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ABSTRACT

s

Video understanding has seen significant progress in recent years, with models
performance on perception from short clips continuing to rise. Yet, multiple recent
benchmarks, such as LVBench, Neptune, and ActivityNet-RTL, show performance
wanes for tasks requiring complex reasoning on videos as queries grow more
complex and videos grow longer. In this work, we ask: can existing perception
capabilities be leveraged to successfully perform more complex video reasoning? In
particular, we develop a large language model agent given access to video modules
as subagents or tools. Rather than following a fixed procedure to solve queries as in
previous work such as Visual Programming, ViperGPT, and MoReVQA, the agent
uses the results of each call to a module to determine subsequent steps. Inspired by
work in the textual reasoning domain, we introduce a critic to distinguish between
instances of successful and unsuccessful sequences from the agent. We show
that the combination of our agent and critic achieve strong performance on the
previously-mentioned datasets.

1 INTRODUCTION

Advances in video understanding have been propelled by multimodal large-language models
(MLLMs) trained end-to-end on visual and text inputs (Hurst et al., 2024} Team et al., 2023} [2024;
Bai et al.| [2025). While these systems have made major strides in basic perception, they often falter
with queries demanding compositional, multi-step reasoning over long videos (Wang et al., [ 2024b;
Nagrani et al.l 2024; Huang et al.| [2024)). Recently, tool-augmented inference has emerged as a
powerful class of models towards achieving compositional reasoning in a a variety of domains (Zhou
et al.,|2023;|Wang et al.} 2024a). These methods decompose a query into sub-tasks, invoke specialized
modules, and scale to large contexts by selectively “zooming-in” on the relevant portion of the input
given appropriate tools. These modular inference approaches offer (i) interpretable decision chains,
(i1) graceful scaling as context length and task complexity grow, and (iii) a natural substrate for
inference-time reasoning, as they generate structured reasoning traces by construction.

These approaches have not scaled to the complexity and size of video reasoning tasks in large part
because they lack the ability to adapt their procedures during execution. Current tool-based methods
typically generate fixed procedures (Gupta and Kembhavi, 2023}, [Suris et al., |2023) or use hand-
designed stages (Min et al., 2024) that are directly executed. Such fixed plans require meticulous
prompt engineering of API declarations and in-context examples, as the plan cannot be changed
once execution starts. This rigidity requires models to stitch together module outputs that they never
actually observe, and systems must decide which tool to use when (and with what inputs) without
having seen any cases of where the tools succeed or fail. Consequently, one poor decision snowballs
into unrecoverable errors and propagates hallucinations unchecked (Tong et al., 2024; |Stani€ et al.|,
2024). Video exacerbates this problem because the potential points of failure increase. Rather than
rolling out inference plans and hoping for success, if systems adapted their plans to intermediate
results as well as explored different strategies, they could find plans that work better depending on
the situation.

We introduce Critic-Augmented Video Agentic Reasoning (CAViAR), which pairs a
program-generating agent with a natural-language critic. The agent iteratively composes
video modules into sequences of executable programs, considering the result of each before
moving on to the next step, enabling adaptability over the course of reasoning. It thereby generates
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Query

The “Stud Dry Anchor” went on sale after the price shown in this video and is now
25% off. How much does it cost now?

(1)14.93 (2) 8.44 (3) 19.82 (4) 6.28

Agent Strategy A

Step 1 Step 1

think(“First I’11 determine the price of the product.”) directly with the

First I'll determine the price of the product. . . . N B
| will try to answer the question directly with the retrieval_ga tool.

Step 2
price_info = find_when(query='price of Stud Dry Anchor Step 2
shown', input_video)

answer = retrieval_ga(question="The ‘Stud Dry Anchor’ went

on sale after the price shown in this video and is now 25%

["01:21", "01:23"]: The video shows an Amazon page displaying the price off. How much does it cost now? (1) 14.93 (2) 8.44 (3)
of the ITW Dixie 25316 50PK/50 Stud Dry Anchor at $19.91. [...] 19.82 (4) 6.28", input_video)

Step 3 The video shows the Stud Dry Anchor costs $11.91. Therefore, the price
after a 25% discount is $8.93.

original_price = 19.91
discount = © Step 3
discounted_p original_price * (1 - discount)
al price of the Stud Dry Anchor was
| A 25% discount means the new price is
${discounted_price}.")

think("None of the provided options match the calculated
sale price of $8.93. There may be an error in the question
or the provided options. I will pick randomly.")

None of the provided options match the calculated sale price of $8.93.
There may be an error in the question or the provided options. | will pick
randomly.

Based on the video, the original price of the Stud Dry Anchor was
$19.91. With a 25% discount, the new price is $14.93.

Step 4 | Step 4 |

finish(“Final Answer:

Critic Output

Strategy A breaks down the question to find when the price of the Stud Dry Anchor is shown, then computes the final answer. Strategy
B attempts to use the retrieval_ga tool directly, which appears to result in a hallucinated price, ultimately guessing.

Winning Strategy: A

Figure 1: CAViAR consists of a reasoning agent that produces sequences of programs to solve video
queries with different strategies, followed by a critic that selects the most promising reasoning. Each
program invokes visual modules that use the video as input, rather than it being providing as input a
single time at the start. We show two strategies here for illustration.

interpretable reasoning traces that lend themselves well to verification, as seen in Agent Strategies A
and B in Figure[T} The critic inspects multiple reasoning traces reflecting different solution strategies
and selects the most plausible sequence based on examples it has seen, producing natural language
feedback as shown by the Critic Output in Figure[I] By comparing multiple strategies, the critic
enables success in cases where some approaches lead to success while others fail. Together, the
agent and critic allow CAViAR to sidestep brittle tool choices and mitigate hallucinations, achieving
state-of-the-art results across multiple tasks and datasets.

CAViAR has many benefits over previous modular approaches: it is interpretable, as each step cor-
responds to a short program that can be easily examined; it enables scaling the performance of a
single underlying model with no additional training; it avoids issues of customizing module selection
to a particular domain, as the critic selects the most promising strategy; it affords compositionality
without extreme hand-tuning of module definitions, as the reasoning agent can see module outputs
in-context to decide how to use them; and it is general, easily incorporating any additional video
modules or Python code that may be useful for a particular domain.

In summary, our contributions are:

1. We present a framework for video understanding using agentic reasoning on video modules.

2. We introduce a critic, which highlights how small amounts of feedback can be used towards
substantial performance improvements while avoiding dataset-specific tuning of modules.

3. We show CAViAR demonstrates strong performance on multiple tasks such as temporal localization
with reasoning and long video question answering on recent, difficult datasets.
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2 RELATED WORK

LLMs, Augmented Inference Procedures, and Text Reasoning. A wide range of work has emerged
in recent years using large language models to better solve text reasoning tasks. (Cobbe et al.|(2021)
introduce process supervision, the idea of using information from the model’s stated chain-of-thought
reasoning to select better answers. |Zelikman et al.| (2022) filter for chain-of-thought rationales with
correct final answers and train the base model further on those. Noting that a correct final answer
may not correspond to correct reasoning, Hosseini et al.| (2024)) build on this by incorporating a
verifier trained on pairs of correct and incorrect solutions to predict a scalar value indicating whether
a given candidate rationale is correct, using it at inference time to select the best answers. [Zhang et al.
(20244a)) observe that training to produce a scalar value may miss out on the benefits of pretrained
LLMs’ inherent reasoning capabilities. They point out that the scalar-output verifier approach cannot
make use of human-written natural language critiques for why a given candidate answer was wrong
rather than just whether it was correct or not, showing that using natural language generation with
such critiques to rank reasoning outputs outperforms discriminative scalar-output verifiers. TORA
empowers LLMs with tools for mathematics such as computation libraries callable from Python (e.g.,
sympy), sequentially using code to call tools for math problems. The tool call trajectories are trained
to imitate a stronger model, then are filtered for correctness to train the base agent further. These
works consider the domain of math word problems, due to its relative ease of verification and the
natural breakdown of problems into a structured form of steps and their results.

Video Understanding and Video Reasoning. Substantial recent progress in video understanding
and video reasoning has come from multimodal language models (Hurst et al., [2024; [Team et al.}
2023; 2024} Bai et al., [2025)). These models are trained with a mixture of video and text inputs to
perform next-token prediction of text tokens. SeViLA finetunes the BLIP-2 text-image model to
perform localization and QA tasks for video (Yu et al.,2023). Zhang et al.|(2024b) demonstrate that
synthetic data to copy a stronger model can be a powerful signal for weaker models to understand
video. LITA (Huang et al.,[2024) finds that despite performance on temporal localization benchmarks,
video models struggle to perform localization tasks that requires reasoning. They introduce the
ActivityNet-RTL dataset to evaluate this reasoning temporal localization, and show that training with
synthetic data from strong teacher models substantially improves performance on this task.

Agents and Tool Use in Vision. As the ability of large language models to use tools and perform
agentic reasoning has grown, some work has emerged in the visual arena making use of these
abilities. Visual Programming (Gupta and Kembhavi, 2023)) and ViperGPT (Suris et al., [2023)
prompt a language model to produce a program using computer vision tools that solves input queries,
philosophically following Johnson et al.|(2017)), which aimed to perform visual reasoning by learning
to generate programs prior to the advent of large language models. Visual Programming relies on
many hand-written examples of programs using the given tools. ViperGPT instead defines an API for
the provided tools and uses fewer examples, as well as showing some results in the video domain.
Further work has found that both the choice of modules per dataset (Khandelwal et al.,[2023) and the
examples constructed (Stanic et al.,|2024) substantially influence the performance of single-program
approaches. AVIS (Hu et al.,[2023)) goes beyond single-program approaches to use tools with tree
search for knowledge-intensive image question answering. They define a transition graph of valid
tool sequences, which define the tools a language model can choose to use next after each tool. The
approach successfully goes beyond fixed procedures, but relies heavily on human knowledge and
examples as well as being focused on single images.

Various methods have also emerged recently in this direction specific to video. LLoVi (Zhang
et al., 2023) uses a frozen captioner on frames and passes them to an LLM to produce an answer.
VideoAgent (Wang et al., [2024c) and VideoTree (Wang et al., [2024d) both use modified inference
procedures for video primarily in their selection of frames, both using captions and text similarity.
VideoAgent captions every frame and uses an additional frozen image-text similarity model (CLIP
(Radford et al.,|2021)) to choose frames, iteratively using the captions from those frames with an
LLM to produce an answer. They repeat this caption-and-retrieve process, prompting an LLM to ask
whether the question has been answered confidently each time until a confidence threshold is reached.
VideoTree uses a tree-based representation to build a set of key frames to caption via clustering,
then using these captions with an LLM to produce a final answer. MoReVQA (Min et al., [2024)
identifies shortcomings in the single-program approach when applied to video, in particular that
such planning methods are brittle, failing when inputs do not conform to the expectations set out in
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the generated program. They define a three-stage procedure specific to video using visual modules:
event parsing, grounding, and reasoning, leading to a final prediction. These fixed stages are used to
produce predictions for video queries given few-shot examples of how to use the tools provided.

3 METHOD

3.1 OVERVIEW Query q Video Input x

Th'e Rroduct Wfant on sale after the price showr}in —
Given a VideO and a prompt, the zr;:tvr;%i;)?and is now 25% off. How much does it ',‘5" | LW - *’
reasoning agent iteratively gener- I
ates and executes programs, us-
ing provided video-processing mod- Reasoning Agent
ules and a Python interpreter to
ultimately converge to a final an-
swer. We refer to the resulting se- Reasoning Trace Samples
quences as reasoning traces or tra- \
jectories, as they comprise the full [
history of steps taken by the reason-
ing agent to understand the input, Stepo—
reason through the question, and
produce a final answer. The reason-
ing traces produced by the agent
are provided to the critic, which
provides natural language feedback
on their likelihood of success. The Stept :
feedback from the critic is used to
select one of the candidate reason- r,
ing traces and its associated final
answer. Figure [ shows the overall
procedure. We detail this process Figure 2: The CAViAR system. The reasoning agent generates
in this section. reasoning traces to solve the query using video modules. The
critic selects the best, yielding a final answer.

Reasoning Critic

&

Critic Output
Step 1

Final Answer
$14.93

. |

3.2 REASONING AGENT

Given a visual (or multimodal) input x and a textual query g, CAViAR first generates a program
z1 = m(q) with the reasoning agent. The reasoning agent 7 is by design fairly simple. We provide it
an API for the provided video modules (discussed in the next section) in the form of Python function
headers and docstrings.

We note that the exact specifications of outputs need not be as exact as when using a single-program
system, as discussed later in this section. The input to the reasoning agent 7, this API (found in full
in the Supplementary Material) is comprised of similar definitions for every video module.

The execution engine ¢ executes this program on the inputs using the code interpreter and the provided
video modules, obtaining the result 71 = ¢(x, z1). This already can be a competitive approach in
some circumstances, as demonstrated by (Suris et al., 2023} |Gupta and Kembhavi, 2023)). Yet, the
single-program approach has multiple limitations that make its application difficult in practice, as we
show in our ablations. It requires careful design of the modules provided, their API descriptions, and
the associated examples to ensure the program generator can write programs that use their outputs
without being able to see them and decide how to use them next (StanicC et al., 2024). Unlike previous
work (Suris et al.| 2023;|Gupta and Kembhavi, 2023, we explicitly do not provide any hand-designed
examples of programs or reasoning traces to the agent. While this would likely improve performance,
annotating full programs or reasoning traces is challenging and requires expert annotators, which
would make the method less usable in practice.

The procedure does not end with the first generated program and result. Rather, the reasoning agent is
given both the generated program and its result and asked to produce another program as the next step
towards a solution, zo = m(q, z1,71). This procedure proceeds until the reasoning agent determines
it has found a solution, producing a new program z; based on the full history of program and results
and executing it to obtain the next result.
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The reasoning agent thus produces a sequence S = (21,71, 22,72, . . ., Zn, 'n) culminating in the
final answer in r,,. (Note that the number of steps, n, is not fixed and can be freely decided by the
reasoning agent.) We refer to this sequence S as a reasoning trace, or equivalently a trajectory.

3.3 VIDEO MODULES AND THEIR API

We aim for a minimal, yet general set of video modules for the experiments we present here. The
framework allows for any additional modules to be added on. In all cases, the full range of Python as
a programming language is already taken as given — these modules are what we provide on top, thus
we do not explicitly note e.g., a ‘calculator’ tool here. We provide an overview of the modules used
and our reasons for including them here, with further implementation details in the Supplementary
Material. As a note of terminology, we follow the broader multi-agent literature and refer to the base
model being used with different prompts or inference schemes as agents (or subagents) while other
operations, such as programmatic ones, are referred to as tools.

Visual Retrieval + QA (retrieval_ga). One of the most fundamental capabilities needed to
understand long videos is the ability to obtain the most visually relevant frames to a given query and
use them to get the information corresponding to said query. Retrieval of relevant frames also allows
for further intermediate interpretability via visual inspection. In order to use a single model, we
perform this retrieval by prompting the model with a sliding window of the frames up to the limit of
its context window. At a high level, it uses the visual capabilities of the underlying model to directly
ask which individual frames are visually relevant in the given window; the identified frames are then
considered to respond to the query. Please see Supplementary Material for further discussion.

Temporal Grounding (get_segment). Aside from considering the relevant portion of a video
based on its visual content, another important ability is to ground temporal information to the video
— that is, select the most relevant part of the video based on explicit times. Given a start and end
timestamp (and the frame rate for any input video as given), this tool allows the agent to use temporal
information in this way by simply trimming out the relevant segment. This can also enable better
interpretability in knowing which part of the video the agent chose to consider.

Temporal Localization (£ind when). The natural converse, then, is to identify time information
from the video. Given a query corresponding to an event or action, this subagent aims to determine
potential ranges of time (identified by a start timestamp and an end timestamp) that may correspond to
the given query along with a brief description of what led it to output each range. If the video is longer
than the context length available, this subagent also employs a windowed approach, considering
the information corresponding to each window and returning any possible ranges found from each
window. Its specialized instructions guide it to prioritize recall over precision so as to give the
reasoning agent as much information as possible.

ASR Understanding (asr_understanding). When a video contains speech, it often contains
critical context to the visual content of the video. This subagent takes a query and attempts to identify
any relevant information from an automatic transcription of the speech in the video. If the transcript
is too long for the context, it obtains information from each piece up to its context window, then tries
to consolidate the information obtained from the different parts of the transcript.

Think (think). This basic tool simply allows the reasoning agent to perform a step of explicit
verbal reasoning to plan its next tool use before proceeding. It allows the reasoning agent to use a
step to reason instead of to use a tool and returns the text reasoning from the agent on how to proceed.

Completion (finish). The agent indicates its final answer and ends the agentic inference procedure.

3.4 REASONING CRITIC

Simply taking the final answer from a single sequence can be a competitive approach, as we later
show. Yet, especially when multiple available modules seem like they could lead to a solution,
performance can degrade with the single-sequence approach, as we show in our ablations. We note
the reasoning agent can make two major categories of errors: faulty reasoning, or tool malfunction.

The reasoning critic, ¢, presents a natural solution to this problem. Rather than sampling a single
sequence and accepting the result, we can produce multiple .S;, each representing different strategies
the reasoning agent can use to obtain an answer. The reasoning critic then critiques the sampled
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strategies according to its inherent reasoning capabilities and any examples it has been provided to
learn from. Attempting to fact-check from the visual input would raise a chicken-and-egg problem:
the critic would in some regards need more reliable visual processing capabilities than the agent
itself to make corrections rather than fall for the same hallucinations. In addition, language models
have been shown to be poor evaluators of their own predictions without additional information or
comparison (Kamoi et al., |2024; Huang et al.l |2023); we demonstrate in Section E] that such self-
evaluation results in reduced accuracy. Instead, the critic asks: based on the examples of reasoning
traces that have succeeded and failed, how likely is this reasoning trace to succeed? That is, how
successful are the reasoning and tool calls given what has worked in the past? Considering these text
reasoning traces are also less intensive than entire videos, the feedback from the critic can be used to
pick the most promising strategy, as we primarily consider here, or could be used in other ways, such
as to provide feedback for further steps from the reasoning agent.

Given reasoning traces \S; corresponding to various sampled strategies, the reasoning critic ¢ aims
to provide a critique in the form of natural language feedback for the given strategies; its ultimate
goal is to provide a recommendation for which strategy may be the most promising. To obtain
trajectories corresponding to markedly different strategies, we provide the reasoning agent different
subsets of modules that can lead to a final answer, observing that standard temperature sampling did
not produce significant variation in outputs in the video modeling setting. If a module can directly
produce an answer of the appropriate type for the query, it is directly applied with guidance to write
out its reasoning to provide the critic more information. (For instance: the retrieval_ga module
produces valid outputs for QA problems while the temporal grounding tool does not.)

Inspired by work in the RLHF space, we note that it is easier both for models and humans to
identify a preference between presented options than to assign a well-calibrated numeric score to
each independently (Christiano et al., [2017). We therefore present all sampled strategies to the
reasoning critic at once, prompting it to critique the given strategies and identify any that could be
considered ‘winning strategies.” We demonstrate that the critic can achieve strong performance using
a small number of in-context examples. Each in-context example is constructed with a question, each
sampled strategy, an optional brief critique, and a list of the winning strategies.

4 EVALUATION

CAViAR can handle a variety of tasks involving multimodal inputs depending on the tools provided.
We showcase this with two tasks across three different datasets: two multiple-choice complex long
video question answering settings on the LVBench (Wang et al.| 2024b)) and Neptune (Nagrani et al.,
2024) datasets, and the reasoning temporal localization task on the ActivityNet-RTL dataset ((Huang
et al., 2024))).(Additional comparison to prior work on the EgoSchema dataset (Mangalam et al.,
2023)) is presented in the Supplemental Material.)

For our primary results, we consider Gemini Flash 1.5 with 32k token (roughly 120 frames) context
as our base model due to a combination of 1) its base ability to process videos 2) its ability to act as
an agent given instructions 3) cost, speed, and compute/credit availability considerations. Towards
the goal of scaling performance of one model, we implement the critic with the same base model as
the agent. To show the generality of our method, we also show some results with GPT-40-mini in the
Supplementary Material. Selecting subsets that result in different strategies leads to 3 strategies for
the tasks we consider given the modules described in Section[3.3] We use 4 in-context examples for
the critic for each dataset. Full details can be found in the Supplementary Material.

4.1 COMPLEX VIDEO QA

First, we explore video question answering. With the rise of powerful video models, difficult
benchmarks such as LVBench (Wang et al.,|2024b) and Neptune (Nagrani et al., 2024} have emerged,
each with unique challenges.

We consider the LVBench dataset (Wang et al.| 2024b) (CC-BY-NC-SA-4.0 license) to explore
the performance of our method on visually challenging, very long videos. LVBench focuses on
visual understanding of particularly long videos, spanning multiple hours. The dataset covers a
wide range of domains, including everyday activities, sports, entertainment, and more. Audio and
speech information are not allowed, making it a challenging visual-only measure of performance. No
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Table 1: LVBench Results. We report accu- Table 2: Neptune Results. We report accu-
racy on the evaluation set. Direct inference and racy on the evaluation set. Direct inference
CAViAR results use Gemini 1.5 Flash. Other re- and CAViAR results use Gemini 1.5 Flash. Other
sults reported from dataset leaderboard results reported from original dataset

tal} 20235). etal} 2029)

Accuracy (%) 1 Accuracy (%) 1

Kangaroo (Liu et al. 38.3 VideoLLaMA?2 (Cheng et al.|[2024 447
GLM—4V»lgl_(Trﬂ'Ius» 48.7 Yideol LaMA2 W2 R(Cheng et al.| 2024 o3
Qwen2.5-VL (7B) (B : 453 AT | s
Qwen2.5-VL (72B) (B mﬂl 473 MiniCPM. =0T 66
mPLUG-Owl3 (Ye ct al.| 2024 435 bk LA :

Direct Inference 51.4
Direct Inference 46.0 Direct Inference with ASR 74.9
CAViAR 62.0 CAViAR 71.2

supervised methods are available to compare to as there is no training set. Neptune
(CC-BY/Apache 2.0 license) uses audio information such as speech alongside long videos
consisting of many frames. It also covers a wide range of domains, with a focus on varied, complex
types of question, such as counting and temporal ordering of events. We evaluate on the full dataset
(Neptune-Full).

Results for LVBench can be seen in Table|l| CAViAR yields a 13% absolute improvement over the
state of the art. Results for Neptune can be seen in Table CAViAR yields improvement even over
direct inference with ASR provided manually, showing the agentic approach not only successfully
integrates the ASR information with the asr_understanding module but goes further.

4.2 REASONING TEMPORAL LOCALIZATION

The next task we consider is reasoning temporal localization (RTL). Traditional temporal localization
aims to identify a time range in a video that corresponds to when a directly visible action or event
occurred. [Huang et al.|(2024)) introduce the reasoning time localization task and the ActivityNet-RTL
dataset (videos MIT license) with the goal of evaluating queries that require reasoning on top of the
localization capabilities to determine an answer. For instance, consider Figure[3] Asking to localize
when the woman is communicating with the camera but not interacting with any objects requires
not only the direct perception capability to recognize when she is talking to the camera, but also
the reasoning capabilities to understand negation and pick the particular instance when she is not

Query
When is the woman not seen interacting with any objects
but simply talking with the camera?

Critic Selected Reasoning Trace
Agent Step 1

time_ranges = find_when(query="woman talking to camera, not interacting with object")

['00:07 - 00:15','00:52 - 01:067: From 00:07 to 00:15, a woman is shown talking with the camera without interacting with
any objects. From 00:52 to 01:06, she is again shown talking with the camera, holding a cocktail.

Agent Step 2 l

think("The tool find_when returned two time ranges. It indicates that in the first range, she is
talking with the camera without interacting with objects, which fits the question. In the second,
she is holding a cocktail, which is an object. Therefore, only the first is relevant.")

The tool find_when returned two time ranges. The description indicates that in [...]

Agent Step 3

final_answer = finish("Final answer: ['©0:07 - ©0:15"']")

[00:07’,‘00:15]

Figure 3: Reasoning temporal localization. Queries require identifying a time range for events/ac-
tions that requires reasoning. Here, the critic chooses a strategy which initially finds multiple ranges
but correctly reasons which should be included in a final answer.
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interacting with any objects. We include this task to showcase CAViAR’s capabilities beyond standard
question answering.

We compare to the fully supervised state- Table 3: ActivityNet-RTL Results. We report mIOU on
of-the-art LITA as well as to the base the evaluation set. Direct inference results use Gemini 1.5
MLLM. The metric for RTL is mean Flash. Other results reported from (Huang et al,[2024).
intersection-over-union (mIOU), the av-

erage overlap with the ground truth range mIOU 1

over the total union of both across all

data points. Table [3] shows the results.

CAViAR improves on direct usage of the Dircot Inference 230

same model by more than 9 points. CAViAR 323

5 ABLATIONS AND QUALITATIVE RESULTS

We perform ablations to elucidate what makes CAViAR work with the LVBench and Neptune datasets.

Critic vs no critic One may think on first glance that the reasoning agent armed with video modules
could be sufficient on its own. Table ] shows that not using the critic results in a stark drop in
performance, almost to the level of direct inference. Why is this? Looking into the error cases,
we find that the £ ind_when module appears to be less reliable for very long videos, but given all
modules, the agent still tries to use it. This effect is particularly pronounced for LVBench, which has
very long videos. See Figure ] for an example. In this example, the agent tries to use this module to
find when the snake discovers the boy, but in its attempt to yield all potentially relevant information,
it reports 21 time ranges. For instance, one centers around the boy being found by a scorpion. This
module failure ultimately harms the performance of the agent given all modules. The critic sees
options sampled with multiple subsets of modules, and is able to pick more accurate strategies than
the one the agent picks by default. Prior work analyzing programmatic approaches (Khandelwal et al.,
2023)) identified their performance is similarly dependent on the set of modules specified per dataset.

Query % # e
How does the snake find out that the boy has arrived? - d

discovery_times = find_when(query="snake discovers the boy's arrival")

["16:22","16:28"]: A woman with a snake-like lower bodly is first seen at 15:00. The boy arrives at 16:22. Therefore, [...]
["34:19", "34:51"]: Starting at 34:19, a scorpion-like creature is shown, which could be interpreted as a snake. [...]
['68:28", "69:07"]: The snake (a large, blue serpent-like creature) is present starting at 68:28. [...]

[...]

Figure 4: Module reliability. The £ ind_when module often reports tangentially relevant, distracting
information when applied to long videos, often leading the agent with all modules to failure.

Reasoning agent vs single program How does generating a single program rather than using the
reasoning agent to produce a reasoning trace perform? We present the base model the same API for
the modules given to the reasoning agent and instead ask it to generate a single program that solves the
query, like in (Suris et al.l 2023) or (Gupta and Kembhavi, [2023). As seen in TableEL using a single
program results in nearly random performance in this setting. We find this is due to an overwhelming
number of guesses or exceptions from incorrect assumptions of modules when the model tries to
write a single program; unlike the agent, a single-program approach is not able to inspect the outputs
of a module to see what they actually are like beyond the initial impression from the API. See Figure
(] for a representative example. In this example, the program assumes the answer can be found in the
first 15 seconds and that the ret rieval_ga output will contain an exact answer. As the first 15
seconds do not contain the relevant information, this fails, and the program resorts to a guess. This
follows observations from [Stanic¢ et al.| (2024), who illustrate that single-program approaches are
dependent on extensive hand-tuning of API descriptions and expert-annotated examples of successful
programs using the provided modules.

Module configuration. How much of the critic’s performance can be attributed to finding a configu-
ration of modules that works in general rather than per-query? To compare this, we find the optimal



Under review as a conference paper at ICLR 2026

Table 4: Ablations.. Items in italics require or-

acle validation accuracy and are shown only to Table 5: Self-Evaluation vs Critic. Using self-

better understand the method evaluation (Wang et all [2024c) to terminate
using confidence scoring reduces performance,
Accuracy (%) | while the critic substantially increases it.
LVBench Neptune
Single Program 27.1 28.7 Accuracy (%) T
Single Program (Optimal Fixed Modules 433 42.0 Agent 47.1
Aggm gram (Op ) 47.1 725 Agent + Self-Eval Module 39.9
Agent (Optimal Fixed Modules) 59.8 76.5 Agent + Critic 62.0
Agent + Critic 62.0 77.2

fixed subset of modules possible, running each valid combination and considering the evaluation accu-
racy across the dataset. (Note that rather than oracle per-question accuracy with variable modules, this
uses oracle full-dataset accuracy with fixed modules.) For LVBench, it uses both get _segment and
retrieval_ga; for Neptune, get_segment, retrieval_ga, and asr_understanding.
Note that this type of module selection typically requires oracle validation, and is therefore not a
realistic option in most settings; we present it here to better understand CAViAR. Using the optimal
subset of modules, the agent performance improves substantially, yet the critic goes even further.

Query Generated Single Program
What color are the birds at the beginning of segment = get_segment(start='00:00', end='00:15")
the video? answer = retrieval_ga(question, answer_options,

(1) Black (2) Yellow (3) White (4) Blue segment)

if "Black" in answer:
final_answer = "Final Answer: (1)"
elif "Yellow" in answer:

final_answer = "Final Answer: (1)"
finish(final_answer)

Figure 5: Modular assumptions hinder single program performance. In this case, the program
assumes the answer appears within the first 15 seconds and that ret rieval_ga output includes it
exactly. Finding no birds in that segment, it lacks viable answers and resorts to a guess.

Confidence self-evaluation vs critic. [Wang et al.| (2024c) introduce a ‘confidence’ module for
deciding when to lock in a final answer. Rather than the agent choosing when to finish and report a
final answer on its own as in our work, after each step they prompt an LLM and ask: on a scale of 1-3,
how confident are you in this answer? The system repeatedly tries to gather new information until this
‘self-evaluation” module reports a confidence of 3, at which point the answer is reported. This could
be considered an alternative in some ways to our critic; rather than producing a critique given different
strategies based on examples as our critic does, it critiques a single strategy based on the LLM’s prior
knowledge and ability to self-evaluate. We consider this comparison on LVBench in Table[5] We
find that in fact, using self-evaluation leads to a substantial drop relative to the agent deciding when
to produce an answer on its own. We find this stems from poor calibration of the self-evaluation
scores, for instance giving low confidence scores until repeatedly gathering irrelevant information.
This follows work showing LLMs are not good judges of their own reasoning in isolation (Kamoi

et all} 2024} [Huang et al.| [2023).

6 CONCLUSION

In this work, we present CAViAR, a framework for video understanding with agentic reasoning on
video modules augmented by reasoning critics. It uses an LLM-driven agent to write sequences of
programs, executed using visual modules. The critic selects the most promising strategies, which
we show allows for flexible use of modules without hand-customized module selection per dataset.
CAViAR thus uses additional compute with the same base model to improve performance. Overall, we
show CAViAR achieves strong performance on multiple reasoning-intensive video tasks.
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