Dataset Distillation for Pre-Trained
Self-Supervised Vision Models

George Cazenavette Antonio Torralba Vincent Sitzmann
Massachusetts Institute of Technology

georgecazenavette.github.io/linear-gm
Abstract

The task of dataset distillation aims to find a small set of synthetic images such
that training a model on them reproduces the performance of the same model
trained on a much larger dataset of real samples. Existing distillation methods
focus on synthesizing datasets that enable training randomly initialized models.
In contrast, state-of-the-art vision approaches are increasingly building on large,
pre-trained self-supervised models rather than training from scratch. In this paper,
we investigate the problem of distilling datasets that enable us to optimally train
linear probes on top of such large, pre-trained vision models. We introduce a
method of dataset distillation for this task called Linear Gradient Matching that
optimizes the synthetic images such that, when passed through a pre-trained feature
extractor, they induce gradients in the linear classifier similar to those produced
by the real data. Our method yields synthetic data that outperform all real-image
baselines and, remarkably, generalize across pre-trained vision models, enabling
us, for instance, to train a linear CLIP probe that performs competitively using a
dataset distilled via a DINO backbone. Further, we show that our distilled datasets
are exceptionally effective for fine-grained classification and provide a valuable
tool for model interpretability, predicting, among other things, how similar two
models’ embedding spaces are under the platonic representation hypothesis or
whether a model is sensitive to spurious correlations in adversarial datasets.

1 Introduction

The task of Dataset Distillation involves the synthesis of a small set of synthetic samples such that a
model trained from scratch on this synthetic set will achieve test-time performance comparable to
that of a model trained on the full real dataset. Since this problem’s first introduction and proposed
solution in the self-titled paper [47], many new methods [6, 27, 51, 54-56] and extensions thereof [7,
11, 16, 25, 28, 40, 46, 53] have made strides towards the lofty goal of learning a high-quality model
from just a handful of synthetic images.

Meanwhile, computer vision has increasingly adopted a paradigm of using the representations of large,
pre-trained self-supervised vision models for downstream tasks, either via fine-tuning or by using these
models as feature extraction backbones. Given this trend, in this work, we explore dataset distillation
in the regime of training models on fop of features extracted by pre-trained vision foundation models.
Specifically, we study linear classification on top of a pre-trained feature representation.

In our new method, Linear Gradient Matching, we distill synthetic datasets by optimizing such
that their representations extracted by pre-trained feature extractors induce gradients in a linear
classifier similar to those obtained from real images. We find that a single synthetic image per class
suffices to train linear classifiers to competitive performance across a wide variety of large vision

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

http://georgecazenavette.github.io/linear-gm

Banana

a -

EVA-02

Balloon Bookcase

Castle French Horn Church Blue Jeans Kimono

MoC_o-y3

|
Espresso School Bus

Figure 1: ImageNet-1k Distilled for Self-Supervised Models: Using our method of Linear Gradient Matching,
we distill vision datasets to just one synthetic image per class using different pre-trained self-supervised backbone
models. These learned images can then be used to train linear probes that achieve high accuracy on unseen test
data, outperforming all real-image baselines. Furthermore, each backbone model seems to yield its own “style” of
distilled image, giving insights into the aspects on which these models tend to focus (structure, texture, color, etc.).

model backbones, outperforming all real-image baselines. Figure 1 shows samples distilled from
ImageNet-1k [12] with our method using various self-supervised feature extractors.

Motivated by recent hypotheses that different large models converge to similar representations
even when trained on different modalities [20], we investigate whether distilled datasets transfer
across architectures. We find that a gradient matching objective alone leads to images that are
overfit to a particular model architecture and do not yield competitive performance across founda-
tion models. However, we overcome this issue through differentiable augmentations and a simple
re-parameterization of images via a multi-scale pyramid. Compared to those retrieved via naive
pixel optimization, the resulting distilled images not only look remarkably realistic but also readily
transfer across foundation models, such that a dataset distilled using, for example, a DINO backbone
yields competitive performance when used to train a linear classifier on top of a different model’s
representation, such as CLIP’s.

We also observe that our distilled datasets offer several interesting interpretability results, including
predicting alignment between different models, explaining susceptibility (or robustness) to spurious
correlations in adversarial datasets, and highlighting out-of-distribution capabilities.

Extensive experiments and ablations validate our Linear Gradient Matching method’s effectiveness
on this new dataset distillation task and highlight its potential as an interpretability tool.

2 Related Work

Dataset Distillation. As dataset and model sizes continue to grow, so has the interest in more
efficient forms of learning. To this end, researchers have worked towards methods of learning
optimal training data such that one could train an effective model from scratch using as few
samples as possible. One such solution to this problem was the initial proposal of Dataset
Distillation [47] in which the model’s final performance was expressed as a function of the synthetic
training data that was optimized end-to-end by back-propagating through many inner training
iterations. Follow-up works introduced proxy losses and learned synthetic images that matched
gradients [55], feature distributions [54], training trajectories [6] and more [27, 51, 56]. Some
works extend dataset distillation to large models [50, 51], but these methods do not excel in the
ultra-small data regime, i.e., one image per class. For such settings, Trajectory Matching [6] and

Meta-Gradient === = ==p
Gradient ===)
Forward =

agreaﬂ
oW

Cosine
Distance

Figure 2: Linear Gradient Matching for Pre-Trained Vision Models: Given a pre-trained self-supervised
vision model (¢), we perform a distillation step by first passing a batch of real and synthetic data through ¢
and a randomly-initialized linear classifier (W) to get the real and synthetic classification losses ({rcat and £gyn).
Our meta loss (Lmeta) is then defined as the cosine distance between the gradients of these classification losses
(Yreat and £syy) with respect to the random linear probe (W). This meta loss is then back-propagated through the ini-
tial synthetic gradient calculation and used to update our synthetic images. This technique allows us to distill large
datasets to just a single image per class while still achieving high performance when training new linear probes.

its modifications [7, 11, 16, 32, 40] still reign supreme. However, this method fails to scale up to
large models due to memory constraints and instability in the bi-level optimization.

This work introduces a new problem in the space of dataset distillation: learning synthetic images
for the purpose of training linear probes on top of pre-trained self-supervised feature extractors
instead of training randomly initialized models from scratch. Our proposed solution, Linear Gradient
Matching, takes inspiration from prior work on gradient matching [55] and trajectory matching [6]
but only considers gradients of the linear classifier as opposed to the entire model.

Self-Supervised Learning. Given that the overwhelming majority of available visual data lacks
any useful labels, Self-Supervised Learning has become the defacto method of pre-training neural
networks to be later used for down-stream tasks. In recent years, several different paradigms of
self-supervised training have emerged, including contrastive learners [5, 8—10, 18, 31], masked
auto-encoders [17, 37], vision-language models [34, 41, 44, 52], and hybrid approaches [13, 14].
Despite the various training methods, researchers have noticed that these different models tend
to learn similar representations, even across different modalities, and dubbed this observation the
“Platonic Representation Hypothesis™ [20].

In this work, we focus on distilling datasets using four pre-trained self-supervised models in
particular: CLIP [34], DINO-v2 [31], EVA-02 [13], and MoCo-v3 [10]. Since our feature extractors
were pre-trained in a purely self-supervised manner, our linear probes still only see a single labeled
sample per class while achieving competitive performance.

3 Method

Dataset Distillation aims to synthesize a tiny synthetic dataset of (typically) images that are optimal
for training. Unlike previous works designed to produce synthetic samples for training new models
from scratch, our new method, Linear Gradient Matching, aims to distill datasets for the purpose of
training linear classifiers in the embedding space of pre-trained feature extractors.

3.1 Linear Gradient Matching

Formally, given a pre-trained self-supervised feature extractor, ¢, along with a real dataset Di¢, of
images X, and labels Y., we wish to distill a small synthetic set Dy, = {Xsyn, Ysyn} such that
Dyyy can be used to train a linear classifier in feature extractor ¢’s embedding space that will have
similar test-time performance to one trained on Dyey.

Inspired by previous works that aimed to match single-step gradients [55] or multi-step trajectories [6],
our solution is designed to ensure that training on our synthetic dataset results in similar updates as
training on real data. In other words, the gradients of the classification loss using synthetic images
(with respect to the linear classifier) should match those using real images.

To achieve this, we sample a random linear classifier matrix W ~ A/(0, 1)*/ at each distillation step
where c is the number of classes and f is the feature extractor ¢’s output dimension. After passing
the real and synthetic images through the feature extractor ¢ and linear classifier 1/, we find the real
and synthetic classification losses where CE is the multiclass cross-entropy loss:

lreal = CE(W¢(Xreal)§ Y;eal)

1
Esyn = CE(W¢(Xsyn); Kyn) ()

We then take the gradients of these classification losses with respect to the linear classifier I/, and
our meta loss is then the cosine distance between them:

_ 3} aEreal 8€syn
Loeta = 1 — cos (VCC (W) , Vec (W)) 2)

This meta loss is then back-propagated through the inner gradient computation, linear classifier, and
feature extractor to find 0L meta/ 0 Xsyn and update our synthetic images. This process is repeated until
distillation is complete. An outline of this Linear Gradient Matching method can be found in Figure 2.

3.2 Implicit Regularization

As noted in prior works [6, 7, 55], Dataset Distillation tends to yield synthetic images that are overfit
to the model used to perform the distillation. This issue manifests in what appear like adversarial
patterns and inhibit the images’ usefulness when used to train other models.

One recent work [15] proposed using a pyramid representation rather than naive pixels for image opti-
mization problems. While the authors used this technique for CLIP inversion, we find it works remark-
ably well for our Dataset Distillation task. Rather than simply optimizing pixels, each synthetic sample
is instead stored as a set of images of different resolutions p = {1 x 1,2 x 2,4 x 4,...,256 x 256}.

Before each optimization step, the composite images X are “rendered” by bilinearly upsampling
each level of the pyramids P = {P.|r € p} to the max resolution (256) and adding them together
before smoothly clamping the pixel values with a sigmoid function:

X = sigmoid (Z resizezg)ﬁ(P,«)) 3)

rep

Furthermore, we progressively optimize our pyramid, starting with just the lowest-resolution com-
ponent and periodically adding more tiers during distillation. The effects of using the pyramid
representation are quite dramatic, as seen in Figure 5.

As an additional step to combat overfitting, we also learn our distilled images in a decorrelated color
space, as described in prior feature visualization work [30]. In short, we apply a fixed linear transform
to the channels of our images after the pyramid reconstruction that brings them back into the standard
correlated color space. This helps ward off any potential color-based biases induced by the model
used during distillation.

3.3 Differentiable Augmentations

As first noted in the work on Differentiable Siamese Augmentation [53], applying differentiable
augmentations to the synthetic images during the distillation process greatly improves the quality of
the distilled data. As such, we apply horizontal flipping, random resized cropping, and Gaussian
noising to our distilled images at each step. In practice, we actually apply multiple rounds of this
augmentation to different copies of the synthetic data at each iteration and concatenate the results.
We find this improves distillation since the optimization now encourages all these augmented copies
together to be the ideal training set rather than attempting to fit all pertinent information into a single
augmented version of the images.

Train Set ImageNet-100 ImageNet-1k
(1 Img/Cls)
CLIP DINO-v2 EVA-02 MoCo-v3 Average CLIP DINO-v2 EVA-02 MoCo-v3 Average

Distilled (Ours) 84.9 91.5 89.0 83.4 87.2 63.0 75.0 70.3 63.2 67.9
Neighbors 67.8 86.0 78.8 77.1 774 38.8 67.7 49.9 56.4 53.2
Centroids 77.1 86.9 80.9 71.7 80.6 53.9 69.5 58.1 574 59.7
Random 56.6 74.8 64.5 61.4 64.3 31.7 50.3 37.7 38.8 39.6

Full Dataset ~ 92.5 95.2 94.1 89.4 92.8 78.7 83.0 81.7 76.5 80.0

Table 1: Linear Probes with One Image-per-Class: We compare our method (Distilled) to several real-image
baselines on ImageNet-100 (left) and ImageNet-1k (right). Images are distilled (or selected) using the given
model in each column. “Neighbors” are the real images with embeddings closest to those of our distilled images.
“Centroids” are the real images with embedding closest to the mean of each class. “Random” is a random
selection of real images. Our method outperforms each baseline across all models and both datasets.

Distill ImageNet-100 ImageNet-1k
Model

oce CLIP DINO-v2 EVA-02 MoCo-v3 Average CLIP DINO-v2 EVA-02 MoCo-v3 Average
CLIP BAI0E011) 80.804 1831802 61.6:02 | 77.8402 630400 56.4+0.1 59.7+0.1 395500 54.7+0.1

DINO-v2 77.0£0.1 91.5£0.1 86.8+0.1 78.8+0.1 83.5+0.1 54.1+0.0 75.0£0.1 65.4+0.1 60.0£0.0 63.7+0.1
EVA-02 75.5+02 86.4+0.1 89.0£0.0 67.7+0.1 79.7£0.1 55.5+0.1 65.94+0.1 70.3+£0.1 51.840.0 60.9+0.1
MoCo-v3 65.6+0.1 | 86.6+0.1 82.3+£0.2 83.4£0.1 79.5+0.1 41.4+0.0 66.9£0.1 57.2+0.1 63.2+£0.0 57.2+0.1

Full Dataset 92.5+0.0 95.24+0.1 94.1+0.1 89.4+0.3 92.84+0.1 78.7+0.0 83.0+0.0 81.7+0.1 76.5+0.0 80.0+0.0

Table 2: Cross-Model Performance of Distilled Datasets: Here, we see ImageNet-100 (left) and ImageNet-1k
(right) distilled using a given model and then evaluated across all models. We see that images distilled from DINO
have the best average cross-model performance for both datasets. The distilled datasets generalize well, aside from
an outlier pair of CLIP and MoCo. Columns are colored based on percentage of the “Full Dataset” benchmark.

4 Experiments

We evaluate our method on various datasets, including ImageNet-1k [12] and ImageNet-100 [42] for
our primary results, Spawrious [26] and Waterbirds [38] for a study on adversarial datasets, Stanford
Dogs [21] and CUB-200-2011 [45] for fine-grained visual classification, and ArtBench [24] to test
the method’s out-of-distribution capabilities. The majority of our experiments use four pre-trained
self-supervised feature extractors as backbones: CLIP [34], DINO-v2 [31], EVA-02 [14], and MoCo-
v3 [10]. In all our experiments, we distill the given dataset for 5000 iterations before training linear
probes to convergence on the resulting synthetic images. All experiments are conducted at 224 x 224
resolution and use the “ViT-B” version of the given model. All distilled datasets by default use 10
sets of augmentations per batch except for ImageNet-1k, for which only 3 sets of augmentations are
used due to compute constraints. For further implementation details, please see the Appendix.

Evaluation and Baselines. To measure our method’s performance on a given feature extractor,
we randomly initialize a linear classifier and optimize it to convergence using the distilled images
before evaluating on the test set. The same procedure is used to evaluate real-image baselines. In
prior works on self-supervised learning [31], the evaluation consists of a grid search across a number
of hyper-parameters, including from which layer(s) the features used to train the linear probe should
be taken from. For simplicity, we instead use only the features from the backbone’s last layer and
keep the training hyper-parameters consistent across the training of all linear probes.

We compare our method against three real-image baselines. For the Neighbors baseline, we choose
the real image for each class whose distill-model embedding is closest to that of the corresponding
synthetic image produced by our method. Similarly, for Centroids, we take the real training image
with embedding closest to the mean embedding for each class. Lastly, for Random, we simply select
a random image for each class and average the performance over 10 different seeds.

ImageNet-100 Distilled with DINO-v2 ImageNet-Fruits: DINO-v2 Embeddings

301 * Distilled
90 w B Centroid
__________ - 201
3\ 85 m-TTTT Eval Model
8 | - —-@- CLIP 104
g m-- DINO-v2 «
5] - EVA-02 @)
< 80 —®- MoCo-v3 Ay 01
< *
=
75 - 1 0 1
O
—20{
70
2 4 6 8 10 =30 -20 -10 0 10 20 30
Augmentations per Batch PC1

Figure 3: Performing more rounds of differentiable Figure 4: We distill ImageNet-Fruits and observe the
augmentation on the synthetic data during each distil- PCA of the training image embeddings. Each color
lation step improves both the single-model and cross- represents a class. Note that the distilled images typi-
model performance of the distilled images. cally lie on the edge or outside of their class’s cluster.

4.1 Linear Gradient Matching Out-Performs Real-Image Baselines

First, we evaluate our method on the original dataset distillation task: using a backbone model
to distill a dataset and then training a model of the same architecture on the resulting synthetic
images. Note that this setting differs from previous dataset distillation works in that we use a
pre-trained backbone distillation and reuse that backbone during evaluation by training a new
randomly-initialized linear classifier on top of it.

In Table 1, we see results for the single-model setting when distilling ImageNet-100 and ImageNet- 1k.
Across both datasets and all four models, our method convincingly out-performs all real-image
baselines. In particular, our method enables a linear probe trained on top of DINO-v2 [31] to reach
75% test accuracy on ImageNet-1k while only ever having seen a single labeled image per class.
In comparison, training on the full dataset of 1.3 million real images reaches just 7 points higher at
83%. Similar results are seen for the other models and datasets as well.

In Figure 4 we visualize the embeddings of the distilled images relative to the real training data
by plotting the 2D principal component analysis (PCA). For the sake of visual clarity, we use
ImageNet-Fruits [6, 7], a toy dataset of 10 fruit classes from ImageNet-1k. The embeddings in this
figure are from the same model used to distill the dataset (DINO-v2). We observe that the embeddings
of the distilled images tend to lie far away from their respective class’s centroid, often falling on
the outside edge of the class’s distribution. We hypothesize that this is due in-part to the distillation
embedding highly-discriminative features within the synthetic images.

4.2 Distilled Images Generalize Across Models

Next, we investigate the cross-model generalization capabilities of our distilled datasets. That is, we
first distill a dataset using one backbone model (e.g., CLIP) and then evaluate the synthetic images’ per-
formance on the other models (DINO-v2, EVA-02, MoCo-v3) that were not seen during distillation.

We visualize these results in Table 2. The diagonal elements are equivalent to the first row of Table |
and represent single-model performance while the off-diagonals show cross-model capabilities. We
see that the distilled datasets tend to generalize well to unseen models save for an outlier between
CLIP and Moco, possibly due to poor model alignment (Section 4.6). We also observe that the highest-
accuracy model on the full dataset (DINO) also has the distilled dataset with the best cross-model per-
formance, suggesting that a model’s quality affects the generalization capabilities of its distilled data.

4.3 Regularization and Augmentation Enable High Performance

In this section, we quantitatively (Figure 3) and qualitatively (Table 5) analyze the effects of the
various regularization and augmentation techniques included in our distillation process. Table 3 shows
the effects of ablating various components when evaluating using the same model used to distill (top)

Train Set ImageNet-100
(1 Img/Cls)

CLIP DINO-v2 EVA-02 MoCo-v3 Average =
O
§ Full (Ours) 84.9-+0.1 91.5--0.1 89.0--0.0 83.4+0.1 87.2+0.1
M -Decorrelate 82.6+0.1 91.3+0.2 89.0+0.1 83.240.1 86.5+0.1 |
2 -Pyramid 83.5+02 91.0+03 87.940.1 80.5+0.1 85.7+0.1 |
S -Augment 58.4:02 82.64104 74.0-03 59.6-0.5 68.6-0.4 Z
a
2 Full (Ours) 75.4+0.3 80.9+0.1 76.6--0.1 78.2+0.1 77.8+0.2
8 -Decorrelate 69.4--0.4 79.5+0.1 76.8+0.1 79.9--0.2 76.4+0.2 of
go-Pyramid 57.3:02 74.5102 68.5:02 68.1402 67.1002 4 3
< -Augment 353404 31.6+02 34.3+05 322405 33.3+04 5 :

Full Dataset 92.5+0.0 95.2+0.1 94.1+0.1 89.4+0.3 92.8+0.1

Table 3: Evaluating Ablations: While all three components
provide improvements, the Augmentation has the most dra- = 4
matic effect, especially in the cross-model setting. Likewise, Ours -Decorrelate -Pyramid

the Pyramid optimization seems to matter more in the cross- Figure 5: Visualizing Ablations: Removing
model setting than the same-model setting by mitigating over- various components of our pipeline causes
fitting to the model used during distillation. visual degradation in the distilled images.

MoCo-v3

and averaging performances across the other three models (bottom). Figure 5 visualizes the distilled
Pineapple class from ImageNet-100 under the same ablations.

Color Decorrelation Inspired by prior work in feature visualization [30] and motivated by a desire
to spare our synthetic images from any color-related biases imposed by the model used to distill
them, we apply a color decorrelation technique to our distillation process. In Figure 5, we see that the
images distilled without the color decorrelation (column 2) look less realistic than those using our
full method (column 1); they are over saturated and contain high levels of incorrect colors (blue in
this example). Quantitatively, however, this component has the lowest effect of the three analyzed in
this section. While generally slightly helpful, it only offers a large improvement in the cross-model
setting when distilling using CLIP.

Pyramid Representation It has been shown in prior work [7] that pixel-based optimization for
dataset distillation does not scale well to higher resolutions; the synthetic images tend to become
riddled with high-frequency patterns that inhibit their usefulness as training data. As discussed in
Section 3.2, we instead adopt a pyramid representation for the distillation process. In Figure 5, we
see samples distilled from ImageNet-100 optimized using either the pyramid (column 1) or naive
pixel representation (column 3). We encourage the reader to zoom in and observe the high-frequency
patterns and overall lack of coherence in the pixel-based images. In Table 3, we see that the images
distilled without the pyramid representation do indeed make far worse training data in the cross-model
setting, causing the model to overfit to the high-frequency patterns.

Differentiable Augmentations Since its first proposal [53], the incorporation of differentiable
augmentations during the distillation process has proven critical to the efficacy of the synthesized
images as training data. As such, we also perform differentiable augmentations in this work, as
described in Section 3.3. In Figure 5, we see samples from ImageNet-100 distilled both with (col-
umn 1) and without (column 4) augmentations. Visually, we observe that the images distilled without
augmentations lack much meaningful structure and appear to simply be blobs of color with just a hint
of geometry. In Table 3, we see that the lack of augmentations severely limits the synthetic images’
usefulness as training data, even when evaluation on the same model used to distill.

As earlier discussed, we also apply multiple rounds of augmentations at each distillation step and
concatenate the multiple augmented versions together to form the synthetic batch. Figure 3 illustrates
how the number of augmentations per batch affects both the single-model and cross-model perfor-
mance of the distilled data. Specifically, we see that when distilling ImageNet-100 with DINO-v2,
raising the number of augmentations per batch from 1 to 5 and eventually 10 steadily increases the
distilled images’ effectiveness as training data both on the backbone model used to distill (DINO-v2)
and the other unseen models (CLIP, EVA-02, MoCo-v3).

Train

_ Test
MoCo-v3 DINO-v2

Bulldog Corgi Dachshund Labrador Bulldog Dachshund Labrador
Real Images Distilled Images

Figure 6: Distilling Datasets with Spurious Correlations: The 4-class “Spawrious” dataset contains spurious
background correlations in the training set that are then subverted in the test set (left). A DINO linear
probe trained on the full training set performs well, reaching 78% test accuracy, while a MoCo probe fails
catastrophically, only reaching 36%. The distilled images (right) hint as to why: those distilled with DINO-v2
still contain mostly decipherable dog breeds while the MoCo-v3 counterparts focus almost entirely on the
background environments. These images likely reflect the same biases held by the models used to distill them.

Train Set Spawrious WaterBirds
(1 Img/Cls)
CLIP DINO-v2 EVA-02 MoCo-v3 Average CLIP DINO-v2 EVA-02 MoCo-v3 Average

Distilled (Ours) 43.1-+6.4 80.8+3.1 36.5+3.1 32.7+2.3 48.3+37 77.9+0.2 82.1+29 78.0+0.8 77.8+0.0 79.0-+-1.0
Neighbors 41.7+46 76.9+1.2 40.7+2.7 33.0+-3.4 48.14+3.0 74.6+6.5 67.3+58 743433 4524114 6534638
Centroids 44.8+5.0 80.2+2.7 38.1+3.3 30.5+1.6 48.4+-32 69.8+8.6 65.7+34 64.6+79 62.0+52 65.5+63
Random 46.2+-44 68.1+8.1 33.3+53 31.8+25 44.94+51 71.9+45 57.1+86 59.8+133 67.4+57 64.0+8.0

Full Dataset 50.4+03 78.1+0.1 50.14+04 35.8+0.0 53.6+0.2 86.0-0.1 95.5+0.1 90.4+02 74.3+0.1 86.5-+0.1

Table 4: Performance on Datasets with Spurious Background Correlations: The Spawrious (left) and Water-
birds (right) training sets contain intentionally adversarial background correlations that are then subverted in the
test sets. On Spawrious, our method no longer out-performs the real-image baselines as with the standard datasets
(Table 1). This is perhaps due to the synthetic data adopting the models’ biases and overfitting to the backgrounds
on the training sets. We also see interesting interpretability results in the images themselves (Figure 6).

4.4 Distilling Adversarial Datasets Reveals Interpretable Model Weaknesses

The “Spawrious” dataset [26] consists of four classes of dog breeds and is designed to evaluate a
model’s ability to focus on the relevant content of an image rather than spurious correlations. In the
training data, each breed is paired with its own unique environment: (Bulldog, Forest), (Corgi, Desert),
(Dachshund, Mountain), and (Labrador, Snow). However, in the test set, the environments are inten-
tionally different: (Bulldog, Mountain), (Corgi, Forest), (Dachshund, Snow), and (Labrador, Desert).
We also experiment with a similarly constructed data, “Waterbirds™ [38] consisting of just two classes
(land birds and water birds) with similarly spurious background correlations.

Quantitative results on these datasets are shown in Table 4. Our method generally outperforms the
real-image baselines, but to a significantly smaller extent than on the standard datasets (Table 1). We
also observe that when training on the full Spawrious dataset, DINO-v2 [31] far out-performs the
rest of the models (81% test accuracy) with MoCo-v3 [10] doing dramatically worse (37%), both to
degrees far greater than seen when training on standard datasets (as in Table 1).

By distilling Spawrious with our method, we gain potential insights as to why we might see such
dramatic results. As seen in Figure 6, the images distilled with DINO-v2 contain clear (albeit
abstract) depictions of the correct dog breeds. On the other hand, those yielded by MoCo-v3 are
almost entirely indecipherable, with the only clear portions being the spurious backgrounds from the
training set. This interpretability result gives a clue towards explaining MoCo-v3’s poor performance
on this dataset; the model clearly seems to focus on the spurious background correlations present
in the training set rather than the relevant subjects, causing catastrophic overfitting.

4.5 Distillation Excels in Fine-Grained Visual Classification

While computer vision methods are typically benchmarked against datasets containing broad cate-
gories of objects, such as ImageNet [12], much research also focuses on the task of Fine-Grained
Visual Classification (FGVC) wherein datasets consist of many closely related classes that can be

- ¢ s 7 7wy AT
o bl ok

= 0 2T N\ . e 2 <
Harris Sparrow Lincoln Sparrow Song Sparrow Tree Sparrow ~ Vesper Sparrow

, ‘3 A i

(18 i L
Baird Sparrow Brewer Sparrow House Sparrow Field Sparrow

Fox Sparrow
Figure 7: Distilling Fine-Grained Datasets: Our distillation method captures the details necessary to teach a
classifier to distinguish between highly similar classes. Pictured above are just 10 of the 120 classes distilled
from the Stanford Dogs [21] dataset (top) and 10 of the 200 classes distilled from Caltech-UCSD Birds [45]
using DINO-v2. For the full distilled datasets, please see the Appendix or our project page.

Train Set Stanford Dogs CUB-2011
(1 Img/Cls)
CLIP DINO-v2 EVA-02 MoCo-v3 Average CLIP DINO-v2 EVA-02 MoCo-v3 Average

Distilled (Ours) 52.1+0.2 83.0--0.1 74.8+0.1 69.6:-0.2 69.9-0.2 62.2:0.2 86.0--0.1 74.1+-0.2 42,5402 66.2-+0.2
Neighbors 334401 71.3+02 58.5+02 56.3+0.1 54.9+02 39.4+0.1 76.9+0.0 52.6+0.3 28.1+0.0 49.2+0.1
Centroids 43.3+0.1 73.0+02 60.9+02 552+02 58.1+02 54.3+02 78.5+02 59.9+03 30.2+0.1 55.7+02
Random 233+15 51.9+18 383418 36.6+14 375416 37.5+16 644+15 443415 19.1+05 413413

Full Dataset 76.9+0.1 88.6-+0.1 82.6+0.1 72.3+05 80.1+02 77.5+0.7 90.2+0.2 84.0+0.3 43.7+08 73.8+0.5

Table 5: Performance on Fine-Grained Datasets: Our distillation method captures the most discriminative
aspects of each class, thereby enabling a down-stream classifier to correctly identify samples from datasets
where all classes are closely related. In particular, the performance gap between our method and the real-image
baselines is even higher on these fine-grained datasets (Stanford Dogs [21] and CUB-200-2011 [45]) than on the
standard ImageNet benchmarks.

challenging for even human experts to distinguish. Such datasets require models to learn fine-grained
features in order to identify the subtle differences between each class.

We apply our linear method to two common FGVC datasets: Stanford Dogs [21] and Caltech-UCSD
Birds-200-2011 [45]. Samples of these datasets distilled using DINO-v2 can be seen in Figure 7. As
seen in Table 5, in this more challenging fine-grained setting, our method outperforms the real-image
baselines to a significantly higher degree than on the standard ImageNet benchmarks (Table 1). It
seems as though the distillation process’s ability to store didactic information in a single image
per class is even more relevant in this setting since any one real image is less likely to contain the
information necessary to distinguish its entire respective class from the other highly similar classes.

4.6 Cross-Model Performance Predicts Model Alignment

Recent research has suggested an “alignment” of various self-supervised models despite large
differences in their training methods or even data modalities. The notion that all these models are
indeed converging to a unified embedding space has been dubbed the “Platonic Representation
Hypothesis” [20]. While the representations of today’s models are not yet perfectly synchronized, it
is still of interest to measure the degree to which they are aligned.

In the hypothesis’s titular work, the authors introduce a method of measuring the alignment of two
models called “mutual £ nearest neighbors.” In short, this method finds each sample’s k nearest
neighbors in the embedding spaces of each model and then computes the fraction of neighbors that
are shared between the two.

When we distill images with a given model A and measure the 1 nearest neighbor performance
(since there is just one image per class) on a different model B, we find that the normalized test
accuracy is strongly correlated with the mutual k-nn alignment between models A and B, as seen
in Table 6. This is an interesting interpretability result showing that the cross-model performance of
a distilled dataset highly depends on the alignment between the two models. Given this dependency,
our distillation method then acts as a method of visualizing how well these models align by backing
the discrepancies in the embedding space out to image space. For example, given the two least
aligned models (CLIP and MoCo), we can see in Figure | that even for different sets of classes, the
two models clearly distill very different styles of images, alluding towards their misalignment.

http://georgecazenavette.github.io/linear-gm

Distill Normalized k-NN Accuracy Source Model Alignment

Model Model

CLIP DINO-v2 EVA-02 MoCo-v3 CLIP DINO-v2 EVA-02 MoCo-v3
CLIP CLIP 0.18
DINO-v2 DINO-v2 0.21 0.31
EVA-02 EVA-02 0.26
MoCo-v3 MoCo-v3 0.18

Table 6: Distilled datasets predict model alignment. We distill ImageNet-1k and find the synthetic data’s
cross-model performance (left) by evaluating on a model other than the one used during distillation. We find that
this cross-model performance correlates well with the alignment between models’ embedding spaces (right).
Note the similarity of the per-row trends between the two tables. Rows are colored from - to lowest.

Neighbors Distilled

.lulwr;l?lu ‘ i = s g = i
Renaissance Romanticism Surrealism Ukiyo-e

2@l B N p
Art Nouveau Baroque Expressionism Impressionism Post-Impres. Realism

Figure 8: Distilling Out-of-Distribution Datasets: Despite only ever being trained on the real-world images
in ImageNet-1k [12], our method can still use DINO-v1 [5] to distill out-of-distribution datasets such as
ArtBench [24] that have no overlapping content. We see that the distillation is not simply “copying” samples
from the dataset by comparing to the nearest real neighbor in the model’s embedding space and observing the
stark differences. This interpretability insight granted by our method highlights DINO’s remarkable ability to
generalize beyond its training distribution.

4.7 Self-Supervised Backbones can Distill Out-of-Distribution Datasets

Note that while we have thus far been discussing DINO-v2, this section in particular will reference
DINO-v1 since this version’s training set is open-sourced. Since DINO-v1 [5] was only trained on
ImageNet [12], a dataset of nearly all “real-world” images, we can easily test its ability to distill an
out-of-distribution dataset such as ArtBench [24] that consists of 10 classes of art styles. In Figure 8,
we visualize the distilled images (top) as well as the nearest neighbor in DINO-v1’s embedding
space. Surprisingly, despite having previously only ever seen “real-world” images from ImageNet,
DINO-v1 is still able to effectively distill ArtBench into a single image per class. Furthermore, we
confirm that the distilling is not simply “copying” real images from the training set by observing
the stark differences between the synthetic images and their nearest neighbors. This is especially
apparent in the cases of Realism, Renaissance, and Romanticism where the nearest neighbors are
black and white while the distilled images are colorful.

5 Conclusion

In this work, we introduce a new task in the area of Dataset Distillation: learning a tiny set of synthetic
images designed to train linear probes on top of pre-trained self-supervised vision models. Our
proposed solution, Linear Gradient Matching, optimizes a meta gradient objective to ensure that our
synthetic images induce training updates similar to those obtained from the real data. Quantitatively,
our method outperforms all baselines, enabling, for example, a DINO-v2 linear probe to reach 75%
test accuracy on ImageNet-1k while only having ever seen one labeled image per class.

We also showcase the importance of secondary aspects of our Linear Gradient Matching method, such
as the pyramid representation and differentiable augmentations, and highlight their importance in
learning highly efficacious distilled datasets. Furthermore, we evaluate our method on challenging fine-
grained datasets and show that it out-performs the real-image baselines by an even larger margin than
on the standard ImageNet benchmarks. Lastly, our method yields several interesting interpretability
results, such as giving insights into how these pre-trained models “see,” predicting how well different
models align, or elucidating a model’s ability to generalize beyond its training distribution.

We hope our work brings to light the interesting set of problems posed by this new task and inspires
others to continue in this area. Code and distilled datasets can be found on our project page.

10

http://georgecazenavette.github.io/linear-gm

References

(1]
(2]

(3]

(4]

(51

(6]

(71

(8

—_—

[9

—

[10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

Adam McLean. The surrealism website. https://surrealism.website/. 15

J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao, P. Bell, D. Berard, E. Burovski,
G. Chauhan, A. Chourdia, W. Constable, A. Desmaison, Z. DeVito, E. Ellison, W. Feng, J. Gong,
M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar, L. Kirsch, M. Lazos, M. Lezcano, Y. Liang, J. Liang,
Y. Lu, C. K. Luk, B. Maher, Y. Pan, C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi, H. Suk, S. Zhang,
M. Suo, P. Tillet, X. Zhao, E. Wang, K. Zhou, R. Zou, X. Wang, A. Mathews, W. Wen, G. Chanan, P. Wu,
and S. Chintala. Pytorch 2: Faster machine learning through dynamic python bytecode transformation and
graph compilation. In Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, ASPLOS °24, New York, NY, USA, 2024.
Association for Computing Machinery. 14, 15

L. Bossard, M. Guillaumin, and L. Van Gool. Food-101 — mining discriminative components with random
forests. In ECCV, 2014. 15, 16, 35

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of Python+NumPy
programs, 2018. 14

M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties in
self-supervised vision transformers. In /ICCV, 2021. 3, 10, 15

G. Cazenavette, T. Wang, A. Torralba, A. A. Efros, and J.-Y. Zhu. Dataset distillation by matching training
trajectories. In CVPR, 2022. 1,2,3,4,6

G. Cazenavette, T. Wang, A. Torralba, A. A. Efros, and J.-Y. Zhu. Generalizing dataset distillation via
deep generative prior. In CVPR, 2023. 1, 3,4, 6,7

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual
representations. In ICML, 2020. 3

X. Chen, H. Fan, R. Girshick, and K. He. Improved baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020.

X. Chen, S. Xie, and K. He. An empirical study of training self-supervised vision transformers. In /CCV,
2021. 3,5, 8, 16, 20

J. Cui, R. Wang, S. Si, and C.-J. Hsieh. Scaling up dataset distillation to imagenet-1k with constant memory.
InICML,2023. 1,3

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 2, 5, 8, 10, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

Y. Fang, Q. Sun, X. Wang, T. Huang, X. Wang, and Y. Cao. Eva-02: A visual representation for neon
genesis. Image and Vision Computing, 2024. 3, 15, 19

Y. Fang, W. Wang, B. Xie, Q. Sun, L. Wu, X. Wang, T. Huang, X. Wang, and Y. Cao. Eva: Exploring the
limits of masked visual representation learning at scale. In CVPR, 2023. 3, 5, 16

S. Fort and J. Whitaker. Direct ascent synthesis: Revealing hidden generative capabilities in discriminative
models. arXiv preprint arXiv:2502.07753, 2025. 4

Z. Guo, K. Wang, G. Cazenavette, H. LI, K. Zhang, and Y. You. Towards lossless dataset distillation via
difficulty-aligned trajectory matching. In /ICLR, 2024. 1, 3

K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. Girshick. Masked autoencoders are scalable vision learners.
In CVPR, 2022. 3

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual representation
learning. In CVPR, 2020. 3

Hugging Face. Hugging Face: The Al community building the future. https://huggingface.co,
2016. 15

M. Huh, B. Cheung, T. Wang, and P. Isola. Position: The platonic representation hypothesis. In ICML,
2024. 2,3,9

11

https://surrealism.website/
https://huggingface.co

[21]

(22]
(23]

[24]

[25]

[26]

(27]
(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]
(36]

(37]

(38]

[39]

[40]
[41]

A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei. Novel dataset for fine-grained image categorization.
In CVPR, 2011. 5,9, 15, 16, 31

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In /CLR, 2015. 14

P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu, M. Yasunaga, R. L.
Phillips, I. Gao, T. Lee, E. David, I. Stavness, W. Guo, B. A. Earnshaw, 1. S. Haque, S. Beery, J. Leskovec,
A. Kundaje, E. Pierson, S. Levine, C. Finn, and P. Liang. WILDS: A benchmark of in-the-wild distribution
shifts. In ICML, 2021. 15

P. Liao, X. Li, X. Liu, and K. Keutzer. The artbench dataset: Benchmarking generative models with
artworks. arXiv preprint arXiv:2206.11404,2022. 5, 10, 15

D. Liu, J. Gu, H. Cao, C. Trinitis, and M. Schulz. Dataset distillation by automatic training trajectories. In
ECCV, 2024. 1

A. Lynch, G. J.-S. Dovonon, J. Kaddour, and R. Silva. Spawrious: A benchmark for fine control of spurious
correlation biases, 2023. 5, 8, 15

T. Nguyen, Z. Chen, and J. Lee. Dataset meta-learning from kernel ridge-regression. In /CLR, 2020. 1, 2

T. Nguyen, R. Novak, L. Xiao, and J. Lee. Dataset distillation with infinitely wide convolutional networks.
In NeurIPS, 2021. 1

M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In
Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP),
Kolkata, India, 2008. 15, 16, 34

C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. Distill, 2017.
https://distill.pub/2017/feature-visualization. 4, 7

M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. HAZIZA,
F. Massa, A. El-Nouby, M. Assran, N. Ballas, W. Galuba, R. Howes, P.-Y. Huang, S.-W. Li, 1. Misra,
M. Rabbat, V. Sharma, G. Synnaeve, H. Xu, H. Jegou, J. Mairal, P. Labatut, A. Joulin, and P. Bojanowski.
DINOV2: Learning robust visual features without supervision. TMLR, 2024. 3, 5, 6, 8, 15, 16, 18, 21, 22,
23, 24,25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in pytorch. In ICLR Workshop, 2017. 3

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In
NeurIPS. 2019. 14, 15

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In ICML, 2021. 3,
5,15, 16,17

J. Resig. Ukiyo-e search. https://ukiyo-e.org/, 2012. 15

E. Riba, D. Mishkin, D. Ponsa, E. Rublee, and G. Bradski. Kornia: an open source differentiable computer
vision library for pytorch. In WACV, 2020. 15

C. Ryali, Y.-T. Hu, D. Bolya, C. Wei, H. Fan, P.-Y. Huang, V. Aggarwal, A. Chowdhury, O. Poursaeed,
J. Hoffman, et al. Hiera: A hierarchical vision transformer without the bells-and-whistles. In /CML, 2023.
3

S. Sagawa, P. W. Koh*, T. B. Hashimoto, and P. Liang. Distributionally robust neural networks. In /CLR,
2020. 5,8, 15

S. Sagawa, P. W. Koh, T. Lee, 1. Gao, S. M. Xie, K. Shen, A. Kumar, W. Hu, M. Yasunaga, H. Marklund,
S. Beery, E. David, I. Stavness, W. Guo, J. Leskovec, K. Saenko, T. Hashimoto, S. Levine, C. Finn, and
P. Liang. Extending the wilds benchmark for unsupervised adaptation. In /CLR, 2022. 15

B. Son, Y. Oh, D. Baek, and B. Ham. Fyi: Flip your images for dataset distillation. In ECCV, 2024. 1, 3

Q. Sun, Y. Fang, L. Wu, X. Wang, and Y. Cao. Eva-clip: Improved training techniques for clip at scale.
arXiv preprint arXiv:2303.15389, 2023. 3

12

https://ukiyo-e.org/

[42]
[43]

[44]

[45]

[40]

[47]

(48]
[49]
(50]
(51]

(52]

(53]

[54]
[55]
(561

Y. Tian, D. Krishnan, and P. Isola. Contrastive multiview coding. In ECCV, 2020. 5, 15, 16, 17, 18, 19, 20

TorchVision maintainers and contributors. Torchvision: Pytorch’s computer vision library. https:
//github.com/pytorch/vision, 2016. 15

M. Tschannen, A. Gritsenko, X. Wang, M. F. Naeem, I. Alabdulmohsin, N. Parthasarathy, T. Evans,
L. Beyer, Y. Xia, B. Mustafa, et al. Siglip 2: Multilingual vision-language encoders with improved semantic
understanding, localization, and dense features. arXiv preprint arXiv:2502.14786, 2025. 3

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. Caltech-UCSD birds 200. Technical Report
CNS-TR-2011-001, California Institute of Technology, 2011. 5, 9, 16, 32, 33

K. Wang, B. Zhao, X. Peng, Z. Zhu, S. Yang, S. Wang, G. Huang, H. Bilen, X. Wang, and Y. You. Cafe:
Learning to condense dataset by aligning features. CVPR, 2022. 1

T. Wang, J.-Y. Zhu, A. Torralba, and A. A. Efros. Dataset distillation. arXiv preprint arXiv:1811.10959,
2018. 1,2

R. Wightman. Pytorch image models. https://huggingface.co/timm, 2019. 15
WikiArt.org. WikiArt Visual Art Encyclopedia. https://www.wikiart.org/,2024. 15
Z. Yin and Z. Shen. Dataset distillation via curriculum data synthesis in large data era. 2024. 2

Z. Yin, E. Xing, and Z. Shen. Squeeze, recover and relabel: Dataset condensation at imagenet scale from a
new perspective. In NeurlPS, 2023. 1,2

X. Zhai, B. Mustafa, A. Kolesnikov, and L. Beyer. Sigmoid loss for language image pre-training. In /CCV,
2023. 3

B. Zhao and H. Bilen. Dataset condensation with differentiable siamese augmentation. In /CML, 2021. 1,
4,7

B. Zhao and H. Bilen. Dataset condensation with distribution matching. WACV, 2023. 1, 2
B. Zhao, K. R. Mopuri, and H. Bilen. Dataset condensation with gradient matching. In /CLR, 2020. 2, 3, 4

Y. Zhou, E. Nezhadarya, and J. Ba. Dataset distillation using neural feature regression. NeurIPS, 2022. 1,2

13

https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://huggingface.co/timm
https://www.wikiart.org/

Appendix

To begin the appendix, we first speak on our method’s limitations, broader impact, and compute
budget. In the following sections, we include more information that was omitted from the main
paper due to space constraints. In Section A, we provide a more detailed description of our method’s
implementation details. In Section C, we include visualizations of complete distilled datasets.

Limitations Our method is largely limited by memory and data loading. For example, we were lim-
ited in our ImageNet-1k experiments to only using 3 rounds of augmentations per batch due to a data
loading bottleneck. We hope to eventually develop a method that does not require the loading of thou-
sands of real images per step. Additionally, due to the bi-level optimization, we are limited to using Py-
torch’s [2, 33] nn.DistributedParallel, rather than nn.DistributedDataParallel,
which causes significant slowdowns due to our very large batch sizes. Using a different automatic
differentiation framework, such as Jax [4], might alleviate this issue, but this would also require
porting all our self-supervised backbones to the new framework.

Broader Impact While our method quantitatively out-performs the real image baselines, the
broader impacts likely lie in the introduction of this new task as well as the resulting images acting as
an interpretability tool. As shown in the paper, the distilled images offer insights into things such as
model alignment and how different networks see the world in varying ways.

Furthermore, the ultimate goal of dataset distillation is the reduction of training time, which equates
to less energy spent. A linear probe trained on our distilled datasets can be trained to convergence in
just a few minutes while training on the full dataset can take up to an entire day.

Compute Budget We used a variety of GPUs for this work depending on what was available on
the shared cluster. Specifically, we used a combination of H200, A100, L40s, Ada6000, and 4090
GPUs. Distilling ImageNet-100 with the default settings takes about 3 hours using 1 H200 GPU, and
ImageNet-1k takes about 12 hours using 4 H200 GPUs.

A Implementation Details

In this section, we provide a more detailed explanation of our methodological and experimental
implementation details.

A.1 Distillation

We implement our method in Pytorch [2, 33], which has a unique license to which we comply.
We optimize our pyramid representations using Adam [22] with a learning rate of 0.002.

We distill for 5000 iterations and add a new level to the pyramids every 200 iterations until we reach
the maximum resolution (256).

Each level of the pyramid is initialized with A/(0, 1) normalized by the current number of levels in
the pyramid. When a new level is added, the existing levels are appropriately re-normalized.

At each distillation iteration, we first sample a new linear classifier consisting of a weight matrix W
and bias vector b using the default initialization for Pytorch’s nn. Linear. For simplicity, we omit
the bias in the main paper.

Then, we reconstruct the synthetic images from their pyramid representations using the following
equation (copied from the main paper for convenience):

1 1 .
X = 3 + 3 tanh <Z Ies12€256 (Pr)> @

rep

The synthetic images are then augmented several (10 by default) different (not sequential) times and
concatenated together to form the full synthetic batch. We obtain our synthetic loss ({y,) by passing
this batch through the feature extractor ¢ and linear classifier (I, b) and then compute the gradient of
the synthetic loss with respect to the linear classifier (and bias). These gradients are then vectorized.

14

https://github.com/pytorch/pytorch/tree/main?tab=License-1-ov-file#readme

For our real batch, we sample a number of real images equal to the length of the full synthetic batch
(i.e., after the different augmentations and concatenation) and augment them once (since the batch
size already matches that of the full synthetic batch). We then get the real loss and gradients via the
same procedure. The meta loss is then calculated as the cosine distance between the real and synthetic
vectorized gradients.

A.2 Augmentation

For our differentiable augmentations, we use a custom re-implementation of torchvision trans-
forms that run on GPU and support different random transforms for each element in a batch. We ini-
tially used the Kornia [36] implementations, but found that they cause CPU bottlenecks with very large
batch sizes. We use RandomHorizontalF1ip with default parameters, RandomResizedCrop
with size=(224, 224),and RandomGaussianNoise with std=0.2.

A.3 Evaluation

Linear Probes. To evaluate a given distilled dataset (or selected coreset for the real baselines) on
a given target model, we first randomly initialize a new linear classifier. We then train the linear
classifier for 1000 epochs with a batch size of 100. We use an Adam optimizer with a learning rate of
0.001/256 (taken from the DINO-v1 [5] evaluation protocol) along with a cosine decay learning rate
schedule. We stop training early if the test accuracy has not improved over the last 50 epochs. For the
training set, we perform the same set of augmentations as during distillation (horizontal flip, random
resized crop, and Gaussian noise). The output of the random resized crop is of size 224 x224. For the
test set, we resize the shortest side to 256 and then do a center crop of 224 x224.

Nearest Neighbors. For our nearest neighbor evaluation, we first find the train set embeddings
by resizing the shortest side of each test image to 256, taking a 224 x224 center crop, and passing
through the feature extractor. We then do the same for the test set and find the training embedding
closest to each test embedding (by cosine distance) and report the class of said neighbor. We only do
one nearest neighbor since we distill down to one image per class.

A.4 Datasets

For ImageNet [12] and ImageNet [42], we build on the Torchvision [43] implementation as part of the
Pytorch [2, 33] ecosystem. ImageNet has a unique non-commercial license, to which we have agreed.

Spawrious [26] is taken from the paper’s official GitHub repository and uses a CC0O-1.0 license.

Waterbirds [38] is taken from the WILDS [23, 39] benchmark. Both the Waterbirds and WILDS
repositories use an MIT license.

Stanford Dogs [21] is taken from the project website. It presumably uses the same license as
ImageNet [12].

Caltech-UCSD-200-2011 is taken from the project website. No license is given.

ArtBench [24] is taken from the paper’s GitHub repository. The repository itself uses an MIT license.
The data is sourced from WikiArt [49], Ukiyo-e Search [35], and The Surrealism Website [1], all of
which have Fair Use licenses.

Flowers-102 [29] is taken from Torchvision. No license is given.

Food-101 [3] is taken from Torchvision. No license is given.

A.5 Models

For CLIP [34], we use the official GitHub repository which has an MIT license.
For DINO-v1 [5], we use the official GitHub repository which has an Apache-2.0 license.
For DINO-v2 [31], we use the official GitHub repository which has an Apache-2.0 license.

For EVA-02 [13], we use the Pytorch Image Models [48] implementation hosted on Hugging Face [19]
which has an MIT license.

15

https://image-net.org/download.php
https://github.com/aengusl/spawrious
http://vision.stanford.edu/aditya86/ImageNetDogs
http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
https://github.com/liaopeiyuan/artbench
https://github.com/openai/CLIP
https://github.com/facebookresearch/dino
https://github.com/facebookresearch/dinov2
https://huggingface.co/timm/eva02_base_patch14_224.mim_in22k

Train Set Flowers-102 Food-101
(1 Img/Cls)
CLIP DINO-v2 EVA-02 MoCo-v3 Average CLIP DINO-v2 EVA-02 MoCo-v3 Average

Distilled (Ours) 79.5 99.6 97.8 56.4 83.3 78.7 83.7 83.9 31.6 69.5
Neighbors 69.4 99.4 90.8 48.6 71.0 58.8 73.8 71.5 25.2 57.3
Centroids 71.5 99.4 95.6 48.2 80.2 74.1 75.6 76.4 22.7 62.2
Random 67.9 98.8 91.0 36.8 73.6 48.5 52.8 49.9 13.5 41.2

Full Dataset ~ 93.4 99.7 98.9 82.2 93.5 91.9 92.7 92.0 78.3 88.7

Table B.1: Additional Datasets: Distilling Flowers-102 [29] and Food-101 [3] show similar results; our distilled
dataset consistently out-perform the real-image baselines.

For MoCo-v3 [10], we use the official GitHub repository which has a Creative Commons Attribution-
NonCommercial 4.0 International Public License.

B Additional Results

In Table B.1, we include results for Flowers-102 [29] and Food-102 [3]. We see results following the
same trends as the rest of the paper; the distilled datasets out-perform the real-image baselines across
the board.

C Visualizing Full Datasets

In Figures C.1, C.2, C.3, and C.4 we present the entirety of ImageNet-100 [42] distilled with
CLIP [34], DINO-v2 [31], EVA-02 [14], and MoCo-v3 [10] respectively. In Figures C.5-C.14, we
show ImageNet-1k [12] distilled with DINO-v2 and omit the other models for the sake of brevity
(and ink).

We also include Stanford Dogs [21] (Figure C.15), CUB-200-2011 [45] (Figures C.16 and C.17),
Flowers-102 [29] (Figure C.18), and Food-101 [3] (Figure C.19) distilled with DINO-v2 and once
again omit the other models. All distilled datasets, including those not inculded here, can be viewed
on our project page.

16

https://github.com/facebookresearch/moco-v3
http://georgecazenavette.github.io/linear-gm

Figure C.1: ImageNet-100 [42] distilled using CLIP [34]

17

Figure C.2: ImageNet-100 [42] distilled using DINO-v2 [31]

18

19

20

e S

Figure C.5: ImageNet-1k [12] distilled with DINO-v2 [31] classes [0-99]

21

Figure C.6: ImageNet-1k [12] distilled with DINO-v2 [31] classes [100-199]

22

ST S e RN (] S Nl Y

Figure C.7: ImageNet-1k [12] distilled with DINO-v2 [31] classes [200-299]

23

."‘j‘“

Figure C.8: ImageNet-1k [12] distilled with DINO-v2 [31] classes [300-399]

24

25

Figure C.10: ImageNet-1k [12] distilled with DINO-v2 [31] classes [500-599]

26

Figure C.11: ImageNet-1k [12] distilled with DINO-v2 [31] classes [600-699]

27

28

Figure C.13: ImageNet-1k [12] distilled with DINO-v2 [31] classes [800-899]

29

Figure C.14: ImageNet-1k [12] distilled with DINO-v2 [31] classes [900-999]

30

31

i y & ey :) j £ Wy
g S Vms S i |2 R at &

Figure C.16: CUB-200-2011 [45] distilled using DINO-v2 [31] classes [0-99]

32

33

Figure C.18: Flowers-102 [29] distilled using DINO-v2 [31]

34

Figure C.19: Food-101 [3] distilled using DINO-v2 [31]

35

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our work introduces the new method, Linear Gradient Matching, and presents
the results and insights described in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a limitations section in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA|

36

Justification: We do not present any theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discuss our experimental implementation at a high level in the main paper
and in-depth in the appendix. We will also release the source code after having time to make
it more user-friendly.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

37

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: georgecazenavette.github.io/linear-gm.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discuss the most relevant experimental settings in the main paper and
provide an in-depth explanation in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Results are reported over 5 runs as mean = std.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

38

http://georgecazenavette.github.io/linear-gm
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We include a section on compute resources in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read the code of conduct, and our research conforms to it.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We include a broader impacts section in the appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

39

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks, as we do not release any pre-trained models or
data.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cite all code, data, and models used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

40

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor reserach with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|
Justification: Our paper does not involve crowdsourcing nor reserach with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

41

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|
Justification: Our work does not use LLMs at all.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
1..M) for what should or should not be described.

42

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Method
	Linear Gradient Matching
	Implicit Regularization
	Differentiable Augmentations

	Experiments
	Linear Gradient Matching Out-Performs Real-Image Baselines
	Distilled Images Generalize Across Models
	Regularization and Augmentation Enable High Performance
	Distilling Adversarial Datasets Reveals Interpretable Model Weaknesses
	Distillation Excels in Fine-Grained Visual Classification
	Cross-Model Performance Predicts Model Alignment
	Self-Supervised Backbones can Distill Out-of-Distribution Datasets

	Conclusion
	Implementation Details
	Distillation
	Augmentation
	Evaluation
	Datasets
	Models

	Additional Results
	Visualizing Full Datasets

