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Abstract

Explainable AI (XAI) is a rapidly growing domain with a myriad of proposed methods as well
as metrics aiming to evaluate their efficacy. However, current literature is often of limited
scope, examining only a handful of XAI methods and ignoring underlying design parameters
for performance, such as the model architecture or the nature of input data. Moreover, they
often rely on one or a few metrics, neglecting thorough validation and increasing the risk
of selection bias. These shortcomings leave practitioners confused about which method to
choose for their problem. In response, we introduce LATEC, a large-scale benchmark that
critically evaluates 17 prominent XAI methods using 20 distinct metrics. We systematically
incorporate vital design parameters like varied architectures and diverse input modalities,
resulting in 7,560 examined combinations. Through LATEC, we first showcase the high
risk of conflicting metrics leading to unreliable rankings, and propose a robust evaluation
scheme. Further, we comprehensively evaluate various XAI methods to assist practitioners
in selecting appropriate methods aligning with their needs. Curiously, the emerging top-
performing method, Expected Gradients, has not been examined in relevant related studies
before. LATEC reinforces its role in future XAI research by publicly releasing all auxiliary
data, including model weights, over 326k saliency maps, and 378k metric scores as a dataset.
The benchmark is hosted at: https://github.com/kjdhfg/LATEC.

1 Introduction

Explainable AI (XAI) methods have become essential tools in numerous domains, allowing for a better
understanding of complex machine learning decisions. The most prevalent XAI methods originate from the
domain of saliency maps (Simonyan et al., 2013). As the diversity and abundance of proposed saliency XAI
methods expand alongside their growing popularity, ensuring their reliability becomes paramount (Adebayo
et al., 2018). Given that there is no clear “ground truth” for individual explanations (e.g., discussed in
Adebayo et al. (2020)), the trustworthiness of XAI methods is typically determined by examining three key
criteria: their accuracy in reflecting a model’s reasoning (“faithfulness”) (Bach et al., 2015; Samek et al.,
2017), their stability under small changes (“robustness”) (Yeh et al., 2019; Alvarez Melis & Jaakkola, 2018),
and the understandability of their explanations (“complexity”) (Chalasani et al., 2020; Bhatt et al., 2021).
Beyond qualitative assessments such as in Doshi-Velez & Kim (2017); Ribeiro et al. (2016); Shrikumar et al.
(2017), which can be influenced by human biases and don’t always scale well (as shown by Wang et al. (2019);
Rosenfeld (2021)), a wide array of metrics have been introduced to quantitatively evaluate XAI methods
based on these three criteria. These metrics are deployed in several studies (see Table 1) to determine "What
XAI method should I (not) use for my problem?".

However, this current work in validating XAI methods has two major shortcomings:

Shortcoming 1: Gaps and inconsistencies in XAI evaluation. Many studies restrict their analyses
to a limited set of design parameters such as modalities, (toy-)datasets, model architectures, methods, and
metrics, which all directly impact the performance of XAI methods (we define the first three parameters
as underlying design parameters, as they directly influence the XAI method). Table 1 demonstrates this
fragmented landscape specifically for the domain of computer vision, including discrepancies found across
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  XAI Method:  

Studies:

Attribution Attention 
OC LIME KS VG IxG GB GC SC C+ IG EG DL DLS LRP RA RoA LA

Adebayo et al. (2018) 
(nA = 5 (8), nE = 2) F F F F F

Nie et al. (2019) 
(nA = 2 (3), nE = 0) F F

Kindermans et al. (2019) 
(nA = 4 (8), nE = 1) F F F

Ghorbani et al. (2019) 
(nA = 3, nE = 3) R R R

Hooker et al. (2019) 
(nA = 3 (12), nE = 1) F F F
Yang & Kim (2019) 
(nA = 6 (9), nE = 3) F F F F F
Yeh et al. (2019) 

(nA = 4 (6), nE = 2) R R R R
Nguyen & Martìnez (2020) 

(nA = 3, nE = 4) C C C
Chefer et al. (2020) 

(nA = 5, nE = 1) F F F F F
Bhatt et al. (2020) 

(nA = 6, nE = 3) F/R F/R F/R F/R F/R
Arun et al. (2021) 
(nA = 5 (8), nE = 4) F F F F

Singh et al. (2021) 
(nA = 9 (12), nE = 0) C C C C C C C C

Kakogeorgiou et al. (2021) 
(nA = 8 (12), nE = 3) F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C

Dombrowski et al. (2022) 
(nA = 5, nE = 1) R R R R R

Arras et al. (2022) 
(nA = 6 (12), nE = 2) F F F F F F
Hesse et al. (2023) 

(nA = 11, nE = 3) F F F F F F

Ours * 
(nA = 17, nE = 20) F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C

Positive Neutral Negative
Relative assessment to other XAI methods in study:Evaluated Criteria: F Faithfulness, R Robustness, C Complexity


* Results for image modality

Table 1: Showing gaps and inconsistencies between 16 relevant related studies evaluating XAI methods.
Colors coincide with their ranking inside the study depending on the evaluation criteria. nA: Amount of
distinct XAI methods. nE : Number of evaluation metrics. If nE = 0, the study was conducted qualitatively.

studies, with some methods, such as GradCAM (GC) (Selvaraju et al., 2017), receiving contradictory assess-
ments depending on the evaluation setup. As a consequence, our current understanding of XAI performance
is limited, making it challenging for practitioners to determine a reliable XAI method for their specific use
case.

Shortcoming 2: Individual XAI metrics lack trustworthiness. Recently, numerous metrics have
been proposed to approximate evaluation criteria. However, a metric is always only a proxy for a criterion,
reflecting the diversity of perspectives, and they are distinguishable solely in their mathematical formulation.
Generally, studies apply one or two metrics to address a criterion (see nE in Table 2 for the total amount
of metrics used for evaluation in each study). Arguably, this is not a reliable measure of success, as these
limited subsets can lead to selection bias, overfitting to one metric and one perspective on the problem.
Consequently, rankings and scores of current work lack trustworthiness.

In response to these shortcomings, we developed LATEC: the first comprehensive benchmark tailored for
large-scale attribution & attention evaluation in computer vision. LATEC encompasses 17 of the most
widely-used saliency XAI methods, including attention-based methods, and evaluates them using 20 distinct
metrics (see Figure 1). Notably, LATEC integrates a variety of model architectures, and, to extend the
evaluation spectrum beyond traditional 2D images, we included point cloud and volume data, adapting
XAI methods and metrics as necessary to suit these modalities. In total, LATEC assesses 7,560 unique
combinations.

As LATEC systematically incorporates all vital underlying design parameters affecting XAI methods, we can
quantify their effect on XAI methods and perform a more trustworthy and generalizing benchmark, answering
Shortcoming 1. However, we can also use LATEC for metric analysis (also called meta-evaluation) to, a priori
of the evaluation of the methods, quantitatively validate ranking behavior of metrics, and determine a robust
evaluation mechanism, answering Shortcoming 2. Moreover, in support of future research, we’ve made all
intermediate data, including 326,790 saliency maps and 378,000 evaluation scores, as well as the benchmark
publicly accessible.
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Figure 1: Structure and design parameters of the LATEC framework with the output data for the LATEC
dataset of each stage.

2 The LATEC benchmark

The LATEC benchmark includes a framework and a dataset with the rankings as the final output. The
framework allows for for diverse large-scale studies, structuring the experiments in six stages (see Figure 1),
and the dataset provides reference data for evaluation and exploration. As the benchmark is easily extendable
and leverages the high-quality dataset for standardized evaluation, it also serves as a foundation for future
benchmarking of new XAI methods and metrics.

Utilized datasets For the image modality, we use ImageNet (IMN) (Deng et al., 2009), UCSD OCT
retina (OCT) (Kermany et al., 2018) and RESISC45 (R45) (Cheng et al., 2017), the volume modality the
Adrenal-(AMN), Organ-(OMN) and VesselMedMNIST3D (VMN) datasets (Yang et al., 2023), and the point
cloud modality the CoMA (CMA) (Ranjan et al., 2018), ModelNet40 (M40) (Wu et al., 2014) and ShapeNet
(SHN) (Chang et al., 2015) datasets.

Model architectures On each utilized dataset except IMN, where we take pretrained models, we train
three models to achieve the architecture-dependent SOTA performance on the designated test set (if available,
see Appendix A for a detailed description of all model trainings and hyperparameters). For the image modal-
ity, we use the ResNet50, EfficientNetb0, and DeIT ViT (Touvron et al., 2022) architectures, for the volume
modality the 3D ResNet18, 3D EfficientNetb0, and Simple3DFormer (Wang et al., 2022) architectures, and
for the point cloud modality the PointNet, DGCNN and PC Transformer (Guo et al., 2021) architectures.
The first two architectures are always CNNs (CNN1 and CNN2), and the third is a Transformer.

XAI methods In total, we include 17 XAI methods, 14 attribution methods: Occlusion (OC) (Zeiler
& Fergus, 2013), LIME (on feature masks) (Ribeiro et al., 2016), Kernel SHAP (KS, on feature masks)
(Lundberg & Lee, 2017), Vanilla Gradient (VG) (Simonyan et al., 2013), Input x Gradient (IxG) (Shrikumar
et al., 2017), Guided Backprob (GB) (Springenberg et al., 2015), GC, ScoreCAM (SC) (Wang et al., 2020),
GradCAM++ (C+) (Chattopadhay et al., 2018), Integrated Gradients (IG) (Sundararajan et al., 2017),
Expected Gradients (EG, also called Gradient SHAP) (Erion et al., 2020), DeepLIFT (DL) (Shrikumar
et al., 2017), DeepLIFT SHAP (DLS) (Lundberg & Lee, 2017), LRP (with ϵ-,γ- and 0+-rules depending on
the model architecture) (Binder et al., 2016), and three attention methods: Raw Attention (RA) (Dosovitskiy
et al., 2021), Rollout Attention (RoA) (Abnar & Zuidema, 2020) and LRP Attention (LA) (Chefer et al.,
2021). While the attribution methods are applied to all model architectures, the attention methods can only
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be applied to the Transformer-based architectures. For comparison reasons, we only consider the original
methods without adaptations, as several other works (Hooker et al., 2019; Yang & Kim, 2019) already
showed that advancing methods by VarGrad (Adebayo et al., 2018) or SmoothGrad(-squared) (Smilkov
et al., 2017) can, in general, improve results. We qualitatively tuned the XAI hyperparameters per dataset
(see Appendix B), as also commonly done in practice, to not bias the quantitative evaluation results (see
Appendix C for all hyperparameters). However, we observe that most hyperparameters transfer well over
all datasets within a modality.

Evaluation metrics The evaluation metrics are grouped into three criteria: faithfulness (is the ex-
planation following the model behavior?), robustness (is the explanation stable?), and complexity (is the
explanation concise and human understandable?). We utilize in total 20 evaluation metrics, of which 10
evaluate faithfulness, seven robustness, and three complexity (see Appendix D for a description of every
metric). We tune the hyperparameters per dataset as some depend on dataset properties (see Appendix
subsection D.2 for all parameters).

3D adaption While many XAI methods and metrics in LATEC are independent of the input space
dimensions, we had to extend many of them to 3D volume and point cloud data, building upon the imple-
mentations for image data by Kokhlikyan et al. (2020) and Hedström et al. (2023). We describe the adaption
process for all respective XAI methods and metrics in Appendix E and show illustrative saliency maps. All
adaptations were tested for their coherency.

Ranking computation As the nominal evaluation scores have no semantic meaning and their scales differ
between utilized datasets, we analyze the XAI methods based on their ranking. To this end, we compute
the median evaluation score over all observations on the dataset level and rank the methods accordingly,
achieving more robust results. See Appendix G for a detailed flow chart of how we get from evaluation scores
to rankings and Appendix N for the distribution of all scores before ranking. We utilize these rankings in
the subsequent metric analysis and benchmark and refer to Appendix C for all implementation details and
Appendix B for more information about the dataset and ranking computation.

3 Metrics analysis

How severe is the risk of metric selection bias in XAI evaluation? In Shortcoming 2, we describe
a risk of selection bias due to evaluating one or a few metrics. In our metrics analysis, we first aim to
provide empirical evidence for this risk. A first exploratory analysis quickly supports the hypothesis, as we
encounter strong ranking disagreement for various combinations of underlying design parameters. Figure 2
(a.) demonstrates the ranking behavior of four selected XAI methods for one selection of underlying design
parameters. The line charts show the agreement and disagreement in ranking between metrics, with the
average aggregated rank to the right. For faithfulness, we observe high disagreement between metrics in
the case of GC and IG and one strong outlier for DLS. However, the rankings of other XAI methods, e.g.,
LIME in this case, are reasonably stable. The inquiry emerges as to whether the risk of selection bias is
generally present in certain combinations of underlying design parameters or is uniformly distributed across
them. To this end, we computed the standard deviation between metric rankings mean aggregated for each
underlying design parameter (see results for volume and point cloud modalities in Appendix H). Figure 2
(b.) shows that the average standard deviation is generally stable within each evaluation criterion. Thus, we
can conclude that there is no single model architecture, modality, or dataset choice that has a substantial
effect on the disagreement between metric rankings of all XAI methods.

Now that we can rule out the general influence of underlying design parameters, we quantify how strong the
risk of selection bias, i.e., disagreement, actually is and if there is a difference between XAI methods. To
this end, we utilize a one-sided Levene’s Test (Levene, 1960), testing if the rank-variance of a set of metrics
is significant (α = 0.1) lower than the variance of a random rank distribution, which can be analytically
inferred. We compute this test for every possible combination of design parameters and show the average
acceptance rate of the test per XAI method in Figure 2 (c.). By computing the weighted average proportion
at the bottom, we indeed observe strong variations between the XAI methods. Specifically for KS, EG, and
DLS, in a large majority of cases, metrics agree, while for OC, IxG, SC, and DL only in about ∼ 27% of the
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Attribution Method:

   Evaluation Criteria: OC LIME KS VG IxG GB GC SC C+ IG EG DL DLS LRP RA RoA AL Average

Faithfulness 0.0 0.56 0.78 0.67 0.22 0.22 0.56 0.11 0.56 0.33 1.0 0.22 0.67 0.22 0.17 0.17 0.17 0.44

Robustness 0.33 0.56 1.0 0.56 0.0 0.56 0.44 0.22 0.33 0.11 0.33 0.0 0.89 0.33 0.33 0.5 0.45 0.4

Complexity 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Weighted Average 0.27 0.63 0.89 0.68 0.26 0.46 0.58 0.28 0.55 0.35 0.77 0.26 0.80 0.38 0.35 0.41 0.41 0.51

a. Exemplary Ranking-(Dis)agreement between Metrics for each Criteria

Evaluation Criteria:

Model Architectures Utilized CV Datasets

ResNet50 EffNetb0 DeiT ViT IMN OCT R45

Faithfulness 3.35 3.31 3.45 3.43 3.25 3.43

Robustness 3.19 3.2 2.96 3.25 3.09 3.01

Complexity 0.43 0.48 0.47 0.38 0.63 0.37

Weighted Average 2.86 2.85 2.83 2.91 2.80 2.82

b. Avg. Standard Deviation for Image Model Architectures and Datasets

> 0.7 < 0.3

c. Proportion of smaller Metric Ranking Variance than Random Ranking Variance based on one-sided Levene Test 

over all Image Datasets and Model Architectures

Attention Methods only on Transformer Architectures

Figure 2: a. Distribution of ranks based on the different metrics for each criterion. Average rank to the
right of each plot. b. Average standard deviation per model architectures and utilized datasets. Weighted
average is based on the number of metrics per criterion. c. Proportion of accepted one-sided Levene-Tests
for significant (α = 0.1) smaller ranking variance compared to the variance of an entire random ranking.
Higher values show higher agreement between metrics. Weighted average is based on the number of metrics
per criterion.

cases variance in metric ranking is significantly lower than random ranking. Concluding, our findings reveal
that metrics disagree and agree in varying degrees depending on the XAI method.

How can we reliably benchmark and find robust trends within agreeing and disagreeing met-
rics? We argue that possible disagreement between metrics provides essential insights for XAI evaluation,
as it also reflects the diversity of perspectives and implementations of the criteria. Subsequently, it should
not be discarded but included in the benchmark. Thus, we propose the simple but effective approach of
mean aggregation over several metric ranks to get a robust estimator for each criterion invariant to the
bias of individual implementations. In the event of a lack of consensus among metrics, the average rank
is expected to converge towards an uninformative mean rank (as the "Average" faithfulness for OC and IG
shows in Figure 2 (a.)), and only robust and meaningful trends are detected (such as in the faithfulness case
of LIME and DLS). At the same time, we retain information about ambiguity through the standard error
of the aggregation.

In scenarios of high disagreement among metrics, potential biases could arise when considering only a limited
subset of metrics, a concern we have addressed in contrast to other studies via our diverse pool of metrics
and aggregation schema. To show that our pool of metrics and aggregation schema is unbiased from such
highly (dis-)similar ranking metric subgroups, we compute the average Euclidean distance (δ) between the
ranking of two metrics for the faithfulness and robustness criteria (see Appendix I). While the mean rank
distance between two metrics is around δ̄F = 4.45 and δ̄R = 4.14 respectively, we observe either substantially
higher agreement or disagreement on this aggregation level for 5 outlier pairs out of 40 for faithfulness
(CI0.9(3.1, 5.8)) and 3 out of 21 for robustness (CI0.9(1.5, 6.7)). By first selecting a favorable metric and
then pairing it with strongly similar ranking metrics based on this distance matrix, it is in theory possible to
selectively pair similar ranking metrics to deliberately skew results towards a favorable outcome (dissimilar
metrics for an unfavorable outcome). However, this is only possible for a very small subset of metrics. The
likelihood of any such "extremist subgroups" unduly and consistently influencing our large-scale study is
small. The closest relative to such a subgroup would be the Relative Stability metrics for robustness. To
ensure certainty beyond doubt, ranking independence from subgroup influence could also be ensured by using
the computed ranking distance matrices between the metrics for weighted aggregation.
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Evaluation 

Criteria: Faithfulness (n{A,M} = 90) Robustness (n{A,M} = 63) Complexity (n{A,M} = 27)

Modality: Image Volume
Point 
Cloud Image Volume

Point 
Cloud Image Volume

Point 
Cloud

OC 11.5 9 12 12.5 9.5 12 9 7.5 6.5
LIME 16.5 13 2 16 15 14 7 9.5 9

KS 16.5 12 3 17 17 12 12.5 12 10
VG 13 14 8.5 4 4 6.5 11 14 8
IxG 9.5 5 5 14.5 11.5 9.5 4 2 3
GB 7.5 10 1 6.5 8 12 5 6 5
GC 6 17 - 2.5 13 - 14 9.5 -
SC 4.5 11 - 10 15 - 10 16.5 -
C+ 11.5 15.5 - 5 11.5 - 15.5 16.5 -
IG 4.5 2 4 10 4 9.5 3 3.5 4

EG 1 3 7 2.5 1 6.5 17 7.5 11
DL 7.5 5 6 12.5 7 8 2 3.5 2

DLS 2 5 12 6.5 9.5 5 6 5 6.5
LRP 15 15.5 10 14.5 15 2 1 1 1

         
RA 14 8 8.5 1 6 3.5 8 11 12

RoA 9.5 7 12 8 2 3.5 15.5 13 14
LA 3 1 14 10 4 1 12.5 15 13

At
tri

bu
tio

n
At

te
nt

io
n

Top 1 Top 2-4 Bottom 2-4 Bottom 1Per modality:

Table 2: Average rank over model architectures, datasets, and all evaluation metrics of the respective criteria
for each XAI method and modality (i.e. the rank of OC on image is based on 3∗3∗10 = 90 ranks). Coloring
coincides with top and bottom positions as point cloud rankings are of length 14 and all others of length 17.

Encountered pitfalls in XAI metric application. During our analysis we encountered several critical
pitfalls of current metric application in XAI, to our knowledge not discussed before. Suspiciously, Figure 2 (c.)
indicates almost no disagreement between complexity rankings. By investigating complexity metrics further,
we observed that gradient and Deep Taylor Decomposition principle-based methods (IxG, IG, DL, and LRP,
see Table 2) are ranked as significantly less complex compared to the CAM and attention methods. In our
opinion, this observation is counterintuitive when comparing the complexity rankings to the saliency maps in
Appendix B, based on which we would classify CAM and attention methods as more clearly arranged and less
noisy. While all three complexity metrics were also explicitly proposed for image data, we notice that they
all treat each pixel, voxel, or point independently of each other, ignoring locality and favoring methods that
attribute to the smallest set of single pixels. As this approach possibly transfers to low dimensional images
such as MNIST (Lecun et al., 1998) or CIFAR-10 (Krizhevsky, 2009), the image datasets the three metrics
were originally presented on, we hypothesize that it may not be effective with higher-dimensional inputs as
observed in our study. Consequently, it is expected that techniques such as LRP would be highly regarded
due to their emphasis on filtering the significance of individual pixels, in contrast to CAM methods (GC,
SC, C+) that attribute importance to broader local regions. Whether these XAI methods are less complex
and more human-understandable on computer vision modalities is debatable and subsequent complexity
evaluation results should be interpreted with caution. While all metrics are theoretically very well founded,
we encountered several smaller pitfalls during our evaluation, which can be found in Appendix K. However,
even if a metric fails for a specific combination of design parameters, we still include them in the benchmark,
as the determination of such failure cases is pivotal to future work in metric analysis.

4 XAI benchmark results

Upon establishing a robust framework for evaluation, we address Shortcoming 1 by decomposing it into
four essential sub-questions. The first two questions aim to bridge gaps in research due to limited design
parameters, while the last two focus on resolving inconsistencies by identifying key trends in XAI method
performance. Every sub-question includes a set of four main findings (1-4), each of which consists of an
observation followed by a recommendation. For more fine-grained assistance in selecting the most appropriate
XAI methods, we refer to detailed ranking tables (see also Appendix J) and the LATEC dataset.
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Robustness ComplexityFaithfulness

a. Average Rank Correlation of Evaluation Metrics between Models

Avg. Kendal 

Rank Corr.

Avg. Kendal 

Rank Corr.

a. Average Correlation between XAI 

Rank and Model Performance

Avg. Pearson

Correlation

Standard Error

Mean Avg. per Modality

b. Average Rank Distance between Model Architecture Ranks for selected Attribution Methods

Figure 3: a. Average distance between ranks on different model architectures for CAM methods and LRP,
as their distance is well above the average. b. Correlation between ranks of XAI methods and model F1
test scores, aggregated for each modality/criterion combination.

How is XAI method performance dependent on underlying modalities and datasets? Although,
modalities in computer vision share attributes like locality, spatial structure, and associated feature de-
scriptors, they differ in aspects such as dimensionality and representation forms (e.g., grid vs. points). If
these differences indeed influence XAI performance, the resulting inconsistencies are largely overlooked in
the current literature. To quantify such an effect on XAI methods, we average ranks of XAI methods within
modalities and evaluation criteria in Table 2, revealing new patterns in the ranking of various methods.
(1) Between modalities, only a few methods achieve generalizing results over all modalities, even for one
criterion. We generally recommend that users should make their XAI method selection depending on the
modality. (2) The extended table in Appendix J shows that ranking disparities between datasets within
individual modalities are minimal. This suggests that a method selected for one dataset can transfer well to
others if dimensionality and characteristics are not too distinct. (3) For some methods, we observe a high
correlation between performance on the image and volume modality. In particular, both linear surrogate
methods (LIME, KS) underperform on image and volume compared to the lower dimensional point cloud
modality. On these modalities, their performance also strongly depends on the suitability of the feature
mask computed via a grid or super-pixels, which is very time-consuming to fine-tune for single observations.
Concluding, we advise against using them for high-dimensional and complex relationships. (4) CAM meth-
ods always perform better on image than on volume data, which we attribute to less accurate latent model
representations and subsequent up-sampling in 3D compared to 2D space, subsequently not recommending
them for volume data. In summary, performance relies generally on the modality but not on the dataset.

How does XAI method performance depend on the underlying classifier? We investigate this
frequently neglected design parameter by focusing on the aspects of model performance and architecture
type. Model performance evaluation might be underemphasized in current research if, even after adequate
training, XAI performance remains dependent on model performance. Thus, we compute in Figure 3 (a.)
the Pearson correlation between the aggregated ranks per criteria and the F1 test scores of the models per
dataset. (1) Even for well-trained models, we observe a small trend that a better F1 score correlates with
better faithfulness and robustness on image and volume modalities. The observed weak correlation raises
questions about whether optimizing model performance to a high degree of precision would yield significant
alterations in the saliency map. Thus, in tasks where several models with high performance but different
properties are available for XAI analysis (e.g., for knowledge/scientific discovery), we would additionally
recommend taking into account other criteria, such as the use of attention methods or operational limitations.

Recent research around Vision-Transformers has shown distinct differences in their learning dynamics (Raghu
et al., 2022; Park & Kim, 2022), robustness (Zhou et al., 2022) or latent representations (Wang et al., 2023)
compared to classical CNNs. As many of their mechanisms (e.g., global processing, lack of inductive biases,
(self-)attention, negative activations) can theoretically also affect attribution methods, we want to test if
similar distinctions between Transformer and CNN architectures can also be detected for the performance
of attribution methods. To this end, we analyze the distance of ranks between each model architecture for
each attribution method (see Figure 3 (b.) and Appendix L for all attribution methods and modalities and
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XAI Methods

LIME

b. Attribution & Attention per Evaluation Criterion
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a. Correlation in Ranking between XAI Methods

Pearson 
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Figure 4: a. Correlation in ranking between XAI methods. b. Average attribution (across all architectures,
but across Transformers-only is very alike) and attention (Transformers-only) ranks.

Appendix M for differences in ranking order). (2) The average rank distance does not change substantially
between CNN and Transformer architectures for most attribution methods (except for CAM methods and
LRP), which is mainly centered around the modality mean. This indicates that almost all attribution meth-
ods do not receive significantly different evaluation scores depending on the underlying architecture and we
can not support the hypothesis that attribution methods behave fundamentally differently on Transformer
architectures compared to CNNs. (3) CAM methods generally show a higher rank distance between archi-
tectures, which could be attributed to differences in latent representations of the models, as the semantics
captured in the last convolutional or cls-token layers do not have to coincide between models. Thus, we
recommend increasing the robustness by averaging the activation map of several hidden layers, which has
shown effective in application (Gildenblat, 2024), but can lead to less accurate saliency maps. (4) LRP shows
additionally high dissimilarity between CNN and Transformer architectures, especially for the 3D modalities.
We use the recommended γ- and ϵ-rules in LRP for the CNN models. However, on Transformer architectures,
LRP does not preserve the conservation rule and only works with the 0+-rule (see Chefer et al. (2021) for
a detailed explanation). Both implemented changes to LRP bias the relevance computation, which conse-
quentially impacts its performance on Transformer architectures. Thus, we recommend using LA instead
of LRP as a relevance-based method on Transformer architectures, as it leverages the Transformer-inherent
attention and performs much better regarding faithfulness and robustness. Summarizing, XAI performance
just weakly depends on the model performance and the model architecture only significantly influences CAM
and LRP methods.

What behavioral similarities exist among XAI methods? To resolve inconsistencies in current re-
search for method selection, our analysis of XAI behavior focuses on two key aspects: similarities among
methods and distinct performance trends. Similarity is important in method selection because choosing a
heterogeneous set of XAI methods includes different perspectives on the explanation, which is often advan-
tageous in application. In specific, we analyze the similarity between single methods and the subgroups of
attention and attribution methods, obtaining findings 1-4, answering our main question. Figure 4 (a.) shows
the correlation in ranking between XAI methods, indicating their relative similarity. (1) We observe that
methods belonging to methodological similar groups are positively correlated: Linear surrogate methods
(LIME, KS), CAM methods (GC, SC, C+), and attention methods (RA, RoA, LA). Also, CAM and atten-
tion methods are slightly positively correlated, indicating their similar attributing to local regions. We would
advise not restricting access to such methodological subgroups to preserve method diversity in application.
(2) Contrarily to other method subgroups, the Shapely value approximating SHAP methods (EG, KS, and
DLS) are not correlated. Also, their performances in Table 2 differ extensively. This observation is consistent
with the results of Molnar et al. (2022), which are, however, not in the context of XAI evaluation. Therefore,
it is advisable not to select a single SHAP method with the expectation of achieving similar results to others
but rather to employ multiple such methods. (3) CAM and attention methods negatively correlate with
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IxG, GB, IG, and DL, which contrarily attribute to single pixels, resulting in more fine-grade saliency maps.
Interestingly, we observe a very strong positive correlation between IG/IxG, DL/IxG, and IG/DL, indicating
very homogeneous behavior between the methods, even though they are based on different mathematical
mechanisms. We would strongly recommend mixing such single-pixel and local-region attributing methods,
not only for the diversity in visualization but also because of their different performance in evaluation.

Due to the success of Transformers, attention methods are one of the most emerging subgroups of XAI
methods. This raises a pressing question for users: should they exclusively use Transformer-based models
for attention methods, or can architecture-independent attribution methods still provide equal or superior
explanations? (4) When comparing the ranking between both groups, we observe in Figure 4 (b.) a
large difference in complexity and a smaller difference in robustness while the difference in faithfulness
is insignificant. The comparatively high robustness of attention methods extends across all methods and
modalities, as can be seen from Table 2. Considering our concerns about the complexity metrics, we would
subsequently generally advocate for prioritizing attention methods over attribution methods if Transformers
are suitable for the problem.

What are prominent trends for individual XAI methods? The comprehensive evaluation further
revealed distinct findings (1-4) relevant for selecting individual methods. (1) The most reliable performing
method in terms of faithfulness and robustness is EG. We would recommend EG as an initial approach in
various situations due to its weak dependence on hyperparameters and input modalities. This is especially
important for data with non-triviality to select baseline values. (2) We observe a high variance in performance
between methods that rely heavily on the gradient (VG, IxG, GB), with only the raw gradient VG being
robust but not faithful, which can be attributed to gradient shattering (Balduzzi et al., 2017). We would
therefore advise against these methods or advance them through VarGrad or SmoothGrad. (3) Relevance-
filtered attention (LA) consistently scores better than non-filtered raw attention. Thus we would always
prefer it. Also, it allows to visualize input features that attribute to a specific outcome and are not only
detected by the model in general, making it much more versatile. (4) For some methods (EG, LRP, LA) we
observe a trade-off between faithfulness and complexity. For LRP, its tendency to attribute to a very small
set of input features likely explains this observation: Faithfulness is low due to the absence of important
input features in the set, robustness is low as the relative change in this set can occur fast, but complexity, as
evaluated in our metrics, is also low due to the small set size. We would argue that, theoretically, there can be
a trade-off between faithfulness and complexity. However, we advise against overinterpreting these findings
in light of our reservations regarding the complexity metrics and the subjectiveness of such a trade-off.

4.1 Main insights & takeaways

Our benchmark study presents key findings to bridge research gaps and inconsistencies. More specific findings
are obtainable from our full ranking tables and the LATEC dataset. The most critical outcomes of our study
can be condensed into the following main insights for evaluation and practical takeaways for XAI application:

Insights for XAI evaluation
1. For the same XAI method, there is frequently a high risk of conflicting metrics, leading to unreliable rank-

ings. However possible disagreement between metrics can provide essential insights for XAI evaluation.
2. High disagreement among metrics can lead to biases when deliberately pairing similar-ranking metrics.

However, in a large-scale setting, the actual risk of undue influence from such subgroups is minimal.
3. Results in complexity seem counterintuitive, indicating that the evaluation objective of complexity metrics

in computer vision does not always has to match the perception of low complexity.

Takeaways for XAI application
1. No XAI method ranks consistently high on all evaluation criteria. Curiously, EG performs most reliable,

even if it was never examined in any relevant related study before.
2. Attention methods are mainly more robust compared to attribution methods, with relevance-filtered

attention (LA) consistently scoring higher than non-filtered raw attention.
3. Rankings of XAI methods typically generalize well over datasets given not too distinct size and charac-

teristics but can highly depend on modality (especially for CAM and linear surrogate methods).
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5 Comparison with related work

As we previously stated, the significance of current research is limited due to small and varying subsets in
XAI methods, metrics, and criteria used for evaluation, which consequently lead to contradicting outcomes.
Due to the comprehensiveness and more robust metric aggregation of our study, we argue that the validity
is significantly increased compared to previous work and that our findings offer a more definitive resolution
to the inconsistencies observed in earlier, smaller-scale investigations. The difference in scale is particularly
evident from Table 1, which presents a summary of 16 related relevant studies (all on image data as there
are none for volume or point cloud), with an indication of what criteria were evaluated and how XAI
methods performed relative to other methods or baselines analyzed in the study, based on our assessment.
We present our results for the image modality indicated at the bottom, which do not necessarily transfer
to other modalities as Table 1 shows. While some “evergreen" XAI methods, i.e., VG, IxG, GB, and IG,
stand out, Table 1 visualizes how sparse the field of XAI evaluation is, especially for attention methods.
Surprisingly, our best-evaluated method in terms of faithfulness and robustness, EG, was never evaluated in
any related study.

Back-referencing to Table 1, we observe in several cases similar results to other studies on image data:
low faithfulness of GB, IxG (as both methods perform partial input recovery), LIME or LRP by Chefer
et al. (2021). High faithfulness of IG by Arras et al. (2022) and Hesse et al. (2023) (depends highly on
the selected baseline) and LA (only two studies including attention methods). Regarding the conflicting
outcomes reported for GC, our results show average faithfulness but high robustness on image data (but can
depend on the underlying model, as our work suggests). On the contrary, our results contradict the findings
on high faithfulness of LRP by Arras et al. (2022), low faithfulness of IG, and high robustness of KS (KS
studies used lower dimensional image data). However, these results can differ between modalities, as GC,
for example, obtains very low scores in faithfulness and robustness on volume data.

Most work in complexity and human understandability is qualitative and only quantitative work includes
papers that present a metric. We consider the high fluctuation between quantitative and especially qualitative
complexity evaluation outcomes by Singh et al. (2021) as further support for our hypothesis that there is a
gap between the aim of the metrics and human conception of low complexity. As also the human conception
of low complexity can be very subjective, we strongly recommend the development of either new metrics or
falling back to robust qualitative user studies, even if they are more difficult and resource-consuming.

6 Conclusion and discussion

Although our benchmark is one of the most comprehensive in the field, we restricted us to the modalities
with the, in our opinion, most unique and not overlapping characteristics, ignoring e.g. video data, and did
not include more unconventional post-hoc XAI methods such as symbolic representations or metamodels.
We also did not include the evaluation criteria of localization and axiomatic properties as they either require
ground-truth bounding boxes or can not be applied to all XAI methods. Further, our benchmark focuses
on the comparison between methods, not on the evaluation of whether a method is faithful or robust in
general, thus ignoring e.g. synthetic baselines. Our findings demonstrate high generalizability, yet it’s
crucial to contextualize them within the benchmark, considering possible variance introduced by real-world
and large-scale scenarios.

Our results demonstrate vividly the need for rethinking the application of evaluation metrics and the risks
of inconsistent benchmarking for practitioners and researchers. As a solution, we offer practitioners concise,
practical takeaways for applying and selecting XAI methods derived from our large-scale benchmark. This
includes the most all-encompassing answer to "What XAI method should I (not) use for my problem?" to
date, based on the extensive evidence in our provided result’s tables and the LATEC dataset. Through these
detailed result’s tables, practitioners can evaluate which method is most applicable or should be avoided in
their specific setting with regard to different criteria. After method selection, practitioners can additionally
leverage LATEC to generate diverse and large-scale sets of saliency maps including different computer vision
modalities. For researchers, we propose a robust evaluation mechanism, addressing the risk of conflicting
metrics, and introduce LATEC as a platform for standardized benchmarking of methods and metrics in
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XAI. LATEC offers researchers the opportunity to explore and answer numerous critical questions regarding
trustworthiness of XAI, thereby playing a pivotal role in the advancement of the field. We hope that our
systematic approach to addressing significant shortcomings in existing research will provide a clearer and
more reliable path through the intricate maze of methods and metrics in XAI.
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Appendix

A Model performance and hyperparameter

A.1 Test set performance

Model Performance Metric

Dataset:
Model 
Architecture: Accuracy Precision Recall F1 AUROC

OCT 

(MC: 4)

ResNet 50 0.999 0.999 0.999 0.999 1.0

EfficientNet b0 0.9969 0.9969 0.9969 0.9969 1.0

DeiT ViT 0.999 0.999 0.999 0.999 1.0

R45 

(MC: 45)

ResNet 50 0.9535 0.9536 0.9538 0.9535 0.9995

EfficientNet b0 0.9554 0.9554 0.9549 0.9549 0.9995

DeiT ViT 0.9568 0.957 0.9568 0.9567 0.9995

a. Testset Performance on Image Modality

Model Performance Metric

Dataset:
Model 
Architecture: Accuracy Precision Recall F1 AUROC

AMN 

(BC)

3D ResNet 18 0.8003 0.8013 0.7987 0.8 0.8699

EfficientNet3D b0 0.8003 0.7954 0.8087 0.802 0.8647

Simple3DFormer 0.7936 0.7907 0.7907 0.7907 0.8728

OMN 

(MC: 11)

3D ResNet 18 0.9115 0.9248 0.9248 0.9226 0.9953

EfficientNet3D b0 0.8754 0.8924 0.8936 0.8914 0.9893

Simple3DFormer 0.8131 0.8463 0.8381 0.84 0.9815

VMN 

(BC)

3D ResNet 18 0.9359 0.937 0.9346 0.9358 0.98

EfficientNet3D b0 0.9162 0.9162 0.9162 0.9162 0.9229

Simple3DFormer 0.8861 0.8871 0.8848 0.886 0.9394

b. Testset Performance on Volume Modality

Model Performance Metric

Dataset:
Model 
Architecture: Accuracy Precision Recall F1 AUROC

CMA 

(MC: 12)

PointNet 0.9852 0.9743 0.9876 0.98 0.998

DGCNN 0.9535 0.9373 0.9498 0.9423 0.9989

PC Transformer 0.9751 0.9645 0.9688 0.9662 0.9996

M40 

(MC: 40)

PointNet 0.8914 0.8374 0.8564 0.8438 0.9958

DGCNN 0.9177 0.8844 0.891 0.8864 0.9973

PC Transformer 0.9149 0.8779 0.8842 0.8796 0.9969

SHN 

(MC: 16)

PointNet 0.9878 0.9673 0.9689 0.9668 0.9991

DGCNN 0.9903 0.966 0.9847 0.9745 0.9995

PC Transformer 0.9896 0.9642 0.9819 0.9716 0.9997

c. Testset Performance on Point Cloud Modality

MC #: Multi-Class (# Classes), BC: Binary-Class

Table 3: a., b. & c. Test set performance measured with the metrics: accuracy, precision, recall, F1, and
area under the receiver operating characteristic (AUROC) curve, for each modality. In the case of IMN we
use pretrained weights for the Transformer architecture from Huggingface1 and the CNN architectures from
TorchHub2,3.
1 https://huggingface.co/facebook/deit-small-patch16-224
2 https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html

3 https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b0.html
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Architectures were chosen based on their popularity and, to a limited extent, comparability between modal-
ities, e.g. ResNet-50 and 3D ResNet-18 which both emerge from the same family of ResNet architectures.
While 3D volume architectures could also be applied to point cloud data, we choose point cloud specific
architectures for the modality.

A.2 Hyperparameter

We tuned all hyperparameters on either the declared validation set or sampled a validation set based on
20% of the train set. The tuning was performed via grid search for each model. The primary metric for
hyperparameter tuning was the F1 score.

Utilized Computer Vision Datasets
Model Architecture: Hyperparameter: OCT R45

ResNet 50

Batch size 128 128
Max Epochs 8 60

Learning rate (LR) 0.0001 0.0001
Optimizer Madgrad Madgrad

LR Scheduler Cosine Annealing Cosine Annealing
Weight Decay 0 0

Momentum 0.9 0.9

Augmentations

Train:

Resize (256,256)

RandomCrop (224,224)

RandomAffine (shear=0.2,

degrees=5)

RandomHorizontalFlip

Grayscale (channels=3)


Test:

Resize (256,256)

CenterCrop (224,224)

Grayscale (channels=3)

Train:

Resize (256,256)

RandomCrop (224,224)

RandomHorizontalFlip

RandAugment

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))


Test:

Resize (256,256)

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))

Sampling Weighted Random Sampling None

EfficientNet b0

Batch size 128 128
Max Epochs 5 15

Learning rate (LR) 0.0001 0.001
Optimizer Madgrad Madgrad

LR Scheduler Cosine Annealing Cosine Annealing
Weight Decay 0 0

Momentum 0.9 0.9

Augmentations

Train:

Resize (256,256)

RandomCrop (224,224)

RandomAffine (shear=0.2,

degrees=5)

RandomHorizontalFlip

Grayscale (channels=3)


Test:

Resize (256,256)

CenterCrop (224,224)

Grayscale (channels=3)

Train:

Resize (256,256)

RandomCrop (224,224)

RandomHorizontalFlip

RandAugment

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))


Test:

Resize (256,256)

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))

Sampling Weighted Random Sampling None

DeIT ViT

Batch size 128 128
Max Epochs 6 60

Learning rate (LR) 0.0001 0.0001
Optimizer Madgrad Madgrad

LR Scheduler Cosine Annealing Cosine Annealing
Weight Decay 0 0

Momentum 0.9 0.9

Augmentations

Train:

Resize (256,256)

RandomCrop (224,224)

RandomAffine (shear=0.2,

degrees=5)

RandomHorizontalFlip

Grayscale (channels=3)


Test:

Resize (256,256)

CenterCrop (224,224)

Grayscale (channels=3)

Train:

Resize (256,256)

RandomCrop (224,224)

RandomHorizontalFlip

RandAugment

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))


Test:

Resize (256,256)

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))

Sampling Weighted Random Sampling None

Hyperparameter for Image Modality

Table 4: Hyperparameter for all three architectures and CV datasets, excluding IMN as we load pretrained
weights.
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Utilized Computer Vision Datasets
Model Architecture: Hyperparameter: AMN OMN VMN

3D ResNet18

Batch size 32 32 32
Max Epochs 100 100 100

Learning rate (LR) 0.001 0.001 0.001
Optimizer SGD Adam Adam

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0 0 0

Momentum 0.9 0 0

Augmentations

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

None

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

Sampling Weighted Random Sampling None Weighted Random Sampling

3D EfficientNet b0

Batch size 32 32 64
Max Epochs 100 100 100

Learning rate (LR) 0.001 0.001 0.001
Optimizer SGD AdamW Adam

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0005 0.0005 0

Momentum 0.9 0 0

Augmentations

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

None

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

Sampling Weighted Random Sampling None Weighted Random Sampling

Simple3DFormer

Batch size 32 32 64
Max Epochs 150 100 100

Learning rate (LR) 0.001 0.000001 0.001
Optimizer SGD Madgrad Adam

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0005 0 0

Momentum 0.9 0.9 0

Augmentations

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

None

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

Sampling Weighted Random Sampling None Weighted Random Sampling

Hyperparameter for Volume Modality

Table 5: Hyperparameters for all three architectures and CV datasets.
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Utilized Computer Vision Datasets
Model Architecture: Hyperparameter: CMA M40 SHN

PointNet

Batch size 32 24 32
Max Epochs 100 200 200

Learning rate (LR) 0.001 0.001 0.001
Optimizer AdamW AdamW AdamW

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0001 0.0001 0.0001

Momentum 0 0 0

Augmentations

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomRotate (degrees=15)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

RandomScale (0.67,1.5)

RandomJitter (0.01)

RandomRotate(degress=15, 

axis = (0,1,2))


Test:

None

Sampling None None None

DGCNN

Batch size 32 32 32
Max Epochs 100 250 200

Learning rate (LR) 0.001 0.001 0.001
Optimizer AdamW AdamW AdamW

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0001 0.0001 0.0001

Momentum 0 0 0

Augmentations

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomRotate (degrees=15)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

RandomScale (0.67,1.5)

RandomJitter (0.01)

RandomRotate(degress=15, 

axis = (0,1,2))


Test:

None

Sampling None None None

PC Transformer

Batch size 32 32 32
Max Epochs 150 250 200

Learning rate (LR) 0.01 0.01 0.01
Optimizer SGD SGD SGD

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0005 0.0005 0.0005

Momentum 0.9 0.9 0.9

Augmentations

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomRotate (degrees=15)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

RandomScale (0.67,1.5)

RandomJitter (0.01)

RandomRotate(degress=15, 

axis = (0,1,2))


Test:

None

Sampling None None None

Hyperparameter for Point Cloud Modality

Table 6: Hyperparameters for all three architectures and CV datasets.

B The LATEC dataset: Reference data for standardized evaluation

The resulting data of the three stages, which comprise the LATEC dataset, include pretrained model weights
(excluding IMN), saliency maps, and evaluation scores. Thanks to the LATEC dataset, future experiments
can start at a certain stage and use the results from the previous stage without recomputing everything again,
e.g. when testing out a new evaluation metric on the existing saliency maps, preserving comparability. For
the LATEC dataset, we compute per dataset saliency maps for the entire test set or 1000 observations
depending on which size is smaller (on the validation set if the test set is unavailable), from which we sample
50 observations to compute evaluation scores for all 7,560 combinations. In total, the LATEC dataset consists
of 326,790 saliency maps and 378,000 evaluation scores. As for such large datasets, the size can go into the
hundreds of gigabytes. To save disk space, saliency maps could be cast from 64-bit precision to 32 or even 16-
bit. We would, however, strongly advise against this, as even casting to 32-bit precision introduced numerical
instability in our experiments due to the rounding of attribution and attention values, resulting in all-zero
saliency maps and nan or inf evaluation scores. Further, as ranking lengths between CNN and Transformer
architectures differ (attention methods only for Transformer architectures), we recompute rankings in the
subsequent study, which aggregate over all three architectures by first combining the normalized evaluation
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Class: Runway Occlusion ScoreCAM Expected Grad.

Attribution (ResNet50)

Raw Attention Rollout Attention LRP Attention

Attention (DeiT ViT)

Modality: Image   Utilized CV Dataset: RESISC45
Original

Class: Vessel Occlusion ScoreCAM Expected Grad.

Attribution (3DResNet18)

Raw Attention Rollout Attention LRP Attention

Attention (Simple3DFormer)

Modality: Volume   Utilized CV Dataset: VesselMNIST3D
Original
Class: Airplane Occlusion Guided Backprob Expected Grad.

Attribution (DGCNN)

Raw Attention Rollout Attention LRP Attention

Attention (PC Transformer)

Modality: Point Cloud   Utilized CV Dataset: ShapeNet
Original

10 0,5 10,1 0,55 10 0,1 0,5

Figure 5: Illustrative saliency maps for all three modalities. The upper row shows three attributions,
respectively, and the lower row, three attention-based methods. We observe how all XAI methods highlight
the runway in the image and the vessel for the volume modality but with different granularity and focus.
For the point cloud plane, explanations are less understandable, with attribution methods highlighting single
points at the front tip, rudder, or wing tips.

scores per model architecture and then computing the ranking, preserving equal length between rankings
(see Appendix G).

To ensure a standardized setting with fair comparability between XAI methods over all possible experiment
set-ups and aggregation levels, we take precautions regarding e.g. different types of feature attributions or
the conversion of all metrics to single scores (see Appendix F for all detailed procedures). LRP requires non-
negative activation outputs Montavon et al. (2019), leading us to a replacement of such activation functions
(i.e. GeLU, leakyReLU) in CNN models, but we keep them for Transformer models, as they are central to
the architecture and therefore also to our benchmark, and apply the 0+-rule instead.

C XAI methods overview and parameters

C.1 Overview

C.1.1 Attribution Methods

Occlusion [OC] (Zeiler & Fergus, 2013) Systematically obscures different parts of the input data and
observes the resulting impact on the output, to determine which parts of the data are most important for
the model’s predictions.

LIME [LIME] (Ribeiro et al., 2016) Creates an interpretable model around the prediction of a complex
model to explain individual predictions locally (patch-based in our case), using perturbations of the input
data and observing the corresponding changes in the output.

Kernel SHAP [KS] (Lundberg & Lee, 2017) Using a weighted linear regression model as the local
surrogate and selecting a suitable weighting kernel, the regression coefficients from the LIME surrogate can
estimate the SHAP values.

Vanilla Gradient [VG] (Simonyan et al., 2013) The raw input gradients of the model.

Input x Gradient [IxG] (Shrikumar et al., 2017) Multiples the input features by their corresponding
gradients with respect to the model’s output.

Guided Backprob [GB] (Springenberg et al., 2015) Modifies the standard backpropagation process to
only propagate positive gradients for positive inputs through the network, thereby creating visualizations
that highlight the features that strongly activate certain neurons in relation to the target output.

GradCAM [GC] (Selvaraju et al., 2017) Uses the gradients of the target class flowing into the final
convolutional layer to produce a coarse localization map by, highlighting the important regions in the image
by up-scaling the map.
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ScoreCAM [SC] (Wang et al., 2020) Eliminates the need for gradient information by determining the
importance of each activation map based on its forward pass score for the target class, producing the final
output through a weighted sum of these activation maps.

GradCAM++ [C+] (Chattopadhay et al., 2018) Generates a visual explanation for a given class label
by employing a weighted sum of the positive partial derivatives from the final convolutional layer’s feature
maps, using them as weights with respect to the class score.

Integrated Gradients [IG] (Sundararajan et al., 2017) Explains model predictions by attributing the
prediction to the input features, calculating the path integral of the gradients along the straight-line path
from a baseline input to the actual input.

Expected Gradients [EG] (Erion et al., 2020) Also called Gradient SHAP. Avoids the selection of a
baseline value compared to IG, by leveraging a probabilistic baseline computed over a sample of observations.

DeepLIFT [DL] (Shrikumar et al., 2017) Assigns contribution scores to each input feature based on
the difference between the feature’s activation and a reference activation, effectively measuring the feature’s
impact on the output compared to a baseline.

DeepLIFT SHAP [DLS] (Lundberg & Lee, 2017) Combines the DeepLIFT method with Shapley values
to assign importance scores to input features by computing their contributions to the output relative to a
reference input, while ensuring consistency with Shapley values.

Layer-Wise Relevance Propagation [LRP] (Binder et al., 2016) Explains neural network decisions
by backpropagating the output prediction through the layers, redistributing relevance scores to the input
features to visualize their contribution to the final decision. We use the ϵ-,γ- and 0+-rules depending on the
model architecture for relevance backpropagation.

C.1.2 Attention Methods

Raw Attention [RA] (Dosovitskiy et al., 2021) Rearranged and up-scaled attention values of the last
attention head.

Rollout Attention [RoA] (Abnar & Zuidema, 2020) Averages attention weights of multiple heads to
trace the contribution of each part of the input data through the network.

LRP Attention [LA] (Chefer et al., 2021) Assigns local relevance scores to attention weights based on
the Deep Taylor Decomposition principle and propagates these relevancy scores through the model.

C.2 Parameters

XAI Method: OC LIME KS CAM (all) SC IG EG DL LRP RA

Parameter: strides
sliding_window_


shapes baseline
perturbations_


per_eval alpha n_samples
perturbations_


per_eval baseline n_samples
perturbations_


per_eval layer batch_size baseline n_steps n_samples std eps baseline rule eps gamma layer

Image 25 (50, 50) 0 1 1,0 10 5 0 10 5
ResNet50,layer4[-1]


EfficientNetbo,features[-1]

ViT,blocks[-1],norm1

32 0 30 40 0,001 1e-9 0 ε & γ-rule /

0+-rule 0,0001 0,25 ViT,blocks[-1],attn

Volume 4 (7, 7, 7) 0 1 1,0 10 5 0 10 5
3DEfficientNetbo,blocks[-13]


3DResNet18,layer3

S3DF,blocks[-1],norm1

64 0 30 40 0,001 1e-9 0 ε & γ-rule /

0+-rule 0,0001 0,25 S3DF[-1],attn

Point Cloud 1 (3,1) 0 5 4,0 10 5 0 10 5
PointNet,transform,bn1


DGCNN,conv5

PCT,sa4,after_norm

16 0 30 16 0,001 1e-9 0 ε & γ-rule /

0+-rule 0,00001 0,25 PCT,sa4,attn

Table 7: Parameters for each XAI method and modality.

The parameters for each XAI method are derived for each modality via qualitative evaluation which we
deem the most realistic scenario. We tuned the XAI methods on five observations per dataset and modality,
which we argue is a fair trade-off between fitting the methods to the dataset but not overfitting them to bias
the evaluation. We did not tune the parameters per dataset, as the parameters transfer very well between
datasets and only needed minimal adjustments.
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D Evaluation metrics overview and parameters

D.1 Overview

D.1.1 Faithfulness

Faithfulness Correlation (Bhatt et al., 2020) Gauges an explanation’s fidelity to model behavior. It
measures the linear correlation between predicted logits of modified test points and the average explanation
for selected features, returning a score between -1 and 1. For each test, selected features are replaced with
baseline values, and Pearson’s correlation coefficient is determined, averaging results over multiple tests.

Faithfulness Estimate (Alvarez Melis & Jaakkola, 2018) Evaluates the accuracy of estimated feature
relevances by using a proxy for the "true" influence of features, as the actual influence is often unavailable.
This is done by observing how the model’s prediction changes when certain features are removed or obscured.
Specifically, for probabilistic classification models, the metric looks at how the probability of the predicted
class drops when features are removed. This drop is then compared to the interpreter’s prediction of that
feature’s relevance. The metric also computes correlations between these probability drops and relevance
scores across various data points.

Monotonicity Correlation (Nguyen & Martínez, 2020) Evaluates the correlation between the absolute
values of attributions and the uncertainty in probability estimation using Spearman’s coefficient. If attri-
butions are not monotonic the authors argue that they are not providing the correct importance of the
features.

Pixel Flipping (Bach et al., 2015) The core concept involves flipping pixels with very high, very low, or
near-zero attribution scores. The effect of these changes is then assessed on the prediction scores, with the
average prediction being determined.

Region Perturbation (Samek et al., 2017) A step-by-step method where the class representation in
the image, as determined by a function, diminishes as we gradually eliminate details from an image. This
process, known as region perturbation, occurs at designated locations. Finally, the effect on the average
prediction is calculated.

Insertion (Petsiuk et al., 2018) Gradually inserts features into a baseline input, which is a strongly blurred
version of the image, to not create OOD examples. During this process, the change in prediction is measured
and the correlation with the respective attribution value is calculated.

Deletion (Petsiuk et al., 2018) Deletes input features one at a time by replacing them with a baseline
value based on their attribution score. During this process, the change in prediction is measured and the
correlation with the respective attribution value is calculated.

Iterative Removal of Features (IROF) (Rieger & Hansen, 2020) The metric calculates the area under
the curve for each class based on the sorted average importance of feature segments (superpixels). As these
segments are progressively removed and prediction scores gathered, the results are averaged across multiple
samples.

Remove and Debias (ROAD) (Rong et al., 2022) Evaluates the model’s accuracy on a sample set
during each phase of an iterative process where the k most attributed features are removed. To eliminate
bias, in every step, the k most significant pixels, by the most relevant first order, are substituted with
noise-infused linear imputations.

Sufficiency (Dasgupta et al., 2022) Assesses the likelihood that the prediction label for a specific obser-
vation matches the prediction labels of other observations which have similar saliency maps.

D.1.2 Robustness

Local Lipschitz Estimate (Alvarez Melis & Jaakkola, 2018) Lipschitz continuity in calculus is a concept
that measures the relative changes in a function’s output concerning its input. While the traditional definition
of Lipschitz continuity is global, focusing on the largest relative deviations across the entire input space,
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this global perspective isn’t always meaningful in XAI. This is because expecting consistent explanations for
vastly different inputs isn’t realistic. Instead, a more localized approach, focusing on stability for neighboring
inputs, is preferred, resulting in a point-wise, neighborhood-based local Lipschitz continuity metric.

Max Sensitivity (Yeh et al., 2019) Measures the largest shift in the explanation when the input is slightly
altered. It specifically evaluates the utmost sensitivity of a saliency map by taking multiple samples from
a defined L-infinity ball subspace with a set input neighborhood radius, using Monte Carlo sampling for
approximation.

Continuity (Montavon et al., 2018) Evaluates, that if two observations are nearly equivalent, then the
explanations of their predictions should also be nearly equivalent. It then measures the strongest variation
of the explanation in the input domain.

Relative Input/Output/Representation Stability (Agarwal et al., 2022) All metrics leverage model
information to evaluate the stability of a saliency map with respect to the change in the either, input data,
intermediate representations, and output logits of the underlying prediction model.

Infidelity (Yeh et al., 2019) Calculates the expected mean-squared error (MSE) between the saliency map
multiplied by a random variable input perturbation and the differences between the model at its input and
perturbed input.

D.1.3 Complexity

Sparseness (Chalasani et al., 2020) Measures the Gini Index on the vector of absolute saliency map values.
The assessment ensures that features genuinely influencing the output have substantial contributions, while
insignificant or only slightly relevant features should have minimal contributions.

Complexity (Bhatt et al., 2020) Determines the entropy of the normalized saliency map.

Effective Complexity (Nguyen & Martínez, 2020) Evaluates the number of absolute saliency map
values that surpass a threshold. Values above this threshold suggest the features are significant, while those
below indicate they are not.

D.2 Parameters

We tuned the parameters of the evaluation metrics per dataset based on the distribution of their scores from
Appendix N. We applied the suggested parameters from Hedström et al. (2022) or the respective papers. If
the resulting score distributions were collapsed, almost uniform, or too indistinguishable between the XAI
methods, we tuned the respective parameters. This step was completed prior to the ranking analysis, and
no adjustments were made to the metrics once the ranking phase commenced.
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Image Voxel Point Cloud
Evaluation 
Metric: Parameter: IMN OCT R45 AMN OMN VMN CMA M40 SHN

Faithfulness 
Correlation

nr_runs 100 100 100 100 100 100 100 100 100

subset_size 224 224 224 56 56 56 32 32 32

perturb_baseline black black black black black black center center center

Faithfulness 
Estimate

features_in_step 224 224 224 56 56 56 32 32 32

perturb_baseline black black black black black black center center center

Monotonicity 
Correlation

nr_samples 10 10 10 10 10 10 10 10 10

features_in_step 3136 3136 3136 392 392 392 256 256 256

perturb_baseline uniform uniform uniform uniform uniform uniform uniform uniform uniform

Pixel Flipping
features_in_step 224 224 224 56 56 56 32 32 32

perturb_baseline black black black black black black center center center

Region 
Perturbation

patch_size 14 14 18 4 4 4 3 3 3

regions_evaluation 10 10 20 20 20 20 32 32 32

perturb_baseline uniform uniform uniform uniform uniform uniform uniform uniform uniform

Insertion

pixel_batch_size 50 50 50 50 50 50 50 50 50

sigma 5.0 120.0 40.0 2.5 2.5 2.5 0.05 0.1 0.05

kernel_size 15 39 19 1 1 1 1 1 1

Deletion pixel_batch_size 50 50 50 50 50 50 50 50 50

IROF
segmentation Slic Slic Slic 3D Slic 3D Slic 3D Slic KMeans KMeans KMeans

perturb_baseline mean mean mean black black black center center center

ROAD
noise 0.1 0.1 0.1 4.0 2.5 50.0 0.02 0.15 0.3

percentages_max 100 100 100 100 100 100 100 100 100

Sufficiency threshold 0.9 0.6 0.6 0.02 0.75 0.0002 0.75 0.75 0.6

Local Lipschitz 
Estimate

nr_samples 5 5 5 10 10 10 5 5 5

perturb_std 0.1 0.0002 0.1 0.2 0.2 0.2 0.1 0.1 0.1

perturb_mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MaxSensitivity
nr_samples 10 10 10 10 10 10 10 10 10

lower_bound 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Continuity

patch_size 56 56 56 7 7 7 3 3 3

nr_steps 20 20 20 20 20 20 20 20 20

perturb_baseline uniform uniform uniform uniform uniform uniform uniform uniform uniform

RIS nr_samples 10 10 10 10 10 10 10 10 10

ROS nr_samples 10 10 10 10 10 10 10 10 10

RRS nr_samples 10 10 10 10 10 10 10 10 10

Infidelity n_perturb_samples 50 50 50 50 50 50 50 50 50

Effective 
Complexity

eps 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001

Table 8: Parameters for all evaluation metrics on each CV dataset.
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E Adapting current XAI methods and evaluation metrics for 3D data

While many XAI methods and evaluation metrics are independent of the input space dimensions, especially
methods leveraging perturbations, interpolations for up- and down-scaling or segmentation are not. Our
implementation builds upon the work from Kokhlikyan et al. (2020) and Hedström et al. (2023) for XAI
methods and evaluation metrics for 1D and 2D images, and we extended it to 3D volume and point cloud
data. Both modalities come with their own specifies, e.g. that local neighborhoods have to be defined via
k-nearest neighbors (KNN) in point cloud data and not 2D or 3D patches as in image or volume data.
For the XAI methods, we advanced e.g. OC, LI, and KS by the adoption of 3D patches, all three CAM
methods with 3D interpolation, all attention-based methods with 3D and KNN-based interpolations, and
LA with relevance backpropagation for the Simple3DFormer and PC Transformer architectures. As the
adoption of the CAM methods for point cloud data and more complex architectures than PointNet is not
trivial, we deem it out of scope for this paper and do not include them in our point cloud experiments. In
the case of evaluation metrics, we adapted e.g. perturbation applying metrics to 3D patches or point-based
perturbations, the superpixel segmentation in IROF by 3D Slic and KMeans clustering and padded x-axis
transversal for the volume and point cloud data in Continuity. Additionally, we modified all methods and
metrics to function with (x, y, z) volume and (n, 3) point cloud dimensions. All adaptations were tested for
their coherency, and illustrative saliency maps can be observed in Figure 5. We refer to Appendix C and
Appendix subsection D.2 for all implementation details.

E.1 Adaption of XAI methods

In this section, we explain how we adapted XAI methods in our framework to seamlessly work with 3D
modalities. We neglect the methods that did not need any adaption (besides e.g. unit tests etc.) as they
work independently of the input dimensions. All XAI methods are adapted, such that they only return
positive attribution.

Occlusion For the 3D modalities we implemented a 3D kernel as the perturbation baseline for volumes
and a 1x3 mask (one point) for the point clouds. The image and volume mask transverse with overlap and
the point cloud mask without overlap over all dimensions of the input object.

LIME & Kernel SHAP For both methods, we implemented feature masks for each modality, as training
the linear surrogate models on the original input features is not informative and computationally very
expensive. Each mask groups the input features to the same interpretable feature. We use predefined grids
as feature masks, as superpixel computing algorithms are too computational and time-expensive, especially
for 3D modalities and evaluation metrics that perturb the input space or refit the XAI method multiple
times. For the image modality, we use a 16x16x3, for volume 7x7x7, and for point cloud 1x3 (one point)
mask, which is distributed as a non-overlapping grid in all dimensions over the whole object. For point
clouds we use ridge regression and for the other modalities lasso regression.

GradCAM, ScoreCAM & GradCAM++ For all CAM methods on volume data we adapted the
gradient averaging and the subsequent weighting of the activations and used nearest-neighbor interpolation
to upscale the weighted activations to 3D volumes. In the case of ScoreCAM we also use nearest neighbor up-
sampling instead of bilinear up-sampling, to upscale the activations for weighting the output of the previous
layer. To correctly reshape the upscaled images and volumes in the case of the Transformer architectures
(taking the channels to the first dimension as for CNNs), we use two different reshape functions for images
and volumes when the CAM methods are applied to Transformer architectures. Further, we use the absolute
activation output, not the non-negative for Transformer architectures, as the leaky-ReLU/GeLU function
output otherwise would sometimes be zero.

LRP For CNNs, we assigned the ϵ-rule to the linear or identity layers, the identity rule to all non-linear
layers, and to all other layers (convolutions, pooling, batch normalization, etc.) the γ-rule. For Transformer
architectures we implemented the 0+-rule for all layers. However, for the Simple3DFormer and the PC
Transformer, we had to add custom relevance propagation through the whole model, as the architectures
come with several sub-modules such as "local gathering" for the PC Transformer, which are non-trivial to
backpropagate through.
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Raw Attention We always use the raw attention of the last Transformer block and use bilinear or trilinear
interpolation to rescale the attention for image and volume data. For point cloud data, this procedure is
more complicated as the PC Transformer projects the embeddings on which the Transformer acts via farthest
point sampling and k-nearest neighbor grouping. Thus in each downsampling step, we save which k points
are sampled to then use k-nearest neighbor interpolation to cast the attention values for these remaining
points back into the input space onto all 1024 original points.

Rollout Attention Same procedure as for Raw Attention but before we interpolate back into the orig-
inal input space, we use the rollout attention aggregation algorithm over all Transformer modules in the
architecture.

LRP Attention As for LRP we use custom relevance backpropagation for the Simple3DFormer and PC
Transformer architectures. Based on the relevance scores, we filter the attention of each Transformer module,
aggregate the filtered attention with the rollout algorithm, and interpolate the resulting attention back into
the input as described for Raw Attention.

E.2 Adaption of evaluation metrics

In this section, we explain how we adapted the evaluation metrics in our framework to seamlessly work with
3D modalities. All metrics were adapted for point cloud (n,d) and volume (x,y,z) dimensions besides classical
image dimensions (w,h,c). We neglected the metrics which did not need any further adaption. All metrics
leveraging threshold values expect normalized saliency maps on the observation level. Otherwise, thresholds
have to be selected per observation.

Pixel Flipping We compute the Area Under the Curve (AUC) to receive a single score. For point cloud
data acts on the single coordinates.

Region Perturbation We compute the AUC to receive a single score. Acts on a 3D kernel for volume
data and single points for point cloud data. Compute the AUC to receive a single score.

Insertion Use Gaussian noise for 3D data instead of Gaussian blur for images. Inserting single points for
point cloud data and voxels for volume data.

Deletion Deletes single points for point cloud data and voxels for volume data. Compute the AUC to
receive a single score.

Iterative Removal of Features (IROF) Compute the Area Over the Curve (AOC) to receive a single
score. We use 3D Slic for volume segmentation and KMeans clustering with fixed k = 16 clusters for point
cloud segmentation. k = 16 was determined by visual inspection. See exemplary visualization in Figure 6.

Figure 6: Example of KMeans clustering for point cloud data with k=16.

Remove and Debias (ROAD) We use Gaussian noise for 3D modalities. Compute the AUC to receive
a single score.

Sufficiency Use the whole set of saliency maps for similarity comparison and not only the batch the
metric is applied to (see Appendix K). For distance calculation between saliency maps, we use squared
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Euclidean distance for volume data and standardized Euclidean distance for image and point cloud data due
to numerical instability.

Continuity We implemented x-axis traversal for volume data along the x-axis with black padding in
all dimensions and for the point cloud data by traversing all points along the x-axis position at (n, d = 0)
(see Figure 7). As removing points for point cloud data would change the input dimension of the object,
we instead map them to the center (0,0,0). We did not observe any OOD behavior by implementing this
solution. We use the Pearson Correlation Coefficient (PCC) between traversals to compute a single score.

Removed points get 

mapped to center (0,0,0)

x-axis traversal

y

Figure 7: X-axis traversal of point clouds for continuity metric. We can not remove points as this would
change the input dimensionality, thus we map them to the center (0,0,0), which is similar to black padding
for image and volume data.

Relative Representation Stability We use uniform noise (U(0, 0.05)) due to numerical stability as
Gaussian noise could generate infinity values.

F Ensuring comparability of results

To ensure fair comparability between XAI methods over all possible experiment set-ups and aggregation
levels, we take precautions about the XAI methods, evaluation metrics, and model architectures. Attribution
measures the positive or negative contribution of an input feature (e.g. pixel) into the predicted output class
of the model. On the contrary, CAM methods only compute positive attribution, and attention highlights
all general (or absolute) important input features independent of the output class. However, in practice,
attention is only valuable in interpretation if it also highlights features that are used for prediction. New
methods such as LA filter the attention to only show such class-relevant attention, and their possible better
performance to unfiltered attention can only be shown by evaluating it as positive attribution. Thus we
consider only positive attribution for saliency map comparison (also suggested by Zhang et al. (2018)).

Further, we normalize the saliency maps on the observation level as some metrics have nominal thresholds or
noise intensities which depend on the scale of saliency maps. As not all metrics compute single scores we have
to convert all metrics computing sequences or array of sequences into single scores either via the AUC for
Pixel Flipping, Region Perturbation, Selectivity and ROAD, AOC for IROF, or the PCC for SensitivityN and
Continuity. All scores are normalized on the metric and dataset level. Score backpropagation-based metrics
such as LRP (excluding the 0+-rule), DS or DLS, and the CAM methods expect non-negative activation
outputs. Thus, we exchanged before the CNN model training all GeLU or leakyReLU activation functions
with standard ReLU functions as they output negative values, biasing the XAI method. For the Transformer
architectures, however, we keep all activation functions, as well as the skip connections and patchification,
as they are central to the architecture. Their potential effect on different attribution methods is part of the
benchmark. For CAM methods on the Transformer architectures, we interpolate the reshaped absolute cls
token, as saliency maps would otherwise often be empty (also recommended by Chefer et al. (2021)).
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G Ranking computation flow chart
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Figure 8: Transformation and aggregation steps from raw evaluation scores to final tables.

Figure 8 shows the transformation and aggregation steps from raw scores to final tables depending if we want
to average across architectures or construct tables per architecture. In the calculation of the combinations,
it must be taken into account that in the case of the Transformer architectures we have three more XAI
methods (attention methods), and in the case of the point cloud modality, we have three fewer XAI methods
(excluding CAM methods). In the case of the full ranking, we then have 7,560 combinations of CV datasets,
architectures, XAI models, and evaluation metrics based on which we compute 50 scores for each combination,
but always the same observations per dataset. If we average across architectures, we have to first normalize
the 50 scores per architecture together, as the number of XAI methods differs between CNN and Transformer-
based architectures. As we normalize across architectures we end up with 2,520 combinations but 150 scores
per combination, which are in total again 378,000 scores. To receive the tables in the final step, we take
the mean over the computer vision datasets and evaluation metrics per evaluation criteria, to receive one
average rank per XAI method, evaluation criteria, modality, and depending if the ranking is full or across
architectures, architecture. Values in the last aggregation step coincide with the number of scores per
evaluation criteria, as each of the three criteria contains a different amount of metrics.

H Metric standard deviation for volume and point cloud data

Evaluation Criteria:

Model Architectures Utilized CV Datasets

3DResNet18 3DEffNetb0 S3DF AMN OMN VMN

Faithfulness 3.07 3.41 3.61 3.34 3.19 3.55

Robustness 3.47 3.41 3.42 3.54 3.25 3.51

Complexity 0.45 0.48 0.64 0.51 0.63 0.43

Weighted Average 2.82 2.99 3.1 2.99 2.83 3.07

a. Avg. Standard Deviation for Volume Model Architectures and Datasets

Evaluation Criteria:

Model Architectures Utilized CV Datasets

PointNet DGCNN PCT CMA M40 SHN

Faithfulness 2.9 2.97 3.55 3.23 3.07 3.1

Robustness 2.52 2.74 2.91 2.9 2.8 2.48

Complexity 0.72 0.51 0.29 0.42 0.59 0.51

Weighted Average 2.44 2.52 2.84 2.69 2.6 2.49

b. Avg. Standard Deviation for PC Model Architectures and Datasets

Table 9: Average metric standard deviation per model architectures and utilized datasets for a. volume and
b. point cloud modalities.
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I Ranking-bias through metric subsets

a. Distanced Matrices between Metric Rankings over all Utilized Image Datasets visualizing frequently agreeing or disagreeing Metrics

Avg. Rank

Distance

Figure 9: Average Euclidean ranking distance between metric pairs for model architectures and the faith-
fulness and robustness criteria. More often agreeing metric pairs in their rankings appear more green, and
disagreeing pairs more red.

In scenarios of high disagreement among metrics, potential biases could arise when considering only a limited
subset of metrics, a concern we have raised in relation to other studies. Such scenarios further underscore
our large-scale experimental design as it prevents undetected biases that could result from the selective use
of individual metrics, intentional or accidental. Figure 9 shows the Euclidean distance, averaged over all
attribution methods and datasets, between the ranking of two metrics for all model architectures and the
faithfulness and robustness criteria. We observe that the general mean distance or disagreement between
two metrics is around 4 ranks. We further observe around 8-10 outlier pairs for faithfulness and 2-5 for
robustness, which have either substantially higher agreement (∼ 2 ranks) or higher disagreement (∼ 5.5
ranks). By first selecting a favorable metric and then pairing it with strongly similar ranking metrics based
on this distance matrix (e.g. Faithfulness Estimate with Faithfulness Correlation), it is in theory possible to
selectively pair similar ranking metrics to deliberately skew results towards a favorable outcome. However,
this is only possible for a very small subset of metrics. Also the likelihood of any such "extremist subgroups"
unduly influencing our large-scale study is small. The closest example of such subgroups would be the
Relative Stability metrics for robustness.
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J Additional ranking tables

J.1 Full ranking table with standard errors

Evaluation 
Criterion: Faithfullness Robustness Complexity
Modality: Image Volume Point Cloud Image Volume Point Cloud Image Volume Point Cloud

Utilized Computer 
Vision Datasets: IMN OCT R45 AMN OMN VMN CMA M40 SHN IMN OCT R45 AMN OMN VMN CMA M40 SHN IMN OCT R45 AMN OMN VMN CMA M40 SHN

OC 10 ±1.97 8 ±1.42 10 ±1.92 9 ±1.29 5 ±0.67 13 ±1.52 11 ±1.07 7 ±1.68 8 ±1.29 11 ±1.96 9 ±1.23 9 ±1.9 11 ±1.77 7 ±1.39 10 ±1.43 9 ±1.67 10 ±1.03 10 ±1.48 8 ±0.67 12 ±0.0 8 ±0.0 7 ±0.33 12 ±1.15 5 ±1.86 11 ±0.33 7 ±1.0 5 ±0.33

LIME 13 ±1.29 14 ±1.16 13 ±1.48 12 ±1.22 13 ±0.84 8 ±1.29 5 ±0.86 6 ±1.3 6 ±1.18 14 ±1.53 15 ±1.08 14 ±1.93 11 ±1.63 13 ±1.62 10 ±1.4 11 ±0.95 11 ±1.3 12 ±1.07 7 ±1.33 13 ±0.88 6 ±0.33 12 ±0.33 6 ±0.33 12 ±1.53 9 ±0.88 7 ±0.88 9 ±0.88

KS 12 ±1.2 15 ±0.6 13 ±1.27 12 ±1.1 12 ±0.7 8 ±1.52 7 ±0.98 5 ±1.25 7 ±0.93 15 ±1.31 15 ±1.62 15 ±1.35 13 ±1.89 14 ±2.08 13 ±1.81 10 ±0.65 10 ±0.81 9 ±0.87 10 ±0.33 16 ±0.33 12 ±0.67 12 ±1.0 9 ±0.67 12 ±1.2 9 ±0.33 9 ±0.67 8 ±0.0

VG 8 ±1.36 12 ±0.89 9 ±1.15 14 ±1.19 12 ±1.56 8 ±1.57 8 ±0.99 8 ±1.07 8 ±1.24 7 ±0.9 7 ±0.94 8 ±1.3 7 ±1.66 7 ±2.24 7 ±2.29 7 ±1.04 8 ±0.81 9 ±1.27 11 ±0.88 14 ±0.67 9 ±0.0 15 ±0.33 11 ±0.88 13 ±0.58 7 ±0.33 8 ±0.58 9 ±0.88

IxG 10 ±1.5 8 ±1.65 8 ±1.8 6 ±1.47 6 ±1.39 9 ±1.46 8 ±1.14 6 ±0.97 7 ±1.01 10 ±1.83 10 ±2.04 11 ±1.78 9 ±1.93 10 ±1.62 10 ±2.11 8 ±1.0 9 ±1.44 9 ±1.13 3 ±0.0 4 ±0.33 3 ±0.33 2 ±0.33 2 ±0.33 5 ±3.38 2 ±0.67 4 ±0.0 3 ±0.67

GB 7 ±1.87 11 ±1.3 7 ±1.93 9 ±1.54 9 ±1.55 10 ±1.58 5 ±1.28 6 ±1.33 5 ±1.01 6 ±1.74 9 ±1.34 9 ±1.22 10 ±1.95 9 ±2.13 8 ±1.57 10 ±1.48 10 ±0.61 9 ±0.4 5 ±0.0 5 ±0.33 5 ±0.0 9 ±0.33 4 ±1.2 9 ±0.88 4 ±0.0 3 ±0.88 6 ±0.33

GC 6 ±0.99 8 ±1.17 10 ±1.22 14 ±0.47 13 ±1.22 12 ±1.08 -  -  -  6 ±2.02 6 ±1.49 5 ±1.36 11 ±1.18 10 ±1.46 11 ±1.43 -  -  -  13 ±0.0 12 ±1.0 14 ±0.0 13 ±1.0 8 ±0.58 9 ±0.58 -  -  -  

SC 6 ±1.2 8 ±1.56 8 ±1.58 10 ±1.35 11 ±1.04 9 ±1.92 -  -  -  9 ±1.76 9 ±1.66 9 ±1.85 12 ±1.77 12 ±1.12 10 ±2.01 -  -  -  12 ±0.33 7 ±1.33 10 ±0.33 16 ±1.33 14 ±2.33 15 ±1.2 -  -  -  

C+ 8 ±1.0 10 ±1.2 10 ±0.86 11 ±1.84 14 ±0.88 11 ±1.38 -  -  -  5 ±1.52 10 ±1.69 8 ±1.98 10 ±1.97 10 ±1.23 9 ±1.93 -  -  -  15 ±0.58 14 ±0.58 13 ±0.33 16 ±0.33 16 ±1.33 13 ±2.08 -  -  -  

IG 7 ±1.32 7 ±1.55 8 ±1.72 5 ±1.14 5 ±1.49 9 ±1.58 6 ±1.32 6 ±1.17 8 ±1.38 9 ±1.7 10 ±1.82 8 ±1.94 7 ±1.65 7 ±1.06 7 ±1.51 8 ±1.93 10 ±2.15 8 ±1.85 4 ±0.0 2 ±0.33 3 ±0.67 4 ±0.33 4 ±0.33 4 ±1.45 5 ±0.0 4 ±1.0 3 ±1.0

EG 6 ±1.32 6 ±0.84 5 ±1.09 8 ±1.29 6 ±0.96 6 ±1.39 8 ±1.2 8 ±1.02 7 ±1.49 7 ±2.04 5 ±1.83 5 ±1.1 6 ±2.18 5 ±1.97 5 ±1.31 8 ±1.3 8 ±1.21 8 ±1.23 16 ±0.67 17 ±0.33 16 ±0.33 6 ±0.33 12 ±0.88 6 ±0.33 10 ±0.88 11 ±0.0 11 ±0.0

DL 9 ±1.12 8 ±1.56 8 ±1.67 6 ±1.2 5 ±0.86 10 ±1.05 8 ±1.24 7 ±1.07 7 ±1.02 9 ±2.07 10 ±2.25 10 ±1.96 7 ±1.82 7 ±1.92 9 ±2.19 8 ±1.15 8 ±1.13 9 ±1.43 2 ±0.0 3 ±0.33 2 ±0.33 3 ±0.33 5 ±0.33 4 ±0.88 2 ±0.0 3 ±0.33 3 ±0.0

DLS 6 ±1.27 7 ±0.78 7 ±1.31 5 ±0.7 7 ±0.69 9 ±1.22 8 ±0.84 9 ±0.53 9 ±1.08 8 ±1.19 9 ±1.46 7 ±1.3 10 ±1.49 8 ±1.54 10 ±1.91 9 ±0.97 7 ±0.34 7 ±0.44 7 ±0.67 8 ±1.2 7 ±0.33 5 ±0.0 8 ±1.33 5 ±0.33 6 ±0.0 8 ±0.88 9 ±0.88

LRP 13 ±1.22 10 ±1.31 13 ±0.87 10 ±1.53 14 ±1.06 12 ±1.46 7 ±1.15 8 ±0.7 10 ±0.85 9 ±1.7 10 ±1.46 12 ±1.75 12 ±2.59 10 ±2.92 12 ±2.38 3 ±0.43 4 ±0.22 4 ±0.34 1 ±0.0 1 ±0.0 1 ±0.0 2 ±1.0 1 ±0.0 2 ±0.67 2 ±0.67 1 ±0.0 1 ±0.33

RA 12 ±1.52 7 ±1.7 11 ±1.35 8 ±1.69 7 ±1.27 9 ±1.9 8 ±1.77 9 ±1.8 7 ±1.53 7 ±2.12 3 ±1.32 6 ±1.93 6 ±1.55 7 ±1.98 9 ±1.94 5 ±1.52 4 ±1.64 3 ±1.6 8 ±0.58 8 ±0.67 11 ±0.67 8 ±0.0 13 ±1.45 11 ±4.7 12 ±0.0 12 ±0.0 12 ±0.0

RoA 11 ±1.4 8 ±2.01 7 ±1.18 8 ±1.75 8 ±1.8 6 ±1.49 9 ±1.38 9 ±1.34 8 ±1.74 9 ±1.6 9 ±2.07 8 ±1.84 6 ±0.95 7 ±1.23 6 ±1.8 5 ±1.95 3 ±1.62 4 ±1.27 16 ±0.58 9 ±0.33 17 ±0.0 11 ±1.53 14 ±0.88 12 ±2.03 14 ±0.33 14 ±0.33 14 ±0.33

LA 8 ±1.81 7 ±2.14 6 ±1.22 7 ±1.58 7 ±1.98 3 ±0.76 8 ±1.89 11 ±1.57 8 ±1.8 11 ±1.54 7 ±1.89 9 ±1.53 6 ±1.15 8 ±1.31 7 ±1.72 4 ±1.72 3 ±1.51 3 ±1.41 15 ±0.67 8 ±0.0 15 ±0.33 13 ±1.86 16 ±0.67 15 ±1.2 13 ±0.33 13 ±0.33 13 ±0.33
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Table 10: Full ranking table for all XAI methods and CV datasets with standard error (SE).

J.2 Ranking table CNNs only

Evaluation Criteria: Faithfullness (n{A,M} = 60) Robustness (n{A,M} = 42) Complexity (n{A,M} = 18)

Modality: Image Volume Point Cloud Image Volume Point Cloud Image Volume Point Cloud
OC 8.5 5.5 9 11.5 5.5 4.5 9 10.5 7.5

LIME 14 9.5 2.5 14 12.5 11 6 8.5 7.5
KS 13 9.5 7 13 14 9 13.5 8.5 10
VG 11.5 11 9 6 2 2 10 13 9
IxG 10 2.5 5 11.5 9.5 7 3.5 1.5 3
GB 8.5 7 1 10 8 8 2 5 5.5
GC 3 14 - 2 11 - 12 7 -
SC 5 8 - 8 9.5 - 7.5 14 -
C+ 4 13 - 4.5 7 - 11 12 -
IG 6 1 5 8 3 4.5 5 4 4

EG 1 5.5 11 2 1 10 13.5 10.5 11
DL 7 2.5 2.5 8 4 4.5 1 3 2

DLS 2 4 9 4.5 5.5 1 7.5 6 5.5
LRP 11.5 12 5 2 12.5 4.5 3.5 1.5 1At
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Top 1 Top 2-4 Bottom 2-4 Bottom 1Per modality:

Table 11: Ranking of the average rank over CNN architectures, datasets, and all evaluation metrics of the
respective criteria, for each XAI method and modality (i.e. the rank of OC on image is based on 3∗2∗10 = 60
ranks). Coloring coincides with top and bottom positions as no attention methods can be applied to CNN
architectures.
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J.3 Ranking table Transformer only

Evaluation Criteria: Faithfullness (n{A,M} = 30) Robustness (n{A,M} = 21) Complexity (n{A,M} = 9)

Modality: Image Volume Point Cloud Image Volume Point Cloud Image Volume Point Cloud
OC 13 9 11.5 12.5 12 13 11.5 8.5 6.5

LIME 16.5 15 2 15.5 16 14 9 8.5 5
KS 15 14 4.5 17 17 10 17 12.5 9
VG 11.5 11 8.5 1.5 2 7 13.5 10 6.5
IxG 9.5 3 1 7.5 10 10 1 1 3
GB 5 5 3 10 13 12 4.5 5 4
GC 9.5 16.5 - 12.5 10 - 10 14 -
SC 6.5 11 - 6 15 - 6 16.5 -
C+ 14 16.5 - 15.5 10 - 13.5 16.5 -
IG 6.5 2 6 5 5.5 8 3 3 2

EG 1 1 7 1.5 1 6 15.5 7 12
DL 11.5 4 4.5 10 7.5 10 4.5 2 1

DLS 3 6.5 8.5 3 7.5 5 7 6 8
LRP 16.5 13 13.5 14 14 4 2 4 10.5

         
RA 8 11 10 4 3.5 3 8 12.5 10.5

RoA 4 6.5 11.5 10 3.5 2 15.5 11 14
LA 2 8 13.5 7.5 5.5 1 11.5 15 13
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Top 1 Top 2-4 Bottom 2-4 Bottom 1Per modality:

Table 12: Ranking of the average rank over Transformer architectures, datasets, and all evaluation metrics
of the respective criteria, for each XAI method and modality (i.e. the rank of OC on image is based on
3 ∗ 1 ∗ 10 = 30 ranks). Coloring coincides with top and bottom positions.

K Shortcomings of evaluation metrics in practice

While all metrics are theoretically very well founded, we observed for some metrics shortcomings in applica-
tions:

Casting saliency maps from 64-bit to 32 or 16-bit to save disk space in such large evaluations is not recom-
mended, as our experiments showed that even 32-bit precision can lead to numerical instability, resulting in
all-zero saliency maps and nan or inf evaluation scores.

Sufficiency evaluates the likelihood that observations with the same saliency maps also share the same
prediction label. In practice, this requires several saliency maps from observation with the same prediction
label. While this works well on datasets with a small number of labels and balanced sampling, for datasets
like IMN with 1000 labels, the probability is almost zero that at least 5-10 sampled observations in a set of
sizes 50 or 100 have the same label (see Appendix N).

Sequence outputting metrics that alter the input space, such as Pixel Flipping, Region Perturbation, or
ROAD, are only limited suitable for binary prediction tasks. When the input object is too noisy/perturbed
to predict accurately, the probability for each class is 0.5 resulting in sequences converging against 0.5 and
not 0. While the resulting AUC (or AOC in the case of Region Perturbation) can be compared between XAI
methods within this task, between tasks the AUC would be biased as the area for the binary task would
always be larger.

ROAD scores are arrays of binary sequences which are averaged to one sequence. The amount of noise has
to be carefully tuned (also depending on the underlying model) as otherwise, all binary sequences in the
array are only 0 or 1.

Local Lipschitz Estimate approximates the Lipschitz smoothness through several forward passes of a batch
of observations. In application, this results in a large amount of RAM used (depending on modality) if the
approximation should be stable. While the computation is relatively fast on a GPU, stable approximations
exceed 40GB of VRAM by far and have to be partitioned. For the Transformer architectures, computation
on the CPU for our amount of data was too slow to be feasible.
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Effective complexity uses a nominal threshold value to determine attributed features. Even through nor-
malization of the saliency maps, the threshold value can have a large effect on the results, differing between
observations, and we would suggest tuning it per dataset.

IROF superpixel segmentation can result in very defined or binary structures such as in the AMN dataset
in only two superpixels (object and background), ignoring finer structures.

As elaborated, all complexity metrics flatten the input object treating it as a vector and ignoring spatial
dependencies.

L Ranking distance between model architectures

Image Modality

Volume Modality

Point Cloud Modality

Figure 10: Average distance between ranks of XAI methods on different model architectures for all modalities.
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M Differences in ranking order between model architectures

Robustness ComplexityFaithfulness

a. Average Rank Correlation of Evaluation Metrics between Models

Avg. Kendal 

Rank Corr.

Avg. Kendal 

Rank Corr.

a. Average Correlation between XAI 

Rank and Model Performance

Avg. Pearson

Correlation

Standard Error

Mean Avg. per Modality

b. Average Rank Distance between Model Architecture Ranks for selected Attribution Methods

Figure 11: Kendall’s-τ rank correlation between model architectures averaged over datasets and faithfulness
criteria.

We compare the difference in faithfulness rankings of attribution methods between CNN and Transformer
architectures, as biased methods should be less faithful to the model. To this end, we compute the Kendals-τ
rank correlation between each of the three architectures per dataset and compute their average correlation
per modality (see Figure 11). We observe a positive correlation between all rankings. For the point cloud
modality, however, the correlation is significantly lower than for the other two modalities, indicating less
similar rankings between model architectures. For volume and image modality, the similarity between CNN
architectures is generally higher.
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N Score distributions of evaluation metrics for all datasets

N.1 Image modality

Figure 12: Score distributions of all evaluation metrics for each XAI method. Scores are normalized also for
the Continuity PCC, as a negative correlation is worse than no correlation.

Figure 13: Score distributions of all evaluation metrics for each XAI method. Scores are normalized also for
the Continuity PCC, as a negative correlation is worse than no correlation.
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Figure 14: Score distributions of all evaluation metrics for each XAI method. Scores are normalized also for
the Continuity PCC, as a negative correlation is worse than no correlation.

N.2 Volume modality

Figure 15: Score distributions of all evaluation metrics for each XAI method. Scores are normalized also for
the Continuity PCC, as a negative correlation is worse than no correlation.
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Figure 16: Score distributions of all evaluation metrics for each XAI method. Scores are normalized also for
the Continuity PCC, as a negative correlation is worse than no correlation.

Figure 17: Score distributions of all evaluation metrics for each XAI method. Scores are normalized also for
the Continuity PCC, as a negative correlation is worse than no correlation.

37



Under review as submission to TMLR

N.3 Point cloud modality

Figure 18: Score distributions of all evaluation metrics for each XAI method. Scores are normalized also for
the Continuity PCC, as a negative correlation is worse than no correlation.

Figure 19: Score distributions of all evaluation metrics for each XAI method. Scores are normalized also for
the Continuity PCC, as a negative correlation is worse than no correlation.
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Figure 20: Score distributions of all evaluation metrics for each XAI method. Scores are normalized also for
the Continuity PCC, as a negative correlation is worse than no correlation.

39


	Introduction
	The LATEC benchmark
	Metrics analysis
	XAI benchmark results
	Main insights & takeaways

	Comparison with related work
	Conclusion and discussion
	Model performance and hyperparameter
	Test set performance
	Hyperparameter

	The LATEC dataset: Reference data for standardized evaluation
	XAI methods overview and parameters
	Overview
	Attribution Methods
	Attention Methods

	Parameters

	Evaluation metrics overview and parameters
	Overview
	Faithfulness
	Robustness
	Complexity

	Parameters

	Adapting current XAI methods and evaluation metrics for 3D data
	Adaption of XAI methods
	Adaption of evaluation metrics

	Ensuring comparability of results
	Ranking computation flow chart
	Metric standard deviation for volume and point cloud data
	Ranking-bias through metric subsets
	Additional ranking tables
	Full ranking table with standard errors
	Ranking table CNNs only
	Ranking table Transformer only

	Shortcomings of evaluation metrics in practice
	Ranking distance between model architectures
	Differences in ranking order between model architectures
	Score distributions of evaluation metrics for all datasets
	Image modality
	Volume modality
	Point cloud modality


