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Abstract

Data for pretraining machine learning models often
consists of collections of heterogeneous datasets.
Although training on their union is reasonable in
agnostic settings, it might be suboptimal when the
target domain —where the model will ultimately
be used— is known in advance. In that case, one
would ideally pretrain only on the dataset(s) most
similar to the target one. Instead of limiting this
choice to those datasets already present in the pre-
training collection, here we explore extending this
search to all datasets that can be synthesized as
‘combinations’ of them. We define such combina-
tions as multi-dataset interpolations, formalized
through the notion of generalized geodesics from
optimal transport (OT) theory. We compute these
geodesics using a recent notion of distance be-
tween labeled datasets, and derive alternative inter-
polation schemes based on it: using either barycen-
tric projections or optimal transport maps, the latter
computed using recent neural OT methods. These
methods are scalable, efficient, and —notably—
can be used to interpolate even between datasets
with distinct and unrelated label sets. Through var-
ious experiments in transfer learning in computer
vision, we demonstrate this is a promising new ap-
proach for targeted on-demand dataset synthesis.

1 INTRODUCTION

Recent progress in machine learning has been characterized
by the rapid adoption of large pretrained models as a funda-
mental building block [Brown et al., 2020]. These models
are typically pretrained on large amounts of general-purpose
data and then adapted (e.g., fine-tuned) to a specific task of
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interest. Such pretraining datasets usually draw from multi-
ple heterogeneous data sources, e.g., arising from different
domains or sources. Traditionally, all available datasets are
used in their entirety during pretraining, for example by
pooling them together into a single dataset (when they all
share the same label sets) or by training in all of them se-
quentially one by one. These strategies, however, come with
important disadvantages. Training on the union of multiple
datasets might be prohibitive or too time-consuming, and it
might even be detrimental — indeed, there is a growing line
of research showing that removing pretraining data some-
times improves transfer performance [Jain et al., 2022]. On
the other hand, sequential learning (i.e., consuming datasets
one by one) is infamously prone to catastrophic forgetting
[McCloskey and Cohen, 1989, Kirkpatrick et al., 2017]: the
information from earlier datasets gradually vanishing as the
model is trained on new datasets. The pitfalls of both of
these approaches suggest training instead on a subset of the
available pretraining datasets, but how to choose that subset
is unclear. However, when the target dataset on which the
model is to be used is known in advance, the answer is much
easier: intuitively, one would train only of those relevant to
the target one: e.g., those most similar to it. Indeed, recent
work has shown that selecting pretraining datasets based on
the distance to the target is a successful strategy [Alvarez-
Melis and Fusi, 2020, Gao and Chaudhari, 2021]. However,
such methods are limited to selecting (only) among individ-
ual datasets already present in the collection.

In this work, we propose a novel approach to generate syn-
thetic pretraining datasets as combinations of existing ones.
In particular, this method searches among all possible contin-
uous combinations of the available datasets and thus is not
limited to selecting specifically one of them. When given ac-
cess to the target dataset of interest, we seek among all such
combinations the one closest (in terms of a metric between
datasets) to the target. By characterizing datasets as sampled
from an underlying probability distribution, this problem
can be understood as a generalization (from Euclidean to
probability space) of the problem of finding among the con-
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vex hull of a set of reference points, that which is closest to
a query point. While this problem has a simple closed-form
solution in Euclidean space (via an orthogonal projection),
solving it in probability space is —as we shall see here—
significantly more challenging.

We tackle this problem from the perspective of interpolation.
Formally, we model the combination of datasets as an inter-
polation between their distributions, formalized through the
notion of geodesics in probability space endowed with the
Wasserstein metric [Ambrosio et al., 2008, Villani, 2008].
In particular, we rely on generalized geodesics [Craig, 2016,
Ambrosio et al., 2008]: constant-speed curves connecting a
pair (or more) distributions parametrized with respect to a
‘base’ distribution, whose role is played by the target dataset
in our setting. Computing such geodesics requires access
to either an optimal transport coupling or a map between
the base distribution and every other reference distribution.
The former can be computed very efficiently with off-the-
shelf OT solvers, but are limited to generating only as many
samples as the problem is originally solved on. In contrast,
OT maps allow for on-demand out-of-sample mapping and
can be estimated using recent advances in neural OT meth-
ods [Fan et al., 2020, Korotin et al., 2022b, Makkuva et al.,
2020]. However, most existing OT methods assume unla-
beled (feature-only) distributions, but our goal here is to
interpolate between classification (i.e., labeled) datasets.
Therefore, we leverage a recent generalization of OT for
labeled datasets to compute couplings [Alvarez-Melis and
Fusi, 2020] and adapt and generalize neural OT methods to
the labeled setting to estimate OT maps.

In summary, the contributions of this paper are: (i) a novel
approach to generate new synthetic classification datasets
from existing ones by using geodesic interpolations, appli-
cable even if they have disjoint label sets, (ii) two efficient
methods to solve OT between labeled datasets, which might
be of independent interest, (iii) empirical validation of the
method in various transfer learning settings.

2 RELATED WORK

Mixup and related In-Domain Interpolation Generat-
ing training data through convex combinations was popular-
ized by mixup [Zhang et al., 2018]: a simple data augmenta-
tion technique that interpolates features and labels between
pairs of points. This and other works based on it [Zhang
et al., 2021, Chuang and Mroueh, 2021, Yao et al., 2021] use
mixup to improve in-domain model robustness [Zhu et al.,
2023] and generalization by increasing the in-distribution
diversity of the training data. Although sharing some intu-
itive principles with mixup, our method interpolates entire
datasets —rather than individual datapoints— with the goal
of improving across-distribution diversity and therefore out-
of-domain generalization.

Dataset synthesis in machine learning Generating data
beyond what is provided as a training dataset is a crucial
component of machine learning in practice. Basic transfor-
mations such as rotations, cropping, and pixel transforma-
tions can be found in most state-of-the-art computer vision
models. More recently, Generative Adversarial Nets (GAN)
have been used to generate synthetic data in various con-
texts [Bowles et al., 2018, Yoon et al., 2019], a technique
that has proven particularly successful in the medical imag-
ing domain [Sandfort et al., 2019]. Since GANs are trained
to replicate the dataset on which they are trained, these ap-
proaches are typically confined to generating in-distribution
diversity and typically operate on features only.

Discrete OT, Neural OT, Gradient Flows Barycentric
projection [Ambrosio et al., 2008, Perrot et al., 2016] is
a simple and effective method to approximate an optimal
transport map with discrete regularized OT. On the other
hand, there has been remarkable recent progress in methods
to estimate OT maps in Euclidean space using neural net-
works [Makkuva et al., 2020, Fan et al., 2021, Rout et al.,
2022], which have been successfully used for image gen-
eration [Rout et al., 2022], style transfer [Korotin et al.,
2022b], among other applications. However, the estimation
of an optimal map between (labeled) datasets has so far
received much less attention. Some conditional Monge map
solvers [Bunne et al., 2022a] utilize the label information in
a semi-supervised manner, where they assume the label-to-
label correspondence between two distributions is known.
Our method differs from theirs in that we do not require a
pre-specified label-to-label mapping, but instead estimate
it from data. Geodesics and interpolation in general metric
spaces have been studied extensively in the optimal transport
and metric geometry literature [McCann, 1997, Agueh and
Carlier, 2011, Ambrosio et al., 2008, Santambrogio, 2015,
Villani, 2008, Craig, 2016], albeit mostly in a theoretical
setting. Gradient flows [Santambrogio, 2015], increasingly
popular in machine learning to model existing processes
[Bunne et al., 2022b, Mokrov et al., 2021, Fan et al., 2022,
Hua et al., 2023] or solving optimization problems over
datasets [Alvarez-Melis and Fusi, 2021], provide an alterna-
tive approach for interpolation between distributions but are
computationally expensive.

3 BACKGROUND

3.1 DISTRIBUTION INTERPOLATION WITH OT

Consider P(X ) the space of probability distributions with
finite second moments over some Euclidean space X . Given
µ, ν ∈ P(X ), the Monge formulation optimal transport
problem seeks a map T : X → X that transforms µ into ν
at a minimal cost. Formally, the objective of this problem is
minT :T♯µ=ν

∫
Rd ∥x − T (x)∥22dµ(x), where the minimiza-

tion is over all the maps that pushforward distribution µ into



distribution ν. While a solution to this problem might not
exist, a relaxation due to Kantorovich is guaranteed to have
one. This modified version yields the Wasserstein-2 distance:
W 2

2 (µ, ν) = minπ∈Π(µ,ν)

∫
Rd ∥x − x′∥22dπ(x, x′), where

now the constraint set Π(µ, ν) = {π ∈ P(X 2) | P0♯π =
µ, P1♯π = ν} contains all couplings with marginals µ and
ν. The optimal such coupling is known as the OT plan. A
celebrated result by Brenier [1991] states that whenever P
has density with respect to the Lebesgue measure, the opti-
mal T ∗ exists and is unique. In that case, the Kantorovich
and Monge formulations coincide and their solutions are
linked by π∗ = (Id, T ∗)♯µ where Id is the identity map.
The Wasserstein-2 distance enjoys many desirable geometri-
cal properties compared to other distances for distributions
[Ambrosio et al., 2008]. One such property is the characteri-
zation of geodesics in probability space [Agueh and Carlier,
2011, Santambrogio, 2015]. When P(X ) is equipped with
metric W2, the unique minimal geodesic between any two
distributions µ0 and µ1 is fully determined by π, the optimal
transport plan between them, through the relation:

ρDt := ((1− t)x+ ty)♯π(x, y), t ∈ [0, 1],

known as displacement interpolation. If the Monge map
from µ0 to µ1 exists, the geodesic can also be written as

ρMt := ((1− t)Id + tT ∗)♯µ0, t ∈ [0, 1],

and is known as McCann’s interpolation [McCann, 1997].
It is easy to see that ρM0 = µ0 and ρM1 = µ1.

Such interpolations are only defined between two distri-
butions. When there are m ≥ 2 marginal distributions
{µ1, . . . , µm}, the Wasserstein barycenter

ρBa := argmin
ρ

m∑
i=1

aiW
2
2 (ρ, µi), a ∈ ∆m−1 ⊂ Rm

≥0

generalizes McCann’s interpolation [Agueh and Carlier,
2011]. Intuitively, the interpolation parameters a =
[a1, . . . , am] determine the ‘mixture proportions’ of each
dataset in the combination, akin to the weights in a con-
vex combination of points in Euclidean space. In particular,
when a is a one-hot vector with ai = 1, then ρBa = µi, i.e.,
the barycenter is simply the i-th distribution. Barycenters
have attracted significant attention in machine learning re-
cently [Srivastava et al., 2018, Korotin et al., 2021], but they
remain challenging to compute in high dimension [Fan et al.,
2020, Korotin et al., 2022a].

Another limitation of these interpolation notions is the non-
convexity of W 2

2 along them. In Euclidean space, given
three points x1, x2, y ∈ Rd, the function t 7→ ∥xt − y∥22,
where xt is the interpolation xt = (1− t)x1 + tx2, is con-
vex. In contrast, in Wasserstein space, neither the function
t 7→ W 2

2 (ρ
M
t , ν) or a 7→ W 2

2 (ρ
B
a , ν) are guaranteed to be

convex [Santambrogio, 2017, §4.4]. This complicates their
theoretical analysis, such as in gradient flows. To circumvent

this issue, Ambrosio et al. [2008] introduced the generalized
geodesic of {µ1, . . . , µm} with base ν ∈ P(X ):

ρGa :=

(
m∑
i=1

aiT
∗
i

)
♯ν, a ∈ ∆m−1,

where T ∗
i is the optimal map from ν to µi.

Lemma 1. The functional µ 7→ W 2
2 (µ, ν) is con-

vex along the generalized geodesics, and W 2
2 (ρ

G
a , ν) ≤∑m

i=1 aiW
2
2 (µi, ν).

Thus, unlike the barycenter, the generalized geodesic does
yield a notion of convexity satisfied by the Wasserstein
distance and is easier to compute. The proof of Lemma 1 is
postponed to §A. For these reasons, we adopt this notion of
interpolation for our approach. It remains to discuss how to
use it on (labeled) datasets.

3.2 DATASET DISTANCE

Consider a dataset DP = {z(i)}Ni=1 = {x(i), y(i)}Ni=1
i.i.d.∼

P (x, y). The Optimal Transport Dataset Distance
(OTDD) [Alvarez-Melis and Fusi, 2020] measures its
distance to another dataset DQ as:

d2OT(DP ,DQ) =

min
π∈Π(P,Q)

∫ (
∥x− x′∥22 +W 2

2 (αy, αy′)
)

dπ(z, z′), (1)

which defines a proper metric between datasets. Here,
αy, αy′ are class-conditional measures corresponding to
P (x|y) and Q(x|y′). This distance is strongly correlated
with transfer learning performance, i.e., the accuracy
achieved when training a model on DP and then fine-tuning
and evaluating on DP . Therefore, it can be used to select
pretraining datasets for a given target domain. Henceforth
we abuse the notation P to represent both a dataset and its
underlying distribution for simplicity. To avoid confusion,
we use ν and µ to represent distributions in the feature space
(typically Rd) and use P,Q to represent distributions in the
product space of features and labels.

4 DATASET INTERPOLATION ALONG
GENERALIZED GEODESIC

Our method consists of two steps: estimating optimal trans-
port maps between the target dataset and all training datasets
(§4.1), and using them to generate a convex combination of
these datasets by interpolating along generalized geodesics
(§4.2). The OT map estimation is in feature space or origi-
nal space depending on the dataset’s dimension. For some
downstream applications, we will additionally project the
target dataset into the ‘convex hull’ of the training datasets
(§4.3).



4.1 ESTIMATING OPTIMAL MAPS BETWEEN
LABELED DATASETS

The OTDD is a special case of Wasserstein distance, so it
is natural to consider the alternative Monge (map-based)
formulation to (1). We propose two methods to approximate
the OTDD map, one using the entropy-regularized OT and
another one based on neural OT.

OTDD barycentric projection. Barycentric projec-
tions [Ambrosio et al., 2008, Pooladian and Niles-Weed,
2021] can be efficiently computed for entropic regularized
OT using the Sinkhorn algorithm [Sinkhorn, 1967]. Assume
that we have empirical distributions ν =

∑Nν

i=1
1
Nν

δ
x
(i)
ν

and µ =
∑Nµ

i=1
1

Nµ
δ
x
(i)
µ

, where δx is the Dirac func-
tion at x. Denote all the samples compactly as ma-
trices: Xν =

(
x
(1)
ν , . . . , x

(Nν)
ν

)
∈ RNν×d, Xµ =(

x
(1)
µ , . . . , x

(Nµ)
µ

)
∈ RNµ×d. After solving the optimal

coupling π∗ := minπ∈Π(ν,µ)

∑
i,j ∥x

(i)
ν − x

(j)
µ ∥2π(i, j),

the barycentric projection can be expressed as TB(Xν) =
Nνπ

∗Xµ. We extend this method to two datasets ZQ =
{XQ, YQ}, ZP = {XP , YP }, where we have addi-
tional one-hot label data YQ = (y

(1)
Q , . . . , y

(NQ)
Q ) ∈

{0, 1}NQ×CQ , YP = (y
(1)
P , . . . , y

(NP )
P ) ∈ {0, 1}NP×CP .

CQ and CP are the number of classes in dataset Q and P .
We solve the optimal coupling π∗ ∈ RNP×NQ

≥0 for OTDD (1)
following the regularized scheme in Alvarez-Melis and Fusi
[2020]. The barycentric projection can then be written as:

TB(ZQ) = [NQπ
∗XP , NQπ

∗YP ]. (2)

The visualization of barycentric projected data appears in
Figure 1. However, this approach has two important limi-
tations: it can not naturally map out-of-sample data and it
does not scale well to large datasets (due to the quadratic
dependency on sample size). To relieve the scaling issue, we
will use batchified version of OTDD barycentric projection
in this paper (see complexity discussion in §6).

OTDD neural map. Inspired by recent approaches to
estimate Monge maps using neural networks [Rout et al.,
2022, Fan et al., 2021], we design a similar framework for
the OTDD setting. Fan et al. [2021] approach the Monge OT
problem with general cost functions by solving its max-min
dual problem

sup
f

inf
T

∫
[c(x, T (x))− f(T (x))] dν(x)+

∫
f(x′)dµ(x′).

We extend this method to the distributions involving labels
by introducing an additional classifier in the map. Given
two datasets P,Q, we parameterize the map TN : Rd ×
[0, 1]CQ → Rd × [0, 1]CP as

TN (z) = TN (x, y) = [x̄; ȳ] = [G(z); ℓ(G(z))],

Figure 1: Visualization of OTDD barycentric projection on
binary PCAM dataset. We first solve the optimal coupling
π∗ ∈ [0, 1]NQ×NP for the problem (1) using entropy regu-
larization. Next, we map the i-th datapoint in the source
dataset to a pair consisting of a weighted image and a
weighted soft label. The weight vector, extracted from the
i-th row of the coupling π∗, is then normalized to sum to 1.
As a result, the mapped image (or soft label) is obtained as
a convex combination of all the images (or one-hot labels)
in the target dataset.

Figure 2: Training paradigm for learning the OTDD neural
map betweem two datasets (distributions), parametrized via
a pushforward feature map G and a labeling function ℓ,
using a dual potential f .

where G : Rd × [0, 1]CQ → Rd is the pushforward feature
map, and the ℓ : Rd → [0, 1]CP is a frozen classifier that
is pre-trained on the dataset P . Notice that, with the cost
c(z, T (z)) = ∥x−G(z)∥22 +W 2

2 (αy, αȳ), the Monge for-
mulation of OTDD (1) reads infT♯Q=P

∫
∥x − G(z)∥22 +

W 2
2 (αy, αȳ)dQ(z). We therefore propose to solve the max-

min dual problem

sup
f

inf
G

∫ [
∥x−G(z)∥22 +W 2

2 (αy, αȳ)
]

dQ(z)

−
∫

f(x̄, ȳ)dQ(z) +

∫
f(x′, y′)dP (z′).

Implementation details are provided in §B. Compared to pre-
vious conditional Monge map solvers [Bunne et al., 2022a,
Asadulaev et al., 2022], the two methods proposed here: (i)
do not assume class overlap across datasets, allowing for
maps between datasets with different label sets; (ii) are in-
variant to class permutation and re-labeling; (iii) do not force
one-to-one class alignments, e.g., samples can be mapped
across similar classes.



4.2 CONVEX COMBINATION IN DATASET SPACE

Figure 3: In few-shot settings, we use pseudo-labels for
the test dataset, generated e.g. via kNN using the few-shot
examples. If more labeled data from the test dataset is avail-
able, we use it instead of the pseudo-labels. The projection
dataset has the same number of samples as the test dataset.

Computing generalized geodesics requires constructing con-
vex combinations of datapoints from different datasets.
Given a weight vector a ∈ ∆m−1, features can be naturally
combined as xa =

∑m
i=1 aixi. But combining labels is not

as simple because: (i) we allow for datasets with a different
number of labels, so adding them directly is not possible;
(ii) we do not assume different datasets have the same label
sets, e.g. MNIST (digits) vs CIFAR10 (objects). Our solu-
tion is to represent all labels in the same dimensional space
by padding them with zeros in all entries corresponding to
other datasets. As an example, consider three datasets with
2, 3, and 4 classes respectively. Given a label vector y1 ∈ R3

for the first one, we embed it into R9 as ỹ1 = [y1;03;04]
⊤.

Defining ỹ2, ỹ3 analogously, we compute their combination
as ya = a1ỹ1 + a2ỹ2 + a3ỹ3. This representation is lossless
and preserves the distinction of labels across datasets. The
visualization of our convex combination is in Figure 3.

4.3 PROJECTION ONTO GENERALIZED
GEODESIC OF DATASETS

We now put together the components in Sec 4.1 and 4.2
to construct generalized geodesics between datasets in two
steps. First, we compute OTDD maps T ∗

i between Q and
all other datasets Pi, i = 1, . . . ,m using the discrete or
neural OT approaches. Then, for any interpolation vector
a ∈ ∆m−1 we identify a dataset along the generalized
geodesic via

Pa :=

(
m∑
i=1

aiT ∗
i

)
♯Q.

By using the convex combination method in §4.2 for labeled
data, we can efficiently sample from Pa.

Next, we find the dataset P ∗
a that minimizes the distance

between Pa and Q, i.e. the projection of Q onto the gen-
eralized geodesic. We first approach this problem from a
Euclidean viewpoint. Suppose there are several distributions
{µi}mi=1 and an additional distribution ν on Euclidean space
Rd. Lemma 1 guarantees there exists a unique parameter
a∗ that minimizes W 2

2 (ρ
G
a , ν). However, finding a∗ is far

from trivial because there is no closed-form formula of the
map a 7→ W 2

2 (ρ
G
a , ν) and it can be expensive to calculate

W 2
2 (ρ

G
a , ν) for all possible a. To solve this problem, we re-

sort to another transport distance: the (2,ν)-transport metric.

Definition 1 (Craig [2016]). Given distributions µi, µj , the
(2,ν)-transport metric between them is given by

W2,ν(µi, µj) :=

(∫
∥T ∗

i (x)− T ∗
j (x)∥22dν(x)

)1/2

,

where T ∗
i is the optimal map from ν to µi.

When ν has a density with respect to Lebesgue measure
W2,ν is a valid metric [Craig, 2016, Prop. 1.15]. Moreover,
we can derive a closed-form formula for the map a 7→
W 2

2,ν(ρ
G
a , ν).

Proposition 1. W 2
2,ν(ρ

G
a , ν) =

∑m
i=1 aiW

2
2,ν(µi, ν) −

1
2

∑
i̸=j aiajW

2
2,ν(µi, µj).

This equation implies that given distributions {µi}, ν in Eu-
clidean space, we can trivially solve the optimal a∗ that min-
imizes W 2

2,ν(ρ
G
a , ν) by a quadratic programming solver*.

The proof (§A ) relies on Brenier’s theorem. Inspired by
this, we also define a transport metric for datasets:

Definition 2. The squared (2,Q)-dataset distance is

W2
2,Q(Pi, Pj) :=

∫ (
∥xi − xj∥22 +W 2

2 (αyi , αyj )
)

dQ(z),

where [xi; yi] = T ∗
i (z) and T ∗

i is the OTDD map from Q
to Pi.

Denote P2,Q(X × P(X )) as the set of all probability mea-
sures P that satisfy dOT(P,Q) < ∞ and the OTDD map
from Q to P exists. The following result shows that (2,Q)-
dataset distance is a proper distance. The proof is again
deferred to §A.

Proposition 2. W2,Q is a valid metric on P2,Q(X ×P(X )).

Unfortunately, in this case W2
2,Q(Pa, Q) does not have an

analytic form like before because Brenier’s theorem may

*We use the implementation https://github.com/
stephane-caron/qpsolvers

https://github.com/stephane-caron/qpsolvers
https://github.com/stephane-caron/qpsolvers


(a) (b)

Figure 4: Visualization and comparison of dataset interpolation methods. (a) The reference dataset Q (with color-coded
classes) is projected onto the generalized geodesic of the training datasets Pi, resulting in P̂a. (b) 2D visualizations of
(left-to-right): dataset Q, the ‘optimal’ interpolated dataset P̂a := (

∑m
i=1 âiT ∗

i ) ♯Q using the true OTDD maps T ∗
i , and a

naively interpolated dataset (
∑m

i=1 âiTi) ♯Q using randomly generated maps Ti.

not hold for a general transport cost problem. However, we
still borrow this idea and define an approximated projection
P̂a as the minimizer of function

W2(Pa, Q) :=
m∑
i=1

aiW2
2,Q(Pi, Q)− 1

2

∑
i ̸=j

aiajW2
2,Q(Pi, Pj), (3)

which is an analog of Proposition 1. Since Pa is defined
by its interpolation weight a, solving P̂a is equivalent to
finding a weight

â = argmin
a∈∆m−1

W2(Pa, Q), (4)

which is a simple quadratic programming problem. Unlike
the Wasserstein distance, W2

2,Q(·, ·) is easier to compute
because it does not involve optimization, so it is relatively
cheap to find the minimizer of W2(Pa, Q). Experimentally,
we observe that W 2

2,Q(Pa, Q) is predictive of model trans-
ferability across tasks. Figure 4(a) illustrates this projection
on toy 3D datasets, color-coded by class.

5 EXPERIMENTS

5.1 LEARNING OTDD MAPS

In this section, we visualize the quality of the learnt OTDD
maps on both synthetic and realistic datasets.

Synthetic datasets Figure 4 (b) illustrates the role of the
optimal map in estimating the projection of a dataset into
the generalized geodesic hull of three others. Using maps
T ∗
i estimated via barycentric projection (2) results in better

preservation of the four-mode class structure, whereas using
non-optimal maps Ti based on random couplings (as the
usual mixup does) destroys the class structure.

Figure 5: Datasets generated by pushing forward Q (the
EMNIST dataset) towards Fashion-MNIST, MNIST, USPS,
KMNIST, using OTDD maps Ti, obtained using the neural
OT method described in Section 4.1.

*NIST datasets In Figure 5, we provide qualitative results
of OTDD map from EMNIST (letter) [Cohen et al., 2017]
dataset to all other *NIST dataset and USPS dataset. At this
point, we can confirm three traits of OTDD map, which are
mentioned at the end of §4.1.

1) We don’t assume a known source label to target label cor-
respondence. So we can map between two irrelevant datasets
such as EMNIST and FashionMNIST. 2) The map is invari-
ant to the permutation of label assignment. For example,
we show two different labelling in Figure 1 in appendix
and the final OTDD map will be the same. 3) It doesn’t
enforce the label-to-label mapping but would follow the fea-



Figure 6: Relationship between the function W2(Pa, Q) and the accuracy of the fine-tuned model. The model trained on the
projection dataset P̂a, i.e. the minimizer of W2(Pa, Q), tends to have a better generalization accuracy. The training datasets
are marked on the vertexes of each ternary plot. Each ternary plot is an average of 5 runs with distinct random seeds.

ture similarity. From Figure 5, we notice many cross-class
mapping behaviors. For example, when the target domain
is USPS [Hull, 1994] dataset, the lower-case letter "l" is al-
ways mapped to digit 1, and the capital letter "L" is mapped
to other digits such as 6 or 0 because the map follows the
feature similarity.

5.2 TRANSFER LEARNING ON *NIST DATASETS

Next, we use our framework to generate new pretraining
datasets for transfer learning. Preceding works illustrate
that the transfer learning performance can be quite sensi-
tive to the type of test datasets if there is abundant training
data from the test task [Zhai et al., 2019, Table 1]. Thus,
we will focus on the few-shot setting, where we only have
few labeled data from the test task. We first show that the
generalization ability of training models has a strong cor-
relation with the distance W2

2,Q(Pa, Q). Then we compare
our framework with several baseline methods.

Setup Given m labeled pretraining datasets {Pi}, we con-
sider a few-shot task in which only a limited amount of data
from the target domain is labeled, e.g. 5 samples per class.
The goal is to find a single dataset of size comparable to any
individual Pi that yields the best generalization to the target
domain when pre-training a model on it and fine-tuning
on the target few-shot data. Here, we seek this training
dataset within those generated by generalized geodesics
{Pa}, which can be understood as weighted interpolations
of the training datasets {Pi}. Note this includes individual
datasets as particular cases when a is a one-hot vector.

Connection to generalization The closed-form expres-
sion of W 2

2,ν(ρ
G
a , ν) (Prop. 1) provides a distance between

a base distribution ν and the distribution along generalized

geodesic ρGa in Euclidean space. We study its analog (3)
for labeled datasets Q and {Pi} and visualize it in Figure
6 (first row). To investigate the generalization abilities of
models trained on different datasets, we discretize the sim-
plex ∆2 to obtain 36 interpolation parameters a, and train
a 5-layer LeNet classifier on each Pa. Then we fine-tune
all of these classifiers on the few-shot test dataset Q with
only 20 samples per each class. We control the same num-
ber of training iterations and fine-tuning iterations across
all experiments. The second row of Figure 6 shows fine-
tuning accuracy. Comparing the first row and the second,
we find the accuracy and W2(Pa, Q) are highly correlated.
This implies that the model trained on the minimizer dataset
of W2(Pa, Q) tends to have a better generalization abil-
ity. We fix the same colorbar range for all heatmaps across
datasets to highlight the impact of training dataset choice.
A more concrete visualization of the correlation between
W2(Pa, Q) and accuracy is shown in Figure 5 in appendix.

For some test datasets, the choice of training dataset strongly
affects the fine-tuning accuracy. For example, when Q is
EMNIST and the training dataset is FMNIST, the fine-tuning
accuracy is only ∼ 60%, but this can be improved to > 70%
by choosing an interpolated dataset closer to MNIST. This
is reasonable because MNIST is more similar to EMNSIT
than FMNIST or USPS. To some test datasets like FMNIST
and KMNIST, this difference is not so obvious because all
training datasets are all far away from the test dataset.

Comparison with baselines. Next, we compare our
method with several baseline methods on NIST datasets.
In each set of experiments, we select one *NIST dataset
as the target domain, and use the rest for pre-training. We
consider a 5-shot task, so we randomly choose 5 samples
per class to be the labeled data, and treat the remaining sam-
ples as unlabeled. Our method first trains a model on P̂a,



Table 1: Pretraining on synthetic data. For each of the *NIST datasets, we treat it as the target domain and pretrain a
neural net on a synthetic dataset generated as a combination of the remaining dataset with three interpolation methods. Here
we show 5-shot transfer accuracy (mean ± s.d. over 5 runs). The first baseline is to create a synthetic dataset as a training
dataset by Mixup among datasets. For Mixup, we randomly sample data from each training dataset, and do the convex
combination of them with weight â (see Eq. (4)). We use the same convex combination method in §4.2, thus this Mixup
baseline is equivalent to our framework with suboptimal OTDD maps. The other two baselines (the bottom block) skip the
transfer learning part, and directly train the model or solve 1-NN on the few-shot test dataset.

Methods MNIST-M EMNIST MNIST FMNIST USPS KMNIST

OTDD barycentric projection 42.10±4.37 67.06±2.55 93.74±1.46 70.12±3.02 86.01±1.50 52.55±2.73
OTDD neural map 40.06±4.75 65.32±1.80 88.78±3.85 70.02±2.59 83.80±1.60 50.32±3.10

Mixup with weights â 33.85±2.22 60.95±1.38 88.68±1.57 66.74±3.79 88.61±2.00 48.16±3.38

Train on few-shot dataset 19.10±3.57 53.60±1.18 72.80±3.10 60.50±3.07 80.73±2.07 41.67±2.11
1-NN on few-shot dataset 20.95±1.39 39.70±0.57 64.50±3.32 60.92±2.42 73.64±2.35 40.18±3.09

and fine-tunes the model on the 5-shot target data. To obtain
P̂a, we use barycentric projection or neural map to approxi-
mate the OTDD maps from the test to training datasets. Our
results are shown in the first two rows in Table 1. Overall,
transfer learning can bring additional knowledge from other
domains and improve the test accuracy by at most 21%.
Among the methods in the first block, training on datasets
generated by OTDD barycentric projection outperforms oth-
ers except USPS dataset, where the difference is only about
2.6%.

5.3 TRANSFER LEARNING ON VTAB DATASETS

Finally, we use our method for transfer learning with large-
scale VTAB datasets [Zhai et al., 2019]. In particular, we
take Oxford-IIIT Pet dataset as the target domain, and use
Caltech101, DTD, and Flowers102 for pre-training. To en-
code a richer geometry in our interpolation, we embed the
datasets using a masked auto encoder (MAE) [He et al.,
2022] and learn the OTDD map in this (∼200K dimen-
sional) latent space. Since OTDD barycentric projection
consistently works better than OTDD neural map (see Table
1), we only use barycentric projection in this section. We use
ResNet-18 as the model architecture and pre-train the model
on decoded MAE images (interpolated dataset) or original
images (single dataset). Meanwhile, Mixup baseline is over
pixel space and therefore does not utilize embeddings at all.

The pre-training interpolation dataset generated by
our method has ‘optimal’ mixture weights a =
(0.43, 0.24, 0.33) for (CALTECH101, DTD, FLOWERS102),
suggesting a stronger similarity between the first of these
and the target domain (PETS). This is consistent with the
single-dataset transfer accuracies shown in Table 2. How-
ever, their interpolation yields better transfer than any single
dataset, particularly when using our full method (interpolat-
ing using OTDD map with optimal mixture weights).

In Table 2, we compute relative improvement per run, and
then average these across runs; in other words, we compute
the mean of ratios (MoR) rather than the ratio of means
(RoM). Our reasoning for doing this was (i) controlling for
the ‘hardness’ inherent to the randomly sampled subsets
of PET by relativizing before averaging and (ii) our obser-
vation that it is common practice to compute MoR when
the denominator and numerator correspond to paired data
(as is the case here), and the terms in the sum are sampled
i.i.d. (again, satisfied in this case by the randomly sampled
subsets of the target domain).

Table 2 shows a high deviation due to a particularly good
result generated by the non-transfer learning baseline with
seed 2, while other methods such as Caltech101 pretraining
and Flowers102 pretraining had particularly bad results with
the same seed.

6 CONCLUSION AND DISCUSSION

The method we introduce in this work provides, as shown
by our experimental results, a promising new approach to
generate synthetic datasets as combinations of existing ones.
Crucially, our method allows one to combine datasets even
if their label sets are different, and is grounded on principled
and well-understood concepts from optimal transport theory.
Two key applications of this approach that we envision are:

• Pretraining data enrichment. Given a collection of
classification datasets, generate additional interpolated
datasets to increase diversity, with the aim of achieving
better out-of-distribution generalization. This could be
done even without knowledge of the specific target do-
main (as we do here) by selecting various datasets to play
the role of the ‘reference’ distribution.

• On-demand optimized synthetic data generation. Gen-
erate a synthetic dataset, by combining existing ones, that

https://www.robots.ox.ac.uk/~vgg/data/pets/
https://data.caltech.edu/records/mzrjq-6wc02
https://www.robots.ox.ac.uk/~vgg/data/dtd/
https://www.robots.ox.ac.uk/~vgg/data/flowers/102/


Table 2: Transfer Learning on VTAB datasets. The ta-
ble shows relative improvement (w.r.t. a no-transfer base-
line) of test accuracy on OXFORD-IIIT PET (mean ±
std over 5 runs) given only 1000 randomly selected sam-
ples of this dataset to fine-tune. The first three rows show
single-pretraining-dataset baselines, and the remaining rows
show methods that pretrain on a synthetic interpolation of
these three, generated using Mixup or our proposed OTDD
Map, using uniform or â (see Eq. (4)) dataset interpola-
tion weights. The pooling baseline pretrains on a dataset
including all the pre-training datasets. To construct the sub-
pooling pretraining dataset, for each training sample from
the target dataset (PET) we find its 10-nearest neighbors (in
embedding space) from across all pretraining datasets, and
label them as belonging to the class from the target domain.

Pre-Training Map Weights Rel. Improv. (%)

CALTECH101 − − 59.68 ± 41.44
DTD − − -1.17 ± 9.52

FLOWERS102 − − -2.45 ± 26.25
Pooling − − 28.96 ± 18.29

Sub-pooling − − 3.00 ± 19.10
Interpolation Mixup uniform 33.26 ± 21.30
Interpolation Mixup â 51.99 ± 34.10
Interpolation OTDD uniform 82.61±25.93
Interpolation OTDD â 95.17± 20.57

is ‘optimized’ for transferring a model to a new (data-
limited) target domain.

Complexity The complexity of solving OTDD
barycentric projection by Sinkhorn algorithm is
O(N2) [Dvurechensky et al., 2018], where N is the
number of data in both datasets. This can be expensive
for large-scale datasets. In practice, we solve the batched
barycentric projection, i.e. take a batch from both datasets
and solve the projection from source to target batch, and
we normally fix batch size B as 104. This reduces the com-
plexity from O(N2) to O(BN). The complexity of solving
OTDD neural map is O(BKH), where K is number of
iterations, and H is the size of the network. We always
choose K = O(N) in the experiments. The complexity of
solving all the (2, Q)-dataset distances in (3) is O(m2N)
since we need to solve the dataset distance between each
pair of training datasets. Putting these pieces together, the
complexity of approximating the interpolation parameter â
for the minimizer of (3) is O(N(B +m2)).

Memory As the number of pre-training tasks (m) in-
creases, our method, which generates an interpolated label
by concatenating labels from all tasks, creates an increas-
ingly sparse vector. Consequently, the memory demands
of the classifier’s output layer, which is proportional to m,

could rise significantly.

Barycentric projection vs Neural map These two ver-
sions of our method offer complementary advantages. While
estimating the OT map allows for easy out-of-sample map-
ping and continuous generation, the barycentric projection
approach often yields better downstream performance (Ta-
ble 1). We hypothesize this is due to the barycentric pro-
jection relying on (re-weighted) real data, while the neural
map generates data which might be noisy or imperfect.

Pixel space vs feature space We present results with
OTDD mapping in both pixel space (§5.2) and feature space
(§5.3). For the VTAB datasets with regular-sized images
(e.g. 256×256×3), we found that the feature space is more
appropriate for measuring data distance. For small-scale
images like NIST, feature space may be overkill because
most foundation models are trained on images with a larger
size. In our preliminary experiments with NIST datasets, we
attempted a feature space approach using an off-the-shelf
ResNet-18 model. However, we encountered challenges in
achieving convergence when training OTDD neural maps
with PyTorch ResNet-18 features.

High variance issue Our method is not limited to the
data scarcity regime, but indeed this is the most interesting
one from the transfer learning perspective, which is why
we assume limited labeled data (but potentially much more
unlabeled data) from the target domain distribution. This is a
typical few-shot learning scenario. The quality of a learned
OT map will likely depend on the number of samples used
to fit it, and might suffer from high variance. To mitigate
this in our setting, we opt for augmenting our dataset by
generating additional pseudo-labeled data via kNN (Fig. 3).
Recall that we do have access to more unlabeled data from
the target domain, which is a common situation in practice.

Limitations Our method for generating a synthetic dataset
relies on solving OTDD maps from the test dataset to
each training dataset. These OTDD maps are tailored to
the considered test dataset and can not be reused for a
new test dataset. Another limitation is our framework is
based on model training and fine-tuning pipeline. This
can be resource-demanding for large-scale models, like
GPT [Brown et al., 2020] or other similar models. Finally,
if at least one of the datasets is imbalanced, our OTDD
map will struggle to match the class with similar marginal
distributions.
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