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Abstract

Data samples generated by several real world processes are dynamic in nature i.e.,
their characteristics vary with time. Thus it is not possible to train and tackle
all possible distributional shifts between training and inference, using the host of
transfer learning methods in literature. In this paper, we tackle this problem of
adapting to domain shift at inference time i.e., we do not change the training pro-
cess, but quickly adapt the model at test-time to handle any domain shift. For this,
we propose to enforce consistency of predictions of data sampled in the vicinity
of test sample on the image manifold. On a host of test scenarios like dealing with
corruptions (CIFAR-10-C and CIFAR-100-C), and domain adaptation (VisDA-C),
our method is at par or significantly outperforms previous methods.

1 Introduction

One of the implicit assumptions in the development of machine learning systems is that test data
and train data are sampled from the same distribution. A minor departure from this assumption can
have catastrophic consequences [Recht et al., 2019, Hendrycks and Dietterich, 2019, Jo and Bengio,
2017]. Significant amount of literature has concentrated on tackling this problem in several ways.
Methods in transfer learning modify a source trained network using labeled target domain training
data so that performance on test data, which is sampled from the target domain, is improved [Zhuang
et al., 2021]. In problems like semantic segmentation, labeled data is harder to obtain. For such
problems, Unsupervised domain adaptation methods have been proposed [Toldo et al., 2020], in
which unlabeled target data and labeled source domain data are available at train time. Instead of
source domain training data, a source trained model is used in model adaptation [Chidlovskii et al.,
2016, Li et al., 2020]. A summary of the described scenarios is given in Table 1. The most oft
studied scenarios, like the ones described above, require prior knowledge of the domain shift that
will occur at test time, and require data from the target domain at the train time. For some problems
in sensor data [Vergara et al., 2012], autonomous driving [Bobu et al., 2018], the domain changes
gradually, and is linked to a physical process (say change of weather, or time of day). In addition to
the gradualness, these changes cannot be always anticipated and thus it is not possible to curate data
and train networks for them. This necessitates training strategies which do not need test domain data
at train time.

In this paper, we tackle the problem of handling domain shift at test time; a problem previously
termed test time training [Sun et al., 2020], or test time adaptation [Wang et al., 2021]. Differing
from model adaptation, the model is adjusted to (possibly) different domains as the data arrives
during inference. Owing to the nature of the problem, test time adaptation necessitates simpler,
lighter methods compared to its train-time adaptation counterparts.

Several works have shown that one of ways to improve generalization performance is to train the
network with various input data augmentations [Hendrycks et al., 2020, Cubuk et al., 2019b]. Net-
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Strategy Train data Test data Training process Testing process

Baseline S Tx L(S) -
Transfer learning S & T Tx L(S) + L(T ) -

Fine tuning T & f(·, θS) Tx L(T ) -
Unsupervised Domain

Adaptation
S & Tx′ Tx L(S) + L(Tx) -

Model Adaptation Tx′ & f(·, θS) Tx L(Tx) -
Test time adaptation S Tx L(S) L(T )

Table 1: In the table we show the various scenarios proposed to handle domain change problem. XS ,
XT denote the source and target domains, and S = {(xi, yi)}Ns

i=1 T = {(xi, yi)}Nt
i=1 be the labeled

source and target data, and Sx and Tx/Tx′ are the unlabeled data from source and target domains,
L(·) denotes a generic applicable loss function. Testing process with ‘-’ denotes that the testing
procedure does not have steps other than the forward-propagation of the data sample. In this work,
we focus on the last row i.e, test time adaptation, where we push the burden of handling domain
changes to inference time. A similar table has been presented by Wang et al. [2021]

works are trained with multiple such augmentations for each training sample with the original label.
This is equivalent to training the network with original images, and adding a consistency regular-
izer that penalizes different outputs for augmentations [Leen, 1994]. We take a similar view point,
and show that enforcing consistency of predictions over various augmentations of the test samples
improves model’s performance on corrupted data (CIFAR-10-C/100-C [Hendrycks and Dietterich,
2019]), and on domain shifts (VisDA-C [Peng et al., 2018]).

2 Related work

Data augmentations Successes of deep learning can be partly attributed to training recipes like
data augmentation [Krizhevsky et al., 2012], among others. There have been several attempts at
designing these augmentation strategies in the literature. Ratner et al. [2017], Cubuk et al. [2019a]
propose to learn data augmentation per task using reinforcement learning. Recently, randomized
augmentation strategies like RandAugment [Cubuk et al., 2019b] and AugMix [Hendrycks et al.,
2020] have been shown to improve generalization performance, as well as calibration. Data aug-
mentations are the cornerstone of the modern self-supervised learning methods (Chen et al. [2020],
and survey blog post [Weng, 2021]). A comprehensive survey has been presented in Shorten and
Khoshgoftaar [2019].

Consistency losses Consistency losses were found to help semi-supervised learning prob-
lems [Rasmus et al., 2015, Tarvainen and Valpola, 2017, Bachman et al., 2014, Sajjadi et al., 2016].
The outputs of the augmented data have been compared through JS-divergence in the current work
and in Hendrycks et al. [2020], mean-squared error in Sajjadi et al. [2016], Laine and Aila [2017],
cross-entropy loss [Miyato et al., 2018]. Consistency losses over augmented inputs have been the
mainstay in self-supervised learning literature like InfoNCE loss [Chen et al., 2020] and cross-
correlation [Zbontar et al., 2021].

Transfer learning In addition to standard techniques like adversarial adaptation [Ganin et al.,
2016], data augmentation based techniques have also been proposed to deal with domain trans-
fer. Volpi et al. [2018] propose that adversarial augmentation leads to better generalization for image
domains that are similar to source domain. Pretraining with auxiliary tasks and using consistency
losses was found useful for domain adaptation tasks [Mishra et al., 2021]. Huang et al. [2018] use
an image translation network for data augmentation for domain adaptation. Augmented inputs have
been used to predict multiple outputs, and fused by uncertainty weighting in Yeo et al. [2021]. The
problem closest to ours is model adaptation [Chidlovskii et al., 2016], where several recent works
have shown the utility of pseudo-labeling, and entropy reduction on the unlabeled target set [Teja
and Fleuret, 2021, Liang et al., 2020]. In addition, methods that use GANs for image synthesis of
target data also exist [Li et al., 2020].
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Test time adaptation Sun et al. [2020] proposed to adapt networks at test time by training networks
for the main task and a pretext task like rotation prediction at train time. At test time, they fine-
tune the pretext task network to adapt to distribution changes on-the-fly. This method modifies the
training procedure to be able to adapt on-the-fly. Recent works [Nado et al., 2021, Schneider et al.,
2020] found that adapting batch normalization statistics to the test-data is a good baseline for dealing
with corruptions at test time. Tent [Wang et al., 2021] takes this a step further and fine-tunes batch
normalization’s affine parameters with an entropy penalty. Important questions about the sufficiency
of normalization statistics are left unanswered in these works. Our work differs from the existing
works in test time adaptation, as we propose increasing robustness of the network to test samples. It
has been shown in [Novak et al., 2018] that trained neural networks are robust to input perturbations
sampled in the vicinity of the train data; we extend this notion to test time adatation, by enforcing
this robustness as a proxy for improving performance on the test data.

3 Proposed method

Let p· ≡ p(y|·) = f(·, θ) be the trained model parameterized by θ on the source training set
i.e., f(·, θ) subsumes the softmax layer. Let x be a test sample and x̃ ∼ µ(x̃|x) be an output
of data augmentation method µ(·|·)with input x. For a test sample x, we sample two augmen-
tations x̃1, x̃2 ∼ µ(x̃|x), compute the output probabilities as px = f(x, θ), px̃1

= f(x̃1, θ),
px̃2

= f(x̃2, θ) for the original input, and the two augmentations. Over these, we propose to use a
consistency loss as in Equation (1)

Lcons(px, px̃1
, px̃2

) =
DKL(px ‖ p̄) +DKL(px̃1

‖ p̄) +DKL(px̃2
‖ p̄)

3
, (1)

where
p̄ =

px + px̃1
+ px̃2

3
(2)

is the average posterior density of predictions. Here

DKL(p ‖ q) =
∑
k

pk log

(
pk

qk

)
denotes the KL-divergence of the two distributions p and q, where pk denotes the index k. We note
that this loss was originally proposed in Hendrycks et al. [2020] for training with augmentations,
and refer the readers to it for experiments about the specific form of Equation (1). Mean-squared
error over the posterior predictions [Tarvainen and Valpola, 2017, Berthelot et al., 2019] has also
been successful in semi-supervised learning. The details of augmentation methods (µ(·|·)) used are
presented in Appendix A.

In addition to the consistency loss in Equation (1), we use an entropy penalty [Wang et al., 2021, Vu
et al., 2019, Grandvalet and Bengio, 2005].

Lent(px, px̃1
, px̃2

) = 1
3 (H[px] + H[px̃1

] + H[px̃2
]) (3)

Here
H[p] = −

∑
k

pk log(pk)

is the entropy of predictions p, and the index k is over the number of classes. Contrary to [Wang
et al., 2021], we tune all the parameters of the networks considered. The overall loss is given by the
sum of Equation (1) and Equation (3)

L = Lcons + Lent (4)

Our loss function in Equation (4) enforces that network predicts the same for each of the augmenta-
tion, in addition to being as confident as possible for each of them.

4 Experiments

We show the efficacy of our method on the standard benchmarks used in Tent [Wang et al., 2021] for
ease of comparison: corrupted CIFAR-10 and CIFAR-100, named CIFAR-10-C and CIFAR-100-C
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Table 2: Results of VisDA adaptation. We improve significantly compared to the baseline.

Unadapted Tent Proposed Proposed
[Wang et al., 2021] (RandAugment) (AugMix)

44.1 60.9 67.1 67.2

respectively [Hendrycks and Dietterich, 2019], and VisDA-C [Peng et al., 2018]. CIFAR-10-C and
CIFAR-100-C consist 15 corruption types that have been algorithmically generated to benchmark
robustness algorithms. VisDA-C dataset is a large-scale dataset that provides training and testing
data with 12 classes (real world objects). Training data consists of rendered 3D models using varying
view-point and lighting conditions, and the test data is real images cropped from Youtube videos.

For each experiment, we sample two augmentations using either RandAugment [Cubuk et al.,
2019b] or AugMix [Hendrycks et al., 2020], and minimize the loss in Equation (4) using SGD
optimizer with a learning rate of 10−4, momentum 0.9, and weight decay of 5 × 10−4 for 5 itera-
tions. For all the results presented, Unadapted refers to the performance of the model trained on the
source data of that task. Additional details of the augmentation methods, and datasets are presented
in Appendix A and Appendix B respectively. We show our main results in this section, and ablations
in Appendix D.

Domain Adaptation We use a ResNet-50 [He et al., 2016] network that has been pretrained on
Imagenet, and use a test time batch size of 64. With the results presented in Table 2, we see the
proposed method beats the existing methods by a significant margin of ∼ 6.2%. We find that
lower intensity of augmentations i.e., m = 1, n = 1 for Randaugment, and α = 1, depth = 3,
severity = 2, width = 1 for AugMix result in the best performance. We also found that our method
is relatively stable to small changes to augmentation parameters used.

Corruption (CIFAR-10-C and CIFAR-100-C) We use Wide ResNet [Zagoruyko and Ko-
modakis, 2016] pretrained models from the RobustBench code repository [Croce et al., 2020]. For
CIFAR-10-C we use a WRN-28-10, and for CIFAR-100-C we use WRN-40-2. These networks have
been trained on training set of CIFAR 10/100. We use the augmentation hyperparameters as in do-
main adaptation experiments, with the batch size changed to 200. In Table 3 and in Appendix C, we
see that the performance of our proposed method is comparable to Tent on CIFAR-10-C, and beats
Tent by a margin of ∼ 1% for CIFAR-100-C.

Table 3: Results of CIFAR-10-C and CIFAR-100-C datasets. We present the % accuracy averaged
over all corruptions here.

Dataset Unadapted Tent Proposed Proposed
[Wang et al., 2021] (RandAugment) (AugMix)

CIFAR-10-C 56.5 81.4 80.9 81.2

CIFAR-100-C 53.2 64.5 65.4 65.7

5 Discussion

Our experiments show that a consistency regularization on the input space (Equation (1)) improves
performance on the test data. It is particularly interesting that learning invariance to general syn-
thetically created deformations leads to better performance even on data from different domains, as
we show in Table 2. However the specific characterisitics of the augmentations that result in better
generalization is unclear.

Previous studies found that networks with flat minima in the weight space generalized better [Chaud-
hari et al., 2017, Keskar et al., 2016]. Huang et al. [2020] consider neural networks with flat minima
analogous to wide margin classifiers. Wide margin, in addition to being interpreted as stability to
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perturbation of parameters, and can also be seen as being robust to input perturbations [Bousquet
and Elisseeff, 2002, Elsayed et al., 2018]. While these prior works partially explain our proposed
method, they do not explain how solely searching for a flat region (in the input space) corresponds
to a point in the weight space that generalizes.

We find that the efficacy of our method (as well as that of Tent [Wang et al., 2021]) is dependent
on the batch size used (Appendix D.3), which is a departure from any normal testing scenario,
where each sample is labeled independently. Additionally, our experimentation is currently limited
to smaller datasets, and a limited set of problems. Thus, further experiments on perturbations, and
more difficult domain adaptation problems are left as future work.
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A Augmentation methods

In this section we describe the augmentation methods RandAugment [Cubuk et al., 2019b], and
AUGMIX [Hendrycks et al., 2020] used widely in the main text.

A.1 RandAugment

Methods like AutoAugment [Cubuk et al., 2019a] use complex machinery like reinforcement learn-
ing to deduce the optimal augmentation strategy for a problem. RandAugment proposes to do the
opposite: it randomly samples augmentations from a predefined list of augmentations and com-
poses them functionally to output the augmentation for each data point. The algorithm is shown in
Algorithm 1.

Algorithm 1 RandAugment

Input: O ← {Identity, AutoContrast, Equalize, Rotate, Solarize, Color, Posterize, Contrast,
Brightness, Sharpness, ShearX, ShearY, TranslateX, TranslateY}, x, m, n

. m is the maximum intensity of augmentations, n is the number of augmentations
for i in 1 . . .n do

local intensity← randint(1, m)
sample← random choice(O)
x← sample(local intensity)(x)

Return: x

A.2 AUGMIX

AUGMIX is a data augmentation technique that has been improve model robustness. Unlike Ran-
dAugment, where sampled augmentations are composed, AugMix mixes the results of chains of aug-
mentations in convex combinations. Increasing diversity by composing augmentations can generate
a sample that is off the data manifold, and the authors argue that their proposed way of combining
generates realistic transformations. The specific algorithm is given in Algorithm 2.

Algorithm 2 AUGMIX. Adapted from Hendrycks et al. [2020]

Input: O similar to Algorithm 1, k, α
xaug ← zeros like(x)
(w1, w2, . . . wk) ∼ Dirichlet(α, α, . . . , α)
for i in 1 . . .k do

sample1, sample2, sample3 ← random choice(O)
sample1, 2 ← sample1◦ sample2, sample1, 2, 3 ← sample1◦ sample2◦ sample3
op← random choice({sample1, sample1, 2, sample1, 2, 3})
xaug+ = wi · op(x)

sample m ∼ Beta(α, α)
xaugmix = mx + (1−m)xaug

Return: xaugmix

B Datasets

B.1 Corruption datasets – CIFAR-10-C, CIFAR-100-C

To benchmark the model robustness, Hendrycks and Dietterich [2019] proposed corruption (along
with perturbation) datasets. In this work we consider the datasets that were derived from the com-
monly used CIFAR-10 and CIFAR-100 datasets, named CIFAR-10C and CIFAR100-C respectively.
They consist 15 corruptions types applied to the test data of the original datasets. Each of the 15 cor-
ruptions has 5 levels of severity, and we present our results on the maximum level of corruption. The
corruptions can be grouped into four main categories – noise, blur, weather and digital. A summary
is presented in Table 4.
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Table 4: Summary of corruptions in CIFAR-10-C and CIFAR-100-C used in this work.

Noise Blur Weather Digital

Gaussian noise Defocus blur Snow Brightness
Shot noise Frosted Glass blur Frost Contrast

Impulse noise Motion blur Fog Elastic transformation
Zoom blur Spatter Pixelation

JPEG compression

B.2 VisDA-C

VisDA-C [Peng et al., 2018] is a large-scale dataset to benchmark unsupervised domain adaptation
methods. It consists of three domains of 12 classes (object categories). The source (training) data
consists renderings of 3D models from various view-points and lighting conditions. The validation
domain consists of real images cropped from MS-COCO. The target (test) data also consists real
images cropped Youtube bounding box datasets. All three splits contain the classes: aeroplane,
bicycle, bus, car, horse, knife, motorbike, person, plant, skateboard, train, and truck.

C Detailed results of CIFAR datasets

We show the detailed per corruption results of our CIFAR-C experiments in Figure 1. We find that
our method improves drastically when the baseline performance is low.

D Ablations

In this section, we provide ablations of three of the important hyperparameters of our algorithm,
number of SGD steps, learning rate, and testing batch size, here. We use the VisDA-C experimental
setup and show our results for RandAugment setup with default hyperparameters. The other hyper-
parameters remain the defaults set in the main paper, unless they are being ablated on. The three
ablations refer to Figure 2. For all the ablations in this section, we show performance as % accuarcy
on the test set.

D.1 Number of SGD update steps

The loss function in Equation (4) is minimized over several SGD steps, and we plot the evolution of
performance with number of steps. We see an asymptotic rise in the performance with number of
steps, and we use 5 steps for all other steps. However this increases the run-time of our algorithm at
test time, and thus we recommend a number dependent on the running time requirements.

D.2 Learning rate

We change our learning rate on a logarithmic scale from 10−6 to 10−1, and we see that our method
is reasonably robust to the choice, with the best learning rate is around 10−4.

D.3 Batch size

We find that our method is stable for range of batch sizes, but does have a lower threshold around
16. We hypothesize this is due to training the normalization layers in the networks used. We were
limited by the hardware available to run larger batch sizes.

D.4 Ablation of terms in Equation 4

Our loss function in Equation (4) is a summation of two terms. Here we present the results obtained
by considering each of them terms. We see that in Table 5, the usage of Equation (1) leads to a
performance higher than that of Tent, and the combination of Equations (1) and (3) leads to better
results, albeit at a higher run-time requirement.
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Figure 1: Performance comparisons for CIFAR-10-C and CIFAR-100-C datasets for unadapted,
Tent, Augmix, Randaugment variants of our method. Our proposed method, independent of the
augmentation strategy used, gives a considerable improvement over the baseline. It is also on par or
slightly better than Tent for all corruption categories.
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Figure 2: Ablation experiments. With an unadapted performance of 44.1%, we show the importance
of the factors. We see an asymptotically improving performance with the number of SGD steps used.
In (b), we see that our method is relatively stable over a wide range of learning rates. Our method
is dependent on batch size as in (c). The necessity of larger batch size can pose constraints on the
direct applicability of our method. This method
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Table 5: Ablations of the loss terms in Equation (4).

Unadapted Lcons L

44.08 63.41 67.1

D.5 Augmentation parameters

We vary the augmentation hyperparameters for both RandAugment, and AugMix in Figures 3 and 4.
For this, we show results on CIFAR-10-C for each of the corruptions. We show results with only
consistency loss (Equation (1)), and width and brightness of each circle represents the overall final
accuracy. We find that for nearly all the corruptions, lower amount of augmentation results in better
performance compared to ones with higher augmentation. We hypothesize this is because lower
intensity augmentations result in samples closer to the input sample, and thus results in samples
from the image manifold.
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Figure 3: AugMix hyperparameters for CIFAR-10-C. Bigger and darker is better. We see that lesser
augmentations result in better results.
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Figure 4: RandAugment hyperparameters for CIFAR-10-C. Bigger and darker is better. We see that
lesser augmentations result in better results.
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