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Abstract
Recent advances in language modeling have un-
derscored the role of preference feedback in en-
hancing model performance. This paper investi-
gates the conditions under which preference feed-
back improves parameter estimation in classes
of continuous parametric distributions. In our
framework, the learner observes pairs of samples
from an unknown distribution along with their
relative preferences depending on the same un-
known parameter. We show that preference-based
M-estimators achieve a better asymptotic variance
than sample-only M-estimators, further improved
by deterministic preferences. Leveraging the hard
constraints revealed by deterministic preferences,
we propose an estimator achieving an estimation
error scaling of O(1/n)—a significant improve-
ment over the Θ(1/

√
n) rate attainable with sam-

ples alone. Next, we establish a lower bound
that matches this accelerated rate; up to dimen-
sion and problem-dependent constants. While the
assumptions underpinning our analysis are restric-
tive, they are satisfied by notable cases such as
Gaussian or Laplace distributions for preferences
based on the log-probability reward.

1. Introduction
Recent progress in language modeling has showcased the
effectiveness of preference feedback for fine-tuning (Ziegler
et al., 2019; Ouyang et al., 2022; Bai et al., 2022; Tou-
vron et al., 2023; Dubey et al., 2024). Preference data—
indicating relative quality between outcomes—consistently
outperforms approaches using positive examples only like
supervised fine-tuning (Ivison et al., 2024). This empiri-
cal success suggests that preference feedback introduces
new, complementary information beyond the observed data.
Understanding how and why preferences provide this ad-
vantage requires connecting the preference model to the
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data-generating process (Ge et al., 2024).

To understand the role of preference feedback, we focus on
a simpler yet illustrative problem: parameter estimation for
parametric distributions and preferences. Specifically, the
learner observes pairs of samples from an unknown distribu-
tion, along with preferences informed by the same parameter.
For instance, preferences based on log-probabilities natu-
rally link the preference and probability models, though
other formulations are possible (Huang et al., 2024).

For continuous distributions, we uncover a significant statis-
tical learning gap between preference-based and sample-
only estimators. This paper primarily investigates this
gap, taking the sample-only maximum likelihood estimator
(MLE)—optimal among unbiased estimators—as a base-
line. The well-established theory of M-estimators (Van der
Vaart, 2000) suggests that preference-based M-estimators
improve asymptotic variance under certain conditions. Yet,
this improvement is modest: when samples are of similar
quality, preference feedback approaches a fair coin toss,
providing minimal additional information. While reducing
asymptotic variance is encouraging, it does not fully explain
the substantial performance gains observed empirically in
large-scale language models.

For deterministic preferences, we prove a more striking re-
sult: preference-based estimators achieve a statistically sig-
nificant acceleration in parameter estimation. Specifically,
we show that the estimation error scales as O(1/n) instead
of the O(1/

√
n) rate achieved by sample-only estimators.

This acceleration is supported by a matching lower bound,
up to dimension and problem-dependent constants.

While this acceleration might sound surprising, the Θ(1/n)
rate can already be observed in a special case of sample-
only parameter estimation. For instance, consider estimat-
ing the location parameter θ of a uniform distribution on
[θ, θ + 1] based solely on samples (Wainwright, 2019). The
minimax rate for estimation error is Θ(1/n). The optimal
estimator achieving the accelerated rate is the minimum of
uniform observations whose density is positive at θ. This
improved rate arises from the accumulation of random vari-
ables having a positive density at a specific point through a
minimum (or maximum) operator, in contrast to the slower
aggregation inherent to averaging. Similarly, for determin-
istic preferences with log-likelihood rewards, we observe
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the true ordering between likelihoods. As it enforces hard
constraints—through a minimum operator—on the admis-
sible parameters, our preference-based estimator achieves
accelerated convergence.

To illustrate this acceleration, consider the standard nor-
mal distribution with preferences based on log-probabilities.
Let n ∈ N and [n] := {1, · · · , n}. For each i ∈ [n],
observe samples (Xi, Yi) ∼ N (02, I2) along with their
log-likelihood deterministic preference Zi := sign((Yi −
Xi)Si), where Si := (Xi + Yi)/2 is their average. The
triplet (Xi, Yi, Zi) imposes a hard constraint based on Si

on the location of candidate estimators θ that are consistent
with this log-likelihood deterministic preference. Specifi-
cally, they satisfy θ ≤ Si if Si > 0, and θ ≥ Si otherwise.
The set of feasible parameters satisfying all constraints is
thus

[
maxi∈[n], Si<0 Si,mini∈[n], Si>0 Si

]
. Since the den-

sity of N (0, 1/2) is positive near zero, the length of this
interval decreases as O(1/n) with high probability.

1.1. Contributions
For continuous parametric probability distributions, we
study the statistical learning gap between preference-based
estimators and sample-only estimators.

• First, we show that preference-based M-estimators
achieve a better asymptotic variance than sample-only
M-estimators. The variance is further improved for
deterministic preference.

• Second, we introduce an estimator satisfying the con-
straints revealed by the deterministic preferences, and
prove an accelerated estimation error rate of O(1/n).
This constitutes a significant improvement over the
Θ(1/

√
n) rate achieved by M-estimators.

• Third, we provide a lower bound of Ω(1/n), matching
our upper bound up to problem-specific constants.

Our results are derived under general assumptions on the
distributions and the preferences. While restrictive, they are
satisfied by notable cases such as Gaussian or Laplace dis-
tributions for preferences based on log-probabilities.

1.2. Related Work
Learning parametric distributions. Parametric estima-
tion is a central approach in statistics, reducing inference
about a distribution to the estimation of a finite-dimensional
parameter (Lehmann & Casella, 2006; Wasserman, 2013).
The maximum likelihood estimator (MLE) is the most fun-
damental method in this setting. Its asymptotic properties
are well studied (Cramér, 1946; Ibragimov & Has’ Minskii,
2013; Van der Vaart, 2000), while non-asymptotic guar-
antees have been established in Birgé & Massart (1993)
and Spokoiny (2012). Lower bounds in parametric es-
timation rely on techniques such as Le Cam’s two-point

method (LeCam, 1973), Fano’s method (Fano, 1952), and
Assouad’s method (Assouad, 1983), and provide fundamen-
tal limits on estimation accuracy (Tsybakov, 2009).

Learning parametric value/preference functions. In the
tabular setting, learning from pairwise comparisons aligns
with the ranking problem. The performance of MLE under
the Bradley-Terry model (Bradley & Terry, 1952) and its
extensions has been extensively studied (Hunter, 2004; Ne-
gahban et al., 2012; Hajek et al., 2014; Rajkumar & Agarwal,
2014; Shah et al., 2016; Shah & Wainwright, 2018; Mao
et al., 2018). The continuous setting, where generalization
beyond observed preferences is required, has received less
attention, except for linear utility functions (Zhu et al., 2023;
Ge et al., 2024; Yao et al., 2025). Beyond analyzing the
sample complexity of reward learning with MLE under the
Bradley-Terry noise model, Zhu et al. (2023) study the per-
formance of policies trained on the learned reward model.
They show that while MLE may fail, a pessimistic variant
can yield a policy with improved performance. Relaxing
the noise assumption, Ge et al. (2024) show that utility pa-
rameters remain unidentifiable without strong modeling as-
sumptions, even with noise-free query responses. However,
they demonstrate that, in the active learning setting, utility
can still be learned, even in the absence of noise. Their
results highlight that the sampling distribution of observa-
tions must be aligned with the utility function to achieve
improved sample complexity. Yao et al. (2025) leverages
sparsity in the preference model and establish sharp estima-
tion rates depending on the sparsity level. Finally, related
estimation problems have also been studied in the contexts
of dueling bandits and reinforcement learning (Faury et al.,
2020; Saha et al., 2023).

Fine-tuning with preference data. Large language mod-
els often go through a post-training phase focusing mainly
on learning from preference feedback (Lambert, 2024), to
improve capabilities such as summarization, instruction fol-
lowing, and reasoning. The standard approach, reinforce-
ment learning from human feedback (RLHF) (Ziegler et al.,
2019), trains a reward model to align with human prefer-
ences and then optimizes the policy using reinforcement
learning, typically with PPO (Schulman et al., 2017). RLHF
follows three main steps: supervised fine-tuning, reward
model training, and policy optimization. Another line of
work has explored alternatives to PPO to simplify training.
One such method, direct preference optimization (DPO),
reformulates the reward function to learn a policy directly
from preference data, avoiding an explicit reward model.
Other preference optimization objectives have also been
proposed (Meng et al., 2024). Finally, while preference data
has traditionally been gathered through human annotators,
the learning paradigm has recently expanded to include self-
play where the model critiques its own generations (Dubey
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et al., 2024; Huang et al., 2024).

2. Problem Statement
Parameter estimation. Let Θ ⊆ Rk be a set of param-
eters for a class of continuous probability distributions F
over X ⊆ Rd. Let BΘ := maxθ∈Θ ∥θ∥ be the bound on
Θ for the norm ∥ · ∥ specific to F . Let Sk−1 be the unit
sphere for this norm. Let p⊗2

θ be the distribution of two
independent observations of pθ.

Let θ⋆ be an unknown parameter to estimate. Our sam-
ples are drawn from p⊗2

θ⋆ , i.e., (X,Y ) ∼ p⊗2
θ⋆ . We use

two archetypal examples satisfying our assumptions. First,
the class FN ,Σ of multivariate Gaussian distributions with
known covariance Σ, where Θ are the natural parameters
with norm ∥ · ∥Σ where ∥x∥Σ :=

√
xTΣx. Second, the class

FLap,b of Laplace distributions with known scale b, where
Θ are the mean parameters with norm | · |.

Preference feedback. Let ℓθ : X 2 → R be a para-
metric preference function. Given a parametric reward
function rθ, a reward-based preference function is defined
as ℓθ(x, y) = rθ(x) − rθ(y). As a concrete example
for our derivations, we consider preference based on the
log-probability reward rθ = log pθ. Given observations
(x, y), the true preference z of x over y is governed by
sign(ℓθ(x, y)) ∈ {±1, 0}. In many settings, however, the
observed preference Z can be stochastic due to noise or
randomness in human feedback.

Conditioned on (X,Y ) ∼ p⊗2
θ , we denote the p.d.f. of

the law of the preference Z by h(ℓθ(X,Y ), ·). On X 2 ×
{±1, 0}, the p.d.f. of the law of (X,Y, Z) is denoted as
qθ,h(x, y, z) := p⊗2

θ (x, y)h(ℓθ(x, y), z). Under determinis-
tic feedback, the true preferences are observed:

hdet(·, z) := 1 (z = sign(·)) . (1)

Under stochastic feedback, noisy preferences z ∈ {±1} are
observed based on the sigmoid link:

hsto(·, z) := σ(z·) with σ(x) := (1 + e−x)−1 . (2)

Informative preferences. A natural question is to see
when preference Z ∼ h(ℓθ⋆(X,Y ), ·) helps to estimate θ⋆

compared to using samples (X,Y ) ∼ p⊗2
θ⋆ only. Intuitively,

given observations with null preference gradient, parameters
close to θ⋆ could have similar preferences. Therefore, those
samples are not sufficient to discriminate between them. For
that, let G0(θ

⋆) = {(x, y) ∈ X 2 | |ℓθ⋆(x, y)| > 0} (resp.
G1(θ

⋆) = {(x, y) ∈ G0(θ
⋆) | ∥∇θ⋆ℓθ⋆(x, y)∥ > 0}) be the

set of pairs with non-zero preference (resp. gradient) func-
tion. For observations in G0(θ

⋆)∁, the preference is zero,
hence uninformative. For observations in G1(θ

⋆)∁, the pref-
erence is locally independent of the parameter. Therefore,

they do not provide gradient information to distinguish θ⋆

from a neighboring alternative parameter. Only the prefer-
ences of samples in G1(θ

⋆) can provide information on θ⋆,
hence preference learning is meaningful if these samples are
observed, i.e., Pp⊗2

θ⋆
(G1(θ

⋆)) > 0 for all θ⋆ ∈ Θ.

Negative examples. The above condition is restrictive
both on ℓθ and pθ, even when considering rθ = log pθ. For
example, taking pθ as the uniform distribution over [0, θ],
we have Pp⊗2

θ
(G1(θ)) = 0.

2.1. Sample-only MLE
In the absence of preference observations, a natural baseline
is to estimate θ⋆ directly from the observations. Given
(Xi, Yi)i∈[n] ∼ p⊗2n

θ⋆ , the sample-only (SO) MLE is

θ̂SOn ∈ argmin
θ

LSO
n (θ) with

LSO
n (θ) := −

∑
i∈[n]

log p⊗2
θ (Xi, Yi) . (SO MLE)

Asymptotic normality. Under enough regularity (Van der
Vaart, 2000), SO MLE is asymptotically normal, i.e.,

√
n(θ̂SOn − θ⋆)⇝n→+∞ N (0k, I(p⊗2

θ⋆ )
−1) ,

where I(pθ) := Epθ
[−∇2

θ log pθ] is the Fisher information
matrix of pθ and⇝ denote the convergence in distribution.
Let ⪰ denote the Loewner order on p.s.d. matrices. By
the Cramér-Rao bound (Rao, 1992), SO MLE has optimal
asymptotic covariance among the class of unbiased sample-
only estimators, i.e., all sample-only unbiased estimator
with asymptotic variance V satisfy V ⪰ I(p⊗2

θ⋆ )−1.

While asymptotic guarantees provide insight into estima-
tor behavior as n → ∞, they do not capture performance
in the relevant regime of moderate sample sizes. Modern
statistics gives meaningful non-asymptotic concentration
results on empirical estimators, e.g., for high-dimensional
statistics (Vershynin, 2018; Wainwright, 2019).

Regularity conditions. The asymptotic statistics litera-
ture has devised weak regularity conditions under which
asymptotic normality holds. “Classical conditions” assume
stronger conditions, e.g., θ 7→ log pθ(x) is three times con-
tinuously differentiable for every x ∈ X and the integral of
its third derivative converges uniformly for all θ (Van der
Vaart, 2000, Chapter 5.6). Those “weak” or “classical”
conditions ensure that integrals and derivatives can be ex-
changed, and Taylor approximations around θ⋆ are well
controlled. Throughout this paper, we use “under enough
regularity” to refer to these regularity conditions on both pθ
and ℓθ.

For preferences based on the reward rθ = log pθ, the regu-
larity of pθ implies the one of the preference ℓθ due to the
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properties of the logarithm. Moreover, those regularity con-
ditions are satisfied for numerous well-known distributions
such as FN ,Σ and FLap,b. When studying deterministic
preferences, we introduce general geometric assumptions
on pθ and ℓθ. Since these conditions are inherently more re-
strictive, our goal is not to identify the weakest possible regu-
larity assumptions under which our derivations hold.

3. Preference-based M-estimator
In this section, we investigate when preference-based esti-
mators can improve upon sample-only estimators. Given
preference-labeled observations {(Xi, Yi, Zi)}i∈[n], we de-
fine the stochastic preferences MLE (SP MLE) as

θ̂SPn ∈ argmin
θ

LSP
n (θ) with

LSP
n (θ) :=LSO

n (θ)−
∑
i∈[n]

log σ(Ziℓθ(Xi, Yi)) . (SP MLE)

This objective extends SO MLE by adding a preference-
based term: a binary classification loss using the logistic
function (− log σ(x)). When preferences are stochastic,
this estimator corresponds to the MLE under a probabilis-
tic preference model, justifying its name. Under sufficient
regularity, M-estimators achieve asymptotic normality, so
our goal is to obtain lower asymptotic covariance for SP
MLE than for SO MLE. In addition, we want to show that
SP MLE reaches a lower asymptotic covariance for deter-
ministic preferences than for stochastic preferences.

3.1. Stochastic Preferences
Under stochastic feedback, we are given noisy preference
observations (Xi, Yi, Zi)i∈[n] ∼ q⊗n

θ⋆,hsto
, where hsto is de-

fined in Equation (2). SP MLE is a specific instance of
M-estimator. Under enough regularity (Van der Vaart, 2000,
Chapter 5.5), SP MLE is asymptotically normal, i.e.,

√
n(θ̂SPn − θ⋆)⇝n→+∞ N (0k, I(qθ⋆,hsto

)−1) ,

where I(qθ,hsto) := Eqθ,hsto
[−∇2

θ log qθ,hsto ] denotes the
Fisher information matrix of qθ,hsto

. By the Cramér-Rao
bound (Rao, 1992), this variance is optimal among unbiased
estimators that rely on stochastic preferences. Lemma 3.1
compares its efficiency to the sample-only MLE.
Lemma 3.1. Let ∆SP

θ := Ep⊗2
θ⋆
[σ(ℓθ)σ(−ℓθ)∇θℓθ∇θℓ

T

θ].

Then, I(qθ⋆,hsto) = I(p⊗2
θ⋆ ) + ∆SP

θ⋆ . The p.s.d. matrix ∆SP
θ⋆

is definite if Pp⊗2
θ⋆
(|⟨u,∇θ⋆ℓθ⋆⟩| > 0) > 0 for all u ∈ Sk−1.

Lemma 3.1 shows that I(qθ⋆,hsto) ⪰ I(p⊗2
θ⋆ ) and exhibits

a condition under which θ̂SPn is asymptotically better than
θ̂SOn , meaning that incorporating preference data improves
asymptotic efficiency. The condition in Lemma 3.1 ensures
that ∇θ⋆ℓθ⋆ spans all directions with some probability, mak-
ing the preference-based estimator asymptotically superior
to the sample-only MLE.

For preferences based on the reward rθ = log pθ, this con-
dition holds for both Laplace and Gaussian distributions:
∆SP

θ⋆ = 4
b2∆

SP
Lap(0,1) for FLap,b (Appendix G), and ∆SP

θ⋆ =

2Σ1/2∆SP
N (0d,Id)

Σ1/2 for FN ,Σ (Appendix F).

Thus, stochastic preferences can improve parameter estima-
tion compared to sample-only estimators. However, non-
asymptotic performance can differ, and in practice, the re-
duction in asymptotic variance may be small, as we inves-
tigate empirically in Section 6. Next, we examine whether
M-estimators based on deterministic preferences can further
improve upon their stochastic counterparts.

3.2. Deterministic Preferences
We now consider the setting where true preferences are ob-
served, meaning that the preference labels Zi are determinis-
tic. We observe (Xi, Yi, Zi)i∈[n] ∼ q

⊗[n]
θ⋆,hdet

, where hdet is
defined in Equation (1). We use the same M-estimator as in
the stochastic setting, θ̂SPn (θ) ∈ argminθ L

SP
n (θ), but now

with deterministic preferences. To distinguish this setting,
we introduce the notation SPdet for the preference-based
estimator under deterministic feedback.

Consistency of SPdet. Define the population-level objec-
tive: M(θ) := Ep⊗2

θ⋆
[log qθ,hsto

(X,Y, sign(ℓθ⋆(X,Y )))].

Under enough regularity, θ̂SPdet
n converges to a maximizer

of M(θ) (Van der Vaart, 2000, Chapter 5.2). However, un-
like in the stochastic setting, θ⋆ may not be a maximizer
of M since standard regularity conditions on pθ and ℓθ are
insufficient. A sufficient condition for consistency is

Ep⊗2
θ⋆
[sign(ℓθ⋆)σ(−|ℓθ⋆ |)∇θ⋆ℓθ⋆ ] = 0k , (3)

which holds for FN ,Σ (Appendix F) and FLap,b (Ap-
pendix G) when using reward rθ = log pθ.

Asymptotic variance of SPdet. If Equation (3) holds,
then under additional regularity conditions (Van der Vaart,
2000, Chapter 5.3) SPdet is asymptotically normal with
covariance V SPdet

θ⋆ given by the following lemma.
Lemma 3.2. Let HSPdet

θ⋆ := Ep⊗2
θ⋆

[
uθ⋆∇2

θ⋆ℓθ⋆

]
,

∆SPdet

θ⋆ := Ep⊗2
θ⋆
[(2σ(|ℓθ⋆ |) − 1)σ(−|ℓθ⋆ |)∇θ⋆ℓθ⋆∇θ⋆ℓTθ⋆ ]

and RSPdet

θ⋆ := Ep⊗2
θ⋆

[uθ⋆ (Mθ⋆ +M T

θ⋆)] where uθ⋆ :=

sign(ℓθ⋆)σ(−|ℓθ⋆ |) and Mθ⋆ := −∇θ⋆ log p⊗2
θ⋆ (∇θ⋆ℓθ⋆)T.

Then, we have V SPdet

θ⋆ := V −1
1,θ⋆V2,θ⋆V −1

1,θ⋆ where
V1,θ⋆ = I(qθ⋆,hsto) − HSPdet

θ⋆ and V2,θ⋆ = I(qθ⋆,hsto) −
∆SPdet

θ⋆ − RSPdet

θ⋆ . If Pp⊗2
θ⋆
(|ℓθ⋆⟨u,∇θ⋆ℓθ⋆⟩| > 0) > 0 for

all u ∈ Sk−1, the p.s.d. matrix ∆SPdet

θ⋆ is definite.

Equation (3) and V SPdet

θ⋆ ≺ I(qθ⋆,hsto
)−1 depend on the

geometry of p⊗2
θ⋆ and ℓθ⋆ . We verify that these conditions

hold for FN ,Σ (Appendix F) and FLap,b (Appendix G) when
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using reward rθ = log pθ. For Laplace distribution, we have
HSPdet

θ⋆ = RSPdet

θ⋆ = 0 and ∆SPdet

θ⋆ = 4
b2∆

SPdet

Lap(0,1). For

Gaussian distributions, we have HSPdet

θ⋆ = 0d×d, ∆SPdet

θ⋆ =

2Σ1/2∆SPdet

N (0d,Id)
Σ1/2 and RSPdet

θ⋆ = 2Σ1/2RSPdet

N (0d,Id)
Σ1/2

with RSPdet

N (0d,Id)
⪰ 0d×d.

Thus, deterministic preferences improve parameter estima-
tion compared to stochastic preferences.

In conclusion, preference-based M-estimators provide
asymptotic improvements in estimation efficiency. Next,
we explore whether estimators beyond the M-estimation
framework can achieve further gains, potentially exceeding
the asymptotic normality limitations.

4. Beyond M-estimators
While computationally efficient, the SPdet estimator does
not fully leverage the constraints imposed by deterministic
preferences. Unlike in the stochastic setting, determinis-
tic preferences provide separability: there exist parameters
that classify training examples perfectly, including θ⋆ it-
self. A key limitation of SPdet is that, like standard logistic
regression, it minimizes a convex surrogate loss (negative
log-likelihood). This approach can lead to misclassification
of training examples.1 This limitation suggests an opportu-
nity to directly minimize the 0-1 loss2, potentially achieving
faster rates of convergence.

0-1 loss minimization. Given (Xi, Yi, Zi)i∈[n] ∼
q
⊗[n]
θ⋆,hdet

, we consider the set Cn of parameters that mini-
mize the empirical 0− 1 loss, i.e.,

Cn := argmin
θ∈Θ

∑
i∈[n]

1 (Ziℓθ(Xi, Yi) < 0) (4)

= {θ ∈ Θ | ∀i ∈ [n], Ziℓθ(Xi, Yi) ≥ 0} ,

which is non-empty as θ⋆ ∈ Cn. Parameters θ ∈ Cn per-
fectly classify all training examples. Any estimator θ̂AE

n ∈
Cn is referred to as an arbitrary estimator (AE).

Alternatively, we constrain MLE to this feasible set, defining
the deterministic preferences MLE (DP MLE), i.e.,

θ̂DP
n ∈ argmin{LSO

n (θ) | θ ∈ Cn} (DP MLE)

if θ̂SOn /∈ Cn, and θ̂DP
n := θ̂SOn otherwise. This estimator

minimizes the negative log-likelihood of the samples while
ensuring perfect preference classification. For Gaussian
with rθ = log pθ, θ̂DP

n estimates θ⋆ better than θ̂SOn for all
n, i.e., DP MLE dominates SO MLE statistically.

1For binary classification with separable data, logistic regres-
sion converges in direction toward a separating hyperplane.

2For non-separable data, the minimization of the 0-1 classi-
fication loss can be NP-hard even for the simple class of linear
classifiers, e.g., Feldman et al. (2012).

Lemma 4.1. For all n ∈ N and almost surely, we have,

for FN ,Σ, ∥θ̂DP
n − θ⋆∥Σ ≤ ∥θ̂SOn − θ⋆∥Σ .

For stochastic preferences, minimizing the 0 − 1 loss is
generally NP-hard, requiring a convex surrogate like the
logistic function. However, for deterministic preferences,
computing Cn is more tractable. If θ 7→ ℓθ is affine, then
Cn is a convex polytope, defined by at most n half-space
constraints. For Gaussian-based preferences, i.e., rθ =
log pθ and FN ,Σ, we have Ziℓθ(Xi, Yi) ≥ 0 if and only if
Zi⟨Xi − Yi, θ − Σ−1(Xi + Yi)/2⟩ ≥ 0.

Consistency of 0 − 1 loss minimization. Define the
disagreement probability between θ and θ⋆ as m(θ) :=
Pp⊗2

θ⋆
(D(θ⋆, θ)) where D(θ⋆, θ) := {(x, y) ∈ X 2 |

ℓθ⋆(x, y)ℓθ(x, y) < 0} is the set of observations where θ
and θ⋆ assign informative yet opposite preferences.

Under enough regularity (Van der Vaart, 2000, Chapter 5.2),
θ̂AE
n and θ̂DP

n converge in C(θ⋆) := {θ ∈ Θ | m(θ) =
0}, which is the non-empty set of minimizers of m(θ) as
m(θ) ≥ 0 = m(θ⋆). We note the set C(θ⋆) contains θ⋆,
but possibly others. To ensure consistency (θ̂AE

n , θ̂DP
n →

θ⋆), we impose the following identifiability assumption that
guarantees C(θ⋆) = {θ⋆}.
Assumption 4.2 (Identifiability). For all θ ̸= θ⋆, m(θ) > 0.

When rθ = log pθ, it holds for both Gaussian (FN ,Σ) (Ap-
pendix F) and Laplace (FLap,b) (Appendix G) cases.

Fast estimation rate. Once consistency is established, the
next goal is to analyze the convergence rate of the estimation
errors ∥θ̂AE

n − θ⋆∥ and ∥θ̂DP
n − θ⋆∥. Since these are not M-

estimators, they are not necessarily limited to the typical
parametric rate Ω(1/

√
n).

Theorem 4.3 states our main result for Laplace and Gaussian
distributions when using log-probability rewards, i.e., a high-
probability accelerated rate in O(1/n).
Theorem 4.3. Let δ ∈ (0, 1). For FLap,1 and FN ,1, we
have, for all n ≥ O(log(1/δ)), with probability 1− δ,

∀θ̂n ∈ Cn, n|θ̂n − θ⋆| = O (log(1/δ)) .

For FN ,Σ with d > 1, there exists positive Ad =d→+∞

O(
√
d) such that, for all n ≥ Õ(log(1/δ)), with probability

1− δ,

∀θ̂n ∈ Cn, n∥θ̂n − θ⋆∥Σ ≤ O (Ad log(1/δ) log n) .

Theorem 4.3 is a direct corollary of our main result, showing
that maxθ∈Cn ∥θ−θ⋆∥ = O(1/n) (see Theorem 4.8 below).
It directly guarantees faster convergence rates for both θ̂AE

n

and θ̂DP
n . Theorem 4.8 holds under general geometric con-

ditions on pθ and ℓθ that we introduce with intuitions, while
sketching the proof in Section 4.1.
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Negative examples. Assumption 4.2 is restrictive both on
ℓθ and pθ, even when considering rθ = log pθ. For example,
when all the distributions in F agree on their preferences,
sign(ℓθ(x, y)) is independent of θ. Therefore, we have
m(θ) = 0 for all θ ̸= θ⋆, since ℓθ⋆(x, y)ℓθ(x, y) ≥ 0.
Such cases include scenarios where pθ(x) is a monotonic
function, e.g., the exponential distribution and the Pareto
distribution with a known location, as well as the Laplace
distribution with a known location. This motivates later
assumptions on the directionality of ∇θ⋆ℓθ⋆ for observed
samples.

Link to iterative human preference alignment. Many
human preference alignment methods build on the Bradley-
Terry model for preference, based on rewards. Direct align-
ment algorithms use variants of the log-likelihood to define
the implicit reward of a policy (Rafailov et al., 2023). Choos-
ing ℓθ(x, y) = log pθ(x)− log pθ(y) coincides with the op-
timal policy for maximum entropy RL (Swamy et al., 2025).
When leveraging offline preference data, the assumption
(X,Y ) ∼ p⊗2

θ⋆ is unrealistic, as ℓθ⋆ is collected from a fixed
data set of pairs of observations. However, “online” pref-
erence data has become a popular paradigm in the training
of recent LLMs. Those iterative alignment procedures rely
on the preference data from an earlier model (Dubey et al.,
2024). At stage N , the model pθN is trained based on the
preference data for generations by the previous model, i.e.,
(X,Y ) ∼ p⊗2

θN−1
. Under the realizability assumption and

without mode collapse, this self-refinement paradigm should
converge towards the true model pθ⋆ . Our setting charac-
terizes the limiting behavior of this iterative process, i.e.,
preference based on ℓθ⋆ for observations from pθ⋆ . Nonethe-
less, we do not claim the direct applicability of DP MLE for
realistic LLM training.

4.1. Upper Bound on the Estimation Error
We establish a high-probability upper bound on the esti-
mation error maxθ∈Cn

∥θ − θ⋆∥ in the general case. This
requires grasping the geometry of Cn relative to θ⋆.

Linearized feasibility set. Since Cn is defined by nonlin-
ear preference constraint, analyzing its geometry is chal-
lenging, and we thus consider a linearized approximation of
it. We define the linearized constraint set as

C̃n := {θ ∈ Θ | ∀i ∈ [n], (Xi, Yi) /∈ D̃(θ⋆, θ)} ,

where D̃(θ⋆, θ) := {(x, y) ∈ X 2 | ℓθ⋆(x, y)2 +
ℓθ⋆(x, y)⟨θ − θ⋆,∇ℓθ⋆(x, y)⟩ < 0}. This set replaces ℓθ
with its first-order Taylor expansion around θ⋆, neglecting
higher-order terms. A key assumption is that the true con-
straints are at least as strong as the linearized ones. This
ensures Cn ⊆ C̃n, allowing us to control Cn via C̃n.
Assumption 4.4 (Linearization validity). For all θ ̸= θ⋆,
D̃(θ⋆, θ) ⊆ D(θ⋆, θ).

Directional analysis and informative constraints. To
quantify the geometry of C̃n relative to θ⋆, we analyze
deviations along directions u ∈ Sk−1. Define the set of
informative samples along direction u:

G1(θ
⋆, u) := {(x, y) | ℓθ⋆(x, y)⟨u,∇θ⋆ℓθ⋆(x, y)⟩ < 0} .

This set contains observations whose preferences give infor-
mation along the direction u. Assuming that preferences are
informative along all directions, we prevent degenerate cases
where some directions lack preference information.
Assumption 4.5 (Informative Preferences). For all u ∈
Sk−1, Pp⊗2

θ⋆
(G1(θ

⋆, u)) > 0.

Deviation bound via minimum informative sample. De-
fine Rn,u as the maximal deviation from θ⋆ within C̃n along
the direction u, i.e.,

Rn,u := max{ε ≥ 0 | θ⋆ + εu ∈ C̃n} .

We define the scaling factor

∀(x, y) ∈ G1(θ
⋆, u), Vθ⋆,u(x, y) :=

ℓθ⋆(x, y)

−⟨u,∇θ⋆ℓθ⋆(x, y)⟩
.

The value Vθ⋆,u(Xi, Yi) quantifies the amount of infor-
mation in the preference between Xi and Yi to discrim-
inate θ⋆ from other parameters on the half-line directed
by u. The lower Vθ⋆,u(Xi, Yi) is, the more discrimina-
tive is the preference between Xi and Yi. Since (x, y) ∈
G1(θ

⋆, u) \ D̃(θ⋆, θ⋆ + εu) if and only if Vθ⋆,u(x, y) ≥ ε,
we obtain

Rn,u ≤ min
i∈[n]

{Vθ⋆,u(Xi, Yi) | (Xi, Yi) ∈ G1(θ
⋆, u)} .

Therefore, the maximal deviation Rn,u is upper bounded by
the minimum of positive random variables. It remains to
upper bound the resulting value of this minimum with high
probability and conclude provided some regularities hold,
e.g., positive density at zero. By analyzing the distribution of
Vθ⋆,u, we derive the following probabilistic bound.
Lemma 4.6. Suppose Assumption 4.5 hold. For all u ∈
Sk−1, with probability 1− δ,

Rn,u ≤ F−1
θ⋆,u(min{1, log(1/δ)/n}) ,

with Fθ⋆,u(ε) := Pp⊗2
θ⋆
(Vθ⋆,u ∈ (0, ε]) c.d.f. of Vθ⋆,u.

Since maxθ∈Cn ∥θ − θ⋆∥ ≤ maxu∈Sk−1
Rn,u, Lemma 4.6

shows that the estimation error can be controlled by the
behavior of F−1

θ⋆,u around zero, where F−1
θ⋆,u(0) = 0.

Regularity assumption. To control F−1
θ⋆,u near zero, the

density F ′
θ⋆,u should be positive near zero, and we assume

control on (F−1
θ⋆,u)

′′.
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Assumption 4.7 (Positive density at zero and regularity
of inverse c.d.f.). For all u ∈ Sk−1, F ′

θ⋆,u(0) ∈ (0,+∞)
and there exists (xθ⋆,u,Mθ⋆,u) ∈ (0, 1) × R+ such that
supx∈[0,xθ⋆,u]

|(F−1
θ⋆,u)

′′(x)| ≤ Mθ⋆,u.

Using this assumption and (F−1
θ⋆,u)

′(0) = 1/F ′
θ⋆,u(0), the

first-order Taylor expansion with remainder yields

∀x ∈ [0, xθ⋆,u], |F−1
θ⋆,u(x)− x/F ′

θ⋆,u(0)| ≤ Mθ⋆,ux
2/2 .

This argument leads to our main theorem, directly for k = 1
and using a covering argument for k > 1.
Theorem 4.8. Suppose Assumptions 4.2, 4.4, 4.5 and 4.7
hold. Let δ ∈ (0, 1). Let γ > 0 and N(γ) be
the γ-covering number of Θ for the norm ∥ · ∥. Let
A−1

θ⋆ = minu∈Sk−1
F ′
θ⋆,u(0), B−1

θ⋆ = minu∈Sk−1
xθ⋆,u

and Cθ⋆ = maxu∈Sk−1
Mθ⋆,u/2. When k = 1, for all

n ≥ Bθ⋆ log(2/δ),

max
θ∈Cn

∥θ − θ⋆∥ ≤ Aθ⋆

n
log(2/δ) +

Cθ⋆

n2
log(2/δ)2 ,

with probability 1 − δ. When k > 1, for all n ≥
Bθ⋆ log(N(γ)/δ), with probability 1− δ,

max
θ∈Cn

∥θ−θ⋆∥ ≤ γ+
Aθ⋆

n
log

N(γ)

δ
+
Cθ⋆

n2
log

(
N(γ)

δ

)2

.

When k > 1, the choice of the optimal parameter γ depends
on the norm ∥ · ∥. Since Θ is bounded by BΘ, N(γ) is
upper bounded by the covering of the ball having diameter
BΘ. As an example, let N2(γ) be the ε-covering number
of the unit ball in Rk for the Euclidean norm. Then, it is
known that logN2(ε) ≈ log(ε2k)/ε2 if ε ≳ 1/

√
k and

logN2(ε) ≈ k log 1
ε2k if ε ≲ 1/

√
k.3 Therefore, optimiz-

ing over γ yields an upper bound on maxθ∈Cn ∥θ−θ⋆∥2 scal-
ing as Õ(Aθ⋆k/n) when n ≳ Aθ⋆k3/2, and Õ((Aθ⋆/n)1/3)
otherwise, where Õ(·) hides logarithmic terms. For large
sample size compared to the dimension, i.e., n ≳ Aθ⋆k3/2,
we recover a rate of Õ(1/n).

In conclusion, we have derived generic assumptions under
which the rate of decay of the estimation error of θ̂AE

n and
θ̂DP
n is in Õ(1/n). This is a significant improvement com-

pared to the asymptotic normality of the SPdet estimator
that implies a rate of O(1/

√
n).

Positive examples. While Assumptions 4.4, 4.5 and 4.7
are restrictive, they hold for FN ,Σ (Appendix F) and FLap,b

(Appendix G) when using reward rθ = log pθ. This yields
Theorem 4.3. We have Aθ⋆ = 2b, Bθ⋆ = 8 and Cθ⋆ =
16b for FLap,b, and Aθ⋆ = π(d−1)Γ(d/2)

2Γ((d−1)/2) =+∞ O(
√
d) for

FN ,Σ, hence a rate in O(d3/2/n) when n ≫ d2.

3E.g., using Gilbert-Varshamov for the lower bound (Gilbert,
1952) and Maurey’s empirical method for the upper bound.

Extended discussions. In Appendix B, we discuss how
to verify or weaken our assumptions (Appendix B.1), the
sources of misspecification (Appendix B.2) and other reward
models than log-likelihood (Appendix B.3).

5. Lower Bound for Deterministic
Feedback

In this section, we show that the rate O(1/n) is minimax
optimal (up to a logarithmic factor) by deriving a match-
ing lower bound. The standard approach to minimax lower
bounds in estimation relies on Fano-type inequalities and
hypothesis testing reductions. However, due to Assump-
tion 4.2, the Kullback-Leibler divergence and χ2 distance be-
tween qθ⋆ and qθ are infinite for θ ̸= θ⋆, making these tools
ineffective. Instead, we use Assouad’s Lemma (Tsybakov,
2009), which provides lower bounds via the total variation
distance (defined as TV(P,Q) := ∥P−Q∥1 for distribu-
tions P and Q). Since TV is not well-behaved for product
distributions, we use the squared Hellinger distance, defined
as H2(P,Q) := 1

2∥
√
P−

√
Q∥22, which satisfies

TV(P⊗n,Q⊗n) ≤
√

2H2(P⊗n,Q⊗n) ≤
√
2nH2(P,Q).

For further analytical convenience, we also employ the Bhat-
tacharyya coefficient, BC(P,Q) :=

∥∥√PQ
∥∥
1
, which is re-

lated to the Hellinger distance by H2(P,Q) = 1−BC(P,Q).
Since qθ⋆qθ is zero for disagreeing preferences, we define
the restricted BC as

B̃C(θ̃, θ) := Ep⊗2

θ̃

[
1
(
D(θ̃, θ) ∪ D0(θ̃, θ)

)√
p⊗2
θ /p⊗2

θ̃

]
,

where D0(θ̃, θ) := G0(θ̃)
∁△G0(θ)

∁ is the set where the
preferences are zero for exactly one parameter.

Lemma 5.1 decomposes the Hellinger distance between two
distributions over the preference triplets into the Hellinger
distance between sample-only distributions and the disagree-
ment restricted Bhattacharyya coefficient.
Lemma 5.1. H2(qθ̃, qθ) = B̃C(θ̃, θ) + H2(p⊗2

θ̃
, p⊗2

θ ) for

all θ, θ̃ ∈ Θ.

As H2(p⊗2

θ̃
, p⊗2

θ ) ≤ 2H2(pθ̃, pθ), deriving a lower bound

requires controlling H2(pθ̃, pθ) and B̃C(θ̃, θ), hence, we
impose the following assumption.
Assumption 5.2. There exists positive constants c1, c2 in-
dependent of k and a dimension and problem-dependent
scaling function αF (k) such that for all θ, θ̃ ∈ Θ,

B̃C(θ̃, θ)+H2(p⊗2

θ̃
, p⊗2

θ ) ≤ c1
αF (k)

∥θ− θ̃∥+ c2∥θ− θ̃∥2 .

Theorem 5.3 bounds the minimax estimation error.
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Figure 1. Estimation errors for N (θ⋆, Id) where θ⋆ ∼ U([1, 2]d) for (a) d = 1 with Nruns = 103, and (b) d = 20 with Nruns = 102.

Theorem 5.3. Let Rmax := inf θ̂ supθ⋆∈Θ Eqθ⋆ [∥θ̂ − θ⋆∥].
Suppose Assumption 5.2 holds. Then,

Rmax ≥ Ω

(
min

{
αF (k)

√
k

n
,

√
k

n

})
.

This result confirms that the O(1/n) rate is minimax optimal
up to logarithmic factors. The scaling αF (k) comes from
B̃C(θ⋆, θ) (Assumption 5.2), yet it is challenging to link
αF (k) with Aθ⋆ without further assumptions.

Positive examples. While Assumption 5.2 is restrictive,
even when using rewards rθ = log pθ, it holds for FLap,b

(Appendix G), i.e.,

B̃C(θ⋆, θ) = |θ⋆ − θ|/(2b) +O(|θ⋆ − θ|2) ,

as well as for FN ,Σ (Appendix F), i.e.,

B̃C(θ⋆, θ) = 2e−∥θ⋆−θ∥2
Σ/4Fθ⋆,u(∥θ⋆ − θ∥Σ) ,

with Fθ⋆,u(ε) ≤ ε/Aθ⋆ and αF (d) = Aθ⋆ .

Dimensionality gap. While the lower bound in Theo-
rem 5.3 scales as Ω(αF (k)

√
k/n) for n ≥ αF (k)

2, the
upper bound in Theorem 4.8 scales as O(Aθ⋆k/n) for
n ≫ Aθ⋆k3/2. Even for the simple case of Gaussian distri-
butions where Aθ⋆ = αF (d), there is a dimensionality gap.
Closing this gap is an important direction for future work.
Improvements might come from a tighter analysis, e.g., both
for the upper and lower bounds, or the derivation of better
estimators based on deterministic preferences.

6. Experiments
In this section, we compare the empirical performance of
the different estimators introduced in this paper. For prefer-
ences based on rθ = log pθ, we conduct a set of experiments

for Gaussian distributions, and defer to Appendix H.1 for
experiments on Laplace and Rayleigh distributions. In par-
ticular, we consider a uniformly drawn mean parameter
θ⋆ ∼ U([1, 2]d) and the isotropic covariance Σ = Id. For
sample size n ∈ [Nmax] with Nmax = 104, we compute the
estimation errors ∥θ̂n − θ⋆∥2. We repeat this process for
Nruns different instances and for various choices of d.

For FN ,Id (Appendix F), the M-estimators can be imple-
mented as θ̂SOn = 1

2n

∑
i∈[n](Xi + Yi),

θ̂SPn = argmin
θ

∥θ − θ̂SOn ∥22 −
1

n

∑
i∈[n]

log σ(Ziℓθ(Xi, Yi)) ,

where ℓθ(Xi, Yi) = ⟨Xi − Yi, θ− (Xi + Yi)/2⟩. Then, the
estimators based on Cn = {θ | ∀i ∈ [n], Ziℓθ(Xi, Yi) ≥
0} are θ̂DP

n = argminθ∈Cn
∥θ − θ̂SOn ∥22 and an arbitrary

estimator θ̂AE
n ∈ Cn. As Cn is an interval for d = 1, we use

the randomized uniform (RU) estimator, i.e., θ̂RU
n ∼ U (Cn).

We also consider the worst-case estimator (WE), defined
as θ̂WE

n := argmaxθ∈Cn
∥θ − θ⋆∥1. While it is not a valid

estimator due to its θ⋆ dependency, it serves as a proxy for
the worst estimation error in Cn.

Dependency on sample size. Figure 1(a) confirms em-
pirically the difference in estimation rate between the M-
estimators (SO MLE and SP MLE)—obtaining O(1/

√
n)—

and our estimators based on Cn—achieving O(1/n).

However, Figure 1(b) also reveals that the performance of
AE and WE deteriorates quickly at small sample sizes when
the dimension increases. In contrast, DP MLE consistently
outperforms all the other estimators, including SO MLE as
theoretically shown in Lemma 4.1.

While SPdet outperforms SO MLE, Figure 1 also reveals
that SP performs worse than SO MLE for finite sample size.
Therefore, only an M-estimator based on deterministic pref-
erences improves on sample-only M-estimators empirically.
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Figure 2. Estimation errors as a function of d with N (θ⋆, Id)
where θ⋆ ∼ U([1, 2]d), for n = 104 and Nruns = 103.

This further highlights the weakness of asymptotic results
compared to non-asymptotic guarantees.

While Figure 1(a) suggests that RU and WE perform on
par with DP MLE, Figures 1(b) and 2 highlight that DP
MLE outperforms WE and AE for larger dimensions, where
the gap increases when d is nonnegligible compared to n.
We conjecture that RU suffers from the same limitation as
AE for larger d. As empirical evidence, we study other
estimators that disentangle the effect of RU’s randomness
versus its mean behavior, see Appendix H.2.

Dependency on dimension. Figure 2 strengthens the
aforementioned empirical observations. For fixed sample
size and increasing dimension, DP MLE is the only estima-
tor obtaining the best-of-both world estimation error rate,
i.e., O(min{d3/2/n,

√
d/n}).

Covariance gap. We show that the covariance
gap between SP MLE and SO MLE is relative
mild: (∆SP

Lap(0,1),∆
SPdet

Lap(0,1)) ≈ (0.16, 0.08) and

(∆SP
N (0,1),∆

SPdet

N (0,1), R
SPdet

N (0,1)) ≈ (0.17, 0.08, 0.10). More-

over, ∆SP
N (0d,Id)

, ∆SPdet

N (0d,Id)
and RSPdet

N (0d,Id)
are close to

αdId where αd > 0 is decreasing in d (see Figure 3 in
Appendix F). In addition to having a small empirical gap
for a moderate value of n, the asymptotic gaps between SO
MLE and SP MLE are mild.

Supplementary experiments. Following the approach
of Tang et al. (2024a), we compare estimators using other
convex surrogates of the 0-1 loss (Appendix H.3): they
all perform similarly. For the logistic loss, we showcase
the “mild” impact of normalization and regularization (Ap-
pendix H.4).

7. Perspectives
This work investigates the role of preference feedback in pa-
rameter estimation for continuous parametric distributions.
We establish conditions under which preference-based es-
timators outperform sample-only methods. For stochastic
preferences, the preference-based MLE achieves a lower
asymptotic variance than its sample-only counterpart. For
deterministic preferences, we demonstrate that preference-
based estimators can significantly accelerate parameter es-
timation, achieving an improved O(1/n) convergence rate
compared to the O(1/

√
n) rate of M-estimators. Our lower

bound analysis further confirms that this acceleration is min-
imax optimal up to dimension-dependent constants.

While our results provide a solid theoretical foundation,
several open questions remain. A finer analysis of beyond-
M-estimators and their constraint set geometry would allow
to better quantify the properties of DP MLE, and provide in-
sights for designing improved estimators that better leverage
deterministic preferences. Additionally, exploring alterna-
tive preference functions beyond the log-probability gap
could extend the applicability of our results.

Finally, a key challenge for future work is to quantify the
benefits of preference-based estimation for discrete distri-
butions. For distributions with small support, preference
feedback may only localize the unknown parameter within
a subset of the simplex, leading to diminishing information
gains as the sample size increases. However, understanding
how preference-based estimators perform in finite-sample
settings, particularly in high-dimensional problems, remains
an interesting open problem. Addressing these questions
could provide further insights into the role of preferences in
machine learning and statistical estimation.
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A. Outline
The appendices are organized as follows:

• In Appendix B, we provide detailed discussions on our assumptions, the sources of misspecification and other reward
models.

• In Appendix C, we prove the general results presented in Section 3 such as Lemma 3.1.

• In Appendix D, we focus on Section 4 and detail the proofs of Lemma 4.6 and Theorem 4.8

• In Appendix E, we prove the results presented in Section 5.

• In Appendix F, for FN ,Σ and preferences based on rθ = log pθ, we prove all the assumptions introduced in this paper.

• In Appendix G, for FLap,b and preferences based on rθ = log pθ, we prove all the assumptions introduced in this paper.

• In Appendix H, we provide supplementary experiments to support our theoretical findings.

B. Extended Discussions
We provide detailed discussions on how to verify or weaken our assumptions (Appendix B.1), the sources of misspecification
(Appendix B.2) and other reward models than log-likelihood (Appendix B.3).

B.1. Verifying or Weakening our Assumptions
Since our assumptions are restrictive, it is natural to wonder how they can be verified or weakened.

Verifying our assumptions. Even a closed-form definition of pθ and ℓθ is given, our assumptions are challenging to
verify, hence we suggest using a formal verifier (e.g., Lean (mathlib Community, 2020)) or software (e.g., SageMath (The
Sage Developers, 2022)). Empirically, they can be confirmed or rejected by sampling from p⊗2

θ⋆ . Assumption 4.4 is
rejected by exhibiting (Xi, Yi) ∈ D̃(θ⋆, θ) \ D(θ⋆, θ). Assumptions 4.2 and 4.5 are confirmed by finding (Xi, Yi) ∈
D(θ⋆, θ) and (Xi, Yi) ∈ G1(θ

⋆, u). Those tests’ sampling complexity scales as the inverse event’s probability. Using
Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky et al., 1956), Fθ⋆,u can be estimated to verify that Assumption 4.7
holds.

Restrictive assumptions. When studying DP MLE only, we conjecture that the “global” Assumptions 4.2 and 4.4 can be
weakened to local versions. Using time-uniform concentration results, we can build a sequence of shrinking confidence
regions (Rn)n around SO MLE that contains θ⋆ for all time n with high probability. Then, we modify DP MLE to be
constrained on Rn ∩ Cn. For n large enough and with high probability, Rn ∩ Cn will be included in a local neighborhood of
θ⋆ under which the “local” Assumptions 4.2 and 4.4 are satisfied. Given that Assumption 4.4 is based on “ignoring” the
reminder term in a first-order Taylor expansion, assuming a local version is a significantly weaker requirement.

B.2. Sources of Misspecification
There are several possible sources of misspecification not taken into account by our current analysis.

Preference model. The Bradley-Terry model that uses reward-based preferences has limited expressivity as it doesn’t
allow for intransitive preferences. Even when individuals exhibit transitive preferences, their averaged preferences can be
intransitive due to disagreements, see Munos et al. (2024) or Swamy et al. (2024).

Parameter space. When θ⋆ /∈ Θ, the deterministic preferences might not provide separability within Θ. The definition of
DP MLE should be modified to combine the cross-entropy loss and the classification 0-1 loss, i.e.,

θ̂DP
n ∈ argmin

θ∈Θ

LSO
n (θ) + λ

∑
i∈[n]

1 (Ziℓθ(Xi, Yi) < 0)

 , (5)

where λ > 0 is a regularization between those two losses. Equation (5) is reminiscent of single-stage alignment procedures
such as ORPO (Hong et al., 2024) and ASFT (Wang et al., 2024), see, e.g., Gorbatovski et al. (2025). Without separability,
solving Eq. (5) can be NP-hard. Under sufficient regularity, θ̂DP

n converges to θ0 ∈ argminθ∈Θ{KL(θ⋆, θ)+λm(θ)} where
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m(θ) = Pp⊗2
θ⋆

(D(θ⋆, θ)) and θ0 ̸= θ⋆. As θ 7→ m(θ) can be non-convex, computing θ0 might be challenging. Deriving
a tractable ELBO method for this optimization is an interesting direction to obtain tractable and robust estimators. As θ0
lies in the boundary of Θ, we should control the maximal deviation with respect to θ0 for directions that point towards
the interior of Θ to prove an accelerated rate. While parts of our analysis could be used, we believe that finer technical
arguments are required.

Parametric model. The true distribution p⋆ of the observations might not even be a member of our class of distributions
F , i.e., p⋆ /∈ F . These situations occur when F doesn’t contain the true structure, e.g., other parametric or non-parametric
class of distributions. Then, LSO

n (θ) can be interpreted as a quasi-log-likelihood term. Let us denote by SO quasi-MLE the
estimator based on SO MLE for this quasi-log-likelihood. Under sufficient regularity, SO quasi-MLE converges towards
θ0 ∈ argminθ∈Θ KL(p⋆, pθ) where p⋆ ̸= pθ0 ∈ F . Without the separability from well-specified deterministic preference,
we define DP quasi-MLE as in Eq. (5). Under sufficient regularity, DP quasi-MLE converges towards the minimizer of a
similar optimization problem combining the KL term and a misspecified equivalent of m(θ).

B.3. Reward models
Except for Theorem 4.3, all the derivations in Section 4 hold for general (hence reward-based) preference models provided
Assumptions 4.2, 4.4, 4.5 and 4.7 hold. Characterizing the expressivity of parametric rewards satisfying those assumptions
is interesting, yet challenging. We provide two positive and one negative examples.

Positive: monotonic reward. Suppose that ℓ̃θ(x, y) = f(pθ(x)) − f(pθ(x)) where f is increasing on [0, 1]. Since
sign(ℓ̃θ) = sign(ℓθ), hence the parameters with zero classification loss and our estimators are the same. Therefore, our
results hold for this class of rewards when our assumptions hold for the log-likelihood reward. When f is decreasing, the
preferences are “reversed”, and similar arguments can be made. This example includes (1) normalization by a multiplicative
constant (e.g., temperature β) and (2) the odds-ratio reward-based preference based on f(x) = log(x/(1 − x)) used by
ORPO in Hong et al. (2024).

Positive: margin with Gaussian. Suppose that ℓ̃θ = ℓθ + c where c is a constant and ℓθ is the Gaussian log-likelihood
preference. By extending our computations from Appendix F, Assumptions 4.2, 4.4, 4.5 and 4.7 hold with c-dependent
positive constants. Margins are used by SimPO from Meng et al. (2024) and IPO from Azar et al. (2024).

Negative: reference model with Gaussian. Suppose that ℓ̃θ = ℓθ − ℓθ0 where θ0 is known and ℓθ is the Gaussian
log-likelihood preference. Since ℓ̃θ(x, y) = ⟨x − y, θ − θ0⟩ and ∇θ ℓ̃θ(x, y) = x − y, Assumption 4.5 is violated for
u = θ⋆ − θ0, i.e., Pp⊗2

θ⋆
(G1(θ

⋆, θ⋆ − θ0)) = 0. Not all direct alignment algorithms rely on a reference model, see, e.g.,
SimPO and ORPO.

C. Proofs of Section 3
C.1. Stochastic Preferences
Under enough regularity, by swapping the integration and the differentiation operators, we can show that

Eqθ,hsto
[∇θ log qθ,hsto

] = ∇θ1 = 0k and Eqθ,hsto
[−∇2

θ log qθ,hsto
] = Eqθ,hsto

[∇θ log qθ,hsto
∇θ log q

T

θ,hsto
] .

Below, we detail the proof of Lemma 3.1.

Proof. Direct computation yields that

∇θ⋆ log qθ⋆(x, y, z) = ∇θ⋆ log p⊗2
θ⋆ (x, y) + zσ(−zℓθ⋆(x, y))∇θ⋆ℓθ⋆(x, y) ,

∇2
θ⋆ log qθ⋆(x, y, z) = ∇2

θ⋆ log p⊗2
θ⋆ (x, y)− σ(ℓθ⋆(x, y))σ(−ℓθ⋆(x, y))∇θ⋆ℓθ⋆(x, y)∇θ⋆ℓθ⋆(x, y)T

+ zσ(−zℓθ⋆(x, y))∇2
θ⋆ℓθ⋆(x, y) .

where we used that g′(x) = σ(−x) and g′′(x) = −σ′(−x) = −σ(x)σ(−x) with g(x) = log σ(x). By definition of hsto,

EZ|(X,Y )

[
Zσ(−Zℓθ⋆(X,Y ))∇2

θ⋆ℓθ⋆(X,Y )
]

= (σ(−ℓθ⋆(X,Y ))σ(ℓθ⋆(X,Y ))− σ(ℓθ⋆(X,Y ))σ(−ℓθ⋆(X,Y )))∇2
θ⋆ℓθ⋆(X,Y ) = 0d×d .
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Therefore, we have I(qθ⋆,hsto
) = I(p⊗2

θ⋆ ) + ∆SP
θ⋆ with ∆SP

θ = Ep⊗2
θ⋆
[σ(ℓθ)σ(−ℓθ)∇θℓθ(∇θℓθ)

T]. For all x ∈ Rk, we have

xT∆SP
θ x = ∥x∥2Ep⊗2

θ⋆
[σ(ℓθ)σ(−ℓθ)⟨x/∥x∥,∇θℓθ⟩2] ≥ 0 .

It is direct to see that this inequality is strict except if Pp⊗2
θ⋆
(⟨x/∥x∥,∇θℓθ⟩2 = 0) = 1. Therefore, ∆SP

θ⋆ is a positive definite
matrix if Pp⊗2

θ⋆
(|⟨u,∇θ⋆ℓθ⋆⟩| > 0) > 0 for all u ∈ Sk−1. Note that this condition is implied by Assumption 4.5.

C.2. Deterministic Preferences
Consistency of SP. Let M(θ) := Ep⊗2

θ⋆
[log qθ,hsto

(X,Y, sign(ℓθ⋆(X,Y )))]. Under enough regularity, we obtain

Ep⊗2
θ⋆
[∇θ⋆ log p⊗2

θ⋆ ] = 0k and ∇θ⋆M(θ⋆) = Ep⊗2
θ⋆
[sign(ℓθ⋆(X,Y ))σ(−|ℓθ⋆(X,Y )|)∇θ⋆ℓθ⋆(X,Y )] .

Therefore, θ⋆ is the unique maximizer of M(θ) if ∇θ⋆M(θ⋆) = 0k, i.e., if (3) holds true.

Asymptotic normality of SP. Provided (3), under enough regularity, the theory of M-estimator yields that

√
n(θ̂SPdet

n − θ⋆)⇝n→+∞ N (0k, V
−1
1,θ⋆V2,θ⋆V −1

1,θ⋆) ,

where

V1,θ⋆ = E(X,Y )∼p⊗2
θ⋆

[
−∇2

θ⋆ log qθ⋆,hsto
(X,Y, sign(ℓθ⋆(X,Y )))

]
,

V2,θ⋆ = E(X,Y )∼p⊗2
θ⋆

[∇θ⋆ log qθ⋆,hsto(X,Y, sign(ℓθ⋆(X,Y )))∇θ⋆ log qθ⋆,hsto(X,Y, sign(ℓθ⋆(X,Y )))T] .

Below we detail the proof of Lemma 3.2.

Proof. Combining z = sign(ℓθ⋆(x, y)) with the same manipulation as above yields

∇θ⋆ log qθ⋆,hsto(x, y, z) = ∇θ⋆ log p⊗2
θ⋆ (x, y) + sign(ℓθ⋆(x, y))σ(−|ℓθ⋆(x, y)|)∇θ⋆ℓθ⋆(x, y) ,

∇θ⋆ log qθ⋆,hsto(x, y, z)∇θ⋆ log qθ⋆,hsto(x, y, z)
T = ∇θ⋆ log p⊗2

θ⋆ (x, y)∇θ⋆ log p⊗2
θ⋆ (x, y)

T

+ σ(−|ℓθ⋆(x, y)|)2∇θ⋆ℓθ⋆(x, y)∇θ⋆ℓθ⋆(x, y)T

+ sign(ℓθ⋆(x, y))σ(−|ℓθ⋆(x, y)|)
(
∇θ⋆ log p⊗2

θ⋆ (x, y)∇θ⋆ℓθ⋆(x, y)T +∇θ⋆ℓθ⋆(x, y)∇θ⋆ log p⊗2
θ⋆ (x, y)

T
)

∇2
θ⋆ log qθ⋆,hsto(x, y, z) = ∇2

θ⋆ log p⊗2
θ⋆ (x, y)− σ(ℓθ⋆(x, y))σ(−ℓθ⋆(x, y))∇θ⋆ℓθ⋆(x, y)∇θ⋆ℓθ⋆(x, y)T

+ sign(ℓθ⋆(x, y))σ(−|ℓθ⋆(x, y)|)∇2
θ⋆ℓθ⋆(x, y) .

where we used that g′(x) = σ(−x) and g′′(x) = −σ′(−x) = −σ(x)σ(−x) with g(x) = log σ(x). Using that
σ(−|ℓθ⋆(x, y)|)2 = σ(−|ℓθ⋆(x, y)|)− σ(−ℓθ⋆(x, y))σ(ℓθ⋆(x, y)), we have

V1,θ⋆ = I(p⊗2
θ⋆ ) + ∆SP

θ⋆ −HSPdet

θ⋆ and V2,θ⋆ = I(p⊗2
θ⋆ ) +M2,θ⋆ −∆SP

θ⋆ −RSPdet

θ⋆

where ∆SP
θ = Ep⊗2

θ⋆
[σ(ℓθ)σ(−ℓθ)∇θℓθ(∇θℓθ)

T] as in Lemma 3.1, and we define

HSPdet

θ⋆ = Ep⊗2
θ⋆

[
sign(ℓθ⋆)σ(−|ℓθ⋆ |)∇2

θ⋆ℓθ⋆

]
, M2,θ⋆ = Ep⊗2

θ⋆
[σ(−|ℓθ⋆ |)∇θ⋆ℓθ⋆(∇θ⋆ℓθ⋆)T] and

RSPdet

θ⋆ = −Ep⊗2
θ⋆

[
sign(ℓθ⋆)σ(−|ℓθ⋆ |)

(
∇θ⋆ log p⊗2

θ⋆ (∇θ⋆ℓθ⋆)T +∇θ⋆ℓθ⋆(∇θ⋆ log p⊗2
θ⋆ )

T
)]

.

Using that I(qθ⋆,hsto) = I(p⊗2
θ⋆ )+∆SP

θ⋆ (Lemma 3.1), SPdet is asymptotically better than SP if and only if V −1
1,θ⋆V2,θ⋆V −1

1,θ⋆ ≺
I(qθ⋆,hsto

)−1. This condition can be rewritten as

I(p⊗2
θ⋆ ) +M2,θ⋆ −∆SP

θ⋆ −RSPdet

θ⋆ ≺
(
I(p⊗2

θ⋆ ) + ∆SP
θ⋆ −HSPdet

θ⋆

)(
I(qθ⋆,hsto

)−HSPdet

θ⋆

)
I(qθ⋆,hsto

)−1 . (6)

The condition (6) heavily depends on the geometry of p⊗2
θ⋆ and ℓθ⋆ , hence it is unreasonable to assume in all generality.
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In the following, we consider the special case where HSPdet

θ⋆ = 0d×d. This occurs when θ → ℓθ is linear, e.g., for FN ,Σ and
FLap,b and preferences based on rθ = log pθ. Then, the condition (6) rewrites as

RSPdet

θ⋆ +∆SPdet

θ⋆ ≻ 0d×d with ∆SPdet

θ⋆ := 2∆SP
θ⋆ −M2,θ⋆ .

Using that minx∈R σ(|x|) = 1/2 achieved only at x = 0, we have directly that, for all x ∈ Rk,

xT∆SPdet

θ⋆ x = ∥x∥2Ep⊗2
θ⋆
[(2σ(|ℓθ⋆ |)− 1)σ(−|ℓθ⋆ |)⟨x/∥x∥,∇θ⋆ℓθ⋆⟩2] ≥ 0 ,

It is direct to see that this inequality is strict except if Pp⊗2
θ⋆

(ℓθ⋆⟨x/∥x∥,∇θ⋆ℓθ⋆⟩ = 0) = 1. Therefore, ∆SPdet

θ⋆ is a positive
definite matrix if Pp⊗2

θ⋆
(|ℓθ⋆⟨u,∇θ⋆ℓθ⋆⟩| > 0) > 0 for all u ∈ Sk−1. Then, a sufficient condition for the condition (6) to

hold is that RSPdet

θ⋆ is a p.s.d. matrix, i.e., RSPdet

θ⋆ ⪰ 0d×d.

In summary, we have derived sufficient conditions for SPdet to be asymptotically better than SP, namely HSPdet

θ⋆ = 0d×d,
RSPdet

θ⋆ ⪰ 0d×d and Pp⊗2
θ⋆
(|ℓθ⋆⟨u,∇θ⋆ℓθ⋆⟩| > 0) > 0 for all u ∈ Sk−1. Note that this last condition is implied by

Assumption 4.5.

D. Proofs of Section 4
D.1. Proof of Lemma 4.1

Proof. For Gaussian distributions, this is a direct consequence of the following facts: θ⋆ ∈ Cn, θ̂DP
n ∈ argminθ∈Cn

∥θ −
θ̂SOn ∥2Σ and Cn is convex.

D.2. Proof of Lemma 4.6

Proof. Let u ∈ Sk−1. Let F̃θ⋆,u be the c.d.f. of Vθ⋆,u(X,Y ) when (X,Y ) ∼ (p⊗2
θ⋆ )|G1(θ⋆,u), i.e., p⊗2

θ⋆ truncated to G1(θ
⋆, u).

Then, F̃θ⋆,u(ε) = Fθ⋆,u(ε)/αθ⋆,u. Let αθ⋆,u = Pp⊗2
θ⋆
(G1(θ

⋆, u)) and Nθ⋆,u =
∑

i∈[n] 1 ((Xi, Yi) ∈ G1(θ
⋆, u)) ∼

Bin(n, αθ⋆,u). Let R̃n,u = mini∈[n],(Xi,Yi)∈G1(θ⋆,u) Vθ⋆,u(Xi, Yi). Using the derivation in Section 4.1, we have that
Rn,u ≤ R̃n,u. Let ε > 0. Conditioned on Nθ⋆,u, it is direct to see that

P(R̃n,u > ε | Nθ⋆,u) = 1− (1− (1− F̃θ⋆,u(ε))
Nθ⋆,u) =

(
1− F̃θ⋆,u(ε)

)Nθ⋆,u

.

Using that Nθ⋆,u ∼ Bin(n, αθ⋆,u), EX∼Bin(n,p)[s
X ] = (1− p+ ps)n and 1− x ≤ exp(−x), we obtain that

P(Rn,u > ε) ≤ P(R̃n,u > ε) ≤
(
1− αθ⋆,uF̃θ⋆,u(ε)

)n
≤ exp (−nFθ⋆,u(ε)) .

Taking ε = F−1
θ⋆,u (min {1, log(1/δ)/n}) concludes the proof.

D.3. Proof of Theorem 4.8

Proof. For all u ∈ Sk−1, let (Aθ⋆ , Bθ⋆ , Cθ⋆) defined as in Theorem 4.8. Since Cn ⊆ C̃n under Assumption 4.4, we obtain
that maxθ∈Cn

∥θ − θ⋆∥ ≤ maxθ∈C̃n
∥θ − θ⋆∥.

Case k = 1. Since |S0| = 2, using Lemma 4.6 with a union bound yield that, with probability at least 1− δ,

max
θ∈C̃n

∥θ − θ⋆∥ ≤ max
u∈S0

Rn,u ≤ max
u∈S0

F−1
θ⋆,u (min{1, log(2/δ)/n}) .

Under Assumption 4.7, for n ≥ Bθ⋆ log(2/δ), we can conclude the proof since

nmax
θ∈Cn

∥θ − θ⋆∥ ≤ nmax
θ∈C̃n

∥θ − θ⋆∥ ≤ Aθ⋆ log(2/δ) + Cθ⋆ log(2/δ)2/n .

Case k > 1. Let N(γ) be the γ-covering number of Θ for the norm ∥ · ∥. Let {θj}j∈[N(γ)] be such a γ-covering. For all
j ∈ [N(γ)], let εj = ∥θj − θ⋆∥ and uj = (θj − θ⋆)/εj . Using triangular inequality, we obtain

max
θ∈C̃n

∥θ − θ⋆∥ ≤ γ + max
j∈[N(γ)], θj∈C̃n

∥θj − θ⋆∥ ≤ γ + max
j∈[N(γ)]

1
(
θ⋆ + εjuj ∈ C̃n

)
εj ≤ γ + max

j∈[N(γ)]
Rn,uj

.
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Using Lemma 4.6 with a union bound yield that, with probability at least 1− δ,

nmax
θ∈Cn

∥θ − θ⋆∥ ≤ nγ + max
j∈[N(γ)]

nF−1
θ⋆,uj

(log(N(γ)/δ)/n) ≤ nγ +Aθ⋆ log(N(γ)/δ) + Cθ⋆ log(N(γ)/δ)2/n .

where the last inequality relies on Assumption 4.7 for n ≥ Bθ⋆ log(N(γ)/δ).

E. Proofs of Section 5
E.1. Proof of Lemma 5.1

Proof. It is direct to see that√
qθ⋆(x, y, z)qθ(x, y, z) =

{
0 if (x, y) ∈ D(θ⋆, θ) ∪

(
G0(θ

⋆)∁△G0(θ)
∁
)

√
pθ⋆(x)pθ⋆(y)pθ(x)pθ(y) otherwise

.

Therefore, we have

BC(qθ⋆ , qθ) =

∫
(x,y)/∈D(θ⋆,θ)∪(G0(θ⋆)∁△G0(θ)∁)

√
pθ⋆(x)pθ⋆(y)pθ(x)pθ(y)dxdy = BC(p⊗2

θ⋆ , p
⊗2
θ )− B̃C(θ⋆, θ) .

Using that H2(P,Q) = 1− BC(P,Q), we conclude the proof.

E.2. Proof of Theorem 5.3
Consider the hypercube Θ′ = {θb = δb : b ∈ {0, 1}d} ⊆ Θ. Note that ∥θb − θb′∥ ≥ δ√

k
dH(b, b′), where dH(b, b′) denotes

the Hamming distance between b and b′. Then using Assouad’s lemma we have

Rmax ≥ δ
√
k

4

(
1− max

dH(b,b′)=1
TV (q⊗n

θb
, q⊗n

θb′
)

)
.

Upper bounding TV with H2, Lemma 5.1 yields

TV (q⊗n
θb

, q⊗n
θb′

) ≤
√
n(B̃C(θb, θb′) + H2(p⊗2

θb
, p⊗2

θb′
)).

Then, Assumption 5.2 implies

Rmax ≥ δ
√
k

4

(
1−

√
n

(
c1δ

αF (k)
+ 2c2δ2

))
.

Picking δ = 1
2(c1+2c2)

min{αF (k)
n , 1√

n
} ensures that the term in parenthesis is always greater than 1/2, hence

Rmax ≥
√
k

8(c1 + 2c2)
min

{
αF (k)

n
,

1√
n

}
.

F. Multivariate Gaussian with Known Covariance
In the following, θ = Σ−1µ denote the natural parameter of multivariate Gaussian with known covariance matrix Σ. We
have X = Rd and k = d. Let θ ∈ Θ and u ∈ Sd−1 for the norm ∥ · ∥Σ, i.e., ∥u∥Σ = 1. Let S2,d−1 = {x ∈ Rd | ∥u∥2 = 1}.
It is direct to see that

ℓθ(x, y) = log
pθ(x)

pθ(y)
= ⟨x− y, θ − Σ−1(x+ y)/2⟩ and ∇θ⋆ℓθ⋆(x, y) = x− y .

Therefore, we have

G0(θ
⋆) = {(x, y) ∈ (Rd)2 | |⟨x− y, θ⋆ − (x+ y)/2⟩| > 0} ,

G1(θ
⋆) = {(x, y) ∈ G0(θ

⋆) | ∥x− y∥ > 0} ,
D(θ⋆, θ) =

{
(x, y) ∈ (Rd)2 | ⟨x− y, θ⋆ − Σ−1(x+ y)/2⟩2 + ⟨x− y, θ⋆ − Σ−1(x+ y)/2⟩⟨θ − θ⋆, x− y⟩ < 0

}
,

G1(θ
⋆, u) = {(x, y) ∈ (Rd)2 | ⟨x− y, θ⋆ − Σ−1(x+ y)/2⟩⟨u, x− y⟩ < 0} ,

∀(x, y) ∈ G1(θ
⋆, u), Vθ⋆,u(x, y) =

⟨x− y,Σ−1(x+ y)/2− θ⋆⟩
⟨u, x− y⟩

.

17



Learning Parametric Distributions from Samples and Preferences

Figure 3. Approximations of ∆SP
N (0d,Id)

, ∆SPdet
N (0d,Id)

and R
SPdet
N (0d,Id)

by (a) αdId and (b) associated error for varying d. Nruns = 106.

Proof that Pp⊗2
θ⋆
(G1(θ

⋆)) > 0. It is direct to see that dim(G0(θ
⋆)∁) < 2d and dim(G0(θ

⋆) \ G1(θ
⋆)) < 2d. Given that

p⊗2
θ⋆ is a continuous distribution on (Rd)2, we obtain that Pp⊗2

θ⋆
(G1(θ

⋆)) = Pp⊗2
θ⋆
(G0(θ

⋆)) = 1.

Condition in Lemma 3.1. The condition of Lemma 3.1 is implied by Assumption 4.5, hence we refer to the proof of this
result below. Therefore, we have I(qθ⋆,hsto) ≻ I(p⊗2

θ⋆ ).

Consistency of SPdet. To study SPdet for FN ,Σ, we use the change of variable D = Σ−1/2(X − Y )/
√
2 and S =√

2Σ−1/2(Σθ⋆ − (X + Y )/2). Then, we have (D,S) ∼ N (02d, I2d) and

ℓθ⋆(X,Y ) = ⟨S,D⟩ , ∇θ⋆ℓθ⋆(X,Y ) =
√
2Σ1/2D , ∇θ⋆ log p⊗2

θ⋆ (X,Y ) = 2Σθ⋆ −
√
2Σ1/2S .

Let M(D,S) = sign(⟨D,S⟩)σ(−|⟨D,S⟩|)D. Then, M(−D,−S) = −M(D,S) for all (D,S) ∈ R2d. By integration of
an odd function with respect to 0d with a symmetric distribution around 02d, we obtain E(D,S)∼N (02d,I2d) [M(D,S)] = 0d.
Therefore, the condition (3) is satisfied and the SPdet is a consistent estimator.

Asymptotic variance of SPdet. Let HSPdet

θ⋆ and RSPdet

θ⋆ defined in Lemma 3.2. Since ℓθ(x, y) = ⟨x− y, θ− (x+ y)/2⟩ is
linear in θ, we have ∇2

θ⋆ℓθ⋆ = 0d×d and HSPdet

θ⋆ = 0d×d. The condition Pp⊗2
θ⋆
(|ℓθ⋆⟨u,∇θ⋆ℓθ⋆⟩| > 0) > 0 for all u ∈ Sd−1

is implied by Assumption 4.5, hence we refer to the proof of this result below. Then, the condition RSPdet

θ⋆ ⪰ 0d×d is
equivalent to M3 ⪰ 0d×d where

M3 = E(D,S)∼N (02d,I2d) [sign(⟨D,S⟩)σ (−|⟨D,S⟩|) (DST + SDT)] .

When d = 1, we have M3 = 2E(D,S)∼N (02,I2) [σ (−|D,S|) |DS|] > 0. When d > 1, for all u ∈ Sd−1, we have

uTM3u = 2E(D,S)∼N (02d,I2d) [sign(⟨D,S⟩)σ (−|⟨D,S⟩|) ⟨u,D⟩⟨u, S⟩] ,

By rotational symmetry of N (02d, I2d) and the function to be integrated, showing that minu∈Sd−1
uTM3u ≥ 0 is equivalent

to showing that eT
1M3e1 ≥ 0, i.e.,

E(D,S)∼N (02d,I2d) [sign(⟨D,S⟩)σ (−|⟨D,S⟩|)D1S1] .

By symmetry, we conjecture that ∆SP
N (0d,Id)

, ∆SPdet

N (0d,Id)
and RSPdet

N (0d,Id)
are of the form αdId where αd > 0 is decreasing in

d. Figure 3 validates this conjecture numerically.

Using the sufficient condition derived in Appendix C.2, we have shown that SPdet is asymptotically better than SP.

Proof of Assumption 4.4. Since ℓθ(x, y) = ⟨x− y, θ − (x+ y)/2⟩ is linear in θ, we have D(θ⋆, θ) = D̃(θ⋆, θ).
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Proof of Assumption 4.5 For (X,Y ) ∼ p⊗2
θ⋆ , let D = Σ−1/2(X − Y )/

√
2 and S =

√
2Σ−1/2 ((X + Y )/2− Σθ⋆).

Then, we have (D,S) ∼ N (02d, I2d). Defining U = D/∥D∥, we have U ∼ U(S2,d−1) is independent of S. Since
U = D/∥D∥ ∼ U(S2,d−1) and Σ−1(x+ y)/2− θ⋆ = Σ−1/2S/

√
2, we obtain

P(X,Y )∼p⊗2
θ⋆
((X,Y ) ∈ G1(θ

⋆, u)) = P(U,S)∼U(S2,d−1)⊗N (0d,Id)

(
⟨U, S⟩⟨u,Σ1/2U⟩ > 0

)
= PU∼U(S2,d−1)

(
⟨Σ1/2u, U⟩ > 0

)
/2 + PU∼U(S2,d−1)

(
⟨Σ1/2u, U⟩ < 0

)
/2 = 1/2 .

where we used that, conditioned on U , ⟨U, S⟩ ∼ N (0, 1) and PX∼N (0,1)(X < 0) = PX∼N (0,1)(X > 0) = 1/2. The last
equality uses that PU∼U(S2,d−1)

(
⟨Σ1/2u, U⟩ > 0

)
= PU∼U(S2,d−1)

(
⟨Σ1/2u, U⟩ < 0

)
= 1/2 by symmetry of the uniform

distribution. Therefore, we have shown that Pp⊗2
θ⋆
(G1(θ

⋆, u)) = 1/2 for all u ∈ S2,d−1.

Proof of Assumption 4.7. Let us define v = Σ1/2u, hence v ∈ U(S2,d−1). Let Φ denote the c.d.f. of N (0, 1) and
erf(x) = 2Φ(x

√
2)− 1 be the error function. Let ε > 0. Similarly as above, we obtain that

Fθ⋆,u(ε) = P(X,Y )∼p⊗2
θ⋆
(0 < Vθ⋆,u(X,Y ) ≤ ε)

= P(U,S)∼U(S2,d−1)⊗N (0d,Id)

(
0 <

⟨U, S⟩
⟨v, U⟩

≤
√
2ε

)
=

1

2
EU∼U(S2,d−1)

[
2Φ
(√

2ε|⟨v, U⟩|
)
− 1
]
=

1

2
EU∼U(S2,d−1) [erf (ε|⟨v, U⟩|)] .

where we use conditioning by U as above. By change of variable, we obtain that

Fθ⋆,u(ε) =
1√
π
EU∼U(S2,d−1)

[∫ ε|⟨v,U⟩|

0

e−t2dt

]
=

ε√
π
EU∼U(S2,d−1)

[
|⟨v, U⟩|

∫ 1

0

e−x2ε2⟨v,U⟩2dx

]
.

Using that 1− x2 ≤ e−x2 ≤ 1, we obtain that

0 ≥
√
π

ε
Fθ⋆,u(ε)− EU∼U(S2,d−1) [|⟨v, U⟩|] ≥ −ε2

3
EU∼U(S2,d−1)

[
|⟨v, U⟩|3

]
.

Using that ∫ 1

0

x(−2xε2⟨v, U⟩2)e−x2ε2⟨v,U⟩2dx = e−ε2⟨v,U⟩2 −
∫ 1

0

e−x2ε2⟨v,U⟩2dx ,

we obtain

F ′
θ⋆,u(ε) =

1√
π
EU∼U(S2,d−1)

[
|⟨v, U⟩|e−ε2⟨v,U⟩2

]
and F ′′

θ⋆,u(ε) =
2ε√
π
EU∼U(S2,d−1)

[
|⟨v, U⟩|3e−ε2⟨v,U⟩2

]
.

Therefore, using Lemma F.1, we have

F ′
θ⋆,u(0) =

1√
π
EU∼U(S2,d−1) [|⟨v, U⟩|] = 2

d− 1

Γ(d/2)

πΓ((d− 1)/2)
=d→+∞ O(1/

√
d)

Let us define

εθ⋆,u =

√
EU∼U(S2,d−1) [|⟨v, U⟩|]
2EU∼U(S2,d−1) [|⟨v, U⟩|3]

and Mθ⋆,u = 4π

√
EU∼U(S2,d−1) [|⟨v, U⟩|3]
EU∼U(S2,d−1) [|⟨v, U⟩|]5

.

Then, for all ε ∈ (0, εθ⋆,u], we obtain that

F ′′
θ⋆,u(ε)

F ′
θ⋆,u(ε)

3
=

πε

2

EU∼U(S2,d−1)

[
|⟨v, U⟩|3e−ε2⟨v,U⟩2

]
EU∼U(S2,d−1)

[
|⟨v, U⟩|e−ε2⟨v,U⟩2

]3
≤ πε

2

EU∼U(S2,d−1)

[
|⟨v, U⟩|3

](
EU∼U(S2,d−1) [|⟨v, U⟩|]− ε2EU∼U(S2,d−1) [|⟨v, U⟩|3]

)3 ≤ Mθ⋆,u .
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Since we have (F−1
θ⋆,u)

′′(x) = − F ′′
θ⋆,u(F

−1
θ⋆,u

(x))

F ′
θ⋆,u

(F−1
θ⋆,u

(x))3
, we obtain

sup
x∈(0,xθ⋆,u]

|(F−1
θ⋆,u)

′′(x)| ≤ Mθ⋆,u where xθ⋆,u = Fθ⋆,u(εθ⋆,u) ≤

√√√√ EU∼U(S2,d−1)

[
|⟨Σ1/2u, U⟩|

]3
2πEU∼U(S2,d−1)

[
|⟨Σ1/2u, U⟩|3

] .
Proof of Assumption 4.2. Let ε = ∥θ⋆ − θ∥ and u = (θ⋆ − θ)/ε. Then, we have

Pp⊗2
θ⋆

(D(θ⋆, θ)) = Pp⊗2
θ⋆

(D(θ⋆, θ⋆ + εu)) ≥ Pp⊗2
θ⋆

(D(θ⋆, θ⋆ + εu) ∩ G1(θ
⋆, u)) = P(X,Y )∼p⊗2

θ⋆
(0 < Vθ⋆,u(X,Y ) < ε)

Using the above computation, we obtain that P(X,Y )∼p⊗2
θ⋆
(0 < Vθ⋆,u(X,Y ) < ε) > 0, hence Pp⊗2

θ⋆
(D(θ⋆, θ)) > 0.

Proof of Assumption 5.2. Using that 1− e−x ≤ x, we obtain

H2(pθ⋆ , pθ) = 1− exp

(
−1

8
∥θ⋆ − θ∥2Σ

)
≤ 1

8
∥θ⋆ − θ∥2Σ .

First, we notice that dim
(
G0(θ

⋆)∁△G0(θ)
∁
)
< 2d, hence we can show that

∫
(x,y)∈G0(θ⋆)∁△G0(θ)∁

√
pθ⋆(x)pθ⋆(y)pθ(x)pθ(y)dxdy = 0 .

Second, we see that

∥x− Σθ⋆∥2Σ−1 + ∥y − Σθ⋆∥2Σ−1 + ∥x− Σθ∥2Σ−1 + ∥y − Σθ∥2Σ−1

= ∥x− y∥2Σ−1 + ∥θ − θ⋆∥2Σ + ∥x+ y − Σ(θ⋆ + θ)∥2Σ−1 ,

D(θ⋆, θ) =
{
(x, y) ∈ (Rd)2 | ⟨x− y, θ⋆ − Σ−1(x+ y)/2⟩2 + ⟨x− y, θ⋆ − Σ−1(x+ y)/2⟩⟨θ − θ⋆, x− y⟩ < 0

}
,

Then, we consider the change of variable u = Σ−1/2(x − y) and v = Σ−1/2(x + y), whose Jacobian has det(Σ)2−d as
absolute value of its determinant. Therefore, we obtain

e
1
4∥θ−θ⋆∥2

ΣB̃C(θ⋆, θ) =
1

(4π)d

∫
(u,v)

1

(
0 < −⟨u,Σ1/2θ⋆ − v/2⟩

⟨Σ1/2(θ − θ⋆), u⟩
< 1

)
e−

1
4∥u∥

2− 1
4∥v−Σ1/2(θ+θ⋆)∥2

dudv

=
1

(2π)d

∫
(ũ,ṽ)

1

(∣∣∣∣ ⟨ũ, ṽ⟩
⟨Σ1/2(θ − θ⋆), ũ⟩

∣∣∣∣ < √
2

)
e−

1
2∥ũ∥

2− 1
2∥ṽ∥

2

dũdṽ

= P(X,Y )∼N (0d,Id)⊗2

(∣∣∣∣ ⟨X,Y ⟩
⟨Σ1/2(θ − θ⋆), X⟩

∣∣∣∣ < √
2

)
= EU∼U(S2,d−1)

[
erf
(
|⟨Σ1/2(θ − θ⋆), U⟩|

)]
= 2Fθ⋆,u(ε)

where the second equality uses the change of variable ũ = u/
√
2 and ṽ = (v − Σ1/2(θ + θ⋆))/

√
2, whose Jacobian has

determinant 2d. The third and the fourth re-uses computation done previously with ε = ∥θ − θ⋆∥Σ and u = (θ − θ⋆)/ε.
Using Lemma F.1 and the above upper bound on Fθ⋆,u(ε), we obtain

B̃C(θ⋆, θ) = 2e−ε2/4Fθ⋆,u(ε) ≤
4

d− 1

Γ(d/2)

πΓ((d− 1)/2)
∥θ⋆ − θ∥Σ .

Lemma F.1. Let Γ be the Γ function. Then,

∀u ∈ S2,d−1, EU∼U(S2,d−1) [|⟨u, U⟩|] = 2

d− 1

Γ(d/2)√
πΓ((d− 1)/2)

=d→+∞ O(1/
√
d) .
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Proof. Due to rotational symmetry of the distribution, for any unit vector u,

EU∼U(S2,d−1) [|⟨u, U⟩|] = EU∼U(S2,d−1) [|⟨e1, U⟩|] = EU∼U(S2,d−1) [|U1|] .

The density of U1 is given by

fU1
(x) =

Γ
(
d
2

)
√
π Γ
(
d−1
2

) (1− x2)
d−3
2 , x ∈ [−1, 1],

and the expectation can be computed as

E
[
|U1|

]
=

∫ 1

−1

|x| fU1
(x) dx = 2

∫ 1

0

x
Γ
(
d
2

)
√
π Γ
(
d−1
2

) (1− x2)
d−3
2 dx =

2Γ
(
d
2

)
√
π Γ
(
d−1
2

) ∫ 1

0

x (1− x2)
d−3
2 dx

=
Γ
(
d
2

)
√
π Γ
(
d−1
2

) ∫ 1

0

(1− u)
d−3
2 du =

Γ
(
d
2

)
√
π Γ
(
d−1
2

) · 1
d−1
2

=
2

d− 1

Γ
(
d
2

)
√
π Γ
(
d−1
2

) .
Therefore, for large d, E

[
|U1|

]
=d→+∞ O(1/

√
d).

G. Laplace with Known Scale
In the following, θ denote the mean parameter of Laplace distribution with known scale b. We have X = R and k = d = 1.
Let θ ∈ Θ and u ∈ {±1}. It is direct to see that

ℓθ(x, y) = log
pθ(x)

pθ(y)
= |y − θ|/b− |x− θ|/b = 1

b


y − x if θ < min{x, y}
x− y if θ > max{x, y}
(2θ − (x+ y))sign(x− y) if θ ∈ [min{x, y},max{x, y}]

,

and ∇θ⋆ℓθ⋆(x, y) =

{
0 if θ⋆ < min{x, y} or θ⋆ > max{x, y}
2
b sign(x− y) if θ⋆ ∈ [min{x, y},max{x, y}]

.

Therefore, we have

G0(θ
⋆) = {(x, y) ∈ R2 | ||y − θ⋆| − |x− θ⋆|| > 0} ,

G1(θ
⋆) = {(x, y) ∈ R2 | θ⋆ ∈ [min{x, y},max{x, y}]} ,

G1(θ
⋆, u) = {(x, y) ∈ R2 | θ⋆ ∈ [min{x, y},max{x, y}] ∧ u((x+ y)/2− θ⋆) > 0} ,

D̃(θ⋆, θ) =
{
(x, y) ∈ R2 | θ⋆ ∈ [min{x, y},max{x, y}] ∧ 0 < sign(θ − θ⋆)((x+ y)/2− θ⋆) < |θ − θ⋆|

}
,

∀(x, y) ∈ G1(θ
⋆, u), Vθ⋆,u(x, y) = u((x+ y)/2− θ⋆) .

When θ⋆ > θ, we have

D(θ⋆, θ) = {(x, y) | {θ⋆, θ} ⊂ [min{x, y},max{x, y}] ∧ θ < (x+ y)/2 < θ⋆}
∪ {(x, y) | θ < min{x, y} ∧ θ⋆ ∈ ((x+ y)/2,max{x, y}]}
∪ {(x, y) | θ < min{x, y} ∧ θ⋆ > max{x, y}}
∪ {(x, y) | θ⋆ > max{x, y} ∧ θ ∈ [min{x, y}, (x+ y)/2)} .

When θ⋆ < θ, we have

D(θ⋆, θ) = {(x, y) | {θ⋆, θ} ⊂ [min{x, y},max{x, y}] ∧ θ⋆ < (x+ y)/2 < θ}
∪ {(x, y) | θ > max{x, y} ∧ θ⋆ ∈ [min{x, y}, (x+ y)/2)}
∪ {(x, y) | θ⋆ < min{x, y} ∧ θ > max{x, y}}
∪ {(x, y) | θ⋆ < min{x, y} ∧ θ ∈ ((x+ y)/2,max{x, y}]} .
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Proof that Pp⊗2
θ⋆
(G1(θ

⋆)) > 0. It is direct to see that dim(G0(θ
⋆)∁) < 2. Given that p⊗2

θ⋆ is a continuous distribution
on (R)2, we obtain that Pp⊗2

θ⋆
(G0(θ

⋆)) = 1. Using the symmetry of the Laplace distribution around its mean, we have
that

Pp⊗2
θ⋆
(G1(θ

⋆)) = Pp⊗2
θ⋆

((−∞, θ⋆)× (θ⋆,+∞)) + Pp⊗2
θ⋆

((θ⋆,+∞)× (−∞, θ⋆)) = 1/2 .

Condition in Lemma 3.1. The condition of Lemma 3.1 is implied by Assumption 4.5, hence we refer to the proof of this
result below. Therefore, we have I(qθ⋆,hsto

) ≻ I(p⊗2
θ⋆ ).

Consistency of SPdet. To study SPdet for FLap,b, we use the change of variable D = θ⋆ −X and S = θ⋆ − Y . For all
(D,S) ∈ G1(0), we have

ℓθ⋆(X,Y ) =
1

b
(D + S)sign(S −D) , ∇θ⋆ℓθ⋆(X,Y ) =

2

b
sign(S −D) , ∇θ⋆ log p⊗2

θ⋆ (X,Y ) = 0 .

For all (D,S) /∈ G1(0), we have ∇θ⋆ℓθ⋆(X,Y ) = 0 and ∇θ⋆ log p⊗2
θ⋆ (X,Y ) ̸= 0. Let M(D,S) =

1 ((D,S) ∈ G1(0))σ(−|D + S|/b)sign(D + S). Then, M(−D,−S) = −M(D,S) for all (D,S) ∈ R2. By integration
of an odd function with respect to 0 with a symmetric distribution around 02, we obtain E(D,S)∼N (02d,I2d) [M(D,S)] = 0.
Therefore, the condition (3) is satisfied and SPdet is a consistent estimator.

Asymptotic variance of SPdet. Let HSPdet

θ⋆ and RSPdet

θ⋆ defined in Lemma 3.2. By definition of ℓθ, we obtain ∇2
θ⋆ℓθ⋆ = 0

and HSPdet

θ⋆ = 0. Moreover, using the above formula, we have ∇θ⋆ℓθ⋆(X,Y )∇θ⋆ log p⊗2
θ⋆ (X,Y ) = 0 for all (D,S) ∈

G1(0), hence we obtain RSPdet

θ⋆ = 0. The condition Pp⊗2
θ⋆
(|ℓθ⋆⟨u,∇θ⋆ℓθ⋆⟩| > 0) > 0 for all u ∈ Sd−1 is implied by

Assumption 4.5, hence we refer to the proof of this result below. Using the sufficient condition derived in Appendix C.2, we
have shown that SPdet is asymptotically better than SP.

Proof of Assumption 4.4. Using that D̃(θ⋆, θ) ⊆ G1(θ
⋆), we simply need to show that D̃(θ⋆, θ) ⊆ G1(θ

⋆) ∩ D(θ⋆, θ).
Let us consider the case θ⋆ > θ. Then, we have

D̃(θ⋆, θ) =
{
(x, y) ∈ R2 | θ⋆ ∈ [min{x, y},max{x, y}] ∧ θ < (x+ y)/2 < θ⋆

}
= {(x, y) | {θ⋆, θ} ⊂ [min{x, y},max{x, y}] ∧ θ < (x+ y)/2 < θ⋆}
∪ {(x, y) | θ < min{x, y} ∧ θ⋆ ∈ ((x+ y)/2,max{x, y}]} = G1(θ

⋆) ∩ D(θ⋆, θ) .

The same result follows when θ⋆ < θ by using the same argument. In summary, we have shown that D̃(θ⋆, θ) =
G1(θ

⋆) ∩ D(θ⋆, θ) ⊆ D(θ⋆, θ).

Proof of Assumption 4.5. Using the symmetry of the Laplace distribution around its mean, we have Pp⊗2
θ⋆
(G1(θ

⋆, u)) =

Pp⊗2
θ⋆
(G1(θ

⋆, 1)) for all u ∈ {±1}. Then, by integrating for x < y, we obtain

Pp⊗2
θ⋆
(G1(θ

⋆, 1)) =
1

2b2

∫
x∈(−∞,θ⋆)

ex/b

(∫
y∈(2θ⋆−x,+∞)

e−y/bdy

)
dx =

1

2b

∫
x∈(−∞,θ⋆)

e2x−2θ⋆/bdx =
1

4
.

Proof of Assumption 4.7. Let ε > 0. Using the symmetry of the Laplace distribution around its mean, we have
Fθ⋆,u(ε) = Fθ⋆,1(ε) for all u ∈ {±1}. Similarly as above, by integrating for x < y, we obtain that

Fθ⋆,1(ε) = P(X,Y )∼p⊗2
θ⋆
(0 < Vθ⋆,1(X,Y ) ≤ ε)

=
1

2b2

∫
x∈(−∞,θ⋆)

ex/b

(∫
y∈(2θ⋆−x,2ε+2θ⋆−x)

e−y/bdy

)
dx

=
1

2b

(∫
x∈(−∞,θ⋆)

e(2x−2θ⋆)/bdx−
∫
x∈(−∞,θ⋆)

e(2x−2θ⋆−2ε)/bdx

)
=

1

4

(
1− e−2ε/b

)
.
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Therefore, we have

F ′
θ⋆,u(x) =

1

2b
e−2ε/b , F−1

θ⋆,u(x) = − b

2
log(1− 4x) and (F−1

θ⋆,u)
′′(x) =

8b

(1− 4x)2
.

Then, we obtain F ′
θ⋆,u(0) =

1
2b and we can take xθ⋆,u = 1/8 and Mθ⋆,u = 32b.

Proof of Assumption 4.2. Let ε = |θ⋆ − θ| and u = sign(θ⋆ − θ). Using the above computation, we have

Pp⊗2
θ⋆

(D(θ⋆, θ)) ≥ Pp⊗2
θ⋆

(
D̃(θ⋆, θ⋆ + εu)

)
≥ Pp⊗2

θ⋆

(
D̃(θ⋆, θ⋆ + εu) ∩ G1(θ

⋆, u)
)
= P(X,Y )∼p⊗2

θ⋆
(0 < Vθ⋆,u(X,Y ) < ε)

Using the above computation, we obtain that P(X,Y )∼p⊗2
θ⋆
(0 < Vθ⋆,u(X,Y ) < ε) > 0, hence Pp⊗2

θ⋆
(D(θ⋆, θ)) > 0.

Proof of Assumption 5.2. Using that f(x) = x2 − 1 + (1 + x)e−x is positive on R+, we obtain

H2(pθ⋆ , pθ) = 1−
(
1 +

|θ⋆ − θ|
2b

)
exp

(
−|θ⋆ − θ|

2b

)
≤ (θ⋆ − θ)2

4b2
.

First, we notice that dim
(
G0(θ

⋆)∁△G0(θ)
∁
)
< 2, hence we can show that

∫
(x,y)∈G0(θ⋆)∁△G0(θ)∁

√
pθ⋆(x)pθ⋆(y)pθ(x)pθ(y)dxdy = 0 .

We consider the case θ⋆ < θ since θ⋆ > θ is done similarly as B̃C(θ⋆, θ) = B̃C(θ, θ⋆). Let ε = θ − θ⋆. By integrating for
x < y, we have

B̃C(θ⋆, θ) =
1

2b2

∫
x

ex/b
(∫

y

1 (x ≤ θ⋆ < (x+ y)/2 < θ⋆ + ε ≤ y) e−y/bdy

)
dx

+
e−(ε+θ⋆)/b

2b2

∫
x

ex/b
(∫

y

1 (y < θ⋆ + ε ∧ x ≤ θ⋆ < (x+ y)/2) dy

)
dx

+
e−ε/b

2b2

∫
x

(∫
y

1 (θ⋆ < x < y < θ⋆ + ε) dy

)
dx

+
e−θ⋆/b

2b2

∫
y

e−y/b

(∫
x

1 (θ⋆ < x ∧ (x+ y)/2 < θ⋆ + ε ≤ y) dx

)
dy

Direct computation yields

∫
x∈(θ⋆−ε,θ⋆)

ex/b

(∫
y∈(2θ⋆−x,θ⋆+ε)

1dy

)
dx =

∫
x∈(θ⋆−ε,θ⋆)

ex/b (x+ ε− θ⋆) dx = e(θ
⋆−ε)/b

∫
u∈(0,ε)

ueu/bdu ,∫
u∈(0,ε)

ueu/bdu = b
(
eε/b(ε− b) + b

)
,∫

x

(∫
y

1 (θ⋆ < x < y < θ⋆ + ε) dy

)
dx =

∫
x∈(θ⋆,θ⋆+ε)

(θ⋆ + ε− x)dx =
ε2

2
,

∫
y∈(θ⋆+ε,θ⋆+2ε)

e−y/b

(∫
x∈(θ⋆,2θ⋆+2ε−y)

1dx

)
dy =

∫
y∈(θ⋆+ε,θ⋆+2ε)

e−y/b (θ⋆ + 2ε− y) dy

= e−(θ⋆+2ε)/b

∫
u∈(0,ε)

ueu/bdu .
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Moreover, we have∫
x

ex/b
(∫

y

1 (x ≤ θ⋆ < (x+ y)/2 < θ⋆ + ε ≤ y) e−y/bdy

)
dx

=

∫
x∈(−∞,θ⋆−ε)

ex/b

(∫
y∈(2θ⋆−x,2θ⋆+2ε−x)

e−y/bdy

)
dx+

∫
x∈(θ⋆−ε,θ⋆)

ex/b

(∫
y∈(θ⋆+ε,2θ⋆+2ε−x)

e−y/bdy

)
dx

= b

∫
x∈(−∞,θ⋆−ε)

(
e−(2θ⋆−2x)/b − e−(2θ⋆+2ε−2x)/b

)
dx+ b

∫
x∈(θ⋆−ε,θ⋆)

(
e−(θ⋆+ε−x)/b − e−(2θ⋆+2ε−2x)/b

)
dx

= b

(
b

2
e−2ε/b − b

2
e−4ε/b + b

(
e−ε/b − e−2ε/b

)
+

b

2

(
e−4ε/b − e−2ε/b

))
= b2

(
e−ε/b − e−2ε/b

)
Therefore, we have

B̃C(θ⋆, θ⋆ + ε) =
1

2

(
e−ε/b − e−2ε/b

)
+

1

2b

(
e−2ε/b + e−2(θ⋆+ε)/b

)(
eε/b(ε− b) + b

)
+ e−ε/b ε2

4b2

=
1

2

(
e−ε/b − e−2ε/b

)
+

1

2

(
e−2ε/b + e−2(θ⋆+ε)/b

)(ε
b
eε/b − eε/b + 1

)
+ e−ε/b ε2

4b2

=
1

2

(
e−2(θ⋆+ε)/b − e−(2θ⋆+ε)/b

)
+

1

2

(
e−ε/b + e−(2θ⋆+ε)/b

) ε

b
+ e−ε/b ε2

4b2

=
1

2
e−ε/b

(
e−2θ⋆/b(e−ε/b − 1 + ε/b) +

ε

b
+

ε2

2b2

)
.

Then, we can conclude that

B̃C(θ⋆, θ⋆ − ε) = B̃C(θ⋆ − ε, θ⋆) =
1

2
e−ε/b

(
e−2(θ⋆−ε)/b(e−ε/b − 1 + ε/b) +

ε

b
+

ε2

2b2

)
.

Using that f(x) = 1− x+ x2/2− e−x is positive on R+, we obtain

B̃C(θ⋆, θ) ≤ |θ⋆ − θ|
2b

(
1 +

|θ⋆ − θ|
2b

(
1 + e−2min{θ⋆,θ}/b

))
.

H. Supplementary Experiments
Using the same empirical setup as in Section 6, we conduct additional experiments to support our theoretical claims for
other distributions (Appendix H.1), other estimators for Gaussian distributions based on Cn (Appendix H.2), other convex
surrogates of the 0-1 loss (Appendix H.3) or normalized/regularized versions of the logistic loss (Appendix H.4).

Reproducibility. Code for reproducing our empirical results is available at https://github.com/tml-epfl/
learning-parametric-distributions-from-samples-and-preferences. Our code is implemented in
Julia (Bezanson et al., 2017), version 1.11.5. The plots are generated with StatsPlots. The optimization problems
defining some of our estimators are solved numerically with JuMP (Lubin et al., 2023), by using the Ipopt (Wächter &
Biegler, 2006) and HiGHS (Huangfu & Hall, 2018) solvers. Other dependencies are listed in the Readme.md that provides
detailed julia instructions to reproduce our experiments, as well as a script.sh to run them all at once. Our experiments
are conducted on 12 Intel(R) Core(TM) Ultra 7 165U 4.9GHz CPU.

Gaussian distribution with known variance. For FN ,1, the SPdet and SP estimators are computed with the Ipopt
solver. For FN ,Id , the SPdet, SP, DP and WE estimators are computed with the Ipopt solver, and the AE estimator uses
the HiGHS solver.

H.1. Accelerated Rates for Other Distributions
H.1.1. LAPLACE DISTRIBUTION WITH KNOWN SCALE

Estimators. For FLap,1 (Appendix G), we have

θ̂SOn = median({Xi}i∈[n] ∪ {Yi}i∈[n]) and Cn = {θ | ∀i ∈ [n], Zi(|Yi − θ| − |Xi − θ|) ≥ 0} .
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Figure 4. Estimation errors for (a) Lap(θ⋆, 1) where θ⋆ ∼ U([1, 2]) with Nruns = 10 and (b) Rayleigh(
√
θ⋆) where θ⋆ ∼ U([1, 2]) with

Nruns = 102.

The estimators based on Cn are θ̂AE
n ∈ Cn, θ̂WE

n := argmaxθ∈Cn
|θ − θ⋆| and

θ̂DP
n = argmax

θ∈Cn

∑
i∈[n]

(|Yi − θ|+ |Xi − θ|) .

Those three estimators are computed with the Ipopt solver.

Experiments. Figure 4(a) confirms empirically the difference in estimation rate between the M-estimators (SO MLE)—
obtaining O(1/

√
n)—and our estimators based on Cn—achieving O(1/n). Moreover, AE and WE perform on par with

DP MLE.

H.1.2. RAYLEIGH DISTRIBUTION

Let σ > 0 be the scale parameter characterizing a Rayleigh distribution. In the following, let θ = − 1
2σ2 < 0 denote the

natural parameter of a Rayleigh distribution. We have Θ ⊆ R⋆
−, X = R+ and k = d = 1. The probability density function

is defined as

∀x ∈ R+, pθ(x) = exp
(
x2θ + log(x) + log(2θ)

)
.

Let θ ∈ Θ and u ∈ {±1}. It is direct to see that, for all (x, y) ∈ R2
+,

ℓθ(x, y) = log
pθ(x)

pθ(y)
= (x2 − y2)θ + log(x/y) and

dℓθ⋆

dθ⋆
(x, y) = x2 − y2 = (x− y)(x+ y) .

Therefore, we have

G0(θ
⋆) = {(x, y) ∈ R2

+ | |(x2 − y2)θ⋆ + log(x/y)| > 0} ,
G1(θ

⋆) = {(x, y) ∈ R2
+ | |x− y| > 0} ,

G1(θ
⋆, u) = {(x, y) ∈ R2

+ | u((x2 − y2)2θ⋆ + (x2 − y2) log(x/y)) < 0} ,
D(θ⋆, θ) = {(x, y) ∈ R2

+ | ((x2 − y2)θ⋆ + log(x/y))2 + (x2 − y2)(θ − θ⋆)
(
(x2 − y2)θ⋆ + log(x/y)

)
} ,

∀(x, y) ∈ G1(θ
⋆, u), Vθ⋆,u(x, y) = −u

(
θ⋆ +

1

x+ y

log(x)− log(y)

x− y

)
.

Proof that Pp⊗2
θ⋆
(G1(θ

⋆)) > 0. It is direct to see that dim(G0(θ
⋆)∁) < 2 and dim(G0(θ

⋆) \ G1(θ
⋆)) < 2. Given that p⊗2

θ⋆ is
a continuous distribution on (R+)

2, we obtain that Pp⊗2
θ⋆
(G0(θ

⋆)) = Pp⊗2
θ⋆
(G1(θ

⋆)) = 1.
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Figure 5. Estimation errors for N (θ⋆, Id) where θ⋆ ∼ U([1, 2]d) with Nruns = 102 for (a) d = 1 and (b) d = 20.

Proof of Assumption 4.4 and 4.5. Since ℓθ(x, y) = (x2 − y2)θ + log(x/y) is linear in θ, we have D(θ⋆, θ) = D̃(θ⋆, θ).
Let (X,Y ) ∼ p⊗2

θ⋆ . Then, we have

Pp⊗2
θ⋆
(G1(θ

⋆, 1)) = P(X,Y )∼p⊗2
θ⋆

(
θ⋆ <

1

X2

log(Y/X)

1− (Y/X)2

)
> 0 ,

Pp⊗2
θ⋆
(G0(θ

⋆,−1)) = P(X,Y )∼p⊗2
θ⋆

(
θ⋆ >

1

X2

log(Y/X)

1− (Y/X)2

)
> 0 .

Estimators. We have

θ̂SOn =
1

4n

∑
i∈[n]

(X2
i + Y 2

i ) and Cn = {θ | ∀i ∈ [n], Zi((X
2
i − Y 2

i )θ + log(Xi/Yi)) ≥ 0} .

The estimators based on Cn are θ̂AE
n ∈ Cn, θ̂WE

n := argmaxθ∈Cn
|θ − θ⋆|. Those two estimators are computed with the

Ipopt solver.

Experiments. Figure 4(b) confirms empirically the difference in estimation rate between the M-estimators (SO MLE)—
obtaining O(1/

√
n)—and our estimators based on Cn—achieving O(1/n). Moreover, AE and WE perform simi-

larly.

H.2. Other Estimators for Gaussian Distributions
To better understand the surprising performance of the RU estimator, we consider other estimators that disentangle the effect
of RU’s randomness versus its mean behavior.

Univariate Gaussian. The center estimator (CE) returns the center of the interval Cn. The truncated Gaussian estimator
(TrG) returns a realization from a Gaussian distribution with mean CE and variance 4/n, which is truncated to Cn. The
truncated MLE (TrMLE) returns the average of the observations ({Xi}i∈[n] ∪ {Yi}i∈[n]) ∩ Cn.

Figure 5(a) reveals that TrG performs on par with RU, yet CE and TrMLE outperform both TrG and RU. This suggests
that being far away from the boundary of Cn improves performance compared to DP that lies on the boundary of Cn (as
observed empirically). Moreover, randomization on Cn worsens performance compared to CE.

Using the derivation in the introduction on univariate Gaussian, it is coherent that CE improves on DP by a multiplicative
constant: the average of those two (non-independent) random variables decreases faster. Formally, this could be proven by
refining the proof of Lemma 4.6 to account for the property that n = Nθ⋆,−1 +Nθ⋆,1.
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Figure 6. Estimation errors as a function of d with N (θ⋆, Id) where θ⋆ ∼ U([1, 2]d), for n = 104 and Nruns = 102.

Multivariate Gaussian. For d > 1, multiple centers exist. We use the Chebyshev center estimator (CCE) of Cn.

Figures 5(b) and 6 shows that CCE outperforms AE by a constant margin. It only outperforms DP in the regime of large n
compared to d and performs worse than SO MLE for small n. Geometrically, for small n and large d, we conjecture that the
random polytope Cn is more likely to be “spiky” along some directions. Due to those distant vertices, the center would
become a worse estimator than DP, since the “average” is intuitively less robust to outliers. In contrast, DP MLE dominates
SO MLE statistically (Lemma 4.1), hence it achieves rate O(

√
d/n) when n is small compared to d.

H.3. Estimators Based on Convex Surrogate of the 0-1 Loss
While DP MLE minimizes an objective that minimizes the 0-1 loss, SP MLE minimizes an objective involving the logistic
loss fLog(x) = log(1 + exp(−x)). As in Tang et al. (2024b), we can generalize this approach to f any convex surrogate of
the 0-1 loss, see Figure 7(a). For example, we consider the Hinge loss (Hin), i.e., fHin(x) := max{0, 1− x}, the square loss
(Squ), i.e., fSqu(x) := (1− x)2, the truncated square loss (TrS), i.e., fTrS(x) := max{0, 1− x}2, the Savage loss (Sav), i.e.,
fSav(x) := (1 + exp(x))−2, and the exponential loss (Exp), i.e., fExp(x) := exp(−x).

Given (Xi, Yi, Zi)i∈[n] ∼ q
⊗[n]
θ⋆,hdet

and a loss f , we consider the estimator

θ̂fn ∈ argmin
θ∈Θ

LSO
n (θ) +

∑
i∈[n]

f(Ziℓθ(Xi, Yi))

 .

All those estimators are computed with the Ipopt solver.

Figure 7(b) shows that all estimators perform on par with SP MLE, i.e., the one based on the logistic loss.

H.4. Impact of Normalization and Regularization
The estimator defined in Appendix H.3 can be further generalized by introducing a regularization parameter λ ≥ 0 and
a normalization parameter β > 0, see, e.g., Gorbatovski et al. (2025). Given (Xi, Yi, Zi)i∈[n] ∼ q

⊗[n]
θ⋆,hdet

, a loss f and
regularization/normalization (λ, β), we consider the estimator

θ̂f,λ,βn ∈ argmin
θ∈Θ

LSO
n (θ) + λ

∑
i∈[n]

f(βZiℓθ(Xi, Yi))

 .

While similar modifications could be made for other losses, we focus on the logistic loss fLog(x) = log(1 + exp(−x)). In
particular, we recover SP MLE by taking λ = β = 1.

Figures 8(a) and (b) showcase the “mild” impact of normalization and regularization.
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Figure 7. (a) Figure 2 in Tang et al. (2024b): notable examples of binary classification loss functions. (b) Estimation errors when
minimizing the empirical losses for N (θ⋆, 1) where θ⋆ ∼ U([1, 2]) with Nruns = 10.

Figure 8. Estimation errors when minimizing the empirical losses for N (θ⋆, 1) where θ⋆ ∼ U([1, 2]) with Nruns = 102 when (a)
normalizing by β with regularization λ = 1 and (b) regularizing by λ with normalization β = 1.
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