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Abstract

Federated Learning (FL) is a distributed learning paradigm to train a global model across
multiple devices without collecting local data. In FL, a server typically selects a subset
of clients for each training round to optimize resource usage. Central to this process
is the technique of unbiased client sampling, which ensures a representative selection of
clients. Current methods primarily utilize a random sampling procedure which, despite its
effectiveness, achieves suboptimal efficiency owing to the loose upper bound caused by the
sampling variance. In this work, by adopting an independent sampling procedure, we propose
a federated optimization framework focused on adaptive unbiased client sampling, improving
the convergence rate via an online variance reduction strategy. In particular, we present the
first adaptive client sampler, K-Vib, employing an independent sampling procedure. K-Vib
achieves a linear speed-up on the regret bound Õ

(
N

1
3 T

2
3 /K

4
3
)

within a set communication
budget K. Empirical studies indicate that K-Vib doubles the speed compared to baseline
algorithms, demonstrating significant potential in federated optimization.

1 Introduction

This paper studies the prevalent cross-device federated learning (FL) framework, as outlined in Kairouz et al.
(2021); Zhang et al. (2024), which optimizes x ∈ X ⊆ Rd to minimize a finite-sum objective:

min
x∈X

f(x) :=
N∑

i=1
λifi(x) :=

N∑
i=1

λiEξi∼Di
[Fi(x, ξi)], (1)
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where N denotes the total number of clients, and λ denotes the weights of client objective (λi ≥ 0,
∑N

i=1 λi = 1
). The local loss function fi : Rd → R is intricately linked to the local data distribution Di. It is defined
as fi(x) = Eξi∼Di [Fi(x, ξi)], where ξi represents a stochastic batch drawn from Di. Federated optimization
algorithms, such as FedAvg (McMahan et al., 2017), are designed to minimize objectives like Equation (1) by
alternating between local and global updates in a distributed learning framework. To reduce communication
and computational demands in FL (Konečnỳ et al., 2016; Wang et al., 2021; Yang et al., 2022), various client
sampling strategies have been developed (Chen et al., 2020; Cho et al., 2020b; Balakrishnan et al., 2022;
Wang et al., 2023; Malinovsky et al., 2023; Cho et al., 2023). These strategies are crucial as they decrease
the significant variations in data quality and volume across clients (Khan et al., 2021). Thus, efficient client
sampling is key to enhancing the performance of federated optimization.

Current sampling methodologies in FL are broadly divided into biased (Cho et al., 2020b; Balakrishnan et al.,
2022; Chen & Vikalo, 2023) and unbiased categories (El Hanchi & Stephens, 2020; Wang et al., 2023). Unbiased
client sampling holds particular significance as it maintains the consistency of the optimization objective Wang
et al. (2023; 2020). Specifically, unlike biased sampling where client weights λ are proportional to sampling
probabilities, unbiased methods separate these weights from sampling probabilities. This distinction enables
unbiased sampling to be integrated effectively with strategies that address data heterogeneity (Zeng et al.,
2023c; Wu et al., 2024; Zeng et al., 2024a), promote fairness (Li et al., 2020c;a), and enhance robustness (Li
et al., 2021; 2020a). Additionally, unbiased sampling aligns with secure aggregation protocols for confidentiality
in FL (Du & Atallah, 2001; Goryczka & Xiong, 2015; Bonawitz et al., 2017). Hence, unbiased client sampling
techniques are indispensable for optimizing federated systems.

Therefore, a better understanding of the implications of unbiased sampling in FL could help us to design
better algorithms. To this end, we summarize a general form of federated optimization algorithms with
unbiased client sampling in Algorithm 1. Despite differences in methodology, the algorithm covers unbiased
sampling techniques (Wang et al., 2023; Malinovsky et al., 2023; Cho et al., 2023; Salehi et al., 2017; Borsos
et al., 2018; El Hanchi & Stephens, 2020; Zhao et al., 2021b) in the literature. In Algorithm 1, unbiased
sampling comprises three primary steps (referring to lines 3, 12, and 14). First, the Sampling Procedure
generates a set of samples St along with their respective probabilities. Second, the Global Estimation
step creates global estimates for model updates, aiming to approximate the outcomes as if all participants
were involved. Finally, the Adaptive Strategy adjusts the sampling probabilities based on the incoming
information, ensuring dynamic adaptation to changing data conditions.

Typically, unbiased sampling methods in FL are founded on a random sampling procedure, which is
then refined to improve global estimation and adaptive strategies. However, the exploration of alternative
sampling procedures to enhance unbiased sampling has not been thoroughly investigated. Our research shifts
focus to the independent sampling procedure, a less conventional approach yet viable for FL. We aim to
delineate the distinctions between these methodologies as follows.

Random sampling procedure (RSP) means that the server samples clients from a black box
without replacement.

Independent sampling procedure (ISP) means that the server rolls a dice for every client
independently to decide whether to include the client.

Building on the concept of arbitrary sampling (Horváth & Richtárik, 2019; Chen et al., 2020), our study
observes that the ISP can enhance the efficiency of estimating full participation outcomes in FL servers, as
detailed in Section 3. However, integrating independent sampling into unbiased techniques introduces new
constraints, as outlined in Remark 2.1. Addressing this innovatively in Lemma 5.1, our paper studies the
effectiveness of general FL algorithms with adaptive unbiased client sampling, particularly emphasizing the
utility and implications of the ISP from an optimization standpoint.

Contributions This paper presents a comprehensive analysis of the non-convex convergence in FedAvg and
its variants. We first establish a novel link between the cumulative variance of global estimates and convergence
rates by separating global estimation results from heterogeneity-related factors. Thus to reduce the cumulative
variance, we introduce K-Vib, a novel adaptive sampler incorporating the ISP. Given the expected number
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Algorithm 1 FedAvg with Unbiased Client Sampler
Require: Client set S, where |S| = N , client weights λ, times T , local steps R

1: Initialize sample distribution p0 and model x0

2: for time t in [T ] do
3: Server runs sampling procedure to create St ∼ pt

4: Server broadcasts xt to sampled clients i ∈ St

5: for each client i ∈ St in parallel do
6: xt,0

i = xt

7: for local steps r in [R] do
8: xt,r

i = xt,r−1
i − ηl∇Fi(xt,r−1

i )
9: end for

10: Client uploads local updates gt
i = xt,0

i − xt,R
i

11: end for
12: Server builds estimates dt =

∑
i∈St λig

t
i/pt

i

13: Server updates xt+1 = xt − ηgdt

14: Server updates pt+1 based on {∥gt
i∥}i∈St

15: end for

of clients K to join federated learning at each round, K-Vib notably achieves an expected regret bound of
Õ
(
N

1
3 T

2
3 /K

4
3
)
, demonstrating a near-linear speed-up over existing bounds Õ

(
N

1
3 T

2
3
)

(Borsos et al., 2018)
and O

(
N

1
3 T

2
3
)

(El Hanchi & Stephens, 2020). Empirically, K-Vib shows accelerated convergence on standard
federated tasks compared to baseline algorithms.

2 Preliminaries

We first introduce previous works on batch sampling (Horváth & Richtárik, 2019) in stochastic optimization
and optimal client sampling (Chen et al., 2020) in FL. We made a few modifications to fit our problem setup.
Remark 2.1 (Constraints on sampling probability). We define communication budget K as the
expected number of sampled clients. And, its value range is from 1 to N . To be consistent, the sampling
probability p always satisfies the constraint pt

i > 0,
∑N

i=1 pt
i = K,∀t ∈ [T ] in this paper.

Definition 2.1 (Unbiasedness of client sampling St). For communication round t ∈ [T ], the estimator dt

is related to sampling probability pt and the sampling procedure St ∼ pt. We define a client sampling as
unbiased if the sampling St and estimates dt satisfy that

ESt∼pt [dt] = E

[∑
i∈St

λig
t
i

pt
i

]
=

N∑
i=1

λig
t
i .

Besides, the variance of estimator dt can be derived as:

V(St) := ESt∼pt

∥∥∥∥∥∑
i∈St

λig
t
i

pt
i

−
N∑

i=1
λig

t
i

∥∥∥∥∥
2 , (2)

where E[|St|] = K. We omit the terms λ, gt for notational brevity.

Optimal unbiased client sampling Optimal unbiased client sampling should achieve the lowest variance
as defined in Equation (2). It is to estimate the global gradient of full-client participation, i.e.,minimize
the variance of estimator dt. Given a fixed communication budget K, the optimum of the global estimator
depends on the collaboration of sampling distribution pt and the corresponding procedure that outputs St.

In detail, different sampling procedures associated with the sampling distribution p build a different probability
matrix P ∈ RN×N , with the elements defined as Pij := Prob({i, j} ⊆ S). Arbitrary sampling (Horváth &
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(a) Sampling procedure illustration experiments
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Figure 1: The variance of ISP estimates is lower than RSP. (a) Uniform indicates estimates with uniform
probability. (b) The notations RSP(gi, gj) and ISP(gi, gj) represent the global estimates constructed through
random sampling and independent sampling, respectively, using sampled vectors gi and gj . Global indicates
the full participation results. We can see ISP(gi, gj) is closer to the Global.

Richtárik, 2019) has shown the generality of denoting arbitrary sampling procedure with a probability matrix
for stochastic optimization. Inspired by their findings, we focus on the optimal sampling procedure for the
FL server in Lemma 2.1.
Lemma 2.1 (Optimal sampling procedure, Horváth & Richtárik, 2019). For any communication round
t ∈ [T ] in FL, random sampling yielding the Pt

ij = Prob(i, j ∈ St) = K(K − 1)/N(N − 1), and independent
sampling yielding Pt

ij = Prob(i, j ∈ St) = pt
ip

t
j, they admit

V(St) =
N∑

i=1
(1− pt

i)
λ2

i ∥gt
i∥2

pt
i︸ ︷︷ ︸

ISP

≤ N −K

N − 1

N∑
i=1

λ2
i ∥gt

i∥2

pt
i︸ ︷︷ ︸

RSP

. (3)

The lemma indicates that the ISP is the optimal sampling procedure that minimizes the upper bound of
variance. Then, we have the optimal probability by solving the minimization of the upper bound in respecting
probability p in Lemma 2.2.
Lemma 2.2 (Optimal sampling probability, Chen et al., 2020). Generally, we can let ai = λi∥gt

i∥,∀i ∈
[N ], t ∈ [T ] for simplicty of notation. Assuming 0 < a1 ≤ a2 ≤ · · · ≤ aN and 0 < K ≤ N , and l is the largest

integer for which 0 < K + l −N ≤
∑l

i=1
ai

al
, we have

p∗
i =

(K + l −N) ai∑l

j=1
aj

, if i ≤ l,

1, if i > l,
(ISP) (4)

to be a solution to the optimization problem minp

∑N
i=1

a2
i

pi
. In contrast, we provide the optimal sampling

probability for the RSP
p∗

i = K · ai∑N
j=1 aj

. (RSP) (5)

Therefore, the optimal client sampling in FL uses ISP with probability given in Equation (4).

3 Case Study on Sampling Procedure

We suggest designing sampling probability for the ISP to enhance the power of unbiased client sampling in
federated optimization. Lemma 2.1 has proven that optimal ISP induces a tighter upper variance bound than
optimal RSP. To further clarify it, we provide empirical Example 3.1 and Example 3.2 to demonstrate three
superior properties of ISP.
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Example 3.1. We randomly generate 1,000 vectors with the size of 1,000 dimensions. We set the budget
K = {100, 200, . . . , 1000} and run 100 times the RSP and ISP with their optimal probability from Lemma 2.2
to estimate differences between the output estimates and full aggregation results. Then, we present the mean
error of estimate results and two specific cases in Figure 1(a).
Example 3.2. Consider a case N = 3, K = 2 with g1 = (

√
2

2 ,
√

2
2 ), g2 = (1,−2

√
2), g3 = (2

√
7, 2
√

2),
it induces weights vector [∥g1∥2, ∥g2∥2, ∥g3∥2] = [1, 3, 6] if omit λ. We have optimal sampling probability
p∗ = K · [0.1, 0.3, 0.6] for RSP and p∗ = [0.25, 0.75, 1] for ISP with all possible estimate results in Figure 1(b).

ISP handles budget K better than RSP With a minimum budget of K = 1, the ISP does not assign
any client with probability 1, it returns to the optimal sampling probability of RSP by Equation (4). If the
budget is K > 1, the optimal probability of ISP changes, while the RSP does not. In other words, The ISP
handles the dependency on the budget term K more effectively and produces better estimates
compared to RSP. As illustrated in Figure 1(a), the error in optimal RSP ceases to decrease when K > 600.
Interestingly, the RSP estimates perform worse than the uniform sampling baseline with a larger budget,
as shown in the third plot of Figure 1(a). This discrepancy arises because the optimal probability in RSP
aims to minimize a loose upper bound on variance, as defined in equation Equation (3). Specifically, it only
minimizes the norm of an estimate ∥gi/pi∥2 − ∥

∑
gi/K∥2 for each client. Thus, RSP does not account for

the precision between its aggregation and true full results.
ISP estimates are asymptotic to full participation results As shown in Figure 1(a), ISP builds
estimates asymptotically to the full participation results with an increasing communication budget of K,
while RSP does not. In Example 3.2, RSP with full participation (K = 3) will build estimates dt = (6.4, 5.9)
and non-zero difference ∥dt −

∑
gi∥2 = 0.6. In contrast, ISP with full participation induces p∗ = (1, 1, 1) and

∥dt −
∑

gi∥2 = 0. This reveals that RSP may fail to build valid estimates with more communication budget.
ISP creates expected sampling size The number of sampling results from independent sampling is
stochastic with expectation K. It means that if we strictly conduct the ISP, the number of sampling results
Prob(|St| = K) ̸= 1, but E[|St|] = K. Referring to the example, independent sampling may sample 3 clients
with probability p = 0.25 ∗ 0.75 ∗ 1 = 3/16 and sample only 1 client with p = (1− 0.25) ∗ (1− 0.75) = 3/16.
Importantly, the perturbation of sampling results is acceptable due to the straggler clients (Gu et al., 2021)
in a large-scale cross-device FL system. Besides, we can easily extend our analyses to the case with straggler
as discussed in Appendix E.1. Moreover, for scenarios that require restricting the probability of ISP from
generating a larger selected client set, it induces additional constraints on Remark 2.1. We elaborate on this
constraint in Appendix E.2.

The above advantages show that designing a sampling probability and building global estimates with ISP is
more promising. However, computing the optimal sampling via Equation (4) requires a norm of full gradients,
which is unfeasible in practice. Therefore, FL needs a better design of its sampling probability for ISP based
on limited information. In the remainder of this paper, we investigate the efficiency of ISP in federated
optimization. Unless otherwise stated, all sampling probability p and sampling procedures are
related to ISP in the remainder of this paper.

4 General Convergence Analyses of FL with Unbiased Client Sampling

In this section, we first provide a general convergence analysis of FedAvg covered by Algorithm 1, specifically
focusing on the variance of the global estimator. Our analysis aims to identify the impacts of sampling
techniques on enhancing federated optimization. To this end, we define important concepts below to clarify
the improvement given by an applied unbiased sampling:
Definition 4.1 (Sampling quality). Given communication budget K and arbitrary unbiased client sampling
probability pt, we measure the quality (lower is better) of one sampling step St ∼ pt by its expectation
discrepancy to the optimal sampling:

Q(St) := ESt∼pt


∥∥∥∥∥∥
∑
i∈St

λig
t
i

pt
i

−
∑
i∈St

∗

λig
t
i

p∗
i

∥∥∥∥∥∥
2
 , (6)
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where St
∗ ∼ p∗ is the ISP, p∗ is obtained via Equation (4) with full {∥gt

i∥}i∈[N ], and E[∥St∥] = E[∥St
∗∥] = K.

Remark Note that the second term of Equation (6) denotes the best results that can be possibly obtained
subjected to communication budget. It still preserves estimate errors to full results. Therefore, we define the
sampling quality of one sampling by its gap to the optimal estimate results for practical concern.

In practical settings, federated learning typically trains modern neural networks, which are non-convex
problems in optimization. Therefore, our convergence analyses rely on standard assumptions on the local
empirical function fi, i ∈ [N ] in non-convex federated optimization (Chen et al., 2020; Jhunjhunwala et al.,
2022; Chen & Vikalo, 2023).
Assumption 4.1 (Smoothness). Each objective fi(x) for all i ∈ [N ] is L-smooth, inducing that for all
∀x, y ∈ Rd, it holds ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.
Assumption 4.2 (Unbiasedness and bounded local variance). For each i ∈ [N ] and x ∈ Rd, we assume the
access to an unbiased stochastic gradient ∇Fi(x, ξi) of client’s true gradient ∇fi(x), i.e.,Eξi∼Di

[∇Fi(x, ξi)] =
∇fi(x). The function fi have σl-bounded (local) variance i.e.,Eξi∼Di

[
∥∇Fi(x, ξi)−∇fi(x)∥2

]
≤ σ2

l .

Assumption 4.3 (Bounded global variance). We assume the weight-averaged global variance is bounded, i.e.,∑N
i=1 λi ∥∇fi(x)−∇f(x)∥2 ≤ σ2

g for all x ∈ Rd.

Assumptions 4.1 and 4.2 are standard assumptions in stochastic optimization analyses. Assumption 4.3
measures the impacts of data heterogeneity in federated optimization. A larger upper bound of σ2

g denotes
stronger heterogeneity across clients. Now, we provide the non-convex convergence of Algorithm 1.
Theorem 4.1 (FedAvg with arbitrary unbiased client sampling). Under Assumptions 4.1, 4.2, 4.3, taking
upper bound E

[
f(x0)− f(xT )

]
≤M and W = max{λi}i∈[N ], given communication budget K, there always

exists learning rates ηlηg ≤ 1
8L allow Algorithm 1 to generate an iteration sequence {x1, . . . , xt} such that

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O

(√
MLσ2β2

T

)
+O

(√
Mβ1

T

)
︸ ︷︷ ︸

Sampling Utility

+O
(

M
2
3 (σ2) 1

3

T
2
3

)
+O

(
ML

T

)
.

(7)

where

σ2 = Θ(σ2
l /R + σ2

g), β1 = 1
T

T −1∑
t=0

Q(St), β2 = 1
T

T −1∑
t=0

χt, χt ∈ [NW, NW + N −K

K
W ].

Notably, σ2 denotes the heterogeneity impacts on stochastic gradients, β2 denotes the benefits of using optimal
sampling, and β1 denotes the benefits of using sub-optimal sampling.

Interpretation of Theorem 4.1 The convergence guarantees quantify the impacts of client sampling
quality on the convergence performance of FedAvg. If we always use optimal client sampling (Chen et al.,
2020), the cumulative sampling quality implies β1 = 0. Then, the convergence rate returns to Theorem
18 (Chen et al., 2020) and covers the state-of-art complexity guarantees in Karimireddy et al. (2020). As
discussed previously, acquiring optimal client sampling is typically unfeasible in FL practice. Therefore, we
may use sub-optimal client sampling techniques, which induce β1 as a non-zero value.

Sampling utility Given communication budget K, the utility of optimal client sampling is linked to
χt ∈ [NW, NW + N−K

K W ], where W = max{λi}i∈[N ]. For example, χt = NW indicates the best case that
optimal client sampling can accurately approximate full results. Otherwise, the optimal client sampling
implements sub-optimal approximation. Moreover, given an arbitrary sub-optimal client sampling strategy,
we use Q(St) to measure the discrepancy between the applied sampling and optimal sampling. Using limited
information when optimal client sampling is inapplicable, we expect to minimize the cumulative discrepancies
β1 to obtain optimization improvement. In all, the bound of the second term in Equation (7) is related to
the performance of the applied client sampler in FL. Therefore, minimizing the cumulative sampling quality
β1 over federated optimization iteration directly accelerates the FL convergence.

6
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5 Theories of the K-Vib Sampler

In this section, we introduce the theoretical design of the K-Vib sampler for federated client sampling. The
adaptive sampling objective aligns with the online variance reduction (Salehi et al., 2017; Borsos et al., 2018;
El Hanchi & Stephens, 2020) tasks in stochastic optimization. The difference is that we solve the problem in
the scenario of FL using ISP, which induces the constraints on sampling probability given in Remark 2.1.

5.1 Adaptive Client Sampling as Online Optimization

To enhance federated optimization, we aim to minimize the sampling quality Q(St) to achieve tighter
convergence bound Equation (7). And, using ISP variance, the upper bound of Equation (6) can be known as:

Q(St) ≤
N∑

i=1

λ2
i ∥gt

i∥2

pt
i

−
N∑

i=1

λ2
i ∥gt

i∥2

p∗
i

.

Then, we model the client sampling objective as an online convex optimization problem (Salehi et al., 2017;
Borsos et al., 2018; El Hanchi & Stephens, 2020). Concretely, we define

local feedback function πt(i) := λi∥gt
i∥, and cost function ℓt(p) :=

N∑
i=1

πt(i)2

pi

for a online convex optimization task1 respecting sampling probability p. Therefore, online convex optimization
is to minimize a dynamic regret defined as:

1
T

T∑
t=1

Q(St) ≤ 1
T

RegretD(T ) := 1
T

(
T∑

t=1
ℓt(pt)−

T∑
t=1

min
p

ℓt(p)
)

. (8)

What does regret measure? Regret measures the cumulative discrepancy of applied sampling probability
and the dynamic optimal Oracle. In Theorem 4.1, we decomposed the cumulative sampling quality as an
error term. And, the upper bound of cumulative sampling quality is given by the regret. According to
Equation (3), the ISP induces a tighter regret. Minimizing the regret Equation (8) can devise sampling
probability for ISP to create a tighter convergence rate for applied FL. In this paper, we are to build an
efficient sampler that outputs an exemplary sequence of independent sampling distributions {pt}T

t=1 such
that limT →∞ RegretD(T )/T = 0.

5.2 Analyzing the Best Fixed Probability

In the federated optimization process, the local updates gt change, making it challenging to directly bound the
cumulative discrepancy between the sampling probability and the dynamic optimal probability. Consequently,
we explore the advantages of employing the best-fixed probability instead. We decompose the Equation (8)
into:

RegretD(T ) =
T∑

t=1
ℓt(pt)−min

p

T∑
t=1

ℓt(p)︸ ︷︷ ︸
RegretS(T )

+ min
p

T∑
t=1

ℓt(p)−
T∑

t=1
min

p
ℓt(p)︸ ︷︷ ︸

TBFP

.
(9)

The static regret RegretS(T ) denotes the cumulative online loss gap between an applied sequence of probabil-
ities and the best-fixed probability in hindsight. The second term indicates the cumulative loss gap between
the best-fixed probability in hindsight and the optimal probabilities. We are to bound the terms respectively.

Our analyses rely on a mild assumption of the convergence status of the federated optimization that sampling
methods are applied (Wang et al., 2021). Notably, stochastic optimization (Salehi et al., 2017; Duchi et al.,

1Please distinguish the online cost function ℓt(·) from local empirical loss of client fi(·) and global loss function f(·). While
ℓt(·) is always convex, f(·) and fi(·) can be non-convex.
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Algorithm 2 K-Vib Sampler
Require: N , K, T , γ, and θ.

Initialize client feedback storage ω(i) = 0 for all i ∈ [N ].
for time t in [T ] do

pt
i ∝

√
ω(i) + γ ▷ by Lemma 5.1

p̃t
i ← (1− θ) · pt

i + θ K
N , for all i ∈ [N ]

Draw St ∼ p̃t ▷ ISP
Receive feedbacks πt(i), and update ω(i)← ω(i) + π2

t (i)/p̃t
i for i ∈ St

end for

2011; Boyd et al., 2004) and federated optimization algorithms (Reddi et al., 2020; Wang et al., 2020; Li
et al., 2019; Zeng et al., 2024b) typically achieve a sub-linear convergence speed O(1/

√
T ) at least. Therefore,

we assume feedback function related to the convergence behaviors of local objectives fi(·), i ∈ [N ] using the
following notions:

Notions We denote the overall feedback Πt :=
∑N

i=1 πt(i) at t-th round. Then, we denote the local
convergence results π∗(i) := limt→∞ πt(i), and the overall convergence results Π∗ :=

∑N
i=1 π∗(i), ∀i ∈ [N ].

Notably, we know
∑T

t=1 Πt ≥ Π∗ as FL converges and we denote VT (i) =
∑T

t=1
(
πt(i) − π∗(i)

)2
,∀T ≥ 1,.

Besides, we denote the largest feedback with G, i.e., πt(i) ≤ G,∀t ∈ [T ], i ∈ [N ]. Importantly, the G denotes
the largest feedback during the applied optimization process, instead of assuming bounded gradients.

Then, we assume the convergence of federated optimization will induce a decaying speed of feedback function
(local update norms ∥g∥ in this paper):
Assumption 5.1 (Convergence of applied federated optimization). As we discussed above the sub-linear
convergence speed O(1/

√
T ) can be obtained by general nonconvex federated learning algorithms. We assume

that |πt(i)− π∗(i)| ≤ O(1/
√

t), and hence implies VT (i) ≤ O(log(T )). The above assumptions guarantee the
regret concerning a basic convergence speed of applied FL algorithms, with an additional cost of Õ(

√
T ).

Now, we bound the second term of Equation (9) below:
Theorem 5.1 (Bound of best fixed probability). Under Assumptions 5.1, sampling a set of clients with an
expected size of K, and for any i ∈ [N ] denote VT (i) =

∑T
t=1
(
πt(i)− π∗(i)

)2 ≤ O(log(T )). For any T ≥ 1,
the averaged hindsight gap admits,

TBFP ≤
T

K

(
N∑

i=1

√
VT (i)

T

)(
2Π∗ +

N∑
i=1

√
VT (i)

T

)
.

Sketch of proof. This bound can be directly proved to solve the convex optimization problem respectively.
Please see Appendix D.1 for details.

Theorem 5.1 indicates a fast convergence of federated optimization induces a better bound of VT (i), yielding
a tighter regret. Therefore, it also covers better optimization problems implying a tighter upper bound
assumption for |πt(i)−π∗(i)| (e.g., strongly convex and convex federated learning problems). As the hindsight
bound vanishes with an appropriate FL solver, our objective turns to devise a {p1, . . . , pT } that bounds the
static regret RegretS(T ) in Equation (9).

5.3 Upper Bound of Static Regret

We utilize the classic follow-the-regularized-leader (FTRL) (Shalev-Shwartz et al., 2012; Kalai & Vempala,
2005; Hazan, 2012) framework to design a stable sampling probability sequence, which is formed at time t:

pt := arg min
p

{
N∑

i=1

π2
1:t−1(i) + γ

pi

}
, (10)
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where the regularizer γ ensures that the probability does not change too much and prevents assigning a
vanishing probability to clients. It also ensures a minimum sampling probability pmin for some clients.
Therefore, we have the closed-form solution as shown below:
Lemma 5.1 (Solution to Equation (10)). Letting at

i = π2
1:t−1(i) + γ and 0 < at

1 ≤ at
2 ≤ · · · ≤ at

N and
0 < K ≤ N , we have

pt
i =


1, if i ≥ l2,

zt

√
at

i

ct
, if i ∈ (l1, l2),

pmin, if i ≤ l1,

(11)

where ct =
∑

i∈(l1,l2)
√

at
i, zt = K − (N − l2) + l1 · pmin and the 1 ≤ l1 ≤ l2 ≤ N , which satisfies that

∀i ∈ (l1, l2),
pmin ·

∑
l1<i<l2

at
i

zt
< at

i <

∑
l1<i<l2

at
i

zt
.

Remark. Compared with vanilla optimal sampling probability in Equation (4), our sampling probability
especially guarantees a minimum sampling probability pmin on the clients with lower feedback. This probability
encourages the exploration of the FL system and prevents the case that some clients are never sampled.
Besides, the minimum sampling probability pmin is determined by the γ and the cumulative feedback from
clients during training. For t = 1, . . . , T , if applied sampling probability follows Lemma 5.1 with a proper γ,
we guarantee that RegretS(T )/T ≤ O(1/

√
T ), as proved in Appendix D.2.

However, under practical constraints, the server can only access past sampled clients’ feedback. Hence,
Equation (11) can not be computed accurately. Inspired by work(Borsos et al., 2018), we construct an
additional estimate of the true feedback for all clients denoted by p̃ and let St ∼ p̃t. Concretely, p̃ is mixed
by the original estimator pt with a static distribution. Let θ ∈ [0, 1], we have

Mixing strategy: p̃t = (1− θ)pt + θ
K

N
, (12)

where p̃t ≥ θ K
N , and hence π̃2

t (i) ≤ π2
t (i) · N

θK ≤ G2 · N
θK .

Analogous to regularizer γ, the mixing strategy guarantees the least probability that any clients be sampled,
thereby encouraging exploration. We present the expected regret bound of the sampling with mixed probability
and the K-Vib sampler outlined in Algorithm 2 with theoretical guarantee in Theorem 5.2.
Theorem 5.2 (Static expected regret with partial feedback). Under Assumptions 5.1, sampling St ∼ p̃t with
E[|St|] = K for all t = 1, . . . , T , and letting γ = G2 N

Kθ , θ = ( N
T K )1/3 with T ·K ≥ N , we obtain the expected

regret
E [RegretS(T )] ≤ Õ

(
N

1
3 T

2
3 /K

4
3
)
, (13)

where Õ hides the logarithmic factors.

Sketch of proof. Denoting {πt(i)}i∈St as partial feedback from sampled points, it incurs

π̃2
t (i) := π2

t (i)
p̃t

i

· Ii∈St , and E[π̃2
t (i)|p̃t

i] = π2
t (i),∀i ∈ [N ].

Analogous to Equation (8), we define modified cost functions and their unbiased estimates:

ℓ̃t(p) :=
N∑

i=1

π̃2
t (i)
pi

, and E[ℓ̃t(p)|p̃t, ℓt] = ℓt(p).

Relying on the additional estimates, we have the full cumulative feedback in expectation. In detail, we provide
regret bound RegretS(T ) by directly using Lemma 5.1 in Appendix D.2. Analogously, we can extend the
mixed sampling probability p̃t to derive the expected regret bound E[RegretS(T )] given in Appendix D.3.
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Figure 2: Evaluation on dynamic regre in Equation (8), gradient variance in Equation (2), and loss.
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Figure 3: Sensitivity study on synthetic datasets.

Implications of hyperparameters The K-Vib sampler has two key hyperparameters, γ, θ. The γ,
inherited from the FTRL framework, guarantees the stability of the designed probability sequence. A larger
γ value limits the extent to which the sampling probability can change after each feedback update. The
mixing strategy parameter θ extends the FTRL framework into the partial feedback scenarios and is tuned to
optimize the regret bound. Intuitively, during the early training stages, K-Vib explores the system information
using a near-uniform sampling probability, controlled by these two parameters to define the duration of the
exploration phase. In the detailed proof in the Appendix, we suggest setting γ = G2 N

θK in Equation (50) and
θ = ( N

T K ) 1
3 in Equation (51) for minimizing expected regret bound.

Enhanced convergence rate of FedAvg with K-Vib sampler The K-Vib sampler can work with a
federated optimization process providing unbiased full result estimates. Comparing with previous regret
bound Õ

(
N

1
3 T

2
3
)

(Borsos et al., 2018) and O
(
N

1
3 T

2
3
)

(El Hanchi & Stephens, 2020), it implements a linear
speed up with communication budget K. This advantage relies on a tighter formulation of variance obtained
via the ISP. Furthermore, the Assumption 5.1 holds in FedAvg. Meanwhile, the regret bound of the K-Vib
sampler is independent of the convergence of Algorithm 1. Therefore, the K-Vib sampler can accelerate
FedAvg by minimizing the second term in Theorem 4.1. Concretely, the upper bound of dynamic regret
in Equation (9) is dominated by static regret from Theorem 5.2. And then, we combine Equation (8) and
substitute β1 in Equation (7), which derives that K-Vib sampler improves the second term O(

√
Mβ1/T )

in Theorem 4.1 to Õ
(

M1/2N1/6

(T K)2/3

)
. For computational complexity, the primary cost involves sorting the

cumulative feedback sequence {ω(i)}N
i=1 in Algorithm 2. This sorting operation can be performed efficiently

with an adaptive sorting algorithm (Estivill-Castro & Wood, 1992), resulting in a time complexity of at most
O(N log N). And, we provide a sketch of efficient implementation in Appendix F.3.

10



Published in Transactions on Machine Learning Research (01/2025)

6 Experiments

This section evaluates the convergence benefits of utilizing FL client samplers. Our experiment evaluation
aligns with previous works (Li et al., 2020b; Chen et al., 2020) on synthetic and Federated EMNIST datasets.
And, we additionally evaluate our method on language model and text datasets.

Baselines We compare the K-Vib sampler with the uniform sampling and other adaptive unbiased samplers
including Multi-armed Bandit Sampler (Mabs) (Salehi et al., 2017), Variance Reducer Bandit (Vrb) (Borsos
et al., 2018) and Avare (El Hanchi & Stephens, 2020). We run experiments with the same random seed and
vary the seeds across five independent runs. We present the mean performance with the standard deviation
(error bars). To ensure a fair comparison, we set the hyperparameters of all samplers to the optimal values
prescribed in the original papers, and concrete hyperparameters are detailed in Appendix F.

FL and sampler hyperparameters We use vanilla SGD optimizers for client-side optimization. And, we
fix ηg = 1 on the server and tune ηl for different tasks. For K-Vib sampler, we set θ = ( N

T K ) 1
3 , which aligns

with Theorem 5.2. Then, we guarantee the stability of designed probability via setting γ ≈ G2 N
θK . In practice,

we suggest using the mean value of first-round client feedback as a naive estimate of G. The first-round
feedback is typically the largest during FL training based on Assumption 5.1. This hyperparameter tuning
experience can be applied in future applications.

6.1 Synthetic Dataset

We evaluate the theoretical results via experiments on Synthetic datasets, where the data are generated from
Gaussian distributions (Li et al., 2020b) and the model is logistic regression f(x) = arg max(W T x + b). We
generate N = 100 clients of each has a synthetic dataset, where the size of each dataset follows the power law.
We set local learning rate ηl = 0.02, local epoch 1, and batch size 64.

In Figure 2, we show the action of all samplers on three metrics. Concretely, the K-Vib implements a lower
curve of regret in comparison with baselines. Hence, it creates a better estimate with lower variance for
global model updating. Connecting with Theorem 4.1, FedAvg with K-Vib achieves a faster convergence.

We present Figure 3(a) to prove the linear speed up about communication budget K in Theorem 5.2. In
detail, with the increase of budget K, the performance of the K-Vib sampler with regret metric is reduced
significantly. Due to page limitation, we provide further illustration examples of other baselines in the same
metric in Appendix Figure 7, where we show that the regret bound of baselines methods are not reduced
with increasing communication budget K. The results demonstrate our unique improvements in theories.

In Figure 3(b), we show the cumulated dynamic regret with γ = 1e−4, T = 500 and different θ =
{0.1, 0.3, 0.5, 0.7, 0.9}. The results demonstrate the importance of choosing the proper mixing parame-
ter θ for regret minimization. And, Figure 3(d) reveals the effects of regularization γ in Algorithm 2. The
regret slightly changes with different γ. The variance reduction curves remain stable, indicating the K-Vib
sampler is not sensitive to γ. This is because the regularizer γ only decides the minimum probability in
solution Equation (11). In Figure 3(c), we show how the hyperparameters control the divergence degree of
sampling probabilities from uniform probabilities. Large θ and small γ allow the TV distance to be large.

6.2 Federated EMNIST Dataset

We evaluate the proposed sampler on the Federated EMNIST (FEMNIST) following Chen et al., 2020 for
image classification. The FEMNIST tasks involve three degrees of unbalanced level (Chen et al., 2020),
including FEMNIST v1 (2,231 clients in total, 10% clients hold 82% training images), FEMNIST v2 (1,231
clients in total, 20% client hold 90% training images) and FEMNIST v3 (462 clients in total, 50% client hold
98% training images). We use the same CNN model in (McMahan et al., 2017). We set batch size 20, local
epochs 3, ηl = 0.01, and K = 111, 62, 23 as 5% of total clients.

In Figure 4, the variance of data quantity decreased from FEMNIST v1 to FEMNIST v3. We observe
that the FedAvg with the K-Vib sampler converges about 3× faster than baseline when achieving 75%
accuracy in FEMINIST v1 and 2× faster in FEMINIST v2. At early rounds, the global estimates provided

11



Published in Transactions on Machine Learning Research (01/2025)

0 100 200 300 400 500
Communication Round

0.5

1.0

Tr
ai

n 
Lo

ss

FEMNIST v1
Uniform
Mabs
Vrb

Avare
K-Vib

0 100 200 300 400 500
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

FEMNIST v1

0 100 200 300 400 500
Communication Round

0.00

0.25

0.50

0.75

1.00

FEMNIST v2

0 100 200 300 400 500
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0
FEMNIST v2

0 100 200 300 400 500
Communication Round

0.0

0.5

1.0

FEMNIST v3

0 100 200 300 400 500
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0
FEMNIST v3

Figure 4: Federated EMNIST dataset experiments. Training loss and test accuracy of FedAvg with different
unbiased samplers.
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(a) Experiments on AGNews dataset with DistillBert model.
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(b) Experiments on CCNews dataset with Pythia-70M model.

Figure 5: Federated text dataset experiments.

by naive independent sampling are better as demonstrated in Lemma 2.1, it induces faster convergence by
Theorem 4.1. Meanwhile, the K-Vib sampler further enlarges the convergence benefits by solving an online
variance reduction task. Hence, it maintains a fast convergence speed. For baseline methods, we observe that
the Vrb and Mabs do not outperform the uniform sampling in the FEMNIST task due to the large number of
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clients and large data quantity variance. In contrast, the Avare sampler fastens the convergence curve after
about 150 rounds of exploration in the FEMNIST v1 and v2 tasks. On the FEMNIST v3 task, the Avare
sampler shows no clear improvement in the convergence curve, while the K-Vib sampler still implements
marginal improvements. Horizontally comparing the results, we observe that the curve discrepancy between
K-Vib and baselines is the largest in FEMNIST v1. And, the discrepancy narrows with the decrease of data
variance across clients. It indicates that the K-Vib sampler works better in the cross-device FL system with a
large number of clients and data variance.

6.3 CCNews and AGNews Datasets

We evaluate the efficacy of the K-Vib sampler on two large sizes of models and datasets, including a fine-tuning
task on AGNews (Zhang et al., 2015) and a pre-training task on CCNews (Mackenzie et al., 2020). AGNews
is a text classification task with 119,999 train samples and 4 labels. And, CCNews is a text dataset that
contains 708,241 articles. For models, we fine-tune a pretrained language model DistillBert (Sanh et al., 2019)
on the AGNews task. DistillBert is a language model with 67 Million parameters. And, we train from scratch
a GPT2 model called Pythia-70M (Biderman et al., 2023) (70 Million parameters) on CCNews using the next
token prediction loss. For both tasks, we partition the datasets into N = 1, 000 clients with three different
levels of heavy long tails (Charles et al., 2024). Then, we set communication round T = 300 and budget
K = 25. We set local learning rate 1e−4, batch size 16, and epoch 1 for the local SGD optimizer. We report
the data distribution and the training loss for comparing the convergence benefits in Figure 5.

Analogous to FEMNIST experiments, we observe that K-Vib achieves 2× faster convergence than baseline
methods, while baseline methods only implement a marginal improvement compared to uniform sampling.
And, the improvement is related to the degree of data variance across clients. Moreover, we surprisingly
observed that baselines can be less efficient than uniform sampling in some cases. This is because RSP
derives a loose upper bound, which can be less effective when estimating results of larger dimensions. In the
Appendix F.2, we show how the K-Vib sampling probabilities deviate from uniform probabilities. It shows
that K-Vib sampling can accurately adapt to local data distribution based on feedback information. In all,
our results prove that K-Vib can enhance real-world FL applications, even on large model training.

7 Extension, Limitation & Conclusion

Our theoretical findings can be extended to general applications that estimate global results with partial
information. Additionally, our extension of independent sampling can be applied to previous works employing
random sampling. Besides, the global estimate variance in FL also comes from the data heterogeneity issues,
which may incur unstable local feedback, breaking the Assumption 5.1. This can be addressed with client
clustering techniques (Ghosh et al., 2020; Ma et al., 2022; Zeng et al., 2023a), analogous to previously cluster
sampling works (Fraboni et al., 2021; Song et al., 2023). Besides, we can replace FedAvg with more stable
FedAvg variants (Sun et al., 2024; Zeng et al., 2023c).

In conclusion, our study provides a thorough examination of FL frameworks utilizing unbiased client sampling
techniques from an optimization standpoint. Our findings highlight the importance of designing unbiased
sampling probabilities for the ISP to enhance the efficiency of FL. Building upon this insight, we further
extend the range of adaptive sampling techniques and achieve substantial improvements. We are confident
that our work will contribute to the advancement of client sampling techniques in FL, making them more
applicable and beneficial in various practical scenarios.
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A Related Work

Our paper contributes to the literature on the importance sampling in stochastic optimization, online convex
optimization, and client sampling in FL.

Importance Sampling. Importance sampling is a non-uniform sampling technique widely used in stochastic
optimization (Katharopoulos & Fleuret, 2018) and coordinate descent (Richtárik & Takáč, 2016a). Zhao &
Zhang (2015); Needell et al. (2014) connects the variance of the gradient estimates and the optimal sampling
distribution is proportional to the per-sample gradient norm. The insights of sampling and optimization
quality can be transferred into federated client sampling, as we summarised in the following two topics.

Online Variance Reduction. Our paper addresses the topic of online convex optimization for reducing
variance. Variance reduction techniques are frequently used in conjunction with stochastic optimization
algorithms (Defazio et al., 2014; Johnson & Zhang, 2013) to enhance optimization performance. These
same variance reduction techniques have also been proposed to quicken federated optimization (Dinh et al.,
2020; Malinovsky et al., 2022). On the other hand, online learning (Shalev-Shwartz et al., 2012) typically
employs an exploration-exploitation paradigm to develop decision-making strategies that maximize profits.
Although some studies have considered client sampling as a multi-armed bandit problem, they have only
provided limited theoretical results (Kim et al., 2020; Cho et al., 2020a; Yang et al., 2021). In an intriguing
combination, certain studies (Salehi et al., 2017; Borsos et al., 2018; 2019) have formulated data sampling in
stochastic optimization as an online learning problem. These methods were also applied to client sampling
in FL by treating each client as a data sample in their original problem (Zhao et al., 2021a; El Hanchi &
Stephens, 2020).

Client Sampling in FL. Client sampling methods in FL fall under two categories: biased and unbiased
methods. Unbiased sampling methods ensure objective consistency in FL by yielding the same expected value
of results as global aggregation with the participation of all clients. In contrast, biased sampling methods
converge to arbitrary sub-optimal outcomes based on the specific sampling strategies utilized. Additional
discussion about biased and unbiased sampling methods is provided in Appendix E.3. Recent research
has focused on exploring various client sampling strategies for both biased and unbiased methods. For
instance, biased sampling methods involve sampling clients with probabilities proportional to their local
dataset size (McMahan et al., 2017), selecting clients with a large update norm with higher probability (Chen
et al., 2020), choosing clients with higher losses (Cho et al., 2020b), and building a submodular maximization
to approximate the full gradients (Balakrishnan et al., 2022). Meanwhile, several studies (Chen et al., 2020;
Cho et al., 2020b) have proposed theoretically optimal sampling methods for FL utilizing the unbiased
sampling framework, which requires all clients to upload local information before conducting sampling action.
Moreover, cluster-based sampling (Fraboni et al., 2021; Xu et al., 2021; Shen et al., 2022) relies on additional
clustering operations where the knowledge of utilizing client clustering can be transferred into other client
sampling techniques.

B Useful Lemmas and Corollaries

B.1 Auxiliary Lemmas

Lemma B.1 (Lemma 13, Borsos et al., 2018). For any sequence of numbers c1, . . . , cT ∈ [0, 1] the following
holds:

T∑
t=1

c4
t

(c2
1:t)3/2 ≤ 44,

where c1:t =
∑t

τ=1 cτ .
Lemma B.2. For an arbitrary set of n vectors {ai}n

i=1, ai ∈ Rd,∥∥∥∥∥
n∑

i=1
ai

∥∥∥∥∥
2

≤ n

n∑
i=1
∥ai∥2

. (14)
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Lemma B.3. For random variables z1, . . . , zn, we have

E
[
∥z1 + . . . + zn∥2

]
≤ nE

[
∥z1∥2 + . . . + ∥zn∥2

]
. (15)

Lemma B.4. For independent, mean 0 random variables z1, . . . , zn, we have

E
[
∥z1 + . . . + zn∥2

]
= E

[
∥z1∥2 + . . . + ∥zn∥2

]
. (16)

Lemma B.5 (Tuning the stepsize (Koloskova et al., 2020)). For any parameters r0 ≥ 0, b ≥ 0, e ≥ 0, d ≥ 0
there exists constant stepsize η ≤ 1

d such that

ΨT := r0

ηT
+ bη + eη2 ≤ 2

(
br0

T

) 1
2

+ 2e1/3
(r0

T

) 2
3 + dr0

T
.

Lemma B.6 (Upper bound of local drift, Reddi et al., 2020). Let Assumption 4.2 4.3 hold. For all client
i ∈ [N ] with step size ηl ≤ 1

8LR arbitrary local iteration steps r ∈ [R], the local drift can be bounded as follows,

E
∥∥xt,r

i − xt
∥∥2 ≤ 5Rη2

l (σ2
l + 6Rσ2

g + 6R
∥∥∇f(xt)

∥∥2).

B.2 Arbitrary Sampling

In this section, we summarize the arbitrary sampling techniques and present key lemmas used in this
paper. The arbitrary sampling is mainly used either for generating mini-batches of samples in stochastic
algorithms (Chambolle et al., 2018; Richtárik & Takáč, 2016a) or for coordinate descent optimization (Qu &
Richtárik, 2016). In contrast, we explain the background in the context of federated optimization.

In detail, let S denote a sampling, which is a random set-valued mapping with values in 2[N ], where
[N ] := {1, 2, . . . , N}. An arbitrary sampling S is generated by assigning probabilities to all 2N subsets of [N ],
which associates a probability matrix P ∈ RN×N defined by

Pij := Prob({i, j} ⊆ S).

Thus, the probability vector p = (p1, . . . , pN ) ∈ RN is composed of the diagonal entries of P, and pi :=
Prob(i ∈ S). Furthermore, we say that S is proper if pi > 0 for all i. Thus, it incurs that

K := E[|S|] = Trace(P) =
N∑

i=1
pi.

The definition of sampling can be naively transferred to the context of federated client sampling. We refer to
K as the expected number of sampled clients per round in FL. The following lemma plays a key role in our
problem formulation and analysis.
Lemma B.7 (Generalization of Lemma 1 Horváth & Richtárik (2019)). Let a1, a2, . . . , aN be vectors in Rd

and let ā =
∑N

i=1 λiai be their weighted average. Let S be a proper sampling. Assume that there is v ∈ RN

such that
P− ppt ⪯ Diag(p1v1, p2v2, . . . , pN vN ). (17)

Then, we have

ES∼p

[∥∥∥∥∑
i∈S

λiai

pi
− ā

∥∥∥∥2
]
≤

N∑
i=1

λ2
i

vi

pi
∥ai∥2, (18)

where the expectation is taken over sampling S. Whenever Equation (17) holds, it must be the case that

vi ≥ 1− pi.

Moreover, The random sampling admits vi = N−K
N−1 .The independent sampling admits vi = 1 − pi and

makes Equation (18) hold as equality.
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Proof. Let Ii∈S = 1 if i ∈ S and Ii∈S = 0 otherwise. Similarly, let Ii,j∈S = 1 if i ∈ S and Ii,j∈S = 0 otherwise.
Note that E[Ii∈S ] = pi and E[Ii,j∈S ] = Pij . Then, we compute the mean of estimates ã :=

∑
i∈S

λiai

pi
:

E[ã] = E

[∑
i∈S

λiai

pi

]
= E

[
N∑

i=1

λiai

pi
Ii∈S

]
=

N∑
i=1

λiai

pi
E[Ii∈S ] =

N∑
i=1

λiai = ā.

Let A = [ζ1, . . . , ζN ] ∈ Rd×N , where ζi = λiai

pi
, and let e be the vector of all ones in RN . We now write the

variance of ã in a form that will be convenient to establish a bound:

E[∥ã− E[ã]∥2] = E[∥ã∥2]− ∥E[ã]∥2

= E[∥
∑
i∈S

λai

pi
∥2]− ∥ā∥2

= E

∑
i,j

λia
⊤
i

pi

λjaj

pj
Ii,j∈S

− ∥ā∥2

=
∑
i,j

pij
λia

⊤
i

pi

λjaj

pj
−
∑
i,j

λiλja⊤
i aj

=
∑
i,j

(pij − pipj) ζ⊤
i ζj

= e⊤ ((P− pp⊤) ◦A⊤A
)

e.

(19)

Since by assumption we have P− pp⊤ ⪯ Diag(p ◦ v), we can further bound

e⊤ ((P− pp⊤) ◦A⊤A
)

e ≤ e⊤ (Diag(p ◦ v) ◦A⊤A
)

e =
n∑

i=1
pivi ∥ζi∥2

. (20)

To obtain Equation (18), it remains to combine Equation (20) with Equation (19). Since P− pp⊤ is positive
semi-definite (Richtárik & Takáč, 2016b), we can bound P− pp⊤ ⪯ NDiag(P− pp⊤) = Diag(p ◦ v), where
vi = N(1− pi).

Overall, arbitrary sampling that associates with a probability matrix P will determine the value of v. As a
result, we summarize independent sampling and random sampling as follows,

• Consider now the independent sampling,

P− pp⊤ =


p1 (1− p1) 0 · · · 0

0 p2 (1− p2) · · · 0
...

... . . . ...
0 0 · · · pn (1− pn)

 = Diag (p1v1, . . . , pnvn) ,

where vi = 1− pi. Therefore, independent sampling always minimizes Equation (18), making it hold
as equality.

• Consider the random sampling,

P− pp⊤ =


K
N −

K2

N2
K(K−1)
N(N−1) · · · K(K−1)

N(N−1)
K(K−1)
N(N−1)

K
N · · · K(K−1)

N(N−1)
...

... . . . ...
K(K−1)
N(N−1)

K(K−1)
N(N−1) · · · K

N

 .
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As shown in (Horváth & Richtárik, 2019), the standard random sampling admits vi = N−K
N−1 for

Equation (18).

Conclusion. Given probabilities p that defines all samplings S satisfying pi = Prob(i ∈ S), it turns out that
the independent sampling (i.e., Pij = Prob(i, j ∈ S) = Prob(i ∈ S)Prob(j ∈ S) = pipj) minimizes the upper
bound in Equation (18). Therefore, depending on the sampling distribution and method, we can rewrite
the Equation (18) as follows:

V(S) = ES∼p[∥
∑
i∈S

λiai

pi
− ā∥2] =

N∑
i=1

(1− pi)
λ2

i ∥ai∥2

pi︸ ︷︷ ︸
Independent sampling procedure

≤ N −K

N − 1

N∑
i=1

λ2
i ∥ai∥2

pi︸ ︷︷ ︸
Random sampling procedure

. (21)

B.3 Proof of Solution to Independent Sampling with Minimal Probability

In this section, we present lemmas and their proofs for our theoretical analyses. Our methodology of
independent sampling especially guarantees a minimum probability of clients in comparison with Lemma 2.2.
Our proof involves a general constraint, which covers Lemma 2.2. Then, we provide several Corollaries B.1 B.2
for our analysis in the next section.
Lemma B.8. Let 0 < a1 ≤ a2 ≤ · · · ≤ aN and 0 < K ≤ N . We consider the following optimization objective
with a restricted probability space ∆ = {p ∈ RN |pmin ≤ pi ≤ 1,

∑N
i=1 pi = K,∀i ∈ [N ]} where pmin ≤ K/N ,

minimizep∈∆ Ω(p) =
N∑

i=1

a2
i

pi

subject to
N∑

i=1
pi = K,

pmin ≤ pi ≤ 1, i = 1, 2, . . . , N.

(22)

Proof. We formulate the Lagrangian:

L(p, y, α1, . . . , αN , β1, . . . , βN ) =
N∑

i=1

a2
i

pi
+ y ·

( N∑
i=1

pi −K
)

+
N∑

i=1
αi(pmin − pi) +

N∑
i=1

βi(pi − 1). (23)

The constraints are linear and KKT conditions hold. Hence, we have,

pi =

√
a2

i

y − αi + βi
=


1, if √y ≤ ai.√

a2
i

y , if √y · pmin < ai <
√

y,

pmin, if ai ≤
√

y · pmin.

(24)

Then, we analyze the value of y. Letting l1 =
∣∣{i|ai ≤

√
y · pmin}

∣∣, l2 = l1 + |{√y · pmin < ai <
√

y}|,
N − l2 =

∣∣{i|√y ≤ ai}
∣∣, and using

∑N
i=1 pi = K implies,

N∑
i=1

pi =
∑
i≤l1

pi +
∑

l1<i<l2

pi +
∑
i≥l2

pi = l1 · pmin +
∑

l1<i<l2

√
a2

i

y
+ N − l2 = K.

Arrange the formula, we get
√

y =
∑

l1<i<l2
ai

K −N + l2 − l1 · pmin
. (25)
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Moreover, we can plug the results into the objective to get the optimal result:

N∑
i=1

a2
i

pi
=
∑
i≤l1

a2
i

pi
+

∑
l1<i<l2

a2
i

pi
+

∑
i≥N−l2

a2
i

pi

=
∑

i≤l1
a2

i

pmin
+√y(

∑
l1<i<l2

ai) +
∑

i≥N−l2

a2
i

=
∑

i≤l1
a2

i

pmin
+

(
∑

l1<i<l2
ai)2

K −N + (l2 − l1 · pmin) +
∑

i≥N−l2

a2
i ,

(26)

where the 1 ≤ l1 ≤ l2 ≤ N , which satisfies that ∀i ∈ (l1, l2),

pmin ·
∑

l1<i<l2
ai

K −N + l2 − l1 · pmin
< ai <

∑
l1<i<l2

ai

K −N + l2 − l1 · pmin
.

In short, we note that if let pmin = 0, l1 = 0, the Lemma 2.2 is proved as a special case of Equation (26).
Besides, we provide further Corollary B.1 and B.2 as preliminaries for further analysis.

Corollary B.1. With K · aN ≤
∑N

i=1 ai and pmin = 0, we have l1 = 0, l2 = N for Equation (26) and induce

arg min Ω(p∗) = (
∑N

i=1 ai)2

K
.

Corollary B.2. With K · aN ≤
∑N

i=1 ai and pmin > 0, we have l2 = N and l1 is the largest integer that
satisfies 0 < (K − l1 · pmin) al1∑N

i=l1
ai

< pmin. The optimal value of Equation (26) becomes

N∑
i=1

a2
i

pi
=
∑

i≤l1
a2

i

pmin
+√y(

∑
l1<i≤N

ai) ▷ Eq. 26, def. in line 2

=
∑

i≤l1
a2

i

pmin
+ y(K − l1pmin) ▷ Eq. 25, replacing

∑
l1<i≤N

ai

≤ l1ypmin + y(K − l1pmin) ▷ Eq. 24, ai ≤
√

y · pmin

=
(
∑N

i=l1
ai)2

(K − l1pmin)2 ·K ≤
K(
∑N

i=l1
ai)2

(K −Npmin)2

≤
K(
∑N

i=1 ai)2

(K −Npmin)2 .

C Convergence Analyses

C.1 Analysis on Sampling

We start our convergence analysis with a clarification of the concepts of optimal independent sampling.
Considering an Oracle always outputs the optimal probabilities p∗, we define

δt
∗ := E

∥∥∥∥∥∑
i∈S∗

λig
t
i

p∗
i

−
N∑

i=1
λig

t
i

∥∥∥∥∥
2 = E

[
N∑

i=1

1− p∗
i

p∗
i

∥g̃t
i∥2

]
,
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where we have ∥g̃t
i∥2 = ∥λig

t
i∥2. Then, we plug the optimal probability in Equation (4) into the above

equation to obtain

δt
∗ = E

[
N∑

i=1

1− p∗
i

p∗
i

∥g̃t
i∥2

]
= E

 1
K − (N − l)

(
l∑

i=1
∥g̃t

i∥

)2

−
l∑

i=1
∥g̃t

i∥2

 .

Using the fact that K∥g̃t
N∥ ≤

∑N
i=1 ∥g̃t

i∥, we have

δt
∗ ≤ E

 1
K

(
N∑

i=1
∥g̃t

i∥

)2

−
N∑

i=1
∥g̃t

i∥2


= E

 1
K

(
N∑

i=1
∥g̃t

i∥

)2
1−K

∑N
i=1 ∥g̃t

i∥2(∑N
i=1 ∥g̃t

i∥
)2




≤ N −K

NK
E

( N∑
i=1
∥g̃t

i∥

)2 .

To clarify the improvement of utilizing the sampling procedure, we provide two baseline analyses respecting
independent sampling and random sampling. For an uniform independent sampling St ∼ U(pi = K

N ) , we
have

δt
U := E

∥∥∥∥∥∑
i∈St

λi

pi
gt

i −
N∑

i=1
λig

t
i

∥∥∥∥∥
2 = E

[
N∑

i=1

1− K
N

K
N

∥g̃t
i∥2

]
= N −K

K
E

[
N∑

i=1
∥g̃t

i∥2

]
. (27)

Here, we provide the definition of optimal factor to quantify the improvement of using well-designed sampling
probability.
Definition C.1 (The optimal factor). Given an iteration sequence of global model {x1, . . . , xt}, under the
constraints of communication budget K and local updates statues {gt

i}i∈[N ], t ∈ [T ], we define the improvement
factor of applying optimal client sampling St

∗ ∼ p∗ comparing uniform sampling U t ∼ U as:

αt
∗ =

E
[∥∥∥∑i∈St

∗

λi

p∗
i
gt

i −
∑N

i=1 λig
t
i

∥∥∥2
]

E
[∥∥∥∑i∈Ut

λi

pi
gt

i −
∑N

i=1 λigt
i

∥∥∥2
] ,

and optimal p∗ is computed via Equation (4) with {gt
i}i∈[N ]. Moreover, we can know

αt
∗ := δt

∗
δU

=
E
[∥∥∥∑i∈S∗

λi

p∗
i
gt

i −
∑N

i=1 λig
t
i

∥∥∥2
]

E
[∥∥∥∑i∈St

λi

pi
gt

i −
∑N

i=1 λigt
i

∥∥∥2
]

≤
KE

[(∑N
i=1 ∥g̃t

i∥
)2
]

NKE
[∑N

i=1 ∥g̃t
i∥2
] <

E
[(∑N

i=1 ∥g̃t
i∥
)2
]

NE
[∑N

i=1 ∥g̃t
i∥2
] ≤ 1.

(28)

C.2 Non-convex Analyses

Our non-convex convergence analysis follows the standard framework in the optimization literature (Reddi
et al., 2020; Chen et al., 2020). In particular, we decompose the sampling quality from the conventional
framework in Equation (31), as this paper focuses on the efficiency of sub-optimal client sampling in federated
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optimization. Referring to the discussion in the main paper, we can compare the efficiency of the applied
sub-optimal samplers in federated optimization and optimal client sampling (Chen et al., 2020).

We start the convergence analysis by recalling the updating rule during round t as:

xt+1 = xt − ηg

∑
i∈St

λig
t
i

pt
i

:= xt − ηgdt, where gt
i = xt − xt,R

i = ηl

R∑
r=1
∇Fi(xt,r−1

i ).

Without loss of generality, we rewrite the global descent rule as:

xt+1 = xt − η

R

∑
i∈St

λi

pt
i

g̃t
i := xt − ηd̃t,

where η = Rηlηg, g̃t
i =

∑R
r=1∇Fi(xt,r−1

i ). Therefore, we know ESt [d̃t] = 1
R

∑N
i=1 λig̃

t
i . Moreover, we denote

W = max{λi}i∈[N ].

Descent lemma. Using the smoothness of f and taking expectations conditioned on xt and over the
sampling St, we have

E
[
f(xt+1)

]
= E

[
f(xt − ηd̃t)

]
≤ E[f(xt)]− ηE[

〈
∇f(xt),ESt [d̃t]

〉
] + L

2 η2E
[
∥d̃t∥2]

≤ E[f(xt)]− ηE∥∇f(xt)∥2 + ηE[
〈
∇f(xt),∇f(xt)− ESt [d̃t]

〉
] + L

2 η2E
[
∥d̃t∥2]

≤ f(xt)− η

2∥∇f(xt)∥2 + η

2E
[
∥∇f(xt)− ESt [d̃t]∥2]+ L

2 η2E
[
∥d̃t∥2] ,

≤ f(xt)− η

2∥∇f(xt)∥2 + η

2 E
[
∥∇f(xt)− ESt [d̃t]∥2]︸ ︷︷ ︸

T1

+L

2
η2

R2η2
l

E
[
∥dt∥2]︸ ︷︷ ︸
T2

,

(29)

where the last inequality follows ⟨a, b⟩ ≤ 1
2∥a∥

2 + 1
2∥b∥

2,∀a, b ∈ Rd.

Bounding T1. We first investigate the expectation gap between global first-order gradient and utilized global
estimates,

E
[
∥∇f(xt)− ESt [d̃t]∥2] = E

∥∥∥∥∥
N∑

i=1
λi∇fi(xt)− 1

R

N∑
i=1

λig̃
t
i

∥∥∥∥∥
2

= E

∥∥∥∥∥
N∑

i=1
λi

(
∇fi(xt)− 1

R

R∑
r=1
∇Fi(xt,r−1

i )
)∥∥∥∥∥

2
= E

∥∥∥∥∥
N∑

i=1
λi

1
R

R∑
r=1

(
∇fi(xt)−∇Fi(xt,r−1

i ) +∇fi(xt,r−1
i )−∇fi(xt,r−1

i )
)∥∥∥∥∥

2
≤ 2E

∥∥∥∥∥
N∑

i=1
λi

1
R

R∑
r=1

(
∇fi(xt)−∇fi(xt,r−1

i )
)∥∥∥∥∥

2+ 2E

∥∥∥∥∥
N∑

i=1
λi

1
R

R∑
r=1

(
∇fi(xt,r−1

i )−∇Fi(xt,r−1
i )

)∥∥∥∥∥
2
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Then, using the L-smoothness of f and unbiasedness of local stochastic gradients, we know

E
[
∥∇f(xt)− ESt [d̃t]∥2] ≤ 2E

∥∥∥∥∥
N∑

i=1
λi

1
R

R∑
r=1

(
∇fi(xt)−∇fi(xt,r−1

i )
)∥∥∥∥∥

2+ 2σ2
l

R

≤ 2L2
N∑

i=1
λi

1
R

R∑
r=1

E
∥∥∥xt − xt,r−1

i

∥∥∥2
+ 2σ2

l

R

≤ 2L2
N∑

i=1
λi(5Rη2

l σ2
l + 30R2η2

l E
∥∥∇fi(xt)

∥∥2) + 2σ2
l

R
▷ using Lemma B.6

≤ 10RL2η2
l σ2

l + 60R2L2η2
l

N∑
i=1

λiE
∥∥∇fi(xt)

∥∥2 + 2σ2
l

R

≤ 10RL2η2
l σ2

l + 60R2L2η2
l (E∥∇f(xt)∥2 + σ2

g) + 2σ2
l

R

≤ 60R2L2η2
l E∥∇f(xt)∥2 + (10RL2η2

l + 2
R

)σ2
l + 60R2L2η2

l σ2
g .

Then, using 1
16RL ≤ ηl ≤ 1

8RL , we have

E
[
∥∇f(xt)− ESt [d̃t]∥2] ≤ 15

16E∥∇f(xt)∥2 + 10L2
(

(1 + 1
5η2

l R2L2 )σ2
l + 6Rσ2

g

)
Rη2

l

≤ 15
16E∥∇f(xt)∥2 + 60L2 (9σ2

l /R + σ2
g

)
R2η2

l

(30)

Bounding T2. Now, we need to bound estimates:

E
[
∥dt∥2] ≤ E

∥∥∥∥∥∑
i∈St

λig
t
i

pt
i

−
N∑

i=1
λig

t
i

∥∥∥∥∥
2

+
∥∥∥∥∥

N∑
i=1

λig
t
i

∥∥∥∥∥
2

≤ E

∥∥∥∥∥∑
i∈St

λig
t
i

pt
i

−
∑
i∈S∗

λig
t
i

p∗
i

∥∥∥∥∥
2


︸ ︷︷ ︸
Q(St)

+E

∥∥∥∥∥∑
i∈S∗

λig
t
i

p∗
i

−
N∑

i=1
λig

t
i

∥∥∥∥∥
2+ E

∥∥∥∥∥
N∑

i=1
λig

t
i

∥∥∥∥∥
2

︸ ︷︷ ︸
(A)

.
(31)

Here, the Q(St) indicates the discrepancy between applied sampling and optimal sampling. The term (A)
indicates the intrinsic gap for the optimal sampling to approach its targets and the quality of the targets for
optimization.
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We can bound the term (A) as follows:

(A) = E

∥∥∥∥∥∑
i∈S∗

λig
t
i

p∗
i

−
N∑

i=1
λig

t
i

∥∥∥∥∥
2+ E

∥∥∥∥∥
N∑

i=1
λig

t
i

∥∥∥∥∥
2

≤ αt
∗

N −K

K
E

[
N∑

i=1
λ2

i

∥∥gt
i

∥∥2
]

+ E

∥∥∥∥∥
N∑

i=1
λig

t
i

∥∥∥∥∥
2

▷ using Eq. 27 and Eq. 28

≤ αt
∗

N −K

K

N∑
i=1

λ2
iE
∥∥gt

i

∥∥2 + N

N∑
i=1

λ2
iE
∥∥gt

i

∥∥2

=
(

αt
∗

N −K

K
+ N

) N∑
i=1

λ2
iE
∥∥gt

i

∥∥2

≤
(

αt
∗(N −K)

K
+ N

)
W

N∑
i=1

λiE
∥∥gt

i

∥∥2

≤
(

αt
∗(N −K)

K
+ N

)
Wη2

l (5Rσ2
l + 30R2

N∑
i=1

λiE
∥∥∇fi(xt)

∥∥2) ▷ using Lemma B.6

≤
(

αt
∗(N −K)

K
+ N

)
Wη2

l (5Rσ2
l + 30R2(σ2

g + E
∥∥∇f(xt)

∥∥2)). ▷ using Assumption 4.3

Letting χt =
(

αt
∗(N−K)

K + N
)

W , we obtain

(A) = 5Rχt(σ2
l + 6Rσ2

g)η2
l + 30R2χtη2

l E
∥∥∇f(xt)

∥∥2

Therefore, we have

T2 = E
[
∥dt∥2] ≤ Q(St) + 5χtR2η2

l (σ2
l /R + 6σ2

g) + 30χtR2η2
l E
∥∥∇f(xt)

∥∥2 (32)

Putting together. Reorganizing the descent lemma, we obtain

∥∇f(xt)∥2 ≤
2(f(xt)− E

[
f(xt+1)

]
)

η
+ T1 + Lη

R2η2
l

· T2

Then, taking full expectation on both sides and substituting corresponding terms in Equation (29) with
Equation (30) and Equation (32) to finish the descent lemma, we have

E∥∇f(xt)∥2 ≤
2(f(xt)− E

[
f(xt+1)

]
)

η

+ 15
16E∥∇f(xt)∥2 + 60L2 (9σ2

l /R + σ2
g

)
R2η2

l

+ Lη

R2η2
l

Q(St) + η · 5χtL(σ2
l /R + 6σ2

g) + η · 30LχtE
∥∥∇f(xt)

∥∥2

Using η = Rηlηg and 1
16RL ≤ ηl ≤ 1

8RL , we have

1
16(1− 480Lχtη)∥∇f(xt)∥2 ≤

2(f(xt)− E
[
f(xt+1)

]
)

η
+
(

1
256L

Q(St) + 5χtL
(
σ2

l /R + 6σ2
g

))
η

+ 60L2

η2
g

(σ2
l /R + 6σ2

g)η2

≤
2(f(xt)− E

[
f(xt+1)

]
)

η
+
(

1
256L

Q(St) + 5χtLσ2
)

η + σ2η2

(33)
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where the last inequality uses σ2 = Θ(σ2
l /R + σ2

g) and sets ηg ≥ 1
8L without loss of generality.

Then, we have the descent lemma

(1− 480Lχtη)
16 ∥∇f(xt)∥2 ≤

2(f(xt)− E
[
f(xt+1)

]
)

η
+
(

1
256L

Q(St) + 5χtLσ2
)

η + σ2η2 (34)

Then, taking averaging of both sides of Equation (34) over from time 0 to T − 1, we have

1
T

T∑
t=1

(1− 480Lχtη)
16 E∥∇f(xt)∥2 ≤

2(E
[
f(x0)− f(xT )

]
)

Tη
+( 1

T

T −1∑
t=0

Q(St) · 1
256L

+ 1
T

T −1∑
t=0

χt ·5Lσ2)η +σ2η2.

Supposing upper bound E[f(x0)− f(xT )] ≤M and defining

β1 = 1
T

T −1∑
t=0

Q(St), β2 = 1
T

T −1∑
t=0

χt, ρ = min
t∈[T ]
{ (1− 480Lχtη)

16 } > 0

we use Lemma B.5 with η ≤ 1
8L to tune the stepsize η and obtain

ρ min
t∈[T ]

E∥∇f(xt)∥2 ≤ 2
(

2M(β1/256L + 5Lσ2β2)
T

) 1
2

+ 2(5σ2) 1
3

(
2M

T

) 2
3

+ 16LM

T
,

which concludes the proof.

D Detail Proofs of Online Convex Optimization

D.1 Vanising Hindsight Gap: Proof of Theorem 5.1

We prove this theorem by directly solving a convex optimization problem, w.r.t the sampling probability.

We first arrange the term TBF P in Equation (9) as follows,

min
p

T∑
t=1

ℓt(p)−
T∑

t=1
min

p
ℓt(p) = min

p

T∑
t=1

N∑
i=1

π2
t (i)
pi
−

T∑
t=1

min
p

N∑
i=1

π2
t (i)
pi

. (35)

Here, we recall our mild Assumption 5.1,

π∗(i) := lim
t→∞

πt(i), Π∗ :=
N∑

i=1
π∗(i), ∀i ∈ [N ].

Then, denoting VT (i) :=
∑T

t=1(πt(i) − π∗(i))2, we bound the cumulative variance over time T per client
i ∈ [N ],

π2
1:T (i) =

T∑
t=1

(π∗(i) + (πt(i)− π∗(i)))2

≤T · π2
∗(i) + 2π∗(i)

T∑
t=1
|πt(i)− π∗(i)|+

T∑
t=1

(πt(i)− π∗(i))2

≤T · π2
∗(i) + 2π∗(i)

√
T · VT (i) + VT (i)

=T

(
π∗(i) +

√
VT (i)

T

)2

.

(36)
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Using the Lemma 2.2 and non-negativity of feedback we have,

min
p

N∑
i=1

π2
t (i)
pi

= (
∑N

i=1 πt(i))2

K
. (37)

We obtain the upper bound of the first term in Equation (35),

min
p

T∑
t=1

N∑
i=1

π2
t (i)
pi

= min
p

N∑
i=1

π2
1:T (i)
pi

=

(∑N
i=1
√

π2
1:T (i)

)2

K

≤ T

K

(
N∑

i=1
π∗(i) +

N∑
i=1

√
VT (i)

T

)2

= T

K

(
Π2

∗ + 2Π∗

N∑
i=1

√
VT (i)

T
+
( N∑

i=1

√
Vt(i)

T

)2
)

,

(38)

where we use Lemma 2.2 in the second line, and Equation (36) in the third line.

Then, we bound the second term in Equation (35):

Π2
∗ =

N∑
i=1

π2
∗(i) ≤

(
1
T

T∑
t=1

N∑
i=1

πt(i)
)2

≤ 1
T

T∑
t=1

(
N∑

i=1
πt(i))2

=K

T

T∑
t=1

min
p

N∑
i=1

π2
t (i)
pi

,

(39)

where the first inequality uses the average assumption, the third inequality uses Jensen’s inequality, and the
last inequality uses Equation (37).

Overall, we combine the results in Equation (38) and Equation (39), and conclude the proof:

min
p

T∑
t=1

ℓt(p)−
T∑

t=1
min

p
ℓt(p) ≤ T

K

(
N∑

i=1

√
VT (i)

T

)(
2Π∗ +

N∑
i=1

√
Vt(i)

T

)
.

D.2 Regret of Full Information

In this section, we prove the preliminary theorem for Theorem 5.2. We first investigate the upper bound of
RegretS(T ) in an ideal scenario called full feedback, where the server preserves feedback information of all
clients, i.e., {πτ (i)}t−1

τ=1,∀i ∈ [N ], t ∈ [T ]. Technically, we prove this bound follows the framework of FTRL in
online convex optimization, w.r.t sampling probability. Then, we extend it into practical settings in the next
section and derive the expected regret bound.
Theorem D.1 (Static regret with full information). Under Assumptions 5.1, sampling a batch of clients with
an expected size of K, and setting γ = G2, the FTRL scheme in Equation (10) yields the following regret,

T∑
t=1

ℓt(pt)−min
p

T∑
t=1

ℓt(p) ≤
(

22NG

z̄
+ 2
√

6NG

K

) N∑
i=1

√
π2

1:T (i) + 22NG2

z̄
, (40)

where we note the cumulative feedback
√

π2
1:T (i) ≤ O(

√
T ) following Assumption 5.1.

Proof. We consider a restricted probability space ∆ = {p ∈ RN |pi ≥ pmin,
∑N

i=1 pi = K, ∀i ∈ [N ]} where
pmin ≤ K/N . Then, we decompose the regret,

RegretS(T ) =
T∑

t=1
ℓt(pt)−min

p∈∆

T∑
t=1

ℓt(p)︸ ︷︷ ︸
(A)

+ min
p∈∆

T∑
t=1

ℓt(p)−min
p

T∑
t=1

ℓt(p)︸ ︷︷ ︸
(B)

. (41)
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We separately bound the above terms in this section. The bound of (A) is related to the stability of the
online decision sequence by playing FTRL, which is given in Lemma D.1. The minimal results of directing
calculation bound term (B).

Bounding (A). Without loss of generality, we introduce the stability of the online decision sequence from
FTRL to cost function ℓ as shown in the following lemma(Kalai & Vempala, 2005) (similar proof can also be
found in (Hazan, 2012; Shalev-Shwartz et al., 2012)).

Lemma D.1. Let K be a convex set and R : K 7→ R be a regularizer. Given a sequence of functions {ℓt}t∈[T ]

defined over K, then setting pt = arg minp∈RN

∑t−1
τ=1 ℓτ (p) +R(p) ensures,

T∑
t=1

ℓt(pt)−
T∑

t=1
ℓt(p) ≤

T∑
t=1

(ℓt(pt)− ℓt(pt+1)) + (R(p)−R(p1)),∀p ∈ K.

We note that R(p) =
∑N

i=1 γ/pi in our work. Furthermore, R(p) is non-negative and bounded by Nγ/pmin
with p ∈ ∆. Thus, the above lemma incurs,

T∑
t=1

ℓt(pt)−
T∑

t=1
ℓt(p) ≤

T∑
t=1

(ℓt(pt)− ℓt(pt+1))︸ ︷︷ ︸
Bounded Below

+ Nγ

pmin
. (42)

To simply the following proof, we assume that 0 < π1(t) ≤ π2(t) ≤ · · · ≤ πN (t), t ∈ [T ] to satisfies Lemma B.8
without the loss of generality. The stability relies on the evolution of cumulative feedback π2

1:t(i) and hence
relies on the index in solution l1, l2 according to Lemma 2.2. Following the Lemma B.8, we have

pt
i =


1, if i ≥ lt

2,

zt

√
π2

1:t−1(i)+γ

ct
, if i ∈ (lt

1, lt
2),

pmin, if i ≤ lt
1,

(43)

where zt = K−N+lt
2−lt

1·pmin ≤ K and ct =
∑

i∈(lt
1,lt

2)
√

π2
1:t(i) + γ ≤

∑N
i=1
√

π2
1:t(i) + γ is the normalization

factor . Then, we investigate the first term in the above inequality,

T∑
t=1

(ℓt(pt)− ℓt(pt+1)) ≤
T∑

t=1

N∑
i=1

π2
t (i) ·

(
1
pt

i

− 1
pt+1

i

)
.

Remark. According to the above inequality, we note that the stability of online convex optimization is
highly related to the changing probability. We can have a trivial upper bound

∑T
t=1(ℓt(pt)− ℓt(pt+1)) ≤∑T

t=1
∑N

i=1 π2
t (i) · (1/pmin − 1), which indicates that the stability is restricted by pmin. Solving the sampling

probability requires sorting cumulative feedbacks π2
1:t(i), the combinations of client-index and pt

i are dynamic.
Hence, directly bounding the above equation generally can be difficult. To obtain a tighter bound for FTRL,
we investigate the possibility.

Lemma D.2. Assuming that pt
i < pt+1

i , for all i ∈ [N ], t ∈ [T − 1], the upper bound of
(

1
pt

i
− 1

pt+1
i

)
is given

by:

0 ≤
(

1
pt

i

− 1
pt+1

i

)
≤ 1

min(zt, zt+1)

(
ct√

π2
1:t−1(i) + γ

− ct+1√
π2

1:t(i) + γ

)
. (44)

Proof. For all t ∈ [T ], we have cumulative feedbacks π1:t−1(i), i ∈ [N ] on the server. The server is able to
compute results Equation (11). As we are interested in the upper bound, we assume pt

i < pt+1
i and discuss

the cases below:
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• Case 1: letting (pt
i, pt+1

i ) = (pmin, zt+1

√
π2

1:t(i)+γ

ct+1
), we have

1
pt

i

− 1
pt+1

i

= 1
pmin

− ct+1

zt+1
√

π2
1:t(i) + γ

≤ ct

zt

√
π2

1:t−1(i) + γ
− ct+1

zt+1
√

π2
1:t(i) + γ

,

≤ 1
min(zt, zt+1)

 ct√
π2

1:t−1(i) + γ
− ct+1√

π2
1:t(i) + γ

 ,

where the second inequality uses Equation (24) indicating pmin ≥ zt

√
π2

1:t−1(i)+γ

ct
.

• Case 2: letting (pt
i, pt+1

i ) = (zt

√
π2

1:t−1(i)+γ

ct
, zt+1

√
π2

1:t(i)+γ

ct+1
), Equation (44) naturally holds.

• Case 3: letting (pt
i, pt+1

i ) = (zt

√
π2

1:t−1(i)+γ

ct
, 1), we can know that 1 ≤ zt+1

√
π2

1:t(i)+γ

ct+1
by Equation (24)

and prove the conclusion analogous to case 1.

• Case 4: analogous to the case 1 and 3, letting (pt
i, pt+1

i ) = (pmin, 1), Equation (44) naturally holds.

Summarizing all cases to conclude the proof.

Using Lemma D.2, we are ready to bound the stability of the online decision sequence:

T∑
t=1

(ℓt(pt)− ℓt(pt+1)) =
T∑

t=1

N∑
i=1

π2
t (i) ·

(
ct

zt

√
π2

1:t−1(i) + γ
− ct+1

zt+1
√

π2
1:t(i) + γ

)

≤
T∑

t=1

N∑
i=1

π2
t (i) · ct

min(zt, zt+1) ·
(

1√
π2

1:t−1(i) + γ
− 1√

π2
1:t(i) + γ

)
▷ct ≤ ct+1

≤
T∑

t=1

N∑
i=1

π2
t (i) · c̃t

min(zt, zt+1)
√

π2
1:t(i) + γ

·

(√
1 + π2

t (i)
π2

1:t−1(i) + γ
− 1
)

≤ c̃T

2

T∑
t=1

N∑
i=1

1
min(zt, zt+1)

πt(i)4√
π2

1:t(i) + γ · (π2
1:t−1(i) + γ)

, ▷
√

1 + x− 1 ≤ x

2

where the third line uses definition ct ≤ c̃t =
∑N

i=1
√

π2
1:t(i) + γ.

Letting γ = G2, we have that π2
1:t(i) ≤ π2

1:t−1(i) + γ and
√

π2
1:t(i) ≤

√
π2

1:t(i) + γ. We define z̄ = min{zt}T
t=1

and conclude the bound,

T∑
t=1

(ℓt(pt)− ℓt(pt+1)) ≤ c̃T

2

T∑
t=1

N∑
i=1

πt(i)4

(π2
1:t(i))

3
2

=G · c̃T

2z̄

N∑
i=1

T∑
t=1

(πt(i)/G)4

((π1:t(1)/G)2) 3
2

▷Lemma B.1

≤22NG

z̄

N∑
i=1

√
π2

1:T (i) + G2 ▷Definition of c̃T

≤22NG

z̄

N∑
i=1

(√
π2

1:T (i) + G

)
(45)
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Finally, we can get the final bound of (A) by plugging Equation (45) into Equation (42) and summarizing as
follows,

T∑
t=1

ℓt(pt)−
T∑

t=1
ℓt(p) ≤ 22NG

z̄

N∑
i=1

(√
π2

1:T (i) + G

)
+ NG2

pmin
.

Bounding (B). Using Corollaries B.1 and B.2, we bound the term (B) as follows,

min
p∈∆

T∑
t=1

ℓt(p)−min
p

T∑
t=1

ℓt(p)

≤
K(
∑N

i=1
√

π2
1:T (i))2

(K −Npmin)2 −
(
∑N

i=1
√

π2
1:T (i))2

K

≤
( K

(K −Npmin)2 −
1
K

)
·

(
N∑

i=1

√
π2

1:T (i)
)2

≤6Npmin

K2 ·

(
N∑

i=1

√
π2

1:T (i)
)2

(46)

In the last line, we use the fact that 1
(1−x)2 − 1 ≤ 6x for x ∈ [0, 1/2]. Hence, we scale the coefficient

K

(K −Npmin)2 −
1
K

= 1
K

[ 1
(1−Npmin/K)2 − 1

]
≤ 6Npmin

K2 ,

where we let pmin ≤ K/(2N).

Summary. Setting γ = G2, and combining the bound in Equation (42) and Equation (46), we have,

RegretS(T ) =
T∑

t=1
ℓt(pt)−min

p

T∑
t=1

ℓt(p)

≤22NG

z̄

N∑
i=1

(√
π2

1:T (i) + G

)
+ NG2

pmin
+ 6Npmin

K2 ·

(
N∑

i=1

√
π2

1:T (i)
)2

.

(47)

The pmin is only relevant for the theoretical analysis. Hence, the choice of it is arbitrary, and we can set it to
pmin = min

{
K/(2N), GK/(

√
6
∑N

i=1
√

π2
1:T (i))

}
which turns the upper bound to the minimal value. Hence,

we yield the final bound of FTRL in the end,

T∑
t=1

ℓt(pt)−min
p

T∑
t=1

ℓt(p) ≤
(

22NG

z̄
+ 2
√

6NG

K

) N∑
i=1

√
π2

1:T (i) + 22NG2

z̄
. (48)

D.3 Expected Regret of Partial Feedback: Proof of Theorem 5.2

In this section, we extend the full feedback solution to the partial feedback scenario, where the server only
has access to the feedback information from the past sampled clients. Technically, we use a mixing strategy
to transfer the deterministic regret into expected regret. Then, we bound the expected regret by playing the
FTRL framework in the expectation space. Finally, we can minimize the expected regret bound by setting
mixing parameter θ.
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Using the property of unbiasedness, we have

min
p

E[
T∑

t=1
ℓt(p̃t)−

T∑
t=1

ℓt(p)]

= min
p

E[
T∑

t=1
ℓ̃t(p̃t)−

T∑
t=1

ℓ̃t(p)]

=E
[ T∑

t=1
ℓ̃t(p̃t)−

T∑
t=1

ℓ̃t(pt)
]

︸ ︷︷ ︸
(A)

+ min
p

E
[ T∑

t=1
ℓ̃t(pt)−

T∑
t=1

ℓt(p)
]

︸ ︷︷ ︸
(B)

.

(49)

Bounding (A). We recall that p̃t
i ≥ θK

N for all t ∈ [T ], i ∈ [N ] due to the mixing. Therefore, pt
i ≥ K/N

implies p̃t
i ≥ K/N . Thus, we have

1
p̃t

i

− 1
pt

i

= θ ·
pt

i − K
N

p̃t
ip

t
i

≤ θ · pt
i

p̃t
ip

t
i

= θ

p̃t
i

≤ θ · N

K
.

Moreover, if pt
i ≤ K/N , the above inequality still holds. We extend the (A) as follows,

(A) := E
[ T∑

t=1
ℓ̃t(p̃t)−

T∑
t=1

ℓ̃t(pt)
]

= E
[ T∑

t=1

N∑
i=1

π̃2
t (i)

( 1
p̃t

i

− 1
pt

i

)]
≤ θ · N

K
· E
[ T∑

t=1

N∑
i=1

π̃2
t (i)

]
≤ θG2N2

K
T,

where we use E[π̃2
t (i)] = π2

t (i) ≤ G2.

Bounding (B). We note that pt is the decision sequence playing FTRL with the mixed cost functions. Thus,
we combine the mixing bound of feedback (i.e., π̃2

t (i) ≤ G2N
θK ) and Theorem D.1. Replacing G2 with G2 N

θK ,
we get

T∑
t=1

ℓ̃t(pt)−min
p

T∑
t=1

ℓ̃t(p) ≤
(

22N
3
2 G

z̄
√

θK
+ 2
√

6N
3
2 G√

θK3

)
E

[
N∑

i=1

√
π̃2

1:T (i)
]

+ 22G2N2

z̄θK
. (50)

Summary. Using Jensen’s inequality, we have E
[∑N

i=1
√

π̃2
1:T (i)

]
≤
∑N

i=1
√
E[π̃2

1:T (i)] =
∑N

i=1
√

π2
1:T (i).

Finally, we can get the upper bound of the regret in partial-bandit feedback,

N2 ·min
p

E[
T∑

t=1
ℓt(p̃t)−

T∑
t=1

ℓt(p)] ≤ θG2

K
T +

(
22G

z̄
√

θNK
+ 2

√
6G√

θNK3

)
E

[
N∑

i=1

√
π̃2

1:T (i)
]

+ 22G2

z̄θK

≤ θG2

K
T +

(
22N

1
2 G2

z̄
√

θK
+ 2
√

6N
1
2 G2

√
θK3

)
√

T + 22G2

z̄θK
,

(51)

where the last line uses the bound
∑N

i=1
√

π2
1:T (i) ≤ NG

√
T . Now, we can optimize the upper bound of regret

in terms of θ. Notably, θ is independent on T and we set θ = ( N
T K ) 1

3 to get the minimized bound. Additionally,
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we are pursuing an expected regret, which is Regret(S)(T ) in the original definition in Equation (9). Using
the unbiasedness of the mixed estimation and modified costs, we can obtain the final bound:

N2 · E[Regret(S)(T )] = E[
T∑

t=1
ℓt(p̃t)−min

p

T∑
t=1

ℓt(p)]

= E[
T∑

t=1
ℓt(p̃t)−min

p

T∑
t=1

ℓ̃t(p)] + E[min
p

T∑
t=1

ℓ̃t(p)−min
p

T∑
t=1

ℓt(p)]

≤ O
(
N

1
3 T

2
3 /K

4
3
)

+ E[min
p

T∑
t=1

ℓ̃t(p)−min
p

T∑
t=1

ℓt(p)]

≤ Õ
(
N

1
3 T

2
3 /K

4
3
)
,

where the last inequality uses Lemma 5.1, and the conclusion in Theorem 8 (Borsos et al., 2018). It proves
the second term induces an additional log term to the final bound.

Remark. Baseline works have additional averaging coefficient 1
N2 in their final bound. This is because

they consider the weights λ = 1/N in stochastic optimization, while we include the λ for clients’ weights in
federated optimization. To align with them, we omit the coefficient of N2 and report the final bound for
E[Regret(S)(T )], as N2 can be absorbed by excluding the λ from client feedback function π(·).

E Further Discussions

E.1 A Sketch of Proof for FL with Client Stragglers

We note the possibility that some clients are unavailable to participants due to local failure or being busy in
each round. To extend our analysis to the case, we assume there is a known distribution of client availability
A such that a subset At ∼ A of clients are available at the t-th communication round. Let qi = Prob(i ∈ At)
denote the probability that client i is available at round t. Based on the setting, we update the definition of
estimation dt:

dt :=
∑

i∈St⊆At

λig
t
i

qipt
i

,

where St ⊆ At indicates that we can only sample from available set. Then, we apply the estimation to
variance and obtain the following target:

Regret(T ) =
T∑

t=1

N∑
i=1

π2
t (i)

qipi
−

T∑
t=1

min
p

N∑
i=1

π2
t (i)

qipi
.

Analogous to our analysis in Appendix D, we could obtain a similar bound of the above regret that considers
the availability.

E.2 Hard Capping for ISP

We know that ISP might have more or less than K clients selected, which implies the sampling results St

can be unexpectedly large. Concretely, this section studies a setting in which RSP with hard budget Kh is
compared a soft budget Ks to ensure that Prob(|St| > Kh) ≤ ϵ. We intend to analyze the constraints on
sampling probability p w.r.t Ks, Kh and ϵ. This objective can be formally described as:

Prob(|St| > Kh) = 1− Prob(|St| ≤ Kh) = 1−
Kh∑
k=0

∑
C∈Ck

N

∏
i∈C

pi

∏
j /∈C

(1− pj)

 ≤ ϵ, (52)

where
∑N

i=1 pi = Ks, k is the possible size of St and Ck
N is the combinations of all possible selected clients

with |St| = k. If we consider a simple case where pi = Ks/N,∀i ∈ [N ], |St| follows standard Binomial
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distribution B(N, Ks/N). And, the above inequality can be solved by checking the cumulative distribution
function (CDF).

For general cases with different pi,∀i ∈ [N ], we can use Normal approximation to solve the inequality with
large N . Using Hoeffding’s inequality to estimate the probability of large deviations:

Prob(|St| −Ks ≥ τ) ≤ e−2τ2/
∑N

i=1
pi(1−pi).

Letting Kh = Ks + τ , we know

Prob(|St| ≥ Kh) ≤ e−2τ2/
∑N

i=1
pi(1−pi) ≤ ϵ.

Taking the logarithm and rearranging the second inequality, we get
N∑

i=1
pi(1− pi) ≥ −2(Kh −Ks)2/ ln ϵ,

as a new constraint for ISP sampling probability to satisfy Equation (52). In other words, adding this
constraint on Equation (22) may result in a satisfied sampling probability.

E.3 Differences between biased client sampling methods

This section discusses the main differences between unbiased client sampling and biased client sampling
methods. The proposed K-Vib sampler is an unbiased sampler for the first-order gradient of objective 1. Recent
biased client sampling methods include Power-of-Choice (POC) (Cho et al., 2020b) and DivFL (Balakrishnan
et al., 2022). Concretely, POC requires all clients to upload local empirical loss as prior knowledge and selects
clients with the largest empirical loss. DivFL builds a submodular based on the latest gradient from clients
and selects clients to approximate all client information. Therefore, these client sampling strategies build a
biased gradient estimation that may deviate from a fixed global goal.

FL with biased client sampling methods, such as POC and DivFL, can be considered dynamic re-weighting
algorithms adjusting pi. Analogous to the Equation (1), the basic objective of FL with biased client sampling
methods can be defined as follows (Li et al., 2020b; Balakrishnan et al., 2022; Cho et al., 2020b):

min
x∈X

f(x) :=
N∑

i=1
pifi(x) :=

N∑
i=1

piEξi∼Di [Fi(x, ξi)], (53)

where p is the probability simplex, and pi is the probability of client i being sampled. The gradient estimation
is defined as gt = 1

K

∑
i∈St gi accordingly. The targets of biased FL client sampling are determined by the

sampling probability p as a replacement of λ in the original FedAvg objective 1. Typically, the value of p is
usually dynamic and implicit.

E.4 Theoretical Comparison with OSMD

The K-Vib sampler proposed in this paper is orthogonal with the recent work OSMD sampler Zhao et al.
(2021b)2 in theoretical contribution. We justify our points below:

a) According to Equations (6) and (7) in OSMD, it proposes an online mirror descent procedure that optimizes
the additional estimates to replace the mixing strategy in Vrb Borsos et al. (2018). The approach can be also
utilized as an alternative method in Equation (12).

b) The improvement of the K-Vib sampler is obtained from the modification of the sampling procedure. In
contrast, the OSMD still follows the conventional RSP, as we discussed in Lemma 2.1. Hence, our theoretical
findings of applying the ISP in adaptive client sampling can be transferred to OSMD as well.

In short, the theoretical improvement of our work is independent of the OSMD sampler. And, our insights
about utilizing the ISP can be used to improve the OSMD sampler. Meanwhile, the OSMD also suggests
future work for the K-Vib sampler in optimizing the additional estimates procedure instead of mixing.

2we refer to the latest version https://arxiv.org/pdf/2112.14332.pdf
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Figure 6: Distribution of used datasets across clients.
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Figure 7: Regret of baseline algorithms with different K

F Further Experiments

The experiment implementations are supported by FedLab framework (Zeng et al., 2023b). We provide
additional experimental details, experiments, and discussion in this section.

F.1 Experiment Details

Hyperparameters Setting. All samplers have an implicit value G related to the hyperparameters. We
set G = 0.01 for the Synthetic dataset task and G = 0.1 for FEMNIST tasks. We set η = 0.4 (stability
hyperparameter) for Mabs (Salehi et al., 2017) as suggested by the original paper. Vrb Borsos et al. (2018)
also utilize mixing strategy θ = (N/T ) 1

3 and regularization γ = G2 ∗ N/θ. For the case that N > T in
FEMNIST tasks, we set θ = 0.3 following the official source code3. For Avare El Hanchi & Stephens (2020),
we set pmin = 1

5N , C = 1
1
N −pmin

and δ = 1 for constant-stepsize as suggested in Appendix D of original paper.
For the K-Vib sampler, we set θ = ( N

T K )1/3 and γ = G2 N
Kθ . We also fix γ and θ = 0.3 for our sensitivity

study in Figure 3(d).

Data distribution across clients. We present the data distribution across clients in Figure 6. The data
samples are extremely unbalanced and long-tailed, matching the real-world applications. It also shows the
significance of variance reduction techniques.

F.2 Additional Experiments

Baselines with budget K. Our theoretical results in Theorem 5.2 and empirical results in Figure 3(a)
reveal a key improvement of our work, that is, the linear speed up in online convex optimization. In contrast,
we provide additional experiments with the different budget K in Figure 7. Baseline methods do not preserve
the improvement property respecting large budget K in adaptive client sampling for variance reduction.
Moreover, with the increasing communication budget K, the optimal sampling value is decreasing. As a
result, the regret of baselines increases in Figure 7, indicating the discrepancy to the optimal is enlarged.

Total variation distance over communication rounds. In Figure 9, we provide the TV between
probabilities of K-Vib and uniform probabilities. It shows that the trends of TV distances are dependent on
data distribution across clients. The TV distances change more with a large degree of heterogeneity across

3https://github.com/zalanborsos/online-variance-reduction
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Figure 9: Evolution of TV distance between K-Vib probabilities and Uniform probabilities.

clients. This indicates that K-Vib can accurately be adaptive to data distributions across clients. Moreover,
we note that the trends of TV curves are different in AGNews and CCNews, as their loss types (classification
loss and next-token-prediction loss) and model architectures (Bert and GPT) are different.

F.3 Efficient Implementation

In experiments, we do not find a heavy computation time increase compared to baselines as our experiments
only involve thousands of clients. To guarantee practical usage for large-scale systems, we present efficient
implementation details of K-Vib.

We can maintain a sorted list of cumulative local weights [ω(1), ω(2), . . . , ω(N)] such that ω(i) ≤ ω(j), ∀i, j ∈
[N ] in Algorithm 2. For each communication round, the server receives feedback values as a list [πt(j)],∀j ∈ St.
Then, the server will traverse the feedback list. For each element in the list, the server conducts two main
steps as below:

• Step 1: For each j ∈ St, server computes estimates ω̃(j) = ω(j) + π2
t (j)/pt

j . Then, the server uses
binary-search to find the index k such that ω(k) ≤ ω̃(j) < ω(k + 1) in the cumulative local weights.

• Step 2: Then, server update ω(j) = ω̃(j) and move the position of ω(j) behind ω(k) to update the
weights sequence.

This implementation implements a time complexity of O(T ·K · log N), where T is the communication round,
K is the communication budget, and N is the number of clients. For each communication round t ∈ [T ], the
server updates K times of the list with each time cost O(log N) to conduct one binary search.
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