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ABSTRACT

Retrosynthesis strategically plans the synthesis of a chemical target compound
from simpler, readily available precursor compounds. This process is critical
for synthesizing novel inorganic materials, yet traditional methods in inorganic
chemistry continue to rely on trial-and-error experimentation. While emerging
machine-learning approaches struggle to generalize to entirely new reactions due
to their reliance on known precursors, as they frame retrosynthesis as a multi-label
classification task. To address these limitations, we propose Retro-Rank-In, a novel
framework reformulating the Retrosynthesis problem by embedding target and
precursor materials into a shared latent space and learning a pairwise Ranker on
a bipartite graph of Inorganic compounds. We evaluate Retro-Rank-In’s gener-
alizability on challenging retrosynthesis dataset splits designed to mitigate data
duplicates and overlaps. For instance, for Cr2AlB2, it correctly predicts the ver-
ified precursor pair CrB + Al despite never seeing them in training, a capability
absent in prior work. Extensive experiments show that Retro-Rank-In sets a new
state-of-the-art, particularly in out-of-distribution generalization and candidate set
ranking, offering a powerful tool for accelerating inorganic material synthesis.

1 INTRODUCTION
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Figure 1: Retrosynthesis problem. Identifying the optimal
precursor set for a given target material can be treated as a
ranking problem. We use the binary classification probabili-
ties of each set to determine its rank. Checkmarks indicate
whether a ranked set corresponds to an experimentally veri-
fied synthesis.

The discovery of inorganic materials
underpins a wide array of modern
technologies, such as renewable en-
ergy and electronics. Recent efforts
involving large-scale computational
exploration of the materials chemical
space (Sriram et al., 2024; Merchant
et al., 2023; Kim et al., 2021; Zhu
et al., 2024) have led to the discov-
ery of millions of potentially stable
and synthesizable compounds (what
to synthesize) (Merchant et al., 2023;
Barroso-Luque et al., 2024; Saal et al.,
2013; Zeni et al., 2023; Schmidt et al.,
2024). However, the synthesis of
these novel materials remains a crit-
ical bottleneck (how to synthesize)
(Karpovich et al., 2023; Mahbub et al.,
2020; Malik et al., 2021). Unlike inor-
ganic materials, organic molecules exist as discrete, individual structures, which allow their synthesis
to be broken down into multiple steps, each with smaller building blocks through a well-understood
sequence of reactions – a process called retrosynthesis. In contrast, inorganic materials adopt a
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periodic structure 3D arrangement of atoms. This periodicity renders the retrosynthetic strategy
known in organic synthesis inapplicable to inorganic materials. The synthesis of inorganic materials
largely remains a one-step process, where a set of precursors undergo a reaction to form a desired
target compound. This complex process has no general, unifying theory (Kononova et al., 2019),
and thus heavily relies on trial-and-error experimentation of precursor materials. Furthermore, the
exponential scaling of compute needed for simulation impedes physical modeling of the underlying
physical phenomena, e.g., thermodynamics and kinetics at the atomic scale (Bianchini et al., 2020).

This presents a compelling opportunity for machine learning (ML) approaches to bridge the knowl-
edge gap by learning directly from synthesis data. In particular, precursor recommendation stands
out as a key task in inorganic materials synthesis (Miura et al., 2021; Bianchini et al., 2020). For a
reaction A + B → C, the task is to recommend a set of precursors {A,B} given target C. Early
work in the field utilized a text-conditioned conditional variational autoencoder to generate synthesis
precursors for novel materials (Kim et al., 2020). ElemwiseRetro (Kim et al., 2022) employs domain
heuristics and a classifier for template completions. More recently, studies have leveraged language
models to uncover and analyze relationships between target materials and their precursors, (Kim
et al., 2024). An orthogonal approach trains a reaction template retriever by learning representations
of target materials using a masked precursor completion task. These learned representations are then
used to retrieve records of known syntheses of materials similar to the target material, which achieves
strong performance in precursor recommendation (He et al., 2023).

Notably, the most recent work Retrieval-Retro (Noh et al., 2024) employs two retrievers, the first
identifying reference materials sharing similar precursors with the target material, while the second
retriever suggests precursors based on formation energies. Specifically, this approach uses self-
attention and cross-attention for target-reference material comparison and predicts precursors via a
multi-label classifier. This framework effectively unifies both a data-driven and a domain-informed
approach for inorganic retrosynthesis. However, existing ML approaches face significant limitations,
as summarized in Table 1. Most notably, they lack the ability to incorporate new precursors, a
critical aspect of experimental workflows in laboratories when searching for novel precursors and
discovering new compounds (McDermott et al., 2023; Szymanski & Bartel, 2024). For instance,
Retrieval-Retro (Noh et al., 2024) cannot recommend precursors outside its training set, as they
are represented through one-hot encoding in its multi-label classification output layer (Figure 2,
a.). This design restricts the model to recombining existing precursors into new combinations
rather than enabling predictions involving entirely novel precursors that have not been seen during
training, thereby limiting its applicability in a material discovery setting. Furthermore, prior methods
struggle to effectively incorporate broader chemical knowledge. Retrieval-Retro utilizes a Neural
Reaction Energy (NRE) retriever trained to predict formation enthalpy using the Materials Project
DFT database of approximately 80,000 computed compounds (Jain et al., 2013), but this approach
does not fully exploit domain-specific data. Another limitation in extrapolation capabilities arises
from the embedding design in previous approaches. Specifically, these methods embed precursor and
target materials in disjoint spaces, which hinders their ability to generalize effectively.

Table 1: Comparison of precursor planning methods.
ElemwiseRetro (template-based), Synthesis Similarity &
Retrieval-Retro (retrieval-based), and our ranking-based ap-
proach compared for model capabilities.

Model
Discover

new precursors
Chemical

domain knowledge
Extrapolation
to new systems

ElemwiseRetro
(Kim et al., 2022) ✗ Low Medium

Synthesis Similarity
(He et al., 2023) ✗ Low Low

Retrieval-Retro
(Noh et al., 2024) ✗ Medium Medium

Retro-Rank-In
(Ours) ✓ Medium High

To address these gaps, we propose
Retro-Rank-In, a unified framework
for identifying and ranking precur-
sor sets (Figure 2). Retro-Rank-In
consists of two core components: a
composition-level transformer-based
materials encoder, which generates
chemically meaningful representa-
tions of both target materials and pre-
cursors, and a Ranker that evaluates
chemical compatibility between the
target material and precursor candi-
dates. The Ranker is specifically
trained to predict the likelihood that a
target material and a precursor candi-
date can co-occur in viable synthetic routes.
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Our key contributions are as follows:

• Increased flexibility: During inference, Retro-Rank-In enables the selection of new precur-
sors not seen during training. This is crucial for exploring novel compounds as it allows
the incorporation of a larger chemical space into the search for new synthesis recipes
(McDermott et al., 2023).

• Incorporation of broad chemical knowledge: We leverage large-scale pretrained material
embeddings to integrate implicit domain knowledge of formation enthalpies and related
material properties.

• Joint embedding space: By training a pairwise ranking model, we embed both precursors
and target materials within a unified embedding space, thereby enhancing the model’s
generalization capabilities.

• Analysis of sequential models: We compare our method against autoregressive generation
approaches, demonstrating that our framework provides a more robust and accurate alter-
native, particularly for tasks requiring the simultaneous evaluation of multiple precursors
instead of sequential modeling.

2 PRELIMINARIES
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Figure 2: Learning paradigms for inorganic retrosynthesis (a) Multi-label classification-based
approaches, which constitute current state-of-the-art models (Noh et al., 2024), inherently predict
known precursors P from a fixed candidate set. (b) Our approach (Retro-Rank-In) overcomes this
limitation by embedding both precursor and target materials into a shared latent space and predicting
their chemical compatibility in synthetic routes. This enables extrapolation beyond known precursors,
allowing the model to propose novel synthesis pathways for unseen materials. The red links highlight
an exemplary case for link prediction between a target and a precursor.

Retrosynthesis. During a forward synthesis process in inorganic chemistry, a set of precursors
P1, . . . , Pm are mixed and heated to form a target material T . The inverse problem, namely ret-
rosynthesis, devises a combination of precursors as a set that reacts to form a desired target material.
Retrosynthesis involves working backward from a target compound (e.g., Li7La3Zr2O12) to deduce a
set of simpler precursor compounds (e.g., {LiOH, La2O3, ZrO2}) that can feasibly synthesize the
desired product. However, this is an under-determined problem as there are many possible sets
of valid precursors, which, under the right reaction conditions, might form the target compound.
Moreover, the feasibility of a given precursor set can be quantified by considering factors such as
the required synthesis pressure and temperature, the cost of precursor materials, and the yield of the
process. Inspired by the fact that some precursor combinations are more advantageous than others,
we formulate the learning problem as a ranking task over precursor sets.

Learning problem. Building upon previous work (He et al., 2023; Noh et al., 2024), our objective
is to predict a ranked list of precursor sets, denoted as

(S1,S2, . . . ,SK). (1)
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Each precursor set S = {P1, P2, . . . , Pm} consists of m individual precursor materials, where each
element Pi represents a single precursor and the number m can vary for each set.

The ranking indicates the predicted likelihood of each precursor set forming the target material.
Historically reported synthesis routes from the scientific literature are considered correct predictions.

While prior work focuses on learning a multi-label classifier θMLC over a predefined set of precur-
sors/classes (He et al., 2023; Noh et al., 2024), we redefine the problem to learn a pairwise ranker
θRanker of a precursor material P conditioned on target T , see Figure 2. Thus, our reformulation of
the learning problem enables inference on entirely novel precursors and precursor sets, a capability
that has not been achieved by previous methods. In addition, we know that datasets in chemistry are
highly imbalanced, with a large number of possible precursors and only a few positive labels. Our
pairwise scoring approach allows for custom sampling strategies, including negative sampling, to
improve balance.

Compositional representation. For a given target material T , we represent its elemental composi-
tion as a vector xT = (x1, x2, . . . , xd), where each xi corresponds to the fraction of element i in the
compound, and d is the count of all considered chemical elements. For example, titanium dioxide
(TiO2) can be expressed as a composition vector where titanium (Ti, atomic number 22) and oxygen
(O, atomic number 8) contribute respective fractions x22 = 1

3 and x8 = 2
3 .

3 RETRO-RANK-IN

3.1 EMBEDDING MODEL

We use a multi-task pretrained transformer-based encoder θMTE, adapted from (Prein et al., 2023)
and (Wang et al., 2021), to map each composition x to an h-dimensional latent representation
x̃ = θMTE(x), with x̃ ∈ Rh.

Input sequence construction. First, each element i with a non-zero component is mapped to a
learned elemental embedding ei. During pretraining, the model is initialized with mat2vec elemental
embeddings (Murdock et al., 2020). To account for the continuous stoichiometric fraction xi, we
apply a sinusoidal fractional embedding fi, inspired by positional encodings in transformers (Vaswani,
2017). We then sum the elemental embeddings and their fractional encodings to form a single
per-element embedding:

zi = ei + fi. (2)
To achieve rich compound representations, we learn a special [CPD] token t that is prepended to
the sequence to serve as a global compound-level representation. Thus, the final input sequence s
becomes:

s =
[
t, z1, z2, . . . , zk

]
, (3)

where k is the number of distinct elements in the composition. We pass s through three transformer
encoder blocks:

x̃ = θMTE

(
s
)
, (4)

which use self-attention to contextualize each element’s embedding.

Multi-task pretraining. To encourage broader generalization, we pretrain the encoder on the
Alexandria database (Schmidt et al., 2024) of over two million unique compositions using a multi-
task objective, as described in appendix C.1. This includes (i) masked element prediction, where
randomly masked elements are reconstructed, (ii) DFT-property regression, predicting 10 computed
properties (e.g., formation enthalpy, stress tensor component, band gap) by feeding the final hidden
state of [CPD] into regression heads, and (iii) space-group classification, determining the space
group of x from the same special token output.

3.2 RANKER

We introduce a binary classifier B : Rh × Rh → P to evaluate precursor-target pair relevance. Given
a target representation x̃T ∈ Rh and precursor representation x̃P ∈ Rh, we compute the probability
p ∈ P of the precursor forming a valid synthetic path to the target. The training dataset consists of
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balanced positive and negative pairs, effectively forming a bipartite edge prediction problem akin to
recommender systems (Gao et al., 2022).

During inference, for a given target xT , we compute p(xP |xT ) = θRanker(x̃T , x̃P ) for each precursor
in the dataset. The top-K precursors, determined by probability ranking, are combined into valid
sets satisfying elemental completeness and predefined cardinality constraints (Noh et al., 2024).
Assuming precursor independence, we compute the joint probability of each set S as:

pS =

m∏
i=1

pi, (5)

where m denotes the number of precursors in the set. We evaluate the final ranked precursor sets,
ordered by pS , using Top-K metrics.

3.3 MODEL TRAINING

We collect target–precursor pairs (xT ,xP ) from known synthesis routes, and label them y ∈ {0, 1}.
To balance classes, we sample positive (y = 1) and negative (y = 0) pairs with equal probability.
Negative examples are generated by randomly selecting precursors that share at least one element
other than oxygen with the target material but are not used together with the target in the training
set. This approach ensures that the negative examples are chemically relevant. Each composition
x is encoded by θMTE, producing x̃. For a target–precursor pair (xT ,xP ), we concatenate their
embeddings

[
x̃T ∥ x̃P

]
and pass them to the ranker θRanker (Figure 2, b.) to predict the precursor

probability p(xP |xT ). We train using binary cross-entropy:

LBCE = − 1

|D|
∑
i∈D

[
yi log pi + (1− yi) log(1− pi)

]
, (6)

where pi = p(xP |xT ) and |D| is the total number of samples. At test time, given a target composition
xT , we compute p(xP |xT ) for each candidate precursor xP and select the highest-ranked precursors
for further evaluation (see appendix E).

4 EXPERIMENTS

We begin by detailing our experimental setup, datasets, evaluation protocols, and baseline compar-
isons. We then present empirical results, followed by an in-depth analysis of our approach, including
extensive ablation studies.

4.1 SETUP

Datasets. We build upon the dataset introduced by (Kononova et al., 2019), which has been widely
used in recent studies (Noh et al., 2024; He et al., 2023). Curated from the literature using paragraph-
and phrase-level NLP classifiers, this dataset captures solid-state reactions, including byproducts,
targets, and precursors, and comprises 33,343 synthesis recipes extracted from published sources.

However, this dataset has some incomplete or ambiguous entries. To ensure data quality, we apply
several preprocessing steps to validate chemical formulas. Specifically, we exclude entries containing
variables such as b and c or other symbolic placeholders, retaining only those with explicitly defined
stoichiometries and valid element symbols from the periodic table. Additionally, we enforce a
constraint requiring that all elements in the target material – except for C, O, H, and N – must also be
present in the precursor materials. A viable assumption to make is that new elements cannot form
during solid-state reactions.

After preprocessing, the dataset consists of 18,804 entries, of which 9,255 are unique, i.e., we exclude
permutations of precursor sets. Consequently, over half of the dataset consists of duplicate entries.

Previous studies (Noh et al., 2024; He et al., 2023; Kim et al., 2022) have employed a year-based
data split to construct a materials discovery setting, using data reported up to and including 2014 for
training and validation, while reports after 2014 serve as the test set. However, we recognize that a
high number of duplicated synthesis recipes can inflate a model’s performance metric in predicting
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synthesis routes for novel materials. This prevalence of duplicate entries aligns with observations
in related fields, such as organic retrosynthetic planning (Bradshaw et al., 2025), where repeated
recipes are frequently encountered due to recurring synthesis reports. To address these limitations,
we propose augmenting the existing year-based split with two additional evaluation settings, resulting
in three distinct datasets that present a more challenging setup for assessing extrapolation. More
details on the datasets can be found in appendix B.

• Complete Reaction Archive (CRA): Includes all entries, retaining duplicate precursor-
target combinations, as conducted in previous works (Noh et al., 2024; He et al., 2023; Kim
et al., 2022).

• Distinct Reactions (DR): This dataset focuses exclusively on unique precursor-target
combinations, represented as {xT ,xP1

, . . . ,xPm
}. Duplicate entries are removed, ensuring

that each reaction is represented only once. This split emphasizes the model’s ability to
learn distinct chemical pathways.

• Novel Material Systems (NMS): Ensures that no material system – defined by the set of
elements in the target material – overlaps between the training and test sets. For instance,
FeaPb samples (where a, b > 0) appear either only in the train/validation split or in the test
split. This setting enables the evaluation of the model’s ability to extrapolate to entirely new
systems.

Evaluation. Following recent works (Noh et al., 2024; He et al., 2023; Kim et al., 2022), we employ
Top-K exact match accuracy to assess the performance of our binary classifier B in the inorganic
retrosynthesis task. Additional details are provided in appendix E.

Let the ground-truth precursor set for a target composition xT be denoted as Strue, with its length
defined as m = |Strue|. Based on the probabilities pi predicted by the model, we construct precursor
sets as described in section 3.2. A valid set is defined by encompassing all elements of the target
compound. These sets are then sorted in descending order of their joint probability. For the Top-K
exact match accuracy, we select the Top-K subset of the sorted sets and compare the ground-truth
precursor set Strue against each set. If a match is found, the corresponding set is assigned a score of 1;
otherwise, it is scored as 0. This process is repeated for all target compositions in the test dataset, and
the scores are averaged to compute the overall score. To ensure objective benchmarking, we apply
the same set construction logic across all models.

Baselines. We evaluate our approach against three baseline methods for inorganic synthesis plan-
ning, as proposed in prior literature (Noh et al., 2024; He et al., 2023; Kim et al., 2022). These
methods formulate precursor prediction as multi-label classification, outputting a vector of dimension
N , where N represents the number of unique precursors in the dataset. He et al. (2023) introduced
a masked precursor completion (MPC) task, where attention layers are employed to contextualize
the representations of precursors and target materials. The model utilizes these representations
to reconstruct the precursor materials. Subsequently, these learned representations are leveraged
to search a knowledge base of known target materials, facilitating the transfer of precursors from
known materials to novel target materials. Noh et al. (2024) expands on this by adding a neural
reaction energy (NRE) retriever to the MPC task. The NRE module employs a pretrained formation
enthalpy predictor to retrieve energetically favorable candidate precursors from a knowledge base.
The combined model, namely Retrieval-Retro (Noh et al., 2024), then learns to use information from
both modules jointly to predict precursors via a multi-label classification objective.

The approach proposed by Kim et al. (2022) utilizes a heuristic-based method integrated with a
classification task through a multilayer perceptron. It extracts source elements from the input target
material composition and predicts corresponding templates from a set of 60 precursor templates. The
concatenation of the source element and its correspondingly predicted template forms the precursor
compound.

Furthermore, we incorporate three composition-based material representation strategies to predict
precursor occurrence via multi-label classification. First, we use a sparse composition approach
encoding each element’s fraction in a dedicated input dimension. Second, we apply CrabNet
(Wang et al., 2021), a transformer encoder model designed to contextualize elemental embeddings.
Finally, we test MTEncoder (see section 3.1), which uses a similar transformer-based architecture
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but benefits from extensive pretraining on large-scale materials data. In all cases, we pair these
representations with feedforward layers that output probabilities for each potential precursor via
multi-label classification.

Table 2: Performance comparison Different models were evaluated across three datasets: (a)
Complete Reaction Archive, (b) Distinct Reactions, and (c) Novel Material Systems. Bold values
indicate the best performance and underline the second best. All scores are reported as averages over
five runs, with standard deviations in parentheses.

(a) Complete Reaction Archive (b) Distinct Reactions (c) Novel Materials Systems

Model Top-K Accuracy ↑ Top-K Accuracy ↑ Top-K Accuracy ↑
Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Composition 64.72 77.68 81.17 83.44 42.31 55.35 59.36 62.86 43.57 55.26 58.27 60.01
(0.18) (0.37) (0.45) (0.42) (1.15) (1.00) (0.95) (0.80) ( 0.37) ( 0.58) (0.51) (0.57)

ElemwiseRetro 64.56 70.00 71.27 72.82 48.72 55.19 57.30 59.08 46.70 52.90 54.27 56.66
(Kim et al., 2022) (0.19) (0.12) (0.09) (0.06) (1.15) (0.32) (0.21) (0.22) (1.55) (0.05) (0.17) (0.23)
SynthesisSimilarity 62.25 73.19 76.03 78.51 40.40 53.48 57.61 61.24 36.67 47.60 50.97 53.42
(He et al., 2023) (0.75) (0.55) (0.43) (0.30) (0.49) (0.31) (0.53) (0.54) (0.40) (0.80) (1.01) (0.94)
CrabNet 66.66 79.73 82.98 85.24 48.68 63.30 67.26 69.70 48.54 59.93 62.44 63.70
(Wang et al., 2021) (0.43) (0.16) (0.37) (0.22) (0.51) (0.70) (0.58) (0.66) (0.47) (0.32) (0.30) (0.32)
Retrieval-Retro 66.22 77.45 81.01 84.28 49.31 62.70 67.30 71.25 48.05 60.77 64.26 67.68
(Noh et al., 2024) (0.61) (0.27) (0.35) (0.43) (0.62) (0.36) (0.83) (0.57) (0.58) (1.26) (1.18) (1.29)
MTEncoder 67.04 80.53 83.89 86.10 49.01 64.59 68.78 71.24 49.35 61.98 64.74 65.94

(1.77) (2.47) (2.40) (1.69) (0.54) (0.29) (0.397) (0.51) (0.40) (0.54) (0.59) (0.45)

Retro-Rank-In (Ours) 66.55 80.57 85.89 89.85 48.93 65.45 72.51 78.48 47.36 63.27 69.92 76.20
(0.43) (0.90) (0.61) (0.81) (0.50) (0.31) (0.69) (0.82) (1.05) (1.95) (1.74) (1.86)

4.2 RESULTS

Table 2 highlights key findings that both align with and extend prior research. Consistent with
Noh et al. (2024), models that explicitly capture interactions between elements (e.g., MTEncoder,
CrabNet) outperform simpler composition-based baselines. Notably, MTEncoder benefits from its
domain-informed pretraining, which enhances material representations by transferring knowledge
from compound properties related to synthesis, such as spacegroup and formation enthalpy, leading to
improved performance. All methods achieve high accuracy in the interpolation-focused CRA dataset
(Table 2, a.), obtaining strong Top-1 exact match accuracy. We observe that while methods perform
similarly at the Top-1 level, they do show a greater decline in accuracy compared to Retro-Rank-In
at higher Top-K settings. We attribute this decline to the imbalanced multi-label training objective,
which leads to a skewed probability distribution, many predictions are concentrated near 0 or 1, as
shown in Figure 10, making it less suitable for the ranking task. Additionally, we see only limited
benefit of the retrieval-based augmentation of target material information for methods (Noh et al.,
2024; He et al., 2023).

To investigate how model performance is influenced by predictions in more challenging extrapolative
settings, we curate two new datasets, one of deduplicated, distinct reactions (DR) and another of
novel material systems (NMS), are introduced to evaluate model performance in this setting where
no material system is shared between the training and test sets.

Distinct reactions. In the distinct reactions setting (Table 2, b.), performance declines (compared
to the CRA setting) across all methods due to the exclusion of overlapping reactions between training
and test data, underscoring the inherent difficulty of true extrapolation beyond memorized training
examples. Notably, while the Top-1 gap narrows and Retrieval-Retro surpasses our approach in this
metric, Retro-Rank-In maintains high Top-K exact match accuracy across the Top-3, Top-5, and
Top-10 evaluations, widening the gap to other approaches. We hypothesize that Retro-Rank-In’s
advantage stems from its ability to generate a more smoothly distributed ranking of candidates,
leading to better-calibrated scores for non-trivial precursor candidates. We show this in Figure 10,
where Retro-Rank-In predicts a more diverse set of precursors compared to the next best method.
Additionally, we find that MTEncoder achieves competitive performance, highlighting the significance
of pretrained and domain-informed embeddings. However, its performance declines for larger values
of K, likely due to the challenges associated with the multi-label classification setup. This comparison
highlights the robustness of Retro-Rank-In and its ability to generalize effectively even when other
methods struggle due to increased deduplication, suggesting that performance gains reported in
previous works may have been inflated by the presence of near-duplicate entries.
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Novel materials systems. However, the train-test split in the DR setting still contains compositions
that are similar (e.g., Li5La3Ta2O12 in training vs. LiLaTa2O7 in testing). As such, we evaluate the
models on the most difficult setting (NMS) (Table 2, c.), which shows a further widening of the
train-test gap. All models face greater difficulty in this extrapolative setting, reflecting the complexity
of predicting synthesis routes when training and testing data diverge more substantially. In this setting,
the domain-informed approaches, Retrieval-Retro and MTEncoder, achieve strong performance for
Top-1 set prediction. Notably, Retro-Rank-In performs competitively with Retrieval-Retro on the
Top-1 metric.

Diversity at no cost of performance. Notably, Retro-Rank-In outperforms the next best models
(MTEncoder and Retrieval-Retro) as more precursor sets (Top-K) are considered (Figure 3). Inter-
estingly, the performance gap between the two models widens from 2.5% for K = 3 to 8.5% for
K = 10. This is significant, as this shows that Retro-Rank-In is capable of generating valid precursor
sets even at high K values. In contrast, this effect is less pronounced in the baseline methods. We
hypothesize that this bifurcation of performance (Figure 3) at higher values of K is a result of a
higher diversity of valid precursor predicted precursors as previously shown in Figure 9. Based
on domain knowledge, this result is compelling, as the target-precursor relationship is inherently
one-to-many, i.e., the same target can be synthesized with multiple possible precursor sets. As such,
the high diversity of predictions is a testament to our approach to better capturing such a one-to-many
relationship. From an experimental point of view, this is useful as experimentalists may prefer a
diverse set of synthesis recipes instead of a few (possibly due to the availability of compounds in the
lab, safety, or apparatus constraints).

Figure 3: Comparison of Top-K accuracy. Com-
parison of Retrieval-Retro and Retro-Rank-In on
the Novel Materials Systems dataset (c). We see
the performance gap between both approaches
widening, especially for larger K.

Generalization to new precursors. In ret-
rosynthesis for materials discovery, experimen-
tal material scientists start from a target com-
pound to identify potential precursor candi-
dates. This process involves screening extensive
databases to find suitable compounds. As a case
study, consider the target compound Cr2AlB2. A
search in the Materials Project (Jain et al., 2013)
database yields potential precursor compounds
such as B, Cr, Al, AlB2, Al45Cr7, Al8Cr5,
AlCr2, CrB, CrB4, Cr3B4, Cr5B3, Cr2B3, CrB2,
Cr2B, and Cr4B. We train our model on a train-
ing set where none of these compounds were
present, a scenario in which all previous meth-
ods would be inapplicable. Inputting these into
our model yields the reported synthesis route
of reacting CrB + Al→ Cr2AlB2 as the third
highest-ranked synthesis recipe. Table 3 shows
four more examples of reactions where Retro-Rank-In is able to correctly predict as its top-ranked
precursor set, while Retrieval-Retro falls short (predicts ∅) due to it being limited to precursors seen
during training. This underlines that Retro-Rank-In can lead to new precursor candidates, paving the
way for more novel, potential synthesis pathways for target compounds.

Table 3: Extrapolation to new precursors: Examples from
the NMS dataset where the ground truth precursors have not
been part of the training set.

Target material Ground truth Retro-Rank-In (ours) Retrieval-Retro

Ba(GaSb)2 {GaSb, Ba} {GaSb, Ba} ∅
Na5NpO6 {Na2CO3, NpO2} {Na2CO3, NpO2} ∅
AlBMo {BMo, Al} {BMo, Al} ∅
Ga2Mo2C {Ga, Mo2C} {Ga, Mo2C} ∅

Suitability of sequence models.
We extend our method to select pre-
cursors sequentially from a given set.
Specifically, we build the precursor set
S by adding one precursor at a time,
allowing the model to learn condi-
tional probabilities of co-occurrences
p(xP |xT ). However, when evaluated
on the Distinct Reaction dataset, this
approach shows limited competitive-
ness, yielding exact match accura-
cies of 18.71%, 34.72%, 39.83%, and
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43.78% for Top-1, Top-3, Top-5, and Top-10 predictions, respectively. We attribute these modest
results largely to the infrequency of strongly correlated precursor pairs (Figure 7), which limits the
model’s ability to learn meaningful joint distributions. Moreover, a larger model to process the
context of precursors already assigned to the set presents significant challenges when training in the
low-data regime of our task.

4.3 MODEL ANALYSIS

Learning a pairwise ranker. Moreover, we examine how reformulating the multi-label classifica-
tion problem into learning a pairwise ranking influences the model’s performance. For this analysis,
we select MTEncoder embeddings. Table 4 depicts the results of those combinations. Notably, the
variants that learn the pairwise ranking demonstrate a significant performance enhancement over
alternatives.

Table 4: Ablation on learning problem formulation. We evaluate MTEncoder embeddings applied
to either pairwise ranking or multi-label classification. Bold denotes the best performance.

Embedding Pairwise Top-K Accuracy ↑
Top-1 Top-3 Top-5 Top-10

MTEncoder ✗ 49.01 64.59 68.78 71.24
(0.54) (0.29) (0.40) (0.51)

MTEncoder ✓ 48.93 65.45 72.51 78.48
(0.50) (0.31) (0.69) (0.82)

5 CONCLUDING REMARKS

Limitations. While our approach represents a significant advancement, enabling the applications to
novel synthesis routes and achieving state-of-the-art performance, it also has several limitations. Key
synthesis parameters such as temperature, duration, and pressure, which are critical to determining
the final synthesized materials, are not explicitly modeled (Huo et al., 2022). Additionally, precursor
interactions can lead to the formation of intermediate compounds and byproducts, which are not
captured by our current method.

Moreover, incorporating crystallographic structure data could further enhance predictive performance.
However, the scarcity of datasets that integrate reaction pathways with structural information presents
a challenge. Despite this, our approach is designed to be extensible and can incorporate such
data when it becomes available. Resources like the Inorganic Crystal Structure Database (ICSD)
(Zagorac et al., 2019) provide extensive collections of crystal structures, which could facilitate future
improvements.

Summary. In this work, we introduced Retro-Rank-In, a novel ranking-based framework for
inorganic retrosynthesis planning that implicitly incorporates broad chemical domain knowledge.
Our approach redefines precursor prediction by learning a pairwise ranker that generalizes beyond
known precursors, overcoming prior limitations and enabling the discovery of completely novel
synthesis recipes. Comparative evaluations show that Retro-Rank-In sets the new state-of-the-art,
particularly excelling in out-of-distribution scenarios. We will release the code upon acceptance to
enable efficient synthesis planning throughout research labs.

Future work. We identify several promising directions for future research. First, integrating
structural data into precursor ranking could enhance prediction accuracy by better capturing crys-
tallographic similarities. Larger pretrained models (Liao & Smidt, 2022; Neumann et al., 2024)
could further refine structural understanding, incorporating domain knowledge crucial for precursor
selection. Additionally, modeling the precursor ranking as a direct ranking between a target and two
precursor candidates could explicitly enable the model to choose between precursors, improving
interpretability and decision-making. Finally, analyzing attention patterns and the learned chemical
space could provide insights into how the model captures chemical compatibility, revealing implicit
reaction rules.
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A NOTATION

Table 5: Mathematical notation overview.

Symbol Domain Definition
General
x = (x1, . . . , xd) Rd Material composition
xi R Stochiometric fraction of element i
x̃ Rh Material embedding
P Rd Precursor material
S Rm×d Precursor set
T Rd Target material
p P Probability of a precursor or set
y {0, 1} Whether a target-precursor pair in dataset
θ – Parameterized learned model
B – Binary classifier
L – Loss function
Dimensions
d N Dimension of composition vector
h N Hidden dimension
m N Number of precursors per set
n N Number of unique precursors per set
N N Number of unique precursor in dataset
K N Top-K ranked precursor sets
MTEncoder
e Rh Learned chemical element embedding
f Rh Sinusoidal fractional embedding
z Rh Per-element embedding
t Rh Compound embedding
s R(k+1)×h MTE input sequence
k N Number distinct elements in composition

Example:

T ← {P1, P2, P3}︸ ︷︷ ︸
r=3

≡ {{A,B}︸ ︷︷ ︸
m1=2

, {A,C, F}, {C,G}} (7)

• n = 5 (explanation: there are five unique precursors {A,B,C, F,G})
• N is a large dataset-dependent number.

B DATASET

Table 6: Dataset Statistics including Train, Validation, and Test Splits

Dataset Train Validation Test

Complete Reaction Archive 9715 2430 6659
Distinct Reactions 5091 1274 2893
Novel Materials Systems 3012 753 2892

C IMPLEMENTATION DETAILS

Our code will be made available on GitHub upon publication of the manuscript.
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C.1 MTENCODER

Pretraining. Figure 4 presents a schematic representation of the MTEncoder architecture, which
processes material compositions using a transformer-based encoder. The input consists of element
tokens (e.g., Na, Fe, O) along with a special compound token (CPD) that aggregates information from
the constituent elements. These inputs pass through transformer encoder blocks that contextualize
the elements and generate a representation of the material composition. For downstream tasks, the
CPD token serves as the learned material representation and is fed into MLPs for property prediction.

When training on multiple material properties, each property is predicted using a dedicated MLP head
attached to the transformer encoder. Simultaneously with the supervised tasks, the model learns a self-
supervised denoising objective. Specifically, 30% of the element tokens are randomly masked, and
the model is tasked with reconstructing the original tokens from their contextualized representations,
thereby enhancing the robustness and generalizability of the learned features. Ablations on the
pretraining effectivness can be found here Prein et al. (2023).

Model Configuration. MTEncoder is configured as a multi-task transformer model. It employs 3
transformer layers (N = 3) with a model dimension of dmodel = 512 and a feed-forward dimension
of 2048. The encoder uses 4 attention heads and incorporates residual neural network layers with
dimensions [1024, 512] to further refine the representations. Notably, no dropout is applied, and
the special CPD token is enabled to effectively aggregate compound-level information. For the
self-supervised denoising task, 30% of the element tokens are masked. Training is conducted with a
base learning rate of 5× 10−5 for 40 epochs, using a pretraining batch size of 12. Each pretraining
task is weighted equally as indicated by the sampling probabilities.

Dataset. We employ the Alexandria database for pretraining Schmidt et al. (2024). We preprocess
the database by selecting a single structure per composition that exhibits the lowest formation enthalpy,
based on the assumption that these structures are the most stable. An overview of the pretraining
tasks is provided in Table 7.

Figure 4: MTEncoder architecture overview. This diagram illustrates the MTEncoder framework,
where material compositions are tokenized and processed through a transformer model.

C.2 TRAINING DETAILS

Model Training. We ablate over the number of layers in Retro-Rank-In to assess robustness against
this hyperparameter. As shown in Figure 5, the model performs consistently well under various
depths, peaking around three layers for most metrics. Top-1 accuracy dips slightly at both extremes
(one and five layers) but remains stable near the center. Similar trends hold for the other metrics
(Top-3, Top-5, Top-10), suggesting that while some tuning of depth may help refine results, the
method is generally resilient to layer variations.

Hyperparameters For our model, we conducted further hyperparameter tuning with ranges spec-
ified in Table 8. We explored the following parameter spaces: batch size B in {128, 256, 512},
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Pretraining Tasks
Stress
Band Gap (Direct)
Band Gap (Indirect)
DOS at Fermi Level
Energy Above Hull
Formation Energy
Corrected Energy
Phase Separation Energy
Number of Sites
Total Magnetization
Space Group
Masked Element Modelling (Self-supervised)

Table 7: Pretraining tasks Tasks during MTEncoder pretraining, data is used from alexandria.

Figure 5: Ablation for layers. Retro-Rank-In tested for various numbers of layers. Results show the
robustness of our method regarding hyperparameter choice.

number of attention heads H in {1, 4, 8}, number of feedforward (FFWD) layers L in {1,2,3,4},
learning rate η in [10−5, 10−3] and MTEncoder learning rate ηMT in [10−6, 10−4]. The optimal
configuration was determined based on model performance on the validation set, resulting in the
following selected values: batch size of 128, 1 attention head, 3 FFWD layers, learning rate of
6.81× 10−5 and MTEncoder learning rate of 6.37× 10−5. We report test performance using these
optimized parameters.

Table 8: Hyperparameter configuration of Retro-Rank-In

Hyperparameters Configuration
Search Space Selected Values

Batch Size (B) {128, 256, 512} 128
Attention Heads (H) {1, 4, 8} 1
FFWD Layers (L) {1,2,3,4} 3
Learning Rate (η) [10−5, 10−3] 6.81× 10−5

MT Learning Rate (ηMT ) [10−6, 10−4] 6.37× 10−5
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D BASELINE METHODS

D.1 RETRIEVAL-RETRO

Retrieval-Retro Noh et al. (2024) proposes a two-stage approach to inorganic retrosynthesis that
implicitly extracts the precursor information of reference materials. First, for each target material,
reference materials from the knowledge base of previously synthesized materials are elaborately
retrieved by two complementary models: Inspired by Synthesis Similarity He et al. (2023), the MPC
retriever, trained for Masked Precursor Completion (MPC), selects reference materials sharing similar
precursors. The Neural Reaction Energy (NRE) Retriever integrates domain knowledge and leverages
the thermodynamic relationships between materials to identify precursor sets with a high probability
of synthesizing the target. Representing target and reference materials as fully connected composition
graphs, the final Retrieval-Retro stage then employs self-attention and cross-attention mechanisms to
implicitly extract relevant precursor information from the reference materials and predict precursor
sets based on the probability for each individual precursor.

D.2 ELEMWISERETRO

ElemwiseRetro Kim et al. (2022) proposes a template-based approach to inorganic retrosynthesis
that represents target materials as fully connected composition graphs. To guide the retrosynthesis
process, the researchers distinguish between two types of elements: ”source elements,” provided as
precursors, and ”non-source elements,” which either appear or disappear during the reaction. For each
source element in a target composition, their model predicts the most likely anionic framework—a
composition of non-source elements—from a predefined set of templates. The selected source
element and its template are then concatenated to form the actual precursor compound, which
may be reformulated using a stoichiometric lookup table to ensure frequent and chemically valid
compositions.

D.3 SYNTHESIS SIMILARITY

He et al. (2023) uses a similarity-based approach to identify precursor sets for inorganic retrosynthesis.
They introduce a vector representation for Masked Precursor Completion (MPC) and chemical
composition recovery tasks and use this encoding to retrieve reference materials similar to a given
target. They initialize the prediction with the precursor set of the reference material and use the MPC
network to complement the prediction for a valid precursor set.

D.4 MISTRAL 7B

We utilize the Mistral 7B model (Jiang, 2024) for LM-based precursor prediction. Initially, few-shot
prompting was attempted, but its performance proved suboptimal. Consequently, we adopted a more
structured prompting strategy. The prompt was as follows:

“You are tasked with identifying precursors for synthesizing the target material
Mn0.71Zn0.21Fe2.08O4. You should choose exactly 3 precursors. Generate 20
possible precursor material combinations in descending order of probability. Each
route should represent a unique combination of precursors likely to result in the
target material. Use the chemical formulas for all precursors instead of their
common names. Output them in a Python list format, where each precursor is a
string, and each possible combination is a list. Each list should have a length of 3.
The response should only include a list of lists where the smaller the index of the
list, the higher the probability that the precursor combination has. Do not add any
other sentences to the response, only print the list.”

This structured prompt significantly enhanced prediction accuracy, and post-processing steps such
as element validation and duplicate removal further refined the results (see Table 9). However,
when compared to custom expert models specifically designed for precursor prediction, Mistral 7B’s
performance remains lower. We attribute this discrepancy to several factors: First, as a 7-billion-
parameter model, Mistral 7B has limited capacity to capture the intricate chemical knowledge and
nuanced relationships that specialized models, trained on domain-specific datasets, possess. Second,
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unlike expert systems that select precursors from a predefined candidate set, Mistral 7B is required to
generate precursor combinations in free-text form, increasing the risk of hallucinations and variability.
Third, its general-purpose training does not fully incorporate the strict chemical constraints and
synthesis rules that custom expert models are optimized for. Future work could explore integrating
domain-specific data and hybrid retrieval-generation approaches to better harness the efficiency of
large language models for inorganic retrosynthesis.

Table 9: Performance results for Mistral. Mistral evaluated across three datasets: (a) Complete
Reaction Archive, (b) Distinct Reactions, and (c) Novel Material Systems. Bold values indicate the
best performance and underline the second best. All scores are reported as averages over five runs,
with standard deviations in parentheses.

(a) Complete Reaction Archive (b) Distinct Reactions (c) Novel Materials Systems

Model Top-K Accuracy ↑ Top-K Accuracy ↑ Top-K Accuracy ↑
Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Mistral 7B 24.75 35.34 37.62 39.78 16.91 22.30 24.27 25.93 16.91 22.30 24.27 25.93

E EVALUATION PROTOCOL

To mitigate the combinatorial explosion, we first select the 30 precursor candidates with the highest
probabilities from the model’s predictions. Table 10 illustrates how increasing this sample size
improves Top-K match accuracy but also amplifies computational complexity, as more precursor
combinations must be evaluated. These selected precursors are then combined to form candidate sets,
and a set is deemed valid if the union of its elements contains all elements of the target composition.
Each valid set is assigned a joint probability derived from the probabilities of its individual precursors,
and the valid sets are subsequently ranked in descending order by this joint probability. For the Top-K
match accuracy, we focus on the subset of K highest-ranked valid sets. If the ground-truth precursor
set Strue matches any of these K sets, we assign a score of 1 for that target; otherwise, we assign 0.
Finally, we compute the overall score by averaging these individual scores across the entire test set.

We evaluate all approaches in this way, except for Mistral and ElemwiseRetro, which already output
the precursor sets. Therefore, we skip the step of constructing the sets from the candidates. The
remaining part of the evaluation stays the same.

Table 10: Top-K Match Accuracy across candidate precursor sample sizes n. Investigating the
effect of varying amounts of top n candidate precursors sampled based on highest probabilities (see
appendix E)), on example Top-K accuracy of Retro-Rank-In, and on the total number of evaluated
precursor combinations N .

n
Top-K Accuracy ↑

N
Top-1 Top-3 Top-5 Top-10

10 43.22 57.05 62.34 67.95 357,416
20 43.26 57.26 62.59 68.78 7,333,299
30 43.30 57.43 62.90 69.29 58,386,823
40 43.57 57.81 63.31 69.81 320,996,717

F FURTHER ANALYSIS

F.1 CHOICE OF INFORMATION CONTEXTUALIZATION.

From Table 12, all of the ablation variants (self-attention, concatenation, addpooling, transformer, and
meanpooling) perform within a fairly narrow range—the Top-1 through Top-10 accuracy numbers
are all close, and the standard deviations also suggest there the absence of a clear superior strategy.
Because the performance differences are small, the simplest method becomes the most appealing
choice in practice (Occam’s razor (Domingos, 1999)), as they provide results on par with the more
complex approaches while being easier to implement and faster to train.
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Table 11: Ablation for ranker architecure. We compare different ranker architectures.

Convolution Top-K Accuracy ↑
Top-1 Top-3 Top-5 Top-10

Self-Attention 47.30 62.48 69.56 75.99
(0.79) (1.01) (1.20) (1.10)

Concatenation 47.04 62.64 70.05 76.61
(1.76) (1.73) (2.13) (1.66)

Addpooling 48.48 63.36 69.96 75.85
(1.48) (0.56) (0.44) (0.58)

Transformer 45.95 62.07 68.55 74.65
(1.92) (1.56) (1.42) (1.42)

Meanpooling 47.78 63.13 69.35 75.78
(1.06) (1.02) (1.28) (1.55)

F.2 CHOICE OF RANKER ARCHITECTURES.

As shown in Table 12, all variants (self-attention, concatenation, addpool, transformer, meanpool)
perform similarly, with close Top-1 to Top-10 accuracy and overlapping standard deviations. Given
these minimal differences, the simplest method is preferable for efficiency and ease of implementation
(Occam’s razor (Domingos, 1999)).

F.3 HARD NEGATIVE MINING.

In our experiments, we integrate hard negative mining into the training process to evaluate its impact
on model performance. At each epoch, we increase the sampling probabilities of negative samples
with high cosine similarity to the ground truth precursor set. Contrary to findings in other domains
where hard negative mining enhances model accuracy Moreira et al. (2024); Monath et al. (2023),
our results indicated that this technique did not improve performance in our specific application.

F.4 HYPERPARAMETER ABLATION

We examined the impact of network depth on our model’s performance by training Retro-Rank-In with
feedforward layers ranging from 1 to 5. With each additional layer, we reduced the dimensionality by
a factor of two. Our findings indicate that the model is robust to these hyperparameter variations, with
a three-layer architecture yielding the highest Top-1, Top-3, and Top-5 accuracy scores. Consequently,
we selected this as our default configuration (appendix C.2).

F.5 PRETRAINING ENCODER ABLATION

Table 12 further examines the impact of no pretraining versus pretraining for the encoder model. We
observe the Top-K accuracy drastically decrease without having a pretrained encoder.

F.6 PERFORMANCE ACROSS DIFFERENT CHEMISTRIES

In Figure 6, we illustrate the correlation between the target embeddings and the ranks assigned by
our model, namely the Retro-Rank-In. To achieve this, we first process the chemical composition of
each target material using the Composition class from the pymatgen library, which parses the
input material string and standardizes its representation to ensure consistency in the interpretation
of the chemical formula. The standardized composition was then encoded using the MTEncoder
model Prein et al. (2023), which maps the material string to a h-dimensional tensor representation. In
this study, an embedding dimension of h = 512 was used to capture the essential features of each
material for further computational analysis. After acquiring the MTE embeddings, we projected them
into a 2D space using Principal Component Analysis (PCA), where each point’s color represents its
assigned rank. Warmer hues (red) represent higher ranks, while cooler tones (blue to white) indicate
lower ranks. The predominance of red points on this plane indicates that most embeddings were
correctly classified as Rank 1, demonstrating strong model performance. In contrast, lower-ranking
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Table 12: Ablation pretraining. Investigating the impact of pretraining for the encoder with the
Top-K accuracy.

Pretrained Encoder Top-K Accuracy ↑
Top-1 Top-3 Top-5 Top-10

✗ 33.24 53.13 62.70 71.22
(8.20) (5.52) (5.45) (2.98)

✓ 47.04 62.64 70.05 76.61
(1.76) (1.73) (2.13) (1.66)

Figure 6: PCA Visualization of target embeddings with rank-based coloring. PCA of target
embeddings, where each point is color-coded based on rank. Higher-ranked points are shown in
warmer tones, while lower-ranked ones appear in cooler shades, illustrating the distribution of
rankings in the embedding space.
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embeddings (e.g., those in blue) appear sparser, occupying smaller regions of the plot. This suggests
that while the majority of materials achieve Rank 1, fewer are assigned to lower ranks. In summary,
this two-dimensional projection thus highlights the distribution of performance across the embedding
space, revealing that the majority of embeddings cluster at higher ranks while relatively few reside in
the lower-rank region.

F.7 PRECURSOR CORRELATION

The top plot of Figure 7 is a significant degree of positive and negative correlation for a fair amount
of precursor pairs. The frequency of occurrence for the same pairs is visualized in the bottom figure.
While a few unique precursor pairs show strong positive or negative correlations, the vast majority of
frequently occurring pairs exhibit little to no correlation.

Figure 7: Precursor pair correlation. The plot illustrates the correlation between pairs of precursors.
Each point corresponds to a unique precursor pair, sorted along the x-axis by the strength of their
correlation. Correlation is quantified here by the logarithm of the ratio of their joint probability to the
product of their individual probabilities.

F.8 PREDICTION DIVERSITY

Figure 8 compares the number of unique precursor combinations identified by the two models,
RetrievalRetro and Retro-Rank-In, at Top-K thresholds of K=50 and K=100. We observe that

Figure 8: Precursor set diversity. Comparison of the number of unique precursor combinations
generated by Retrieval-Retro and Retro-Rank-In.
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Figure 9: Retro-Rank-In achieves higher diversity of predicted precursors. PCA plot of a
MTEncoder-encoded target material (red color) and precursors predicted by Retrieval-Retro (green
triangles, left) and Retro-Rank-In (blue crosses, right). The intensity/alpha of each point is propor-
tional to the probability assigned by each model. Clearly, Retrieval-Retro assigns high probabilities
to a small number of precursors, leading to low diversity. In contrast, Retro-Rank-In assigns signif-
icant probabilities to a higher number of precursors, leading to higher diversity. Importantly, this
improvement in diversity does not come at the expense of accuracy, as shown in Table 2.

Retro-Rank-In consistently generates a greater number of unique precursor combinations than
RetrievalRetro. This result suggests that Retro-Rank-In can capture a broader space of potential
synthetic routes, which is advantageous for identifying novel and efficient strategies in retrosynthetic
planning.

This is further supported by the findings of Figure 9, which shows how each model allocates
probability mass across its proposed precursor sets. In particular, RetrievalRetro tends to concentrate
most of its probability on just a few highly ranked precursor combinations, as evidenced by a
steep probability drop-off after its top-ranked suggestions. By contrast, Retro-Rank-In spreads its
probability more evenly across a larger set of potential combinations, indicating a more diverse
exploration of the synthetic space. Crucially, this broader coverage means Retro-Rank-In is less
likely to overlook innovative or less obvious routes during retrosynthetic planning, offering a more
comprehensive foundation for subsequent experimental validation.

Lastly, Figure 10 compares the distribution of predicted precursor probabilities (the top 60 highest
values) for Retro-Rank-In (top) and Retrieval-Retro (bottom) on the Distinct Reactions test set. Retro-
Rank-In produces a wider spread of mid-to-high probabilities, suggesting more nuanced confidence
estimates, while Retrieval-Retro’s predictions cluster near zero or one. This pattern indicates that
Retro-Rank-In is better calibrated, resulting in stronger performance at higher values of K in Top-K
exact match accuracy.
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Figure 10: Distribution of predicted probabilities. A comparison of the top 60 highest predicted
precursor probabilities across the test set of the Distinct Reactions dataset. Our approach demonstrates
improved probability calibration compared to the previous state-of-the-art (Noh et al., 2024). We
attribute this improvement to the class-balanced learning of a pairwise ranker, which translates to
enhanced throughout performance at higher values of K in Top-K exact match accuracy.
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