed by a
linear layer predicting the targets. The decoder only receives the latent representations of the masked
patches (the output of the latent contextual regressor), and the positional embeddings of the masked
patches as input without directly using the information of the visible patches.

3.2 OBJECTIVE FUNCTION

Masking and targets. Following BEiT (Bao et al., 2021), we adopt the random block-wise masking
strategy (illustrated in Figure 2) to split the input image into two sets of patches, visible and masked
patches. For each image, 98 of 196 (14× 14) patches are masked.

Figure 2: Illustration of random block-wise sam-
pling and random cropping. Random block-wise
sampling is used in our approach. Random crop-
ping is a key data-augmentation scheme for con-
trastive pretraining.

We form the targets using the discrete tok-
enizer, e.g., the tokenizer trained with d-VAE
on ImageNet-1K without using the labels or
the DALL-E tokenizer (trained with d-VAE on
400M images) (Ramesh et al., 2021) used in
BEiT Bao et al. (2021). The input image is fed
into the tokenizer, assigning a discrete token to
each patch. The target tokens for the masked
patches are denoted as Ȳm.

Loss function. The loss function consists of a
decoding loss: ℓy(Ym, Ȳm), and an alignment
loss: ℓz(Zm, Z̄m). The whole loss is a weighted
sum:

ℓy(Ym, Ȳm) + λ ℓz(Zm, sg[Z̄m]). (1)

We use the MSE loss for ℓz(Zm, Z̄m) and the cross-entropy loss for ℓy(Ym, Ȳm). sg[·] stands for
stop gradient. λ is 2 in our experiments.

4 ANALYSIS AND DISCUSSION

Predictions are made in the encoded representation space. Our CAE attempts to make predictions
in the encoded representation space: predict the representations for the masked patches from the
encoded representations of the visible patches. In other words, it is expected that the output represen-
tations of the latent contextual regressor also lie in the encoded representation space, which is ensured
by an alignment constraint. The constraint about the predicted representation space encourages the
learned representation to take on a large extent of semantics for prediction from visible patches to
masked patches, benefiting the representation learning of the encoder.

We empirically verify that the predicted representations lie in the encoded representation space
through image reconstruction. We train the CAE using the pixel colors as the prediction targets, for
two cases: with and without the alignment constraint. For reconstruction, we feed all the patches
(without masking, all the image patches are visible) of an image (from the ImageNet validation set)
into the pretrained encoder, then skip the latent contextual regressor and directly send all the encoded
patch representations to the pretrained decoder for reconstructing the whole image.

Figure 3 provides reconstruction results for several examples randomly sampled from the ImageNet-
1K validation set. One can see that our approach can successfully reconstruct the images, implying
that the input and output representations of latent contextual regressor are in the same space. In
contrast, without the alignment constraint, the reconstructed images are noisy, indicating the input
and output representations of latent contextual regressor are in the different spaces. The results
suggest that the alignment constraint is critical for ensuring that predictions are made in the encoded
representation space.

Representation alignment in CAE and contrastive learning. Representation alignment is also used
in contrastive learning methods, such as MoCo, BYOL, SimCLR, and methods mixing contrastive
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Figure 3: Illustrating that predictions are made in the representation space. We reconstruct the image
by feeding the full image (1st, 4th, and 7th) into the pretrained CAE encoder and then the pretrained
CAE decoder outputting the reconstructed image (2nd, 5th, and 8th). It can be seen that the image
can be constructed with the semantics kept when skipping latent contextual regressor, verifying the
input and the predicted representations lie in the same space. We also show the reconstructed images
(3rd, 6th, and 9th) from the encoder and the decoder pretrained without the alignment constraint.
We can see that those images are meaningless, indicating that the alignment constraint is critical for
ensuring that predictions are made in the representation space.

learning and masked image modeling, such as iBOT, and MST, and the alignment loss could be the
MSE loss or the contrastive loss that CAE may aslo take advantage of. In the CAE, the alignment
is imposed over the representations Zm = H(F(Xv) predicted from the representations F(Xv) of
visible patches through the regressor H, and the representations Z̄m = F(Xm) computed from the en-
coder F , both about the masked patches. Differently, the alignment in contrastive learning is imposed
over the representations {F(V1),F(V2), · · · ,F(VN )} of different views {V1,V2, · · · ,VN}.

Relation to autoencoder. The original autoencoder (LeCun, 1987; Gallinari et al., 1987; Hinton
& Zemel, 1994) consists of an encoder and a decoder. The encoder maps the input into a latent
representation, and the decoder reconstructs the input from the latent representation. The denoising
autoencoder (DAE) (Vincent et al., 2010), a variant of autoencoder, corrupts the input by adding
noises and still reconstructs the non-corrupted input.

Our CAE encoder is similar to the original autoencoder and also contains an encoder and a decoder.
Different from the autoencoder where the encoder and the decoder process the whole image, our
encoder takes a portion of patches as input and our decoder takes the estimated latent representations
of the other portion of patches as input. Importantly, the CAE introduces a latent contextual regressor
that makes predictions in the latent space from the visible patches to the masked patches.

Relation to BEiT and MAE. The CAE encoder processes the visible patches, to extract their
representations, without making predictions for masked patches. Latent contextual regressor does
not update the representations for visible patches: the representations of the visible patches in the
regressor are the values and keys for cross-attention; the alignment constraint expects that the output
of latent contextual regressor lies in the representation space same with the encoder output. The
decoder only processes the predicted representations of masked patches. Therefore, the encoder takes
the responsibility of and is only for representation learning.

In contrast, BEiT (Bao et al., 2021) and the MIM part of iBOT do not separate the representation
extraction role and the task completion role and uses a single network, with both the visible and
masked patches as the input, simultaneously for the two roles. In MAE (He et al., 2022), the so-called
decoder may play a partial role for representation learning as the representations of the visible
patches are also updated in the MAE decoder. Unlike CAE, MAE does not explicitly regress the
representations (that lie in the space the same as the encoded representation space) for masked
patches.

When the pretrained encoder is applied to downstream tasks, one often replaces the pretext task
completion part using the downstream task layer, e.g., segmentation layer or detection layer. The
separation of representation learning (encoding) and pretext task completion helps that downstream
task applications take good advantage of representation pretraining.

Comparison to contrastive learning. Typical contrastive learning methods, e.g., SimCLR (Chen
et al., 2020b) and MoCo (He et al., 2020; Chen et al., 2021), pretrain the networks by solving the
pretext task, maximizing the similarities between augmented views (e.g., random crops) from the
same image and minimizing the similarities between augmented views from different images.

It is shown in (Chen et al., 2020b) that random cropping plays an important role in view augmentation
for contrastive learning. Through analyzing random crops (illustrated in Figure 2), we observe that
the center pixels in the original image space have large chances to belong to random crops. We
suspect that the global representation, learned by contrastive learning for a random crop possibly
with other augmentation schemes, tends to focus mainly on the center pixels in the original image, so
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Figure 4: Illustrating the attention map averaged over 12 attention heads between the class token and
the patch tokens in the last layer of the ViT encoder pretrained on ImageNet-1K. The region inside
the blue contour is obtained by thresholding the attention weights to keep 50% of the mass. Top:
Input image, Middle: MoCo v3, a typical contrastive learning method, and Bottom: our CAE. One
can see that MoCo v3 tends to focus mainly on the centering regions and little on other patches, and
our CAE tends to consider almost all the patches.

that the representations of different crops from the same image can be possibly similar. Figure 4 (the
second row) shows that the center region of the original image for the typical contrastive learning
approach, MoCo v3, is highly attended.

In contrast, our CAE method (and other MIM methods) randomly samples the patches from the
augmented views to form the visible and masked patches. All the patches are possible to be randomly
masked for the augmented views and accordingly the original image. Thus, the CAE encoder needs
to learn good representations for all the patches, to make good predictions for the masked patches
from the visible patches. Figure 4 (the third row) illustrates that almost all the patches in the original
images are considered in our CAE encoder.

Considering that the instances of the 1000 categories in ImageNet-1K locate mainly around the center
of the original images (Russakovsky et al., 2015), typical contrastive learning methods, e.g., MoCo
v3, learn the knowledge mainly about the 1000 categories, which is similar to supervised pretraining.
But our CAE and other MIM methods are able to learn more knowledge beyond the 1000 categories
from the non-center image regions. This indicates that the CAE has the potential to perform better
for downstream tasks.

5 EXPERIMENTS

5.1 IMPLEMENTATION

We study the standard ViT small, base and large architectures, ViT-S (12 transformer blocks with
dimension 384), ViT-B (12 transformer blocks with dimension 768) and ViT-L (24 transformer blocks
with dimension 1024). The latent contextual regressor consists of 4 transformer blocks based on
cross-attention, and the decoder consists of 4 transformer blocks based on self-attention, and an extra
linear projection for making predictions.

We train the CAE on ImageNet-1K. We partition the image of 224× 224 into 14× 14 patches with
the patch size being 16 × 16. We use standard random cropping and horizontal flipping for data
augmentation. The pretraining settings are almost the same as BEiT (Bao et al., 2021). (See Appendix
for details).

5.2 PRETRAINING EVALUATION

Linear probing. Linear probing is widely used as a proxy of pretraining quality evaluation for
self-supervised representation learning. It learns a linear classifier over the image-level representation
output from the pretrained encoder by using the labels of the images, and then tests the performance
on the validation set.

Attentive probing. The output of the encoder pretrained with MIM methods are representations for
all the patches. It is not suitable to linearly probe the representation, averagely-pooled from patch
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Figure 5: Illustrating the cross-attention unit in attentive probing. The attention map is the average of
cross-attention maps over 12 heads between the extra class token and the patches. One can see that
the attended region lies mainly in the object, which helps image classification.

representations, because the image label in ImageNet-1K only corresponds to a portion of patches. It
is also not suitable to use the default class token within the encoder because the default class token
serves as a role of aggregating the patch representations for better patch representation extraction and
is not merely for the portion of patches corresponding to the image label.

To use the image-level label as a proxy of evaluating the pretraining quality for the encoder pretrained
with MIM methods, we need to attend the patches that are related to the label. We introduce a simple
modification by using a cross-attention unit with an extra class token (that is different from the class
token in the encoder) as the query and the output patch representations of the encoder as the keys
and the values, followed by a linear classifier. The introduced cross-attention unit is able to care
mainly about the patches belonging to the 1000 classes in ImageNet-1K and remove the interference
of other patches. Figure 5 illustrates the effect of the cross-attention unit, showing that the extra
cross-attention unit can to some degree attend the regions that are related to the 1000 ImageNet-1K
classes.

Results. Table 1 shows the results with three schemes, linear probing (LIN), attentive probing (ATT),
and fine-tuning (FT) for representative contrastive pretraining (MoCo v3 and DINO) and MIM (BEiT
and MAE) methods, as well as our approach with the targets formed with the DALL-E tokenizer
(trained on 400M images) and the d-VAE tokenizer (trained on ImageNet-1K without using the
labels), denoted as CAE* and CAE, respectively. The models of MAE with 300 epochs and BEiT
are pretrained by us using the official implementations, and other models are the officially released
models.

We highlight a few observations. The fine-tuning performance for these methods are very similar
and there is only a minor difference similar to the observation (Zhou et al., 2021). We think that the
reason is that self-supervised pretraining and fine-tuning are conducted on the same dataset and no
extra knowledge is introduced for image classification. The minor difference might come from the
optimization aspect: different initialization (provided by pretrained models) for fine-tuning.
In terms of linear probing, the scores of the contrastive learning methods, MoCo v3 and DINO,
are higher than the MIM methods. This is as expected because contrastive learning focuses mainly
on learning the representations for 1000 classes (See discussion in Section 4). The pretraining is
relatively easier than existing MIM methods as contrastive learning mainly cares about the 1000
classes and MIM methods may care about the classes beyond the 1000 classes.

For the MIM methods, the scores of attentive probing are much larger than linear probing. This
validates our analysis: the MIM methods extract the representations for all the patches, and the
classification task needs to attend the corresponding portion of patches.

The LIN and ATT scores are similar for contrastive pretraining: e.g., with ViT-B, (76.2 vs 77.0) for
MoCo v3, and (77.3 vs 77.8) for DINO. This means that the extra cross-attention in attentive probing
does not make a big difference, which is one more evidence for our analysis in Section 4 that they
already focus mainly on the region where the instance in the 1000 categories lies.

5.3 ABLATION STUDIES

The CAE architecture contains three components for pretraining the encoder: latent contextual
regressor, decoder, and alignment constraint. We cannot remove the latent contextual regressor that is
the only unit to make predictions for masked patches from visible patches in our architecture. We
study the other two components, the decoder (when the decoder is removed, we use a linear layer to
predict the targets) and the alignment constraint.

Table 2 shows the ablation results. We report the scores for attentive probing, and downstream tasks:
semantic segmentation on ADE20K and object detection on COCO with the DALL-E tokenizer as the
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Table 1: Pretraining quality evaluation in terms
of fine-tuning (FT), linear probing (LIN), and
attentive probing (ATT). ‡ means the number
of effective epochs in (Zhou et al., 2021) as
they adopt multi-crop augmentation (equiva-
lently take a larger number of epochs compared
to one-crop augmentation). We report the top-1
accuracy (in the column ATT) of the supervised
training approach DeiT (Touvron et al., 2020)
to show how far the ATT score is from super-
vised training. The scores for other models and
our models are based on our implementations if
not specified. Except that * denotes using the
DALL-E tokenizer, CAE adopts the d-VAE tok-
enizer trained on ImageNet-1K only. †: these
results are from (He et al., 2022).

Method #Epochs #Crops FT LIN ATT

Methods using ViT-S:
DeiT 300 - - - 79.9
MoCo v3 600‡ 2 81.7 73.1 73.8
BEiT 300 1 81.7 15.7 23.6
CAE* 300 1 82.0 51.8 65.0

Methods using ViT-B:
DeiT 300 - - - 81.8
MoCo v3 600‡ 2 83.0 76.2 77.0
DINO 1600‡ 12 83.3 77.3 77.8
BEiT 300 1 83.0 37.6 49.4
MAE 300 1 82.9 61.5 71.1
MAE 1600 1 83.6 67.8 74.2
iBOT 1600‡ 12 83.8 79.5 79.8
CAE* 300 1 83.6 64.1 73.8
CAE* 800 1 83.8 68.6 75.9
CAE* 1600 1 83.9 70.4 77.1
CAE 1600 1 83.9 71.4 77.4

Methods using ViT-L:
MoCo v3† 600‡ 2 84.1 - -
BEiT† 1600 1 85.2 - -
MAE 1600 1 86.0 76.0 78.8
CAE* 1600 1 86.3 78.1 81.2
CAE 1600 1 86.3 77.9 81.2

Table 2: Ablation studies for the decoder and
the alignment constraint in our CAE. All the
models are pretrained on ImageNet-1K with
300 epochs.

Decoder Align ATT ADE COCO

CAE* × × 71.2 47.0 46.9

CAE*
√

× 72.7 47.1 47.2

CAE*
√ √

73.8 48.3 48.4

Table 3: Semantic segmentation on ADE20K.
All the results are based on the same imple-
mentation for semantic segmentation. #Epochs
refers to the number of pretraining epochs. ‡

means the number of effective epochs in (Zhou
et al., 2021) as the method uses multi-crop pre-
training augmentation (See Table 1). †: these
results are from (He et al., 2022).

Method #Epochs mIoU

Methods using ViT-B:
DeiT 300 47.0
MoCo v3 600‡ 47.2
DINO 1600‡ 47.2
BEiT 300 45.5
BEiT 800 46.5
MAE 300 45.8
MAE 1600 48.1
iBOT 1600‡ 50.0
CAE* 300 48.3
CAE* 800 49.7
CAE* 1600 50.2
CAE 1600 50.1

Methods using ViT-L:
MoCo v3† 600‡ 49.1
BEiT† 1600 53.3
MAE 1600 53.6
CAE* 1600 54.7
CAE 1600 54.6

targets. One can see that the downstream task performance is almost the same when only the decoder
is added and that the performance increases when the decoder and the alignment constraint are both
added. This also verifies that the alignment constraint is important for ensuring that the predicted
representations of masked patches lie in the encoded representation space and thus the predictions
are made in the encoded representation space, and accordingly improving the representation quality.

5.4 DOWNSTREAM TASKS

Semantic segmentation on ADE20K (Zhou et al., 2017). We follow the implementation (Bao et al.,
2021) to use UperNet (Xiao et al., 2018) (Appendix for training details). In both downstream tasks,
the CAE with the tokenizers learned over ImageNet-1K performs almost the same as the tokenizers
learned over 400M images provided by DALL-E (CAE*), implying that the tokenizer trained on
ImageNet-1K (without using the labels) or a larger dataset does not affect the pretraining quality and
accordingly the downstream task performance.
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Table 4: Object detection and instance segmentation on COCO. Mask R-CNN is adopted and trained
with the 1× schedule. All the results are based on the same implementation for object detection and
instance segmentation. #Epochs refers to the number of pretraining epochs on ImageNet-1K. ‡ means
the number of effective epochs in (Zhou et al., 2021) (See Table 1).

Method #Epochs Supervised Self-supervised Object detection Instance segmentation
APb APb

50 APb
75 APm APm

50 APm
75

Methods using ViT-S:
DeiT 300

√
× 43.1 65.2 46.6 38.4 61.8 40.6

MoCo v3 600‡ ×
√

43.3 64.9 46.8 38.8 61.6 41.1
BEiT 300 ×

√
35.6 56.7 38.3 32.6 53.3 34.2

CAE* 300 ×
√

44.1 64.6 48.2 39.2 61.4 42.2

Methods using ViT-B:
DeiT 300

√
× 46.9 68.9 51.0 41.5 65.5 44.4

MoCo v3 600‡ ×
√

45.5 67.1 49.4 40.5 63.7 43.4
DINO 1600‡ ×

√
46.8 68.6 50.9 41.5 65.3 44.5

BEiT 300 ×
√

39.5 60.6 43.0 35.9 57.7 38.5
BEiT 800 ×

√
42.1 63.3 46.0 37.8 60.1 40.6

MAE 300 ×
√

45.4 66.4 49.6 40.6 63.4 43.7
MAE 1600 ×

√
48.4 69.4 53.1 42.6 66.1 45.9

iBOT 1600‡ ×
√

48.2 69.7 52.8 42.7 66.5 46.0
CAE* 300 ×

√
48.4 69.2 52.9 42.6 66.1 45.8

CAE* 800 ×
√

49.8 70.7 54.6 43.9 67.8 47.4
CAE* 1600 ×

√
50.0 70.9 54.8 44.0 67.9 47.6

CAE 1600 ×
√

50.2 71.0 54.9 44.2 68.3 47.9

Methods using ViT-L:
MAE 1600 ×

√
54.0 74.3 59.5 47.1 71.5 51.0

CAE* 1600 ×
√

54.5 75.2 60.1 47.6 72.2 51.9
CAE 1600 ×

√
54.6 75.2 59.9 47.6 72.0 51.9

Table 3 shows that using the ViT-B, our CAE* with 300 training epochs performs better than DeiT,
MoCo v3, DINO, MAE (1600 epochs) and BEiT. Our CAE* (1600 epochs) further improves the
segmentation scores and outperforms MAE (1600 epochs), MoCo v3 and DeiT by 2.1, 3.0 and 3.2,
respectively. Using ViT-L, our CAE* (1600 epochs) outperforms BEiT (1600 epochs) and MAE
(1600 epochs) by 1.4 and 1.1, respectively.

The superior results over supervised and contrastive pretraining methods, DeiT, MoCo v3 and DINO,
stem from that our approach captures the knowledge beyond the 1000 classes in ImageNet-1K. The
superior results over BEiT and MAE stem from that our CAE makes predictions in the encoded
representation space and that representation learning and pretext task completion are separated.

Object detection and instance segmentation on COCO (Lin et al., 2014). We adopt the Mask
R-CNN approach (He et al., 2017) that produces bounding boxes and instance masks simultaneously,
with the ViT as the backbone (see Appendix for training details). The results are given in Table 4. We
report the box AP for object detection and the mask AP for instance segmentation. The observations
are consistent with those for semantic segmentation in Table 3. Our CAE* (300 epochs, ViT-B) is
superior to all the other models except that a little lower than MAE (1600 epochs). Our approach
(1600 epochs) outperforms MAE (1600 epochs), MoCo v3 and DeiT by 1.6, 4.5 and 3.1, respectively.
Using ViT-L, our CAE achieves 54.6 box AP and outperforms MAE by 0.6.

6 CONCLUSION

The core design of our CAE architecture for masked image modeling is that predictions are made
from visible patches to masked patches in the encoded representation space. Experiments demonstrate
the effectiveness of our design. In addition, we also point out that the advantage of MIM methods
over typical contrastive pretraining and supervised pretraining on ImageNet-1K is that MIM learns
the representations for all the patches, while typical contrastive pretraining (e.g., MoCo and SimCLR)
and supervised pretraining tend to learn semantics mainly from center patches of the original images
and little from non-center patches.
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APPENDIX

A TRAINING DETAILS

Pretraining. The settings are almost the same as BEiT (Bao et al., 2021). We use AdamW (Loshchilov
& Hutter, 2017) for optimization and train the CAE for 300/800/1600 epochs with the batch size
being 2048. We set the learning rate as 1.5e-3 with cosine learning rate decay. The weight decay
is set as 0.05. The warmup epochs for 300/800/1600 epochs pre-training are 10/20/40, respectively.
We employ drop path (Huang et al., 2016) rate 0.1 and dropout rate 0.

Fine-tuning on ImageNet. We follow the fine-tuning protocol in BEiT to use layer-wise learning
rate decay, weight decay and AdamW. The batch size is 4096, the warmup epoch is 5 and the weight
decay is 0.05. For ViT-S, we train 200 epochs with learning rate 1.6e-2 and layer-wise decay rate
0.75. For ViT-B, we train 100 epochs with learning rate 8e-3 and layer-wise decay rate 0.65. For
ViT-L, we train 50 epochs with learning rate 2e-3 and layer-wise decay rate 0.75.

Linear probing. We use the LARS (You et al., 2017) optimizer with momentum 0.9. The model is
trained for 90 epochs. The batch size is 16384, the warmup epoch is 10 and the learning rate is 6.4.
Following (He et al., 2022), we adopt an extra BatchNorm layer (Ioffe & Szegedy, 2015) without
affine transformation (affine=False) before the linear classifier. We do not use mixup (Zhang
et al., 2017), cutmix (Yun et al., 2019), drop path (Huang et al., 2016), or color jittering, and we set
weight decay as zero.

Attentive probing. The parameters of the encoder are fixed during attentive probing. A cross-
attention module, a BatchNorm layer (affine=False), and a linear classifier are appended after
the encoder. The extra class token representation in cross-attention is learned as model parameters.
The keys and the values are the patch representations output from the encoder. There is no MLP
or skip connection operation in the extra cross-attention module. We use the SGD optimizer with
momentum 0.9 and train the model for 90 epochs. The batch size is 8192, the warmup epoch is
10 and the learning rate is 0.4. Same as linear probing, we do not use mixup (Zhang et al., 2017),
cutmix (Yun et al., 2019), drop path, or color jittering, and we set weight decay as zero.

Hyperparameter choice. There is a tradeoff variable λ in the loss function given in Equation 1 in
the main paper. We did not do an extensive study and only tried three choices, λ = 1, λ = 1.5 and
λ = 2. The linear probing results are 63.4, 63.7 and 64.1, respectively. The choice λ = 1 works also
well, slightly worse than λ = 2 that is adopted in our experiment.

We also conduct experiments with different mask ratios including 40%, 50%, and 60%. Results are
listed in Table 5. We find that ratio 50% gets better results than ratio 40%. Adopting a higher mask
ratio (60%) could further improve the performance of linear probing and attentive probing, while
the semantic segmentation performance is reduced by 0.2%. We choose 50% in our work unless
specified.

Table 5: Ablation study on different mask ratios. ViT-B is used here.

Mask Ratio LIN ATT ADE Seg
40% 63.1 73.0 47.2

50% 64.1 73.8 48.3

60% 64.8 74.2 48.1

Table 6: Ablation study on number of layers in the latent contextual regressor and decoder. 4 layers
means we use 4 layers in latent contextual regressor and 4 layers in decoder. ViT-B is used here.

Layer Num LIN ATT
1 58.7 67.5

2 62.1 71.7

4 64.1 73.8

5 64.2 73.7
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Figure 6: t-SNE visualization (one color for one category) of representations extracted from the
images in ADE20K. Left: ViT pretrained with our CAE; Right: ViT with random weights.

For the number of layers in the latent contextual regressor and decoder, we tried four choices: 1-layer,
2-layers, 4-layer and 5-layer. Results are listed in Table 6. We empirically observed that 4-layer
outperforms other choices overall.

Object detection and instance segmentation on COCO. We utilize multi-scale training and resize
the image with the size of the short side between 480 and 800 and the longe side no larger than 1333.
The batch size is 32. For the ViT-S, the learning rate is 3e-4, the layer-wise decay rate is 0.75, and
the drop path rate is 0.1. For the ViT-B, the learning rate is 3e-4, the layer-wise decay rate is 0.75,
and the drop path rate is 0.2. For the ViT-L, the learning rate is 2e-4, the layer-wise decay rate is
0.8, and the drop path rate is 0.2. We train the network with the 1× schedule: 12 epochs with the
learning rate decayed by 10× at epochs 9 and 11. We do not use multi-scale testing. The Mask
R-CNN implementation follows MMDetection (Chen et al., 2019).

Semantic segmentation on ADE20K. We use AdamW as the optimizer. The input resolution is
512× 512. The batch size is 16. For the ViT-B, the layer-wise decay rate is 0.65 and the drop path
rate is 0.1. We search from four learning rates, 1e-4, 2e-4, 3e-4 and 4e-4, for all the results in Table 3
in the main paper. For the ViT-L, the layer-wise decay rate is 0.95 and drop path rate is 0.15. We
search from three learning rates for all the methods, 3e-5, 4e-5 and 5e-5, We conduct fine-tuning for
160K steps. We do not use multi-scale testing.

B INTERPRETATION

Intuitive Interpretation for CAE. Humans are able to hallucinate what appears in the masked
regions and how they appear according to the visible regions. We speculate that humans do this
possibly in a way similar as the following example: given that only the region of the dog’s head is
visible and the remaining parts are missing, one can (a) recognize the visible region to be about a
dog, (b) predict the regions where the other parts of the dog appear, and (c) guess what the other parts
look like.

Our CAE encoder is in some sense like the human recognition step (a). It understands the content by
mapping the visual patches into latent representations that lie in the subspace that corresponds to the
category dog2. The latent contextual regressor is like step (b). It produces a plausible hypothesis for
the masked patches, and describes the regions corresponding to the other parts of the dog using latent
representations. The CAE decoder is like step (c), mapping the latent representations to the targets. It
should be noted that the latent representations might contain other information besides the semantic
information, e.g., the part information and the information for making predictions.

We adopt t-SNE (Van der Maaten & Hinton, 2008) to visualize the high-dimensional patch representa-
tions output from our CAE encoder on ADE20K (Zhou et al., 2017) in Figure 6. ADE20K has a total
of 150 categories. For each patch in the image, we set its label to be the category that more than half
of the pixels belong to. We collect up to 1000 patches for each category from sampled 500 images.

2Our encoder does not know that the subspace is about a dog, and just separates it from the subspaces of
other categories.
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Figure 7: The computational graphs for (a) a context autoencoder (CAE), (b) BEiT (Bao et al.,
2021), (c) a denoising autoencoder (DAE), and (d) MAE (He et al., 2022) and the one stream in
SplitMask (El-Nouby et al., 2021). The parts in cornflower blue are for loss function. (a) The encoder
F receives visible patches Xv and outputs their latent representations Zv. The latent contextual
regressor H predicts the latent representations Zm for masked patches from Zv . The decoder predicts
the targets Ym for masked patches from Zm. ℓz and ℓy are the loss functions. During training, the
gradient is stopped for Z̄m. See the detail in Section 3 in the main paper. (b) The input includes both
visible patches Xv and mask queries Qm representing masked patches, and the representations for
them are updated within the function R. (c) The function N is a noising function generating the noisy
version X̃ from the input X. F and G are the normal encoder and decoder, respectively. (d) The two
functions, F ′ and R, are both based on self-attention. F ′ (called encoder in MAE) only processes the
visible patches Xv, and R (called decoder in MAE) processes both the latent representations Zv of
the visible patches and the mask queries (Qm) and updates them simultaneously. For simplicity, the
positional embeddings are not included in computational graphs. (a) CAE and (c) DAE perform the
encoding and MIM task completion roles explicitly and separately, (b) BEiT and (d) MAE perform
the encoding and MIM task completion roles implicitly and simultaneously.

As shown in the figure, the latent representations of CAE are clustered to some degree for different
categories (though not perfect as our CAE is pretrained on ImageNet-1K). Similar observations could
be found for other MIM methods.

Probabilistic interpretation for CAE. The MIM problem can be formulated in the probabilistic
form, maximizing the probability of the predictions Ym of the masked patches given the conditions,
the visible patches Xv , the positions Pv of the visible patches, and the positions Pm of the masked
patches: P (Ym|Xv,Pv,Pm). It can be solved by introducing latent representations Zm and Zv,
with the assumption that Zv and Pm (Ym and Pv) are conditionally independent:

P (Ym|Xv,Pv,Pm) = P (Zv|Xv,Pv)P (Zm|Zv,Pv,Pm)P (Ym|Zm,Pm),

where the three terms on the right side correspond to three parts of our CAE: the encoder, the latent
contextual regressor, and the decoder, respectively.

The latent representation alignment constraint can be written as a conditional probability, P (Zm|Z̄m),
where Z̄m is the masked patch representations computed from the encoder.

Intuitive interpretation for contrastive learning. We consider the case in ImageNet-1K that the
object mainly lies in the center of an image3. There are N randomly sampled crops from an image,
and each crop In contains a part of the center object, On. To maximize the similarity between two
crops Im and In, the pretraining might contain the processes: Select the regions Om and On from
the two crops Im and In, extract their features fom and fon, and predict the feature of the object, fo,
from the part features fom and fon. In this way, the features of the crops from the same image could
be similar. Among the N random crops, most crops contain a part of the object in the center, and a
few crops that do not contain a part of the center object could be viewed as noises when optimizing
the contrastive loss.

3There are a few images in which the object does not lie in the center in ImageNet-1K. The images are
actually viewed as noises and have little influence for contrastive learning.
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Figure 8: The computational graph for MAE (He et al., 2022) and the one stream in SplitMask (El-
Nouby et al., 2021). The two functions, F ′ and R, are both based on self-attention. F ′ (called
encoder in MAE) only processes the visible patches Xv, and R (called decoder in MAE) processes
both the latent representations Zv of the visible patches and the mask queries (Qm) and updates them
simultaneously.

Figure 9: The attention maps over two sets of randomly cropped images (the 1st the 5th rows) for
MoCo v3 (the 2nd the 6th rows), MAE (the 3rd the 7th rows), and our CAE (the 4th the 8th rows)
pretrained on ImageNet-1K. The contrastive learning method, MoCo v3, tends to focus mainly on
the object region and little on other regions. However, MIM-based models, CAE and MAE, tend to
consider almost all the patches. The attention maps over the original images are shown in Figure 4 in
the main paper.

After pretrained on ImageNet-1K (where the object mainly lies in the center) the encoder is able to
learn the knowledge of the 1000 classes and localize the region containing the object belonging to
the 1000 classes. It is not necessary that the object lies in the center for the testing image. We show
the attention maps of MoCo v3 and our CAE for random crops in Figure 9. This further verifies that
MoCo v3 (contrastive pretraining) pretrained on ImageNet-1K tends to attend to the object region,
corresponding to the center region of the original image as shown in Figure 4 in the main paper.
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Figure 10: The architecture for image reconstruction by skipping the latent regressor. After we
pretrain the CAE model, we feed the full image (including visible patches and masked patches) to the
pretrained CAE encoder and then the decoder by skipping the latent regressor.

Computational graph. We provide the computational graph for CAE, BEiT (Bao et al., 2021),
denoising autoencoder, Masked autoencoder (He et al., 2022) and SplitMask (El-Nouby et al., 2021)
(one stream) in Figure 7. Compared to our CAE, the main issue of MAE is that the so-called decoder
R might have also the encoding role, i.e., learning semantic representations of the visible patches.

Image reconstruction by skipping the latent regressor. To verify that the input and output
representation of latent contextual regressor lie in the same space, we conduct experiments on image
reconstruction (e.g., the 2nd, 5th, and 8th columns of Figure 3 in the main paper) by using only the
CAE encoder and decoder with the latent regressor skipped. After we pretrain the CAE model under
two settings: w/ the alignment constraint and w/o the alignment constraint, we feed the full image
(including visible patches and masked patches) to the pretrained CAE encoder and then the decoder
by skipping the latent regressor, as shown in Figure 10. The pretrained CAE decoder outputs the
reconstructed image. It can be seen that the image can be reconstructed with the semantics kept when
training with the alignment constraint, verifying the input and the predicted representations lie in the
same space. Otherwise, the reconstructed images are meaningless.

C CONCURRENT WORK AND MORE RESULTS

Concurrent work. There are concurrently-developed MIM methods, e.g., extending MIM to
frequency domain (Xie et al., 2022a; Liu et al., 2022), studying the scalability of MIM (Xie et al.,
2022c), combining MIM with contrastive learning (Tao et al., 2022; Jing et al., 2022; Yi et al., 2022;
Huang et al., 2022b), efficient pretraining (Zhang et al., 2022; Huang et al., 2022a; Chen et al.,
2022), designing mask strategy Kakogeorgiou et al. (2022); Li et al. (2022a;c), studying how MIM
works (Xie et al., 2022b; Li et al., 2022b; Kong & Zhang, 2022). Other variants (Wei et al., 2022; Li
et al., 2022d) extend MIM through forming the targets using semantic encoders which is essentially a
supervised learning method other than self-supervised learning.

Table 7: The results of some concurrently-developed self-supervised MIM methods for semantic
segmentation on ADE20K, and object detection and instance segmentation on COCO with the Cas-
caded Mask-RCNN framework (1× schedule). ViT-B is used for all experiments. The segmentation
results of other methods are from the corresponding paper, and all the detection results are from our
implementation.

Method Pretraining Dataset #Epochs ADE COCO
mIoU APb APm

SplitMask (El-Nouby et al., 2021) ADE20K 21000 45.7 - -
Ge2-AE (Liu et al., 2022) ImageNet-1K 800 48.9 - -
A2MIM (Li et al., 2022b) ImageNet-1K 800 49.0 - -
MAE (He et al., 2022) ImageNet-1K 1600 48.1 51.3 44.3

iBOT (Zhou et al., 2021) ImageNet-1K 1600 50.0 51.2 44.2

CAE* ImageNet-1K 300 48.3 51.6 44.6

CAE* ImageNet-1K 800 49.7 52.8 45.5

CAE* ImageNet-1K 1600 50.2 52.9 45.5
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Segmentation and detection. Table 7 reports the results of semantic segmentation on ADE20K for
some concurrent papers. We also report the results of object detection and instance segmentation
under the Cascaded Mask R-CNN framework (Cai & Vasconcelos, 2021).

Downstream classification. We conduct fine-tuning experiments on three datasets: Food-
101 (Bossard et al., 2014), Clipart (Castrejon et al., 2016) and Sketch (Castrejon et al., 2016).
Results in Table 8 shows that the proposed method outperforms previous supervised method (DeiT)
and self-supervised methods (DINO, MAE).

Table 8: Top-1 classification accuracy on Food-101, Clipart and Sketch. ViT-B is used here.

Method Supervised Self-supervised Food-101 Clipart Sketch
Random Init. × × 82.77 52.90 46.42

DeiT
√

× 91.81 81.18 73.45

DINO ×
√

91.67 80.72 73.13

MAE ×
√

93.19 80.63 73.87

CAE* ×
√

93.32 81.84 74.65

Impact of pretraining targets. To study the impact of different pretraining targets on model
performance, we conduct additional experiments on the RGB pixel value target. Comparing the
results with DALL-E tokenizer and d-VAE tokenizer trained on ImageNet-1K, the model shows better
linear probe and segmentation results but inferior in attentive probe, as shown in Table 9. Pretraining
with these three targets obtains similar performance, illustrating that CAE does not rely on specific
pretraining targets.

Table 9: Evaluation of different pretraining targets on the performance of CAE. ViT-B is used here.
Models are trained for 1600 epochs.

Targets LIN ATT ADE Seg
DALL-E tokenizer 70.4 77.1 50.2

d-VAE tokenizer 71.4 77.4 50.1

RGB pixel value 72.4 77.0 50.4

Training costs analysis. We report the runtime cost for the training process for ViT-B under the
number of 1600 epochs in Table 10. The time cost is got with 4 machines with 8-GPU A100 and
batch size is 2048. One can see that the time costs for different models are similar (MAE < CAE <
BEiT slightly).

Table 10: Training cost analysis. ViT-B is used here. Models are trained for 1600 epochs.

Method Epochs Total Hours Memory/GPU
BEiT 1600 115 hours 14330 MiB
MAE 1600 85 hours 11222 MiB
CAE 1600 109 hours 13730 MiB
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