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ABSTRACT

Memorization is the ability of deep models to associate training data with seem-
ingly random labels. Even though memorization may not align with a model’s
ability to generalize, recent work by Feldman & Zhang (2020) has demonstrated
that memorization is in fact necessary for generalization. However, upon closer
inspection, we find that their methodology has three limitations. First, the def-
inition of memorization is imprecise, leading to contradictory results. Second,
their proposed algorithm used for approximating the leave-one-out test (the gold
standard for calculating memorization scores) suffers from a high approximation
error. Three, the authors induce a distribution shift when calculating marginal util-
ity, leading to flawed results. Having accounted for these errors, we re-evaluate
the role of memorization on generalization. To do so, we track how memoriza-
tion changes at different levels of generalization (test accuracy). We control model
generalization by training 19 different combinations of models, datasets, and train-
ing optimizations. We find that memorization and generalization are strongly neg-
atively correlated (Pearson -0.997): As one decreases, the other increases. This
shows that memorization is not necessary for generalization, as otherwise, the cor-
relation would have been positive. In light of these findings, future researchers are
encouraged to design techniques that can accurately approximate memorization
scores.

1 INTRODUCTION

One of the most interesting properties of deep learning models is their ability to fit outliers (i.e.,
samples that are not part of the data distribution) (Zhang et al., 2017a; Arpit et al., 2017; Stephenson
et al., 2021). Specifically, deep models can output arbitrary ground-truth labels to inputs in the data
set. For example, if a picture of Gaussian noise is mislabeled as a cat, then the model will output
this label, even though the label is incorrect (Zhang et al., 2017a). This is only possible due to the
model’s ability to memorize point-label pairs.

Intuitively, the ability to generalize (i.e., correctly label previously unseen points) should be at odds
with memorization. This is because generalization requires identifying the underlying patterns and
then subsequently applying them to unseen points. On the other hand, memorization simply retrieves
the labels of the previously observed inputs and consequently, should not help in correctly classify-
ing new unseen points. However, recent work from Feldman & Zhang (2020) has shown that this is
not true for deep models. Their work demonstrated that “memorization is necessary for achieving
close-to-optimal generalization error”. They do so using a three-step process. First, they provide
a definition that quantifies a given point’s memorization score (i.e., the likelihood that the point is
memorized). Second, they propose an approximation method to calculate memorization scores for
each point in the data set. Third, they calculate the marginal utility of memorization (i.e., its impact
on test set accuracy). They report an accuracy degradation of 2.54 ± 0.20%, thereby concluding that
memorization is necessary for generalization. However, their work has three core issues:

1. Imprecise Definition: We find that the definition of memorization, which also forms the
basis of their theoretical work, is imprecise. It does not provide any standard threshold
to identify memorized points: any point above an arbitrary threshold is considered mem-
orized. We find that different threshold values capture different sets of points, with high
thresholds only capturing the singleton outliers, and lower thresholds capturing entire or
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partial sub-populations. As a result, two different thresholds can lead to contradictory con-
clusions. In other words, experiments under this definition are not falsifiable, a basic tenant
of scientific research. To mitigate this issue, we evaluate marginal utility over multiple
thresholds and base our conclusions on consistent behavior over most threshold values.

2. High Approximation Error: We find that Feldman (2020)’s approximation algorithm
suffers from a high error rate, significantly overestimating the memorization scores. When
we compare its scores against the baseline leave-one-out experiment, we found that: 1)
only a small fraction of the points (less than 6%) were within 5% error, 2) the remaining
points have an exceptionally high error, as much as, 50%, 3) resulting in a high rate of false
positives, with as many as 93% of the points being incorrectly marked as memorized. Upon
closer inspection, we find that small sub-populations are most vulnerable to these errors.
As a result, the approximation algorithm incorrectly groups them with the actual memo-
rized points, even though the small sub-populations are not memorized. To ameliorate this
limitation, we identify and remove the points with incorrect scores from the memorized set.

3. Flawed Marginal Utility: The authors removed the memorized points from the data to
calculate their marginal utility. However, in doing so, the authors accidentally purge entire
sub-populations, wholesale. This leads to a distribution shift (i.e., loss of sub-population),
a common oversight in ML research. As a result, we find the drop in accuracy was not a
product of the marginal utility of memorized points, but due to common ML oversight.

Re-evaluating Memorization vs Generalization: One simple way to fix these issues to take a
different approach to study memorization and generalization. Instead of measuring the drop in ac-
curacy after removing memorized points, we track how memorization changes at different levels
of generalization (test accuracy). We control model generalization by training 19 different com-
binations of models, datasets, and training optimizations. Specifically, we vary test accuracy by:
1) changing model complexity, (number of trainable weights), 2) changing training optimizations
(With and without weight decay and data augmentation), 3) across different models (VGG, ResNet,
and ViT) and 4) across datasets (Cifar-10/100 and Tiny ImageNet).

We then plot the corresponding rates of memorization and generalization. We find that there is a
strong negative correlation between memorization and generalization (Pearson -0.997). This means
that as generalization improves, memorization decreases (and vice versa). From the results of our
experiments, we disprove the conclusion of the original work and show that memorization is not
necessary for generalization.

2 BACKGROUND

Before we discuss our findings in any detail, it is important that we first understand some of the
important background concepts regarding memorization.

2.1 SUB-POPULATIONS

A data set can consist of one or more coarse class labels (e.g., cats and dogs). Within each of
these coarse labels, there may exist a mixture of points that have finer labels, which correspond to
distinct sub-populations (Zhu et al., 2014). For example, the cat data set will contain images with
different cat features including color, background, species, pose, etc. Cats with the same facets will
fall into the same sub-populations. For example, consider a hypothetical data set that contains 100
cat images, with 94 white cats, three black, and a single pink one. Even though they have the same
label, each color of cats forms distinct sub-populations (with potentially even finer sub-populations
within the white and black cats respectively (Malisiewicz et al., 2011; Felzenszwalb et al., 2009)).
Figure 1 provides examples of sub-populations in CIFAR-1001.

The size of the sub-population may impact model accuracy as well. Generally, the larger the sub-
population, the higher the number of exemplar points, and the greater the model’s ability to predict
accurately for that sub-population at test time Jiang et al. (2020). This is because more points usually
mean more representative examples for the model to learn from. Returning to our hypothetical cat
data set (with 94 white cats, three black, and a single pink one), since there are more pictures of white

1In Section 4 we describe how we find the sub-populations within a dataset.
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Figure 1: Examples of sub-populations that suffer from the highest approximation error.

cats in the data set, the model likely has better prediction accuracy on white cats than black ones at
test time. This also means removing an entire sub-population will result in degrading the model’s
ability to correctly classify missing sub-populations at test time. If the model was never trained on
black cats, it will likely misclassify them at a higher rate. This is because certain distinguishing
characteristics that aid the model in correctly classifying the unseen sub-population will likely not
be learned from remaining data, and will negatively impact model performance on unseen points.

2.2 INFLUENCE OF DATA SET POINTS

Influence is the ability of a training point (xi, yi) to impact the prediction of some other point
(xj , yj) (Koh & Liang, 2017). Hereinafter, xi denotes the data point and yi denotes the label of xi.
As an illustrative example for influence, if including xi in the training set increases the probability of
point xj being classified correctly by the resulting model, then xi is said to have a positive influence
on xj (Feldman & Zhang, 2020). The higher the influence value, the stronger the impact.

Self-influence is a special case of influence. It is a measure of how well the model predicts the label
for xi when the point itself is present in the training data set in comparison to when xi is absent. If
a point has positive self-influence, it has a higher probability of being classified correctly when it
is present in the training data set. Therefore, when the point is removed from the training data set,
the likelihood of correct prediction goes down as well. Conversely, negative self-influence means a
higher likelihood of being classified correctly only if it is not present in the training data set (e.g.,
mislabeled points).

According to Feldman & Zhang (2020), higher self-influence means a higher risk of memorization.
The high self-influence points usually belong to the tail end of the data distribution. The tail usually
consists of atypical points (e.g., outliers and mislabeled points) or small-sized sub-populations (e.g.,
five black cats in a data set of all white cats). Therefore, these points have the highest risk of
memorization across the entire distribution.

Furthermore, if the point has high self-influence and has a duplicate in the test set, then removing
this point from the training data will result in the wrong prediction on itself, but also its duplicate
(or near duplicate) in the test set.

3 UNDERSTANDING FELDMAN & ZHANG (2020)

Having gone over how different factors influence memorization, we describe in detail the original
work of Feldman & Zhang (2020). Our primary goal is to evaluate their methodology, recommend
experimental fixes, and consequently, reassess their findings. To that end, we describe how they 1)
define memorization, 2) approximate memorization scores, and 3) quantify marginal utility.
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3.1 DEFINING MEMORIZATION

Feldman & Zhang (2020) define a memorized point as one having high self-influence (i.e., a point
that is predicted correctly only when present in the training data).

Specifically, consider a training set S = ((x1, y1)...(xn, yn)) and a point xi in the training set S.
The memorization score is the difference in prediction accuracy between when the point xi is present
in the training data (h ← A(S)) and when xi is absent (h ← A(S\i)). Here, (h ← A(S)) means
that models h were trained on dataset S using algorithm A:

Prh←A(S)[h(xi) = yi]− Prh←A(S\i)[h(xi) = yi] (1)
The definition captures the intuition that a point xi has been memorized if its prediction changes
significantly when it is removed from the dataset. We include Table 1 for reference on the symbols
used throughout the paper.

For example, consider training 1000 instances each of the models h ← A(S) and h ← A(S\i). If
the correct classification rate for xi when it h ← A(S) is around 90% (i.e., 900 out of the 1000
instances classified the point correctly). However, it falls significantly when h ← A(S\i) to 25%
(i.e., 250 out of the 1000 instances classified the point correctly). Due to the significant drop in self
accuracy, this point has a high self-influence, and therefore, a high memorization score, specifically
of 90%−25% = 65%. This means that xi is far more likely be classified correctly when it is present
in the training data. In contrast, if there is no significant change in the classification rate, then it has a
low memorization score. In this case, xi will likely be classified correctly, whether or not it is present
in the train set. As a result, the memorization score of a given point will be inversely proportional to
its sub-population size: the larger the sub-population the smaller the memorization score. In the case
of our hypothetical cat dataset, the pink cat (singleton) will have the highest memorization score,
followed by the black cats (small-subpopulation) and the white cats (large sub-population).

3.2 CALCULATING MEMORIZATION SCORES

Precise Algorithm: Having defined memorization, the next step is to develop a methodology to
identify memorized points from a dataset. A point is considered memorized based on its memo-
rization score, calculated using Equation 1. The most precise way to compute this score is via the
classic leave-one-out experiment. Here, we remove a single point from the training dataset, retrain
the model on the remaining data, and test to see if the removed point is correctly classified. We
have to run this experiment on all the points in the dataset to get the memorization score for each.
Additionally, we have to repeat this model training process, for each point, multiple times to account
for randomness introduced during training (e.g., the varying initialization, GPU randomness, etc.).
Specifically, this would require training hundreds models for every point in the data. Considering
data sets contain tens of thousands of points, this would require training millions of models. There-
fore, running this experiment over a large dataset and model will require a large amount of resources
and is therefore, computationally intractable.

Approximation Algorithm: To overcome this limitation, Feldman & Zhang (2020) propose a
method to approximate the memorization scores. Instead of removing one point at a time, the
authors randomly sample a fraction r of the points from the training set (originally of size n) and
leave the remaining points out of training. The number of points used in training is then m = r · n,
0 ≤ r ≤ 1. In Feldman & Zhang (2020) the authors use r = 0.7 for their experiments. The authors
repeat this k times. The exact value of k depends on the dataset but is typically on the order of a few
thousand models. As a result, a random point xi will be present in approximately k · r of the total
trained models and will be absent from k · (1 − r) of them. By aggregating the results over both
sets of models, the authors can approximate the memorization score for xi. All the points that have
a higher memorization score than some predetermined threshold are said to be memorized.

3.3 CALCULATING MARGINAL UTILITY

Having identified the memorized points, the authors now calculate their marginal utility (i.e., their
impact on test accuracy). This is done using a two-step process:

Step 1: Training Models without the memorized points The authors train two sets of models: one
on the full training data (that includes the memorized points), and another on the reduced dataset
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(without the memorized points). They train both sets of models on identical parameters, repeating
this procedure hundreds of times to account for sources of randomness. At this point, the authors
have hundreds of models trained on the full and reduced datasets.

Step 2: Measuring the Difference in Accuracy Next, the authors measure the drop in accuracy
caused by removing the memorized points and retraining the models. They simply take the mean
test set accuracy of the models trained on the full dataset and the models trained on the reduced one
respectively. They subtract the two accuracies to find the mean difference and the standard deviation.
The authors reported a significant drop in accuracy of 2.54 ± 0.20% and therefore, the concluded
that these memorized points need to be present in the training data for optimum accuracy. And as a
result, memorization is necessary for generalization.

4 FELDMAN & ZHANG (2020) LIMITATIONS

In the previous section we discuss how Feldman & Zhang (2020) define point memorization, ap-
proximate scores, and evaluate marginal utility. In this section, we explore critical limitations within
each step and propose potential fixes.

4.1 IMPRECISE DEFINITION FOR MEMORIZATION:

The findings of Feldman & Zhang (2020), and their earlier theoretical work Feldman (2020), are
based on the premise that Equation 1 provides a precise representation of memorized points (Sec-
tion 3.1). We argue that the key limitation is not in their derived proofs, but in the use of an imprecise
definition as the cornerstone of their work. Specifically, Equation 1 does not provide any threshold
on how to differentiate memorized points from non-memorized ones. To further exacerbate the mat-
ter, points with high memorization scores (outliers) can behave in contradictory ways to ones with
low memorization scores (large sub-populations). As a result, conclusions derived from one thresh-
old can easily be disproved with points from a different threshold. The experiments based on this
definition fail the falsifiability test; there simply is no way to prove your theory right or wrong.

Such contradictory results can be seen in the main result of the original work (and also corroborated
by our own findings in the next section). The authors show that removing memorized points with
high scores (i.e., using a high memorization threshold) does not impact test accuracy. However,
removing memorized points with low scores does impact test accuracy. A natural question arises:
which one of the two thresholds really represents the memorized data? Do we base our conclusion
on the high thresholds and claim that memorization does not impact accuracy? Or based it on the
low thresholds and argue the opposite?

4.2 HIGH APPROXIMATION ERROR:

To estimate the memorization scores, the authors provide an approximation algorithm (Section 3.2).
In this subsection, we compare this approximation algorithm against the ideal LOO baseline. Specif-
ically, we hypothesize that the approximation algorithm over-estimates the memorization scores of
small sub-populations, making them indiscernible from singleton outliers. We find that this is caused
by the approximation algorithm’s sampling method producing biased partitions (i.e., ones that are
dissimilar to the partitions created by LOO). As a result, the approximation algorithm has a high
error for small populations, incorrectly marks them as memorized, resulting in many false positives.
As a consequence, the original work reached an inaccurate conclusion about the role of memoriza-
tion on model utility.

To illustrate this idea, consider our earlier hypothetical cat dataset containing 96 white, three black,
and a single pink one. The approximation algorithm creates data shards by dropping a fraction of
the points. This results in three types of dataset partitions. Partitions that contain 1) all three black
cats, 2) some black cats, or 3) no black cats. On the other hand, LOO will only drop a single point
at a time, and therefore, it’s partitions will contain exactly two of the three cats every time. This
means the approximation algorithm aggregates over partitions with fewer than two or no black cats,
resulting in an overestimation of memorization scores. As a result, small sub-populations are most
vulnerable to over-estimation.
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In contrast, memorization scores of singleton outliers (pink cat) and large sub-populations (white
cats) will not be impacted. In the case of outliers, this is because a biased partition is not likely
because there is only one point. Similarly, because large sub-populations make such a significant
fraction of the total data, there will always be a large number of them in any random partition.

Setup and Methodology: To evaluate our hypothesis, we compare the memorization scores of
the approximation algorithm against LOO. Since executing LOO is computationally expensive, we
perform our evaluation on CIFAR-10 using VGG-6 (Appendix A.1). We chose this setup because
1) the VGG-6 model trains fast (2 mins per model) allowing us to train the thousands of models
required for the baseline LOO experiment and 2) the VGG-6 has a high test accuracy of 88%,
indicating utility. We train VGG-6 using a batch size of 512, a momentum of 0.9, and a triangular
learning rate scheduler, with a base rate of 0.4 and use the FFCV library (Leclerc et al., 2023) to
speed up training. Having done so, we find the memorized points according to Equation 1.

Since running LOO on the entire dataset is not possible, we only execute it on a set of the 200
influential points, as they are used subsequently for evaluating marginal utility. We train a total of
20,000 models (100 models per point for a total of 200 points) for LOO assessment. And another
4,000 models for the approximation method.

Figure 2: Error between the approximation
method by Feldman & Zhang (2020) and the ideal
leave-one-out.

Results: Figure 2 shows the error between
LOO and the approximation method. We can
see that the approximation method overesti-
mates the scores for a large majority of the
points. Specifically, only 8.5% of the points
have a < 5% error in their memorization scores
(from Equation 1). While the remaining points
have errors as high as 57.5%. This means, if we
set the memorization threshold of ≥ 25%, the
approximation algorithm produced 16% false
positives. The rate becomes even worrisome
at higher memorization thresholds. For ex-
ample, if we set the memorization threshold
of ≥ 45%, the approximation algorithm pro-
duced 70% false positives. This means a signif-
icant fraction of points are incorrectly marked
as memorized by the approximation algorithm.
This confirms the first part of our original hypothesis that the approximation algorithm overestimates
the memorization scores.

For the second part of the hypothesis, our goal is to ascertain which subset of points are impacted the
most by over-estimation (i.e., outliers or small sub-populations). To do so, we use the SPP outlier
detection method Hendrycks & Gimpel (2016) which outputs a score between 1 and 0, with outlier
points being scored closer to 0. We selected a 100 points that had the largest approximation error
and a 100 points with the lowest. SPP score for the points with the lowest error was 0.32 ± 0.26
(indicating that these are outliers), while the points with the highest error have an average SPP score
of 0.77 ± 0.26 (indicating that these are small sub-populations). This confirms the second part of
our hypothesis: small sub-populations are most vulnerable to over-estimation.

4.3 FLAWED MARGINAL UTILITY:

After identifying the memorized points, the authors finally calculate their marginal utility (Sec-
tion 3.3). This is where we observe a distribution shift error, a common oversight in machine learn-
ing research. Specifically, when calculating the utility of memorized points, the authors accidentally
remove all the points above a specified threshold, thereby dropping entire sub-populations from the
training data. This causes a complete or near complete sub-population purge from the training data,
resulting in a distribution shift. This approach has shown to be sub-optimal Zhang et al. (2017b)
because it results in a biased classifier. This is because the training data will no longer possess cer-
tain sub-populations that exist in the test data. This prevents the model from effectively learning
the features of the removed sub-populations, and consequently, leads to poor model performance
on the corresponding test points. Therefore, the drop in model accuracy observed by Feldman &
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Zhang (2020) was not due to the marginal utility of the memorized points but due to the induced
distribution shift (because entire sub-populations had been removed).

To make the contradiction apparent, if the authors had removed all the points below a specific thresh-
old (i.e., remove all the points with low memorization scores belonging to large sub-population), we
would also observe a drop in test accuracy. This would not mean that non-memorized points are
necessary for generalization, but is a result of an induced distribution shift.

This idea can be understood using our earlier cat dataset example, presented in Section 2.1. If we
remove all the black cats (three of them in total) from the dataset that contains another 94 white
ones, the corresponding model will likely perform poorly on black cats in the test set. Similarly,
if we remove all 94 white cats, the model will perform poorly on the white cats in the test set.
Unfortunately, as was in the case of approximation error, small sub-populations are most vulnerable
here as well.

5 RE-EVALUATING MARGINAL UTILITY

Having identified the issue of over-estimation, we now re-examine the relationship between marginal
utility and memorization. Since the existing method of studying the relationship (Section 3.3) will
exacerbate the above mentioned issues, we take a different approach. We study how memorization
changes at different levels of generalization. We train 19 different combinations of models, datasets,
and training parameters. We find that the memorization and generalization have a strong negative
correlation (Pearson score 0.997) i.e., as one increases, the other decreases, thereby showing that
memorization is not necessary for generalization.

5.1 SETUP

To expose the relationship between memorization and generalization, we train a series of models
with an varying number of 1) trainable weights, 2) datasets, 3) architectures, and 4) training opti-
mizations. By changing these variables, we are able to manipulate test accuracy and observe the
change in memorization. Specifically, we designed four models using VGG blocks (VGG-0.5M2,
VGG-1M, VGG-8M, VGG-20M), two model Resnet models (Resnet-18 and Resnet-50), and two
ViT models (Tiny and Small). We run our experiments over three datasets (CIFAR-10/100, Tiny
ImageNet). Lastly, to isolate the impact of training procedure (i.e., weight decay and data augmen-
tation), we repeat our CIFAR-10 experiments without these optimizations. Running such exhaustive
experiments exposes the relationship between test accuracy and memorization. In all, this provides
us with 19 data points of experiments to understand memorization and generalization.

We identify the memorized points using Equation 1. Similar to Feldman & Zhang (2020), we train
the models for 100 epochs, using a batch size of 512, with a triangular learning rate of 0.4, weight
decay of 10−5 for all models. We train 2,000 models for each of the models. In the case of ViT, we
train 500 models using a learning rate of 0.1.

Results Figure 3 shows the results of our experiments. We can clearly observe the strong negative
correlation (Pearson 0.997) between memorization and generalization (test accuracy): This means
that as model utility increases, memorization decreases. We this trend hold across all models and
datasets (i.e., both CIFAR-10/100 and Tiny ImageNet).

Similarly, we can observe that this observation holds even for models that trained with or without
data-augmentation and weight decay. Even though these are common in modern training pipelines,
we remove them to isolate their impact on memorization. In both cases (with and without these
optimizations) we find that as model accuracy increases, memorization decreases.

The intuitive reason for this is that deeper models are better equipped to learn more meaningful
features, which enables them to classify points correctly even if they are excluded from the training
data. Test accuracy serves as an indicator of the quality of features learned by the model—higher
accuracy implies better feature learning. Therefore, as deeper models learn higher-quality features,
they tend to memorize fewer data points and generalize better to new data. The behavior of lower
accuracy models further illustrates this: lacking the capacity to learn robust features, they are more

2Details of the architecture are provided in the Appendix
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Figure 3: Memorization and generalization across different combinations of training procedures.
We can observe a strong negative correlation between the two.

likely to misclassify points removed from the training data and thus rely more on memorization.
Consequently, demonstrating that memorization is not necessary for generalization.

6 DISCUSSION

While Feldman & Zhang (2020) made valuable contributions, in the previous section, we showed
that, after having accounted for the three limitations, memorization and generalization are strongly
negatively correlated. The original incorrect results were a result of the high approximation errors
(Section 4.2), distribution shifts (Section 4.3) and an imprecise definition (Section 4.1). As a result,
the original authors incorrectly marked a significant number of points as memorized. However,
by varying test set accuracy by iterating over different model architecutres, datasets, and training
parameters, we find not only that memroization is not necessary for generalization, but infact is
strongly negatively correlated.

Memorization has a direct implication for privacy research. This is because memorized points are
vulnerable to membership-inference attacks (Carlini et al., 2022a). Feldman & Zhang (2020) cre-
ated a tension between generalization and privacy. This is because they claimed that memorization
was needed for generalization while other works demonstrated that memorization was harmful to
privacy (Carlini et al., 2022a; Leino & Fredrikson, 2020; Carlini et al., 2019; Li et al., 2022). In
other words, generalization and privacy can not be simultaneously achieved. While this might have
dissuaded researchers in the community, our work shows that this tension does not exist. This is be-
cause memorization is not necessary for generalization. In light of these results, future researchers
are encouraged to explore methods to build models that both generalize and are private.

7 RELATED WORK

One of the first papers to discover memorization deep learning models was Zhang et al. (2017a).
They showed that models can fit completely unstructured images even if these consist of random
Gaussian noise. Since then, there has been a tension between memorization and generalization and
how they impact model performance (Chatterjee, 2018). Earlier works focused on limiting model
memorization, thereby forcing the model to learn patterns instead. This was partly motivated by
the fact that memorization exposed models to privacy risks (e.g., membership inference) (Carlini
et al., 2019; 2022b). As a result, different methods were developed to counter memorization, which
included using regularization (Arpit et al., 2017), filtering weak gradients (Zielinski et al., 2020;
Chatterjee, 2020), adjusting model size (Arpit et al., 2017; Zhang et al., 2019). While these methods
did reduce model memorization, they did so at the cost of model accuracy.

However, the true impact of memorization on model behavior was yet unknown. This first and
foremost required methods to identify memorized points. A number of post-hoc methods were
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developed to identify them. These included clustering (Stephenson et al., 2021), repurposed mem-
bership inference attacks (Carlini et al., 2022b), pseudo leave-one-out method (Feldman & Zhang,
2020). Having developed the ability to identify these points, the authors were now able to study
their impact on model efficacy. As we describe in Section 3, Feldman & Zhang (2020) demon-
strated that memorization was in fact necessary for model memorization. However, this conclusion
was incorrect and was a by-product of a number of methodological errors. By accounting for these
errors and rerunning their experiments, our results show that memorization has minimal impact on
generalization.

8 CONCLUSION

Memorization is the ability of the model to fit labels to seemingly random samples. Recent work
from Feldman & Zhang (2020) demonstrated that memorization is necessary for generalization. We
show that the original work suffered from a number of crucial errors. These include the use of
an imprecise definition, high approximation error, and distribution shift. In order to study the real
impact of memorization, we train 19 different combinations of models, datasets, and training pa-
rameters. Having done so, we track memorization across generalization and find that memorization
has a strong negative correlation with generalization. And therefore, memorization is not necessary
for generalization.
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A APPENDIX

Table 1: Symbols used and their meanings.

Symbol Meaning
xi training data point
yi training point label
x′i test data point
y′i test point label
S training set
A training algorithm
n size of the training set
m number of points removed from the training set
h trained model
t trial

A.1 MODEL ARCHITECTURES:

VGG6 Architecture: 64→ MaxPool → 64 → MaxPool → 64 → MaxPool → 64 →
MaxPool→ 512→MaxPool→ FC.
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