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Abstract
Causal and nonparametric estimands in economics and biostatistics can often be viewed

as the mean of a linear functional applied to an unknown outcome regression function.
Naively learning the regression function and taking a sample mean of the target func-
tional results in biased estimators, and a rich debiasing literature has developed where one
additionally learns the so-called Riesz representer (RR) of the target estimand (targeted
learning, double ML, automatic debiasing etc.). Learning the RR via its derived functional
form can be challenging, e.g. due to extreme inverse probability weights or the need to
learn conditional density functions. Such challenges have motivated recent advances in
automatic debiasing (AD), where the RR is learned directly via minimization of a bespoke
loss. We propose moment-constrained learning as a new RR learning approach that ad-
dresses some shortcomings in AD, constraining the predicted moments and improving the
robustness of RR estimates to optimization hyperparamters. Though our approach is not
tied to a particular class of learner, we illustrate it using neural networks, and evaluate on
the problems of average treatment/derivative e!ect estimation using semi-synthetic data.
Our numerical experiments show improved performance versus state of the art benchmarks.

1. Introduction

Several problems in causal inference, economics, and biostatistics can be viewed as infer-
ring the average moment estimand ” → E[m(µ,W )], where W = (Y, Z) consists of an
outcome Y and inputs Z = (A,X) often comprised of a treatment A and covariates X,
with µ(z) → E[Y |Z = z], and m(f,W ) is a known functional that is linear in f . Examples
of this setup include average treatment, policy and derivative e!ects, as outlined below. For
such estimands, naively plugging in regression estimates µ̂ and taking the sample mean of
m(µ̂,W ), given i.i.d. observations of W , generally leads to biased estimates which converge
to ” at less than the parametric

↑
n rate.

These biases arise because the bias-variance trade o! of the regression estimator is con-
trolled by a generic loss (e.g. mean squared error, cross-entropy) that does not adequately
control for biases in the downstream estimation task. In particular, the true regression
function µ satisfies E[ω(Z){Y ↓ µ(Z)}] = 0 for any function ω, but the same is not true of
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the empirical mean En[ω(Z){Y ↓ µ̂(Z)}], which may converge to zero slower than the
↑
n

rate. Biases for average moment estimands take this form for an estimand-specific function
ω. Specifically, the ‘plug-in bias’ is characterized by the Riesz representer (RR) ω, which
is an unknown function such that ” = ↔µ,ω↗, where ↔f, g↗ → E[f(Z)g(Z)] denotes an inner
product over a Hilbert space H equipped with norm ||f || → ↔f, f↗1/2 < ↘ and it is assumed
that µ ≃ H. Existence of a unique ω ≃ H follows by Riesz’s representation theorem since
f ⇐⇒ h(f) → E[m(f,W )] is a bounded linear map.

Example 1: Average treatment e!ect (ATE). For a binary treatment A ≃ {0, 1},
the ATE is the di!erence in mean outcome when an intervention assigns treatment ver-

sus no-treatment uniformly across the population (Rosenbaum and Rubin, 1983). Under

standard causal assumptions, the ATE is identified by ” = E[µ(1, X) ↓ µ(0, X)], which

is an average moment estimand for the moment functional m(f,W ) → f(1, X) ↓ f(0, X).
Letting p(x) → E[A|X = x], and assuming p(x) ≃ (0, 1), the ATE has the RR ω(z) =
{a↓ p(x)}/[p(x){1↓ p(x)}].

Example 2: Average policy e!ect (APE) Using the setup from Example 1, the

APE considers the mean outcome when an intervention assigns treatment according to a

known treatment policy x ⇐⇒ ε(x) ≃ {0, 1} (Dudik et al., 2011; van der Laan and Luedtke,

2014; Athey and Wager, 2021). The APE is identified by ” = E[ε(X){µ(1, X)↓µ(0, X)}+
µ(0, X)], which is an average moment estimand for the moment functional m(f,W ) →

ε(X){f(1, X)↓f(0, X)}+f(0, X). The APE has the RR ω(z) = [ε(x){a↓p(x)}+p(x){1↓
a}]/[p(x){1↓ p(x)}].

Example 3: Average derivative e!ect (ADE) For a continuous treatment A ≃ R,
the ADE, ” = E[µ→(A,X)] is average derivative of the conditional response function, where

superscript prime denotes the derivative w.r.t. a, and we assume that µ→
exists (Härdle and

Stoker, 1989; Newey and Stoker, 1993; Imbens and Newey, 2009; Rothenhäusler and Yu,

2019). The ADE is an average moment estimand for the moment functional m(f,W ) →

f →(A,X). Letting p(a|x) denote the conditional density of A given X, and assuming p(a|x) >
0, and p(a|x) = 0 for a on the boundary of the support of A, then the ADE has the RR

ω(z) = p→(a|x)/p(a|x).

Example 4: Incremental policy e!ect (IPE) Using the setup from Example 3,

the IPE (Athey and Wager, 2021) is ” = E[ε(X)µ→(A,X)], where x ⇐⇒ ε(x) ≃ [↓1, 1] is a

known policy function. The IPE is an average moment estimand for the moment functional

m(f,W ) → ε(X)f →(A,X) and has the RR ω(z) = ε(x)p→(a|x)/p(a|x).

Following semiparametric e#ciency results (Robins et al., 1994; Newey, 1994), a rich
literature has developed in recent years that compensates for plug-in biases either by esti-
mating the RR then shifting the naive estimator (double machine learning (Chernozhukov
et al., 2018)), or retrospectively modifying the estimates µ̂ such that the estimated plug-in
bias is negligible (targeted learning (Zheng and van der Laan, 2011)). Both approaches are
celebrated for constructing e#cient estimators that converge at

↑
n rate even when learners

for the conditional mean outcome and the RR converge at a slower e.g. n1/4 rate.

As exemplified above, the RR can be a complicated function of the data distribution
making learning the RR using its derived form challenging. For instance, the RR of the
ATE and APE can be estimated using a learner p̂ of the propensity score p, but the resulting
estimates may be overly sensitive to the error p̂(x)↓ p(x) when p̂(x) is close to 0 or 1, since
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p appears in the denominator of the RR. Similarly, RR estimators for the ADE typically
use kernel estimators and are overly sensitive to the bandwidth (Cattaneo et al., 2013).

To overcome such issues, recent work has sought to learn the RR directly from the
data, without using knowledge of its functional form. Initial approaches for binary treat-
ments used balancing weights rather than propensity scores to estimate plug-in biases (Zu-
bizarreta, 2015; Athey et al., 2018). These approaches have been generalized through the
adversarial RR learner of (Chernozhukov et al., 2020) that builds on the (also adversarial)
augmented minimax linear estimator (Hirshberg and Wager, 2021) and similar estimators
for conditional moment models Dikkala et al. (2020). More recently, automatic debiasing
(AD) (Chernozhukov et al., 2021, 2022a) has been proposed to bypass the need to solve
a computationally challenging adversarial learning problem by constructing a simple loss
that is equivalent to minimizing the mean squared error in the RR. AD generalizes similar
approaches using approximately sparse linear regression Chernozhukov et al. (2022b) and
reproducing kernel Hilbert spaces Singh et al. (2023).

Despite the success of AD, there are several areas for improvement which we address in
our work. First, the AD loss is unbounded, and includes a negative average moment term
that can lead to extreme moment predictions in the final RR estimator. In practice, early
stopping using an external validation set is recommend to avoid such issues, however the
resulting learners may be overly sensitive to e.g. early stopping and learning rate hyperpa-
rameters. Second, oftentimes the RR admits known inner products which are ignored by
the AD loss. For instance, we know a priori that for the ADE/ATE h(a) = E[Aω(Z)] = 1.
Methods which estimate the RR using its derived form approximately encode such identities,
but this is not the case when the RR is learned by AD.

Contributions: We propose average moment estimators based on a new decomposition
of the RR in terms of the moment-constrained function ϑ↑(z). Specifically, ϑ↑ minimizes
the mean squared error in predicting a known function ϑ(z) subject to h(ϑ↑) = 0, where ϑ
is chosen such that one knows a priori that h(ϑ) ⇑= 0. We propose an approach to learning
ϑ↑ and derive debiased estimators of ” based on initial ML estimates µ̂ and ϑ̂↑.

The advantage of learning the RR via ϑ↑ rather than the AD loss is that the resulting
RR estimates better control for extreme out-of-sample RR predictions since constants of
proportionality in the RR are estimated using the estimation sample rather than the train-
ing sample. Moreover, our proposed estimator for ϑ↑ is robust to overfitting issues that may
arise when using the AD loss and thus is less sensitive to the tuning of optimization/model
hyperparameters. Our proposal remains ‘automatic’ in the sense of not requiring the func-
tional form of the RR to be derived. However, unlike AD, which only requires knowledge
of the moment function m, we additionally require a known function ϑ with h(ϑ) ⇑= 0. The
need to construct such a function may be viewed as a limitation of our proposal, though we
contend that doing so is straightforward, as we demonstrate for Examples 1 to 4.

Though our approach is not tied to a particular machine learning method, we evaluate
our estimators on two semi-synthetic datasets using multi-tasking neural networks, making
comparisons with RieszNet (Chernozhukov et al., 2022a) for ADE/ATE estimation, and
DragonNet (Shi et al., 2019), Reproducing Kernel Hilbert Space (RKHS) Embedding (Singh
et al., 2023), Neural Net (NN) Embedding (Xu and Gretton, 2023) for ATE estimation. To
ensure a fair comparison we re-implement RieszNet and DragonNet learners and estimators,
with reproduction code available at https://github.com/crimbs/madnet.
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2. Estimation

2.1. Debiased estimation

Given a sample of n i.i.d. observations, estimators of ” are typically based on the empirical
distribution En[.] = n↓1∑n

i=1(.)i, the regression function µ̂, and the estimated RR function

ω̂. An estimator ϖ̂ of ” is said to be regular asymptotically linear (RAL) if its error
behaves like an empirical process, i.e.

↑
n(ϖ̂ ↓ ”) = Gn[ϱ(W )] + op(1) for some finite

variance function ϱ(W ), where Gn[.] →
↑
n(En[.] ↓ E[.]) is the empirical process operator.

RAL estimators are unbiased since, by the central limit theorem,
↑
n(ϖ̂ ↓ ”) converges

(in distribution) to a mean zero normal random variable with variance var[ϱ(W )]. Results
from nonparametric e#ciency theory (Newey, 1994) imply that var[ϱ(W )] is minimized
when ϱ(W ) = m(µ,W )+ω(Z){Y ↓µ(Z)} is the uncentered influence curve (Hampel, 1974;
Ichimura and Newey, 2022) of ”, also called the pseudo-outcome (Kennedy, 2023; Hines
et al., 2023) (see Hines et al. (2022); Kennedy (2022) for pedagogical reviews). Thus, one
can construct standard errors for ϖ̂ by approximating ϱ with some ϱ̂ and taking a sample
variance. To consider specific estimators we use the identity

↑
n(ϖ̂ ↓”) = Gn [ϱ(W )]↓

↑
nEn

[
ϱ̂(W )↓ ϖ̂

]

︸ ︷︷ ︸
plug-in bias

+
↑
nE[ϱ̂(W )↓”]︸ ︷︷ ︸

first-order remainder

+Gn [ϱ̂(W )↓ ϱ(W )]︸ ︷︷ ︸
second-order remainder

(1)

which can be shown to hold (by canceling terms on the right hand side) for any ϖ̂ and pair of
measurable functions ϱ, ϱ̂. The second-order remainder above is usually not a concern and
is op(1) under weak assumptions, e.g. when E[{ϱ(W )↓ ϱ̂(W )}2] = op(1) and ϱ̂ is obtained
from an independent sample. In practice, the latter assumption motivates estimators which
apply some form of sample-splitting/cross-fitting to estimate ϱ̂ and evaluate the estimator
(Zheng and van der Laan, 2011; Chernozhukov et al., 2018).

Letting hn(f) → En[m(f,W )], a naive estimator is ”̂(Direct)
→ hn(µ̂), which does not

use the RR estimates ω̂. To examine the bias properties of the naive estimator, consider
(1) when ϖ̂ = ”̂(Direct) and ϱ̂(W ) = m(µ̂,W )+ ω̂(Z){Y ↓ µ̂(Z)}. Following (Chernozhukov
et al., 2020), the first-order remainder reduces to the ‘mixed bias’, ↓

↑
n↔µ̂↓ µ, ω̂↓ ω↗, the

square of which is bound by Cauchy-Schwarz as n↔µ̂↓µ, ω̂↓ω↗2 ⇓ n||µ̂↓µ||2||ω̂↓ω||2. The
first-order remainder will therefore be op(1) when µ̂ or ω̂ converge to their true counterparts
at su#ciently fast rates with sample size. Moreover, one can trade o! accuracy in µ̂ and ω̂,
a property known as rate double robustness.

The plug-in bias
↑
nEn[ϱ̂(W )↓”̂(Direct)] =

↑
nEn[ω̂(Z){Y ↓µ̂(Z)}], however, is generally

not op(1), and hence ”̂(Direct) is not RAL. The main challenge in obtaining RAL estimators
is therefore removing plug-in biases and there are two main strategies for doing so. One-
step debiased estimators simply add the plug-in bias to both sides of (1), resulting in the
(double robust) RAL estimator ”̂(DR)

→ En[ϱ̂(W )], or equivalently

”̂(DR) = hn(µ̂)︸ ︷︷ ︸
direct estimator

+En[ω̂(Z){Y ↓ µ̂(Z)}]︸ ︷︷ ︸
bias correction

. (2)
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Targeted maximum likelihood estimators (TMLEs) are direct estimators of the form
”̂(TMLE)

→ hn(µ̂↔) where µ̂ is replaced with a ‘targeted’ alternative µ̂↔ that solves

En[ω̂(Z){Y ↓ µ̂↔(Z)}] = 0. (3)

Like one-step debiased estimators, TMLEs are double robust, with the mixed bias condition
↔µ̂↔

↓ µ, ω̂↓ ω↗ = op(n↓1/2). Targeting can be achieved in many ways, for example by first
defining the linear parametric submodel µ̂t(z) = µ̂(z) + tω̂(z) for a univariate indexing
parameter t ≃ R. Then obtaining an optimal t↔ = argmint↗R En[{Y ↓ µ̂t(Z)}2] which
improves the fit of the outcome learner in the estimation sample, and ensures that µ̂↔ = µ̂t→

is a solution to (3). For the linear parametric submodel t↔ = En[ω̂(Z){Y ↓µ̂(Z)}]/En[ω̂2(Z)]
and ”̂(TMLE) = hn(µ̂) + t↔hn(ω̂), or equivalently

”̂(TMLE) = hn(µ̂)︸ ︷︷ ︸
direct estimator

+

(
hn(ω̂)

En[ω̂2(Z)]

)

︸ ︷︷ ︸
scale factor

En[ω̂(Z){Y ↓ µ̂(Z)}]︸ ︷︷ ︸
bias correction

. (4)

Comparing ”̂(TMLE) with ”̂(DR) in (2), we see that the TMLE introduces a scale factor
hn(ω̂)/En[ω̂2(Z)], which is an empirical approximation to the population value h(ω)/||ω||2 =
1, thereby rescaling the bias correction of the DR estimator. Variations of the TMLE
method often include canonical generalized linear model (GLM) link functions in the para-
metric submodel definition, and maximize the associated GLM log-likelihood (hence the
name TMLE), see e.g. (van der Laan and Gruber, 2016) for submodel proposals. GLM
variations of this type may be used e.g. when Y is binary and a cross-entropy outcome loss
is preferred. Finally, to motivate new RR learning methodologies, we remark that (3) and
(4) are invariant to constants of proportionality in ω̂, thus one might consider RR learners
that are agnostic to such constants.

2.2. Debiased estimation with moment constraints

Our main contribution is to propose average moment estimators based on the identity

ω(z) =
h(ϑ)

||ϑ ↓ ϑ↑||2
{ϑ(z)↓ ϑ↑(z)} (5)

where ϑ ≃ H is a known function with h(ϑ) ⇑= 0 and ⇔ denotes projection on to orthogonal
complement set C

↑
→ {f ≃ H | h(f) = 0}. Specifically, ϑ↑ = argminf↗C↑ ||ϑ ↓ f ||. A

geometric illustration of this result is provided in Figure 1.
Proof of (5): Note that C

↑ = {f ≃ H | ↔f,ω↗ = 0}. By Hilbert’s projection theorem,

ϑ↑ exists, with

ϑ↑(z) → ϑ(z)↓
↔ϑ,ω↗

||ω||2
ω(z) ↖↙ ω(z) =

||ω||2

h(ϑ)
{ϑ(z)↓ ϑ↑(z)}

where we use ↔ϑ,ω↗ = h(ϑ). Taking the norm of both sides and solving for ||ω|| ⇑= 0 gives

||ω|| = |h(ϑ)|/||ϑ ↓ ϑ↑|| which completes the proof.

The identity in (5) o!ers new avenues for debiased estimation of ” via learning ϑ↑ and
µ. One limitation of this proposal, however, is that we require construction of a function
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Figure 1: Illustration of moment-constrained functions. The plane represents the space of
zero average moment functions, i.e. f such that h(f) = ↔f,ω↗ = 0. The non-zero
function ϑ ↓ ϑ↑ is orthogonal to the plane, and thus is a scalar multiple of ω.

ϑ ≃ H such that h(ϑ) ⇑= 0 a priori (and ||ϑ|| < ↘ since ϑ ≃ H). Due to the variety of
possible moment functionals m(f,W ), we do not o!er a general algorithm for constructing
such functions, however, we have found in practice that there are usually candidates for ϑ,
where m(ϑ,W ) is a known constant, and hence h(ϑ) is known a priori. For instance, for
the ADE we set m(ϑ,W ) = ϑ→(A,X) = 1 and integrate to obtain ϑ(z) = ϑ(a, x) = a with
h(ϑ) = 1 a priori. This choice is not unique, however, since ϑ(z) = exp(a) is also a valid
choice for the ADE, with h(ϑ) = E[exp(A)] ⇑= 0. As for the other estimands in Examples 1
to 4: for the ATE h(ϑ) = 1 when ϑ(z) = a; for the APE, h(ϑ) = 1 when ϑ(z) = a+1↓ε(x);
for the IPE, h(ϑ) = 1 when ϑ(z) = a/ε(x), or if there is concern that ε(X) can be zero,
one can instead let ϑ(z) = a/ε(x) when ε(x) ⇑= 0 and ϑ(z) = 0 otherwise, then estimate
h(ϑ) = Pr[ε(X) ⇑= 0]. For full generality we develop estimators in the setting where h(ϑ)
must be estimated, but our results simplify slightly when h(ϑ) is known.

Example ATE: Denoting ϑ(z) = ϑ(a, x) = a, the known RR and (5) imply

ϑ↑(a, x) = p(x) + {a↓ p(x)}

(
1↓

1

p(x){1↓ p(x)}
E
[

1

p(X){1↓ p(X)}

]
↓1

)
.

It is insightful to compare ϑ↑, which minimizes E[{A ↓ f(A,X)}2] given E[f(1, X)] =
E[f(0, X)], with p(x), which minimizes the same mean squared error, under the stronger

constraint f(1, X) = f(0, X). We notice that p(x) lies on the interval (0, 1), but the same is

not true of ϑ↑, which has weaker restrictions on its outputs: ϑ↑(1, x) < 1 and ϑ↑(0, x) > 0.
Also p and ϑ↑ are related by the identity p(x) = E[ϑ↑(A,X)|X = x].

Example ADE: Denoting ϑ(z) = ϑ(a, x) = a, the known RR and (5) imply

ϑ↑(a, x) = a↓ E
[(

p→(A|X)

p(A|X)

)2
]
↓1

p→(a|x)

p(a|x)
,

which minimizes E[{A↓ f(A,X)}2] given E[f →(A,X)] = 0. As in the previous example, we

remark that E[ϑ↑(A,X)|X = x] = E[A|X = x].
In Section 2.3 below, we propose methods for learning ϑ↑, however, we first show how

the standard debiased estimators from Section 2.1 look when debiasing is achieved using
initial estimates ϑ̂↑ instead of ω̂. Specifically, we consider

ω̂(z) =
hn(ϑ ↓ ϑ̂↑){ϑ(z)↓ ϑ̂↑(z)}

En[{ϑ(Z)↓ ϑ̂↑(Z)}2]
.
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Under this parameterization, the DR estimator in (2) and TMLE in (4) both become

”̂(↑,DR)
→ hn(µ̂)︸ ︷︷ ︸

direct estimator

+

(
hn(ϑ ↓ ϑ̂↑)

En[{ϑ(Z)↓ ϑ̂↑(Z)}2]

)

︸ ︷︷ ︸
scale factor

En[{ϑ(Z)↓ ϑ̂↑(Z)}{Y ↓ µ̂(Z)}]︸ ︷︷ ︸
unscaled bias correction

, (6)

which is of the same form as (4) but with ϑ↓ϑ̂↑ replacing ω̂. Moreover, since the the TMLE
score equation in (3) only requires estimating the RR up to constants of proportionality,
TMLEs can be derived using parametric submodels where ω̂ is replaced with ϑ ↓ ϑ̂↑, e.g.
by using the linear submodel µ̂t(z) = µ̂(z)+ t{ϑ(z)↓ ϑ̂↑(z)}, which gives hn(µ̂↔) = ”̂(↑,DR).
Theorem 1 gives general conditions under which a TMLE hn(µ̂↔) based on ϑ̂↑ is RAL, with
”̂(↑,DR) being a special case. Essentially, this theorem controls the first-order remainder
of (1) using the mixed-bias condition ↔µ̂↔

↓ µ, ϑ̂↑ ↓ ϑ↑↗ = op(n↓1/2), and uses empirical
process assumptions to control the second-order remainder of (1).

Theorem 1 Let ϑ̂↑ be an estimator for ϑ↑, and let µ̂↔
be an estimator for µ that is targeted

such that En[{ϑ(Z) ↓ ϑ̂↑(Z)}{Y ↓ µ̂↔(Z)}] = 0. Assume that each of the following terms

are op(1):
↑
n↔µ̂↔

↓µ, ϑ̂↑↓ϑ↑↗, Gn[m(µ̂↔
↓µ,W )], Gn

[
{ϑ̂↑(Z)↓ ϑ↑(Z)}{µ̂↔(Z)↓ µ(Z)}

]
,

Gn [{ϑ(Z)↓ ϑ↑(Z)}{µ̂↔(Z)↓ µ(Z)}], and Gn

[
{ϑ̂↑(Z)↓ ϑ↑(Z)}{Y ↓ µ(Z)}

]
. Then hn(µ̂↔)

is a RAL estimator of ” with uncentered influence curve ϱ(W ), and hence
↑
n(hn(µ̂↔)↓”)

converges in distribution to a mean-zero normal random variable with variance var[ϱ(W )].
Proof in Supplement B.3.

2.3. Moment-constrained learning

We propose learners for the moment-constrained function ϑ↑ using the property that ϑ↑ is
the function f ≃ H that solves

minimize: ||ϑ ↓ f ||2

subject to: h(f) = 0 (7)

Similar constrained learning problems have been studied in the context of ML with fairness
constraints (Nabi et al., 2024). E.g. Zafar et al. (2017); Akhtar et al. (2021) minimize a
classification loss, while ensuring that predictions are uncorrelated with specific sensitive
attributes (race, sex etc.). The primal problem in (7) is characterized by the Lagrangian

L(f,ς) → E

{ϑ(Z)↓ f(Z)}2 + ςm(f,W )


(8)

where ς ≃ R is a Lagrange multiplier, and a solution is obtained by finding f↔ and ς↔

such that L(f↔,ς↔) = maxω↗Rminf↗H L(f,ς). Naively, therefore, one might learn f by
performing gradient descent over parameters indexing f and gradient ascent on ς, as in the
basic di!erential multiplier method (BDMM) of Platt and Barr (1987).

In our numerical experiments, we consider the setting where f = fw is the output of
a multilayer perceptron (MLP) with weights w. We observe that application of BDMM
to a sample analogue of L(fw,ς) leads to empirical constraint violations that oscillate
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around zero, as the number of ascent/descent iterations increases (shown in Figure 4 of the
supplement). Similar behavior is documented elsewhere for adversarial function learners
(Schäfer and Anandkumar, 2019; Mokhtari et al., 2020). Instead, stable constraint violations
were achieved by e!ectively replacing the constraint in (7) with the equivalent constraint
|h(f)| ⇓ 0, yielding the Lagrangian

L̃(f, ς̃) → E

{ϑ(Z)↓ f(Z)}2


+ ς̃|h(f)| (9)

with empirical MLP analogue L̃n(fw, ς̃) → En

{ϑ(Z)↓ fw(Z)}2


+ς̃|hn(fw)|. In this formu-

lation, ς̃ ∝ 0 penalizes the sample average moment of fw in a similar way to the smoothing
parameters in conventional Lasso/ridge regression. The key di!erence between these clas-
sical methods, however, is that the penalty |hn(fw)| depends on the observed data, and
not only on the weights w. In practice we set ς̃ to a constant value during training, and
minimize over w using gradient descent, though one might consider alternative methods e.g.
where ς̃ increases monotonically with the number of descent iterations (epochs).

2.4. Comparison with Automatic debiasing (AD)

AD (Chernozhukov et al., 2021, 2022a) is an RR learning method based on the identity

ω = argmin
ε̂↗H

||ω↓ ω̂||2

= argmin
ε̂↗H

||ω̂||2 ↓ 2↔ω̂,ω↗

= argmin
ε̂↗H

E

ω̂(Z)2 ↓ 2m(ω̂,W )


.

The AD RR learner minimizes a sample analogue of this expectation. We connect AD to
our proposal as follows. Consider that ω̂ ≃ H can be written as ω̂(z) = 2ς↓1

{ϑ(z)↓ f(z)}
where ς ⇑= 0 is constant and f ≃ H. Thus, the AD population minimization becomes

ϑω → argmin
f↗H

E

4ς↓2

{ϑ(Z)↓ f(Z)}2 ↓ 4ς↓1m(ϑ ↓ f,W )


= argmin
f↗H

E

{ϑ(Z)↓ f(Z)}2 + ςm(f,W )


.

with ω(z) = 2ς↓1
{ϑ(z)↓ ϑω(z)}. The objective above is the Lagrangian L(f,ς) in (8). In

this construction ς is unrestricted, therefore provided that ς↑ → argmaxω↗Rminf↗H L(f,ς)
is finite and non-zero, one can write ω(z) = 2ς↓1

↑
{ϑ(z)↓ ϑω↑(z)}. Appealing to the primal

problem in (7), we see that ϑω↑ = ϑ↑ and, ς↑ = 2||ϑ ↓ ϑ↑||2/h(ϑ) as in (5).
Moment-constrained learning, therefore, reinterprets the AD loss as a Lagrangian when

one has access to a function ϑ such that h(ϑ) ⇑= 0, and one is agnostic to constants of
proportionality in the RR. When estimating ”, these constants are estimated using the
estimation sample rather than by the RR learner directly. By connecting the RR to the
primal problem, one is able to leverage constrained learning methods that may have better
empirical performance, e.g. using the Lagrangian L̃ in (9). Moreover, this connection hints
at future theoretical study of RRs and AD via constrained function learning theory.
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3. MADNet: Moment-constrained Automatic Debiasing Networks

Multi-headed MLPs, as illustrated through the schematic in Figure 2, are emerging as a
popular architecture for estimating average moment estimands using deep learning. Initial
e!orts focused on the binary treatment setting, such as the multi-headed MLP outcome
learner TARNet (Treatment Agnostic Representation Network) (Shalit et al., 2017). TAR-
Net takes inputs X and produces two scalar outputs representing µ(1, X) and µ(0, X)
respectively. During training, an outcome prediction error (e.g. mean-squared error) is
minimized, with predictions of µ(A,X) obtained from one of the scalar outputs according
to whether an observation is treated/untreated. The resulting outcome learner can be used
to obtain plug-in estimates for e.g. the ATE/APE, optionally with debiasing by a separate
RR learner as described in Section 2.1.

DragonNet (Shi et al., 2019) also focuses on binary treatments, extending TARNet
by introducing a third scalar output MLP of zero depth, which is used to estimate the
propensity score p(X), and hence the RR of the ATE/APE. The authors reason that the
propensity score MLP should have zero depth so that the shared MLP learns representations
of X that are predictive of the RR, since, for ATE estimation it is su#cient to learn the
outcome conditional on A and p(X) only. This approach is generalized by Chernozhukov
et al. (2022a, Lemma 3.1), where it is shown that: for estimation of ” it is su#cient to learn
the outcome conditional on the RR only, i.e E[Y |ω(Z) = ω(z)]. Similarly, for estimation
of ”, we show (Supplement B.4) that it is su#cient to learn the outcome conditional on
ϑ(Z)↓ ϑ↑(Z) only. Moreover, we show (Supplement B.5) that µ(Z) = µ↑(Z) +”{ϑ(Z)↓
ϑ↑(Z)}/h(ϑ) where µ↑ is the projection of µ on C

↑. This result further highlights the role
of the RR when learning the outcome for average moment estimation.

RieszNet is similar in structure to DragonNet, except with input Z = (A,X) rather than
X. Both also use a multi-tasking loss to learn µ and ω simultaneously. We propose MADNet
which uses the same network structure as RieszNet and a multi-tasking loss to learn µ and
ϑ↑ simultaneously. Specifically we consider the loss L̃n(fw,1, ς̃) + φREGLossn(fw,2) where
φ ∝ 0 is a hyperparameter, REGLossn is a regression loss, e.g. the mean-squared error in
the outcome prediction REGLossn(f) = En[{Y ↓ f(Z)}2], and fw(z) = (fw,1(z), fw,2(z))
represents two outputs from a multi-headed MLP. Note that e.g. fw,1 depends only on the
weights of the shared MLP and the first non-shared MLP, but we write it as a function
of all multi-headed MLP weights w for convenience. Like RieszNet, for ATE/ADE es-
timation we replace fw,2(z) in the regression loss with ãfw,2(z) + (1 ↓ ã)fw,3(z), where
ã represents the min-max normalized treatment a scaled on to the interval [0, 1], i.e.
ãi = {ai ↓minn(ai)}/{maxn(ai)↓minn(ai)}.

Convergence rates: The standard theory in Section 2.1 controls first-order remainders
by requiring estimators to converge to their true counterparts at su#ciently fast rates. For
neural network learners, recent convergence rate results have been obtained using the theory
of critical radii (Wainwright, 2019; Foster and Syrgkanis, 2023; Chernozhukov et al., 2020).
In particular, results are provided for MLPs with Rectified Linear Unit (ReLU) activation
functions (Farrell et al., 2021), describing L2 convergence rates in terms of the number of
training observations and the network width/depth. Similar results exist for AD learners
with moments satisfying the mean-squared continuity property E[{m(u,W )↓m(v,W )}2] ⇓
M ||u↓v||2 for M ∝ 1 and u, v ≃ An, where An is a function set described by Chernozhukov

9
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Figure 2: Multi-headed MLP architecture with three outputs. Typically the intermediate
representation has the same width as the internal layers of the shared MLP, and
the non-shared MLPs have internal layers with half the width of the shared MLP.
During training, a single loss is used based on all scalar outputs, and MLP weights
are learned using back-propagation over the entire multi-headed MLP.

et al. (2021). We expect similar theoretical guarantees to hold in the current context due
to the connection of AD with moment-constrained learning discussed above.

Sample-splitting: To obtain valid inference from a single sample, the standard theory
in Section 2.1 relies on cross-fitting to control the second-order remainder terms in (1).
Cross-fitting is used to bypass Donsker class assumptions (Bickel, 1982; Zheng and van der
Laan, 2011; Chernozhukov et al., 2018), which restrict the complexity of the initial esti-
mators and are usually not satisfied by ML algorithms. Recent work has sought to bypass
Donsker conditions by instead relying on entropic arguments (van de Geer et al., 2014) or
leave-one-out stability (Chen et al., 2022). In practice DragonNet and RieszNet do not use
sample splitting due to the associated computational burden. Instead, implementations of
both algorithms split the data into training and validation sets, with the validation set used
to control early stopping of the training algorithm. For estimation, the full dataset is used
(training + validation). We also use this strategy for moment-constrained learning.

4. Numerical experiments

We consider ATE and ADE estimation in the following semi-synthetic data scenarios.
IHDP: (Infant Health and Development Program). IHDP is a randomized experiment

on the e!ects of home visits by specialists (binary treatment, A) on infant cognition scores
(Y ), given 25 baseline covariates. The data consists of n = 747 infants. Synthetic outcomes
are drawn from a normal distribution given (A,X), as described by (Hill, 2011). We consider
1000 synthetic IHDP datasets in total.

BHP: (Blundell, Horowitz and Parey) (Blundell et al., 2017). BHP consists of 3,640
household level observations from the 2001 (U.S.) National Household Travel Survey, with
the goal of estimating the price elasticity of gasoline consumption given 18 confounding
variables. Price elasticity can be defined through the ADE of log price (A) on the log
quantity of gasoline sold (Y ). Following (Chernozhukov et al., 2022a), we draw synthetic
treatments from a normal distribution, with conditional mean and variance obtained from
random forest predictions of the mean and variance of the true log price. Conditionally

10
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Figure 3: Mean and standard error of En[Aω̂(Z)] ↓ 1 (top row) and of ”̂(IPW)
↓ hn(µ)

(bottom row) using 20 datasets of IHDP data where predictions are made on a
20% validation set and the outcome is scaled by its standard deviation.

normal synthetic outcomes are then generated, given (A,X), with a mean function that is
cubic in treatment. The results in Table 1 are evaluated over 200 random seeds.

The first experimental research question is: to what extent do RR predictions from
moment-constrained auto-debiasing learners satisfy oracle RR properties that are known
a priori? To answer this, we consider Inverse Probability Weighted (IPW) estimators
of E[Aω(Z)] = 1, and ”. The corresponding IPW estimators En[Aω̂(Z)] and ”̂(IPW)

→

En[Y ω̂(Z)] do not depend on the outcome model, thus are a convenient way of comparing
RR learners. Figure 3 shows, using IHDP data, how the mean error evolves over gradient
descent iterations (epochs) for two di!erent learning rates. These plots show that the
MADNet RR estimator converges rapidly to a stable optimum, and is therefore more robust
to changes in learning rate and early stopping hyperparameters.

Next we compare absolute errors of MADNet estimators versus several alternatives:
DragonNet (Shi et al., 2019), Reproducing Kernel Hilbert Space (RKHS) Embedding (Singh
et al., 2023), Neural Net (NN) Embedding (Xu and Gretton, 2023), and RieszNet (Cher-
nozhukov et al., 2022a), with only the latter applying to ADE estimation in the BHP
scenario. The main proposal of our work is the Double Robust MADNet estimator, though
to examine the e!ect of RR based bias correction, we have also provide results for the Direct
(outcome model only without RR bias corrections), and IPW (RR model only) estimators.

Results in Table 1 show that the MADNet DR estimator has improved empirical perfor-
mance (reduced mean absolute error) versus all alternatives in both scenarios. Interestingly,
for the IHDP scenario, this improvement in performance is observed despite the MADNet
Direct estimator performing poorly compared to its RieszNet counterpart. Moreover, the
MADNet DR estimator e!ectively combines two estimators with poor performance (Direct
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and IPW) to create an estimator with good performance. One possible explanation for this
could be that MADNet results in estimators for which the mixed bias term ↔µ̂↓µ, ϑ̂↑↓ϑ↑↗ is
small, i.e. errors in the outcome and RR learners are uncorrelated. Further work is needed,
however, to examine this e!ect. Similar results are obtained when the multi-headed archi-
tectures of MADNet and RieszNet are ablated and replaced with simple feedforward NNs
(Supplement Table 2). Furthermore, MADNet results with a reduced constraint penaliza-
tion (ς̃ = 1) show slightly worse performance, highlighting the importance of satisfying the
constraint in our procedure (Supplement Table 3).

Detailed implementation notes are provided in Supplement A alongside DragonNet/RieszNet
results obtained using our implementation (Table 2). We highlight, however, three main
di!erences in our implementation: (i) our implementation is built on a JAX + Equinox com-
putational stack (Bradbury et al., 2018; Kidger and Garcia, 2021); (ii) for ADE estimation
we use automatic di!erentiation of NN outputs, rather than a finite di!erence approxima-
tion; (iii) the original RieszNet uses a complicated learning rate / early stopping scheme but
we use a slightly simpler scheme. Overall we found that replication via re-implementation
of the RieszNet results was challenging, possibly due to the stability issues in Figure 3.

Table 1: Absolute error (mean ± standard error) of the ATE and ADE estimates for both
semi-synthetic data scenarios. For the RieszNet IHDP benchmark we report
values obtained by running RieszNet IHDP.ipynb from https://github.com/

victor5as/RieszLearning without modification. MAEs for the BHP scenario
are not reported by Chernozhukov et al. (2022a), and we instead use values from
our RieszNet re-implementation. DragonNet and RKHS/NN embedding values
are retrieved from Xu and Gretton (2023, Table 1).

Estimator IHDP BHP Citation

DragonNet (DR) 0.146 ± 0.010 – (Shi et al., 2019)
RKHS Embedding 0.166 ± 0.003 – (Singh et al., 2023)
NN Embedding 0.117 ± 0.002 – (Xu and Gretton, 2023)
RieszNet (Direct) 0.128 ± 0.004 0.692 ± 0.040 (Chernozhukov et al., 2022a)
RieszNet (IPW) 0.789 ± 0.036 0.449 ± 0.025 (Chernozhukov et al., 2022a)
RieszNet (DR) 0.114 ± 0.003 0.428 ± 0.023 (Chernozhukov et al., 2022a)
MADNet (Direct) 0.504 ± 0.016 0.471 ± 0.026 Proposed
MADNet (IPW) 0.719 ± 0.039 0.474 ± 0.026 Proposed
MADNet (DR) 0.094 ± 0.002 0.391 ± 0.019 Proposed

5. Conclusion

We present a new algorithm for estimating average moment estimands. Our approach lever-
ages functions for which the average moment is known a priori to be non-zero, though the
need to construct such functions may also be viewed as a limitation. Nonetheless, we con-
tend that constructing such functions is significantly simpler than deriving the functional
form of the RR, which is required for non-automatic RR learning methods. Our proposal
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is therefore ‘automatic’ in the sense of not requiring complicated estimand-specific machin-
ery. Moreover, rather than learning the full RR, as in conventional AD, we instead learn
a moment-constrained function that is su#cient for debiasing the naive (direct) average
moment estimator. From a practical perspective, the need to learn a constrained function
requires additional techniques and hyperparameter tuning to ensure that constraints are
approximately satisfied. In our work, we propose a Lagrange-type penalization method for
moment-constrained learning and apply this method using multi-tasking neural networks,
though experimenting with other approaches to constrained function learning represents an
important direction for future study.

There are several other directions which one might extend our work. First, our set
up considers estimands that represent the average moment of a regression functions, but
extensions of AD to so-called generalized regressions (e.g. quantile functions) could also
be considered (Chernozhukov et al., 2021). Second, we consider neural network learners,
but similar extensions for gradient boosted trees / random forests should also be possible.
Finally, our approach to moment-constrained function learning may be applied to other
problems with stochastic constraints e.g. those related to fairness of ML predictions.
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