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uUniversity of Toronto

wUniversity of Wuppertal
bUniversity of British Columbia

vVector Institute
nNew York University

hHelmholtz AI
mTU Munich

ABSTRACT

Materials discovery underpins innovation in many fields such as energy storage
and therapeutics delivery, but it requires time- and resource-intensive chemical
synthesis and testing. Bayesian optimization (BO) with Gaussian processes (GPs)
or Bayesian neural networks (BNNs) offers a promising solution to accelerate
materials discovery, but the full landscape of features and surrogate models is still
poorly understood. In this work, we systematically investigate the impact of key
design choices and identify pitfalls of current methodologies and opportunities
for improvements. These include: (1) GPs with the default initialization scheme
perform hardly any better than random policies; (2) BNNs are highly sensitive to
hyperparameters; (3) expert-designed molecular features underperform compared
to learned and even simple, generic features; and (4) simple feature fine-tuning
significantly enhances performance, contrary to the conventional practice of using
fixed features or costly Bayesian fine-tuning schemes. We identify the design
choices that matter for BO in materials discovery, namely using a simple but well-
initialized surrogate with feature fine-tuning. Our work provides recommendations
for practitioners towards more cost-effective BO for materials discovery.

1 INTRODUCTION

The discovery of new materials with desirable properties underpins advances in many fields, from
polymer-protein hybrids (Tamasi et al., 2022) to solid-state electrolytes (Shimizu et al., 2020; Benayad
et al., 2022) and organic laser emitters (Strieth-Kalthoff et al., 2024a). However, materials discovery
involves time-consuming and resource-intensive lab work: the design, synthesis, purification, and
characterization of materials from vast sets of molecules (Abolhasani & Kumacheva, 2023).

To focus this expensive laboratory effort on promising candidate materials, various works (Angello
et al., 2022; Tom et al., 2024) highlight the promises of Bayesian optimization (BO; Močkus, 1975;
Jones et al., 1998b; Garnett, 2023; Khatamsaz et al., 2023) in materials discovery. BO approximates a
black-box objective function (e.g., a physical measurement) with a probabilistic surrogate model and
uses posterior probabilities to balance the exploration of uncertain regions against the exploitation
of promising candidates across the vast and complex molecular design space. Although the central
proposition of BO is to take into account the cost of evaluating the objective function, many previous
works use synthetic or pre-collected data, and do not discuss the fact that method design and model
selection is usually an iterative process, during which one already uses some of the data (Riquelme
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Figure 1: We find that (I) stationary GPs perform poorly with default lengthscale l initalization,
(II) BNNs are highly sensitive to hyperparameters, and well-initialized GPs generally outperform
BNNs (LA). (III) generic and learned features derived from foundation models are often better than
expert ones, especially (IV) when learned features are additionally fine-tuned (FT).

et al., 2018; Li et al., 2024a). In real world settings, it is unrealistic to assume access to an optimal
surrogate model, as optimizing the surrogate model requires costly experimental data that BO
aims to minimize. Thus, any application of BO to real-world problems requires a domain-specific
understanding of the input features and surrogate models design space.

In this work, we systematically investigate this design space for BO in the domain of materials
discovery. In this domain, the selection of a surrogate model, hyperparameters, initializations,
molecular features, and strategies for fine-tuning representations is still underexplored. For example,
there has been recent interest in replacing traditional Gaussian process (GP) surrogate models with
Bayesian neural networks (BNNs) based on highly expressive fine-tuned foundation models that
leverage large molecular datasets (Kristiadi et al., 2024), but the trade-offs of using such highly
sophisticated models remain unclear. Further, the design space for input features of the surrogate
model spans fingerprints (Rogers & Hahn, 2010), hand-crafted features such as those available in
the Mordred Python package (Moriwaki et al., 2018), expensive and expert-run density functional
theory (DFT) calculations (Burke, 2012), and, recently, data-driven features derived from molecular
foundation models (Soares et al., 2024a) and feature fine-tuning (Kristiadi et al., 2024).

Our goal is to provide a concise overview of the wide range of design choices, and to identify the
major factors of BO performance, to replace educated guessing by evidence-based recommendations.
To do so, we evaluate the performance of various surrogate models, priors, molecular features, and
fine-tuning strategies in a systematic empirical study across eight real-world materials discovery BO
tasks. By examining their influence on BO performance, we identify several key pitfalls in current
methodologies and recommendations for improvements, challenging some of the current de-facto
wisdom in BO for materials discovery. Particularly, we find that (see Figure 1):

1. GPs with stationary covariance functions can perform poorly if not carefully initialized;
however, well-initialized GPs typically outperform BNNs.

2. BNNs exhibit high sensitivity to hyperparameter configurations, but this can be improved
by using GP-based functional priors.

3. Learned features and generic hand-crafted features outperform expert-designed features.

4. Simple (non-Bayesian) fine-tuning of features derived from foundation models with new
data at each BO iteration significantly enhances performance.

Based on these findings, we formulate a set of recommendations for practitioners and provide a
course correction for future research on this topic.

2 BACKGROUND

We start by presenting a background on materials discovery, Bayesian optimization, Bayesian neural
networks, and molecular foundation models. We provide an extended discussion in Appendix A.
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2.1 MATERIALS DISCOVERY

Materials discovery is the task of searching through the chemical space of 10200 materials (Restrepo,
2022) for candidates with desirable properties. This generally requires the design, synthesis, purifica-
tion, characterization, and testing of the candidate, which involves a plethora of design parameters and
observable metrics. The lack of data and poor understanding of the structure-property relationships
makes materials discovery challenging (Agrawal & Choudhary, 2016). Consequently, the traditional
approach of trial-and-error following human intuition or design-of-experiments (i.e., combinatorial
search) is too slow and inefficient to explore the vast landscape (Shahriari et al., 2015), which has led
to the growing interest in using BO for chemical tasks (Angello et al., 2022; Tom et al., 2024).

2.2 BAYESIAN OPTIMIZATION

Bayesian Optimization (BO) is a sequential optimization method to find the maximum of an unknown
function f : X 7→ Y that is expensive to evaluate (Garnett, 2023). BO requires (i) a probabilistic
surrogate model g that approximates f , (ii) an observation model p(y | g(x)) for the data, (iii) a prior
p(g) for the surrogate, and (iv) an acquisition function α that guides the selection of the evaluation
points. At each iteration t, the acquisition function uses the surrogate’s posterior p(g | Dt) ∝
p(Dt | g) p(g) on the observations Dt accumulated so far to balance exploration in regions where
the objective is unobserved against exploitation in regions where the objective is known to yield
promising candidates via xt = argmaxx∈X α(p(g(x) | Dt)). In materials discovery, the search
space X is a discrete set of molecules, simplifying the search. While the default surrogate models
remain Gaussian processes (GPs; Rasmussen & Williams, 2006), there has been a recent interest in
Bayesian neural networks (BNNs), which have shown promising results (Kristiadi et al., 2024).

2.3 BAYESIAN NEURAL NETWORKS

BNNs recast training neural networks as approximating the Bayesian posterior distribution over their
weights given the data and thus approximate epistemic uncertainty. The posterior yields predictions
consistent with the data within its support, while being uncertain far away from the data. Since this
inference is intractable, various approximations are used, such as the Laplace approximation.

Laplace approximation. The Laplace approximation (MacKay, 1992) models a neural network’s
posterior as a Gaussian. Its mean is the maximum a posteriori (MAP) parameter estimate, which
is found by maximizing the log-posterior (i.e., standard regularized neural network training), and
its covariance is the inverse of the Hessian (i.e., the curvature of the loss). Further approximations,
such as a linearization of the neural network around its MAP estimate and a Kronecker-factored
low-rank approximation of the resulting Hessian, are often applied to reduce computation. Laplace
approximations scale to large datasets, and models and have been shown to provide well-calibrated
uncertainty estimates (Daxberger et al., 2021; Immer et al., 2021).

Function-space priors for Laplace approximations. The choice of prior strongly affects the
resulting posterior distribution, but meaningful prior beliefs over neural network weights are very
difficult to specify. FSP-Laplace (Cinquin et al., 2024) remedies this by allowing to specify meaningful
prior beliefs in function space using a GP prior. The posterior approximation of FSP-Laplace is still a
Gaussian over weights, as in the normal Laplace approximation.

2.4 MOLECULAR FOUNDATION MODELS

Molecular foundation models are a class of large-scale neural networks pre-trained on vast datasets
of molecular structures and their properties (Chithrananda et al., 2020; Ross et al., 2022; Soares
et al., 2024a). These models leverage the transformer architecture, which has demonstrated strong
performance in large language models (LLMs) and is increasingly applied to generate molecular
data with robust accuracy Mathiasen et al. (2024). Similar to LLMs, molecular foundation models
can be fine-tuned on specific tasks where fewer data are available. Since fine-tuning all parameters
is often prohibitively expensive, parameter-efficient fine-tuning (PEFT) methods, such as low-rank
adaptation (LoRA; Hu et al., 2022), only update a small subset of the parameters, keeping the rest
frozen (Houlsby et al., 2019; Hu et al., 2022). LoRA weights can also be Laplace approximated,
allowing for a Bayesian approach to fine-tuning (Yang et al., 2024; Onal et al., 2024).
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Figure 2: GAP metric for Gaussian process surrogates across different design choices (for MolFormer
features). We see that the lengthscale initialization is crucial, and the choice of optimizer and
covariance function matter to some extent, while the mean function and observation noise do not.

3 EXPERIMENTAL SETUP

This section presents the datasets, surrogate models, features and metrics we use in our experiments.
We provide additional details on our setup in Appendix B.

Dataset We conduct our experiments on well-established benchmarks: six materials discovery
tasks from Kristiadi et al. (2024) and two additional drug discovery tasks, AMPC and D4, from Graff
et al. (2021). The materials discovery tasks include minimizing the redox potential (REDOXMER)
and solvation energy (SOLVATION) of battery electrolytes (Agarwal et al., 2021), maximizing the
fluorescence oscillator strength of lasers (LASER; Strieth-Kalthoff et al., 2024c), maximizing the
power conversion efficiency (PCE) of photovoltaic materials (PHOTOVOLTAICS; Lopez et al., 2016),
and maximizing the π−π∗ transition wavelength of organic photoswitches (PHOTOSWITCH; Griffiths
et al., 2022). For drug discovery, KINASE, AMPC, and D4 aim to minimize docking scores, a critical
metric for evaluating potential binders (Graff et al., 2021).

Surrogate models We use GP and BNN surrogates. For GPs, we use the Tanimoto covariance
function (Griffiths et al., 2023) when using fingerprint features and otherwise a Matérn-5/2, as it
is generally a default for BO (Snoek et al., 2012; Balandat et al., 2020). For the BNN, we use a
tanh-activated two layer neural network with 50 hidden units each, and approximate the posterior
using the linearized Laplace with the Kronecker-factored covariance approximation (Ritter et al.,
2018; Immer et al., 2021). We also compare with FSP-Laplace (Cinquin et al., 2024), which computes
a Laplace-approximation on the same network but under a GP functional prior rather than a weight-
space prior. Finally, we consider a Bayesian fine-tuned MolFormer model (Ross et al., 2022) applying
the Laplace to its LoRA weights Kristiadi et al. (2024). We use the Thompson sampling (Thompson,
1933) acquisition function for its simplicity and good performance (Kristiadi et al., 2024).

Features We consider three types of features: data-driven, generic hand-crafted, and expert hand-
crafted features. For data-driven features, we use embeddings extracted from the MolFormer (Ross
et al., 2022) and Chemistry-T5 (T5-chem; Christofidellis et al., 2023) models. Generic hand-crafted
features include Morgan fingerprints (Morgan, 1965) and all molecular descriptors from the Mordred
package (Moriwaki et al., 2018). Expert hand-crafted features consist of FM-DFT (foundation
model predicted density functional theory) properties, force-field energy, and the maximum degree of
conjugation. The FM-DFT features are predicted using the SMI-TED model (Soares et al., 2024b)
fine-tuned on the QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014). The Merck
molecular force-field energy (force field) is particularly relevant for tasks like SOLVATION, KINASE,
AMPC, and D4. Both FM-DFT and force-field energy are general molecular properties applicable
across all datasets. Finally, the maximum degree of conjugation is expected to be mostly relevant for
datasets similar to PHOTOVOLTAICS, LASER, PHOTOSWITCH, and REDOXMER.

Metrics We measure BO performance by tracking the optimal value over time and by using the
GAP score (Jiang et al., 2020) to aggregate over all BO tasks. The GAP score is computed by
converting each task to a maximization problem, normalizing the objective values to the range [0, 1],
and averaging over all tasks. In each figure, we report the mean and standard error of the scores
across 5 repetitions with different random seeds.
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Figure 3: GAP metric for Bayesian neural network surrogates (Laplace approximation) across
different design choices (for MolFormer features). We see that the choice of activation, learning
rate and weight decay have a strong influence on BO performance but not the initialization of the
observation noise.
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Figure 4: GAP metrics for GP, Laplace, Laplace Bayesian LoRA, FSP-Laplace and FSP-Laplace
Bayesian LoRA surrogate models. Each blue line is the GAP score for one instance of hyperparame-
ters, the red line is the median GAP score, and the red interval is the [0.05, 0.95] inter-quantile range.
We see that GP surrogates generally show better performance than BNNs and are less sensitive to
their hyperparameters. This behavior can be recovered in BNNs using GP priors with FSP-Laplace.

4 AN IN-DEPTH EMPIRICAL STUDY OF BO FOR MATERIALS DISCOVERY

4.1 ALL YOU NEED IS A WELL-INITIALIZED GP SURROGATE

First, we explore key design choices for Gaussian process surrogate models. To evaluate the impact
of individual components, we start from a reference configuration (blue line in Figure 2) and perform
an ablation study by varying one factor at a time while keeping all other settings fixed. We investigate
lengthscale initialization, optimizer, covariance function, mean function, and observation noise
initialization. For the following experiments, we use the data-driven MolFormer features, as they
were shown to perform best by Kristiadi et al. (2024), and they are amenable to affordable feature fine-
tuning. Our results highlight several critical findings: proper initialization of stationary covariance
functions is essential for strong performance, linear covariance functions consistently underperform
compared to well-initialized stationary alternatives, and quasi-Newton optimizers such as L-BFGS
significantly enhance BO performance compared to Adam.

Proper lengthscale initialization is key. Proper initialization of GP surrogate models with sta-
tionary covariance functions is essential for effective BO. Using GPyTorch’s (Gardner et al., 2018)
default lengthscale initialization (l = 0.691) for marginal likelihood optimization results in poor
performance, barely outperforming random molecule selection (Figure 2, left panel, orange line).
Initializing lengthscales proportional to the square root of the input dimensionality d—as suggested
by Hvarfner et al. (2024) for EI-based BO—significantly improves performance across all BO tasks
(see task-specific details in Figure C.11). Larger lengthscales mitigate the effect of increased Eu-
clidean distances in high-dimensional feature spaces, enabling the stationary covariance functions
to maintain meaningful correlations over longer ranges. Importantly, this failure mode often goes
undetected, potentially hindering BO performance without clear diagnostic signals, especially for
unaware practitioners using their own covariance functions.
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Figure 5: GAP score for GP, Laplace and FSP-Laplace surrogate models across different types of
features. We find that generic hand-crafted (fingerprints, Mordred) and data-driven (MolFormer,
T5-Chem) features perform better on average than hand-crafted expert features (FM-DFT, force field,
degree of conjugation). Concatenating a group of features generally performs as well as the best
feature in the group. The (shared) legend is split across panels due to space constraints.

The choice of optimizer matters. We find that the optimizer used for marginal likelihood opti-
mization significantly affects BO performance. While the Adam optimizer (Kingma & Ba, 2015) is
a common choice and the default in GPyTorch, it is primarily designed for stochastic optimization.
For deterministic model selection criteria like the marginal likelihood, Adam converges slower
than quasi-Newton methods such as L-BFGS (Liu & Nocedal, 1989), which achieve much faster
convergence due to their line search capabilities. Additionally, Adam requires tuning a learning
rate, which can strongly influence the resulting GP hyperparameters. While quasi-Newton methods
might be computationally prohibitive for high-dimensional neural network training, optimizing GP
hyperparameters is feasible due to their relatively low dimensionality. We observe that using L-BFGS
for hyperparameter optimization allows BO to obtain high objective values in fewer iterations com-
pared to Adam (see green line in second panel of Figure 2 and task-specific results in Figure C.11).
Furthermore, BO performance with Adam deteriorates significantly when the learning rate is poorly
chosen. We hypothesize that Adam may have trouble converging to good GP hyperparameters or
may get stuck in a poor local optimum. This issue may easily go unnoticed: a lower learning rate
could perform adequately during initial BO iterations when fewer data points are available, but fail to
adapt as the number of observations grows in later BO iterations.

The prior covariance should be Matérn, but smoothness doesn’t matter. We find that Matérn
covariance functions provide good BO performance, and this performance is robust to the ν hyper-
parameter which controls smoothness. Matérn 1/2, 3/2, 5/2, and RBF (equivalent to Matérn with
ν = ∞) covariances achieve nearly identical performance, all significantly outperforming the linear
covariance function (which should thus be avoided).

Mean function & observation noise initialization do not matter much. Since we standardize
targets when training the surrogate models, a zero mean function should be the correct model
specification. Indeed, we find that using a constant or zero mean function does not make a difference
(see the fourth panel in Figure 2). We also observe no significant variation in performance across
different initializations of the observation noise (see the last panel in Figure 2).

4.2 YOUR BNN IS PROBABLY NOT WELL TUNED

Second, we explore key design choices for BNN surrogates. Just like with GPs, we evaluate the
impact of individual components by starting from a reference configuration (blue line in Figures 3
and C.4 to C.6) and perform an ablation study by varying one setting at a time keeping others fixed.

BNNs with weight space priors are particularly sensitive to hyperparameters. We find that
BNNs are highly sensitive to hyperparameter choices (see Laplace methods in Figure 4). As shown
in Figure 3, variations in activation functions, learning rates, and weight decay significantly impact
average BO performance. However, similar to GPs, BNNs are relatively insensitive to the initialization
of observation noise. Notably, no single configuration proves optimal across all tasks. For example,
while the tanh activation performs best for AMPC, it performs worst for REDOXMER and SOLVATION
(see Figure C.12).
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BNNs with GP priors are more robust. For this analysis, we initialize the lengthscales as
recommended in Section 4.1 and use the L-BFGS optimizer for GP hyperparameter tuning. Unlike
BNNs with weight space priors (i.e., Laplace), we find that BNNs with GP priors using FSP-Laplace
significantly improve the robustness of average BO performance across different hyperparameter
choices (Figure 4). BO performance remains stable across various activation functions, observation
noise initializations, and context point types (see Figure C.5). However, FSP-Laplace remains
sensitive to learning rates and performs poorly with the Linear covariance function, which is similarly
ineffective for GPs. As with GPs and Laplace, significant variability exists across BO datasets, and
no single configuration is universally optimal for all (e.g., the tanh activation performs best on
PHOTOVOLTAICS but worst on AMPC and D4, see Figure C.13).

Comparing surrogate models. The sensitivity of surrogate models to hyperparameters complicates
comparisons, as better-performing configurations may remain undetected. For GP surrogate models,
robust BO performance is achieved as long as key design choices, such as lengthscale initialization
and the optimizer, are appropriately set. Once these are configured, BO consistently finds high
objective values regardless of the choices for the stationary covariance function, mean function, or
observation noise initialization.

In contrast, the Laplace approximation exhibits high sensitivity to hyperparameters and generally
underperforms compared to GP surrogates. Even the best-performing Laplace configurations fail
to match the median GP surrogate and well-informed GP designs that avoid linear covariance
functions. Importantly, no hyperparameter configuration for the Laplace approximation consistently
works across tasks. However, FSP-Laplace improves performance relative to the standard Laplace
approximation and is competitive with the best GP surrogate models.

4.3 EXPERT FEATURES UNDERPERFORM GENERAL FEATURES

Generic and data-driven features outperform expert features. Hand-crafted generic features
(fingerprints, Mordred) and data-driven features (MolFormer, T5-Chem) outperform hand-crafted
expert features (FM-DFT, force field energy, degree of conjugation) on average across all surrogate
models (see Figure 5). Expert features, particularly force-field energy and degree of conjugation,
perform the worst on average, even on tasks where they are expected to provide a strong signal (e.g.,
degree of conjugation for PHOTOVOLTAICS, LASER, PHOTOSWITCH, REDOXMER; force field energy
for SOLVATION, KINASE, AMPC, D4; see Figures C.7 to C.9).

Certain features perform well on average but show high task-specific variability; for example, FM-
DFT typically excels on KINASE but usually underperforms elsewhere, while fingerprints perform
well overall but fail on KINASE and AMPC. Mordred is the most robust, with consistently good
performance, followed by MolFormer and T5-Chem. This might seem to suggest that Mordred
features should be the default choice, but we will see in the next section that the data-driven features
can be further improved using simple fine-tuning techniques.

It is worth noting that concatenating features generally does not degrade BO performance and
mostly matches the best-performing feature in the set, suggesting limited complementarity among
feature types (see Figure 5). A notable exception is the Laplace with all features combined, which
underperforms compared to most other individual features. In contrast, for GP and FSP-Laplace
combining all features performs comparably to hand-crafted generic features and better than data-
driven or expert features. Feature concatenation also reduces variability across tasks, making “all
features” a consistent top performer. This improvement over Laplace is likely due to the ARD used
in the GP prior, which provides a feature selection mechanism.

ROGI-XD generally correlates with average cumulative regret but not task difficulty. The
roughness index (ROGI-XD; see detailed description in Appendix A.5) measures objective function
variability and correlates with test error (Aldeghi et al., 2022). In our experiments, ROGI-XD shows
a Pearson correlation of at least 0.5 with average cumulative regret on 5 of the 8 tasks, but it does
not fully capture task difficulty (see Figure C.2). For example, D4, the hardest task with the highest
regret, has among the lowest ROGI scores (∼0.080–0.115), while PHOTOVOLTAICS, which is both
challenging and highly variable, has the highest ROGI. Thus, while ROGI can help identify variability
in molecular features, it does not consistently explain BO difficulty or sensitivity to hyperparameter
choices.
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4.4 FINE-TUNING HAS A POSITIVE IMPACT ON PERFORMANCE

As ROGI-XD is correlated with cumulative regret, and prior work (Graff et al., 2023) demonstrates
that fine-tuning reduces ROGI, we explore LoRA and Bayesian LoRA fine-tuning strategies to
improve BO performance. At each BO iteration, LoRA fine-tuning (FT) first updates the MolFormer
model hϕ with the current observations Dt, before generating a new dataset Ft of data-driven
molecular features using hϕ. Ft is subsequently used to compute the surrogate’s posterior p(g | Ft)
(see Algorithm 1). In contrast, Bayesian LoRA fine-tuning (Bayes. FT; Yang et al., 2024; Kristiadi
et al., 2024) directly uses a fine-tuned MolFormer as a surrogate model, thus jointly training the LoRA
and regression head weights, and incorporates posterior uncertainties via a Laplace approximation on
both (vs. just g in LoRA FT). Bayesian LoRA FT is thus more expensive due to posterior estimation
over the LoRA weights.
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Figure 6: GAP score for GP and BNN surrogates
with standard fixed and fine-tuned MolFormer fea-
tures. Fine-tuning significantly improves perfor-
mance, especially for GP and FSP-Laplace. We
also include a comparison with the best performing
fixed features of Figure 5 (Fixed best).

Fine-tuning strongly improves BO perfor-
mance. LoRA feature fine-tuning consistently
improves average BO performance and reduces
variance over fixed features (see Figure 6). In
particular, feature fine-tuning over a GP strongly
outperforms standard GPs on average, and es-
pecially on harder datasets like AMPC and D4
(see Figure C.10). FSP-Laplace also shows sig-
nificant improvements, also especially on hard
tasks, while the gains for Laplace in general are
less pronounced. Bayesian LoRA fine-tuning
performs comparably to standard LoRA fine-
tuning on average, offering improvements in
some cases (e.g., FSP-Laplace and Laplace on
REDOXMER) but falling short on others (e.g.,
FSP-Laplace and Laplace on PHOTOSWITCH;
see Figure 6).

Fine-tuning improves robustness to hyperparameters. Bayesian LoRA is less sensitive to hy-
perparameters than (non-fine-tuned) Laplace models (see Figure 4). For instance, learning rates
strongly influence performance, but weight decay, activation functions, and the rank of LoRA fac-
tors have minimal impact (see Figure C.4). Incorporating Bayesian LoRA fine-tuning with a GP
prior enhances robustness by reducing sensitivity to covariance function choices (see Figures C.13
and C.15). However, sensitivity to learning rate persists. We note that the parameters from Kristiadi
et al. (2024) consistently yield strong performance (see orange line in Figure 4). For both Laplace
and FSP-Laplace Bayesian LoRA, we observe substantial variability in performance across datasets,
with no configuration being universally optimal (see Figures C.14 and C.15).

5 A PRACTICAL RECIPE FOR BO IN MATERIALS DISCOVERY

For reliable BO, use Matérn GP surrogates. We recommend using Gaussian process surrogate
models g. They are fast, reliable, and perform very competitively overall (see Figure 4). We propose
to use a Matérn covariance function (for instance, a Matérn-5/2 since it works best in Figure 2)
with automatic-relevance determination, and to initialize the lengthscales to the square root of the
feature dimension and the covariance function variance σ2

f to 1. We then advise using a zero mean
function, which is the mean of the labels after normalization. While this particular configuration has
little influence on the BO performance, it avoids unnecessary parameters. The initialization of the
observation noise σ2

y should depend on the dataset. A safe option from Deisenroth et al. (2020) is
to assume a certain signal-to-noise ratio (SNR) and to select the noise to match this SNR = σf/σy.
In our datasets, we found that BO performance was largely insensitive to this initialization but
this might differ for other datasets. We finally recommend using the L-BFGS optimizer with the
strong wolfe line search strategy provided by PyTorch (and otherwise default parameters). Since
this optimizer is quite aggressive, adding constraints prevents the lengthscales from becoming too
small (l < 10−3) or too large (l > 103). This optimizer quickly and reliably converges to a (local)
maximum of the marginal likelihood.
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Algorithm 1 A Recipe for effective materials discovery
with Bayesian Optimization using LoRA feature fine-tuning
Require: Molecule set X , objective f , stationary GP surrogate g,

foundation model hϕ, acquisition function α, initial dataset
D1 = {(xi, yi)}mi=1, budget T .

1: for t = 1 to T do
2: Fine-tune hϕ on Dt with LoRA
3: Build dataset Ft = {(hϕ(xi), yi) | (xi, yi) ∈ Dt}

▷ Standardize features & labels
4: Compute posterior p(g | Ft)
5: Find xt+1 = argmaxx∈X α(p(g(hϕ(x)) | Ft))
6: Evaluate objective yt+1 = f(xt+1)
7: Augment dataset Dt+1 = Dt ∪ {(xt+1, yt+1)}
8: Remove xt+1 from molecule set X = X \ {xt+1}
9: end for

10: Return: Best molecule x∗ = argmaxx∈DT+1 f(x)

Improve BO performance by fine-
tuning features. We recommend us-
ing learned data-driven features ob-
tained from a foundation model such
as MolFormer, and to fine-tune the
learned representations as one collects
more data. Algorithm 1 summarizes
our recommendations. At each BO it-
eration t, we first fine-tune the founda-
tion model hϕ on the observations Dt

found so far using LoRA, generate a
new set of fixed features Ft by average
pooling of hϕ’s last layer, standardize
all features and observed labels, and
then proceed with standard BO. This
strategy demonstrates a strong increase
in average performance over fixed features and is even slightly better than the best performing features
(see Figure C.10). Fine-tuning remains affordable on low-end consumer-grade GPU (and, in practice,
will be completely dwarfed in BO for materials discovery by the cost for synthesis and testing).

Alternatively, if fine-tuning is not an option, we recommend using the concatenation of fingerprint
and Mordred features. While these features do not perform as well as LoRA fine-tuned MolFormer
features and have higher variance, they are nevertheless competitive (see fixed best in Figure 5). If
the practitioner happens to have other features at their disposal, we recommend concatenating them
as well as, for GPs, more features do not seem to hurt BO performance and make it more robust on
some tasks (see Figure 5). If fingerprint features are included, a Tanimoto covariance function should
be used. On a side note, we recommend standardizing features before starting BO. Unlike BO in
continuous domains, this is possible in the discrete case since all features are available to us from the
start. We also suggest standardizing the observed labels before fitting surrogates.

6 RELATED WORK

Various surrogate models for BO in materials discovery have been proposed, but GPs remain the de
facto practitioners’ choice (e.g., Zuo et al., 2021; Griffiths et al., 2022; Strieth-Kalthoff et al., 2024b;
Schmid et al., 2024). Recently, BNNs and even foundation models have also been used for materials
discovery (e.g., Kristiadi et al., 2024; Ramos et al., 2023). However, such expressive surrogates bring
increased complexity due to the ever-growing number of moving parts. In this work, we deliberately
pause and attempt to answer which moving parts practitioners and researchers should focus on.

Principled efforts in evaluating BO algorithms have only been made recently. Li et al. (2024b) studied
various surrogate models for BO in general. Kristiadi et al. (2023) discussed the deficiencies of
NN-based surrogates. However, they did not study materials discovery problems. While Hickman
et al. (2023a) provided a chemistry-focused benchmark, they focused on providing the benchmarking
library itself. Meanwhile, Liang et al. (2021); Griffiths et al. (2023) focused on evaluating non-
BNN surrogates for materials discovery. While BNNs are known to be notoriously sensitive to
hyperparameters, discussions about this issue in sequential decision-making tasks are largely absent,
with the notable exceptions of Li et al. (2024a) for BO and Riquelme et al. (2018) for bandits. Our
work not provides only the performance evaluation of BO surrogates for materials discovery in the
age of foundation models, but also actionable recommendations for practitioners.

7 CONCLUSION

In this work, we systematically analyzed key design choices of surrogate models and molecular
features in Bayesian optimization for materials discovery. We found that (1) default-initialized GPs
perform hardly any better than random search, (2) BNNs are highly sensitive to hyperparameters,
(3) learned and generic molecular features outperform expert-designed features, and (4) simple
fine-tuning of molecular representations significantly improves performance, making costly Bayesian
fine-tuning unnecessary. Based on our results, we identified the design choices that matter for
cost-effective BO in materials discovery, namely using a simple but well-initialized surrogate model
with simple feature fine-tuning.
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APPENDIX

A EXTENDED BACKGROUND

A.1 MATERIALS DISCOVERY

Materials discovery is the daunting task of searching through the chemical space of 10200 materials
(Restrepo, 2022) for candidates with desirable properties. Materials discovery generally requires the
design, synthesis, purification, characterization, and testing of the candidate material, which involves
a plethora of design parameters and observable metrics. Often, there is a lack of data and poor
understanding of the structure-property relationships in materials discovery (Agrawal & Choudhary,
2016) which makes it challenging. As a consequence, the traditional approach of trial-and-error
following human intuition or design-of-experiments (i.e. combinatorial search) is too slow and
inefficient to explore the vast landscape (Shahriari et al., 2015; Tom et al., 2024). To remedy this,
material scientists have turned to Bayesian optimization because of its data efficiency, versatility in
black-box model selection, uncertainty quantification, and recent success in chemical optimization
tasks (Tom et al., 2024; Angello et al., 2022).

A.2 BAYESIAN OPTIMIZATION

Let f : X 7→ Y be an unknown function that is expensive to evaluate. Bayesian Optimization (BO) is
a sequential optimization method to find the maximum x∗ = argmaxx∈X f(x). BO requires (i) a
probabilistic surrogate model g that approximates the objective f , (ii) an observation model p(y |
g(x)) for the data, (iii) a prior p(g) for the surrogate, and (iv) an acquisition function α which guides
the selection of the evaluation points. At each iteration, α uses the surrogate model’s posterior p(g |
Dt) ∝ p(Dt | g) p(g) on past (potentially noisy) function evaluations Dt = {(xi, yi)} to balance
between exploration in regions where f is unobserved and exploitation in regions where f is known
to yield promising candidates. When applied to materials discovery, the search space is a discrete set
of molecules X = {xi}Mi=1, and we only need to evaluate α at all unlabeled candidate molecules to
find its maximum. This simplifies BO and is embarrassingly parallel. We describe discrete BO in
Algorithm A.1.

While the default surrogate models remain Gaussian processes (GPs) (Rasmussen & Williams, 2006),
there has been a recent interest in Bayesian neural networks (BNNs), which have shown promising
results (Kristiadi et al., 2024). GPs g ∼ GP (m, k) are defined by mean m : X 7→ Y and covariance
functions k : X × X 7→ R which allow to specify prior knowledge about the objective function
f , and BNNs are defined by a neural network gw. Common choices of acquisition function α
include Thompson sampling (Thompson, 1933), expected improvement (Jones et al., 1998a), and
the upper-confidence bound (Auer, 2003). Finally, material scientist typically use the Gryffin (Häse
et al., 2018), GPyOpt (authors, 2016), BoTorch (Balandat et al., 2020), EDBO+ (Garrido Torres et al.,
2022), and Atlas (Hickman et al., 2023b) Python packages for their materials discovery campaigns.

A.3 BAYESIAN NEURAL NETWORKS

Let gw : X 7→ Y be a neural network with parameters w ∈ W ⊂ Rp. Given data D, Bayesian
neural networks are defined in terms of a likelihood p(D |w) and a weight-space prior p(w). BNNs
recast training as approximating the (intractable) posterior p(w | D) ∝ p(D |w) p(w) thus naturally
capturing epistemic uncertainty due to learning with finite data. Crucially, the posterior yields
predictions consistent with the data within its support, while being uncertain far away from the data.
Multiple approximate inference algorithms exist, either based on a set of samples (e.g., MCMC) or a
parametric distribution (e.g., variational inference and Laplace approximations).

Laplace approximations. The Laplace (MacKay, 1992) approximates the neural network’s poste-
rior by a Gaussian q(w | D) = N

(
w∗,Λ−1

)
where w∗ is found by maximizing the log-posterior

log p(w | D) (i.e., standard regularized neural network training) and Λ = − ∇2
w log p(w | D)

∣∣
w=w∗

is the Hessian. To avoid computing prohibitively expensive Hessians of the neural network with
respect to its parameters, it is common to first linearize the neural network around the posterior
mean w∗ glin

w (x) = gw∗(x)+Jw∗(x)(w−w∗) where Jw∗(x) = ∇wgw(x)|w=w∗ is the Jacobian,
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Algorithm A.1 Bayesian Optimization for materials discovery

Require: Molecule candidate set X , objective function f , surrogate model g, acquisition function α,
initial dataset D1 = {(xi, yi)}mi=1, budget T .

1: for t = 1 to T do
2: Compute posterior p(g | Dt)
3: Find candidate xt+1 = argmaxx∈X α(p(g | Dt))
4: Evaluate objective yt+1 = f(xt+1)
5: Augment dataset Dt+1 = Dt ∪ {(xt+1, yt+1)}
6: Remove xt+1 from molecule set X = X \ {xt+1}
7: end for
8: Return: Best molecule x∗ = argmaxx∈DT

f(x)

before computing Λ under this approximation (Immer et al., 2021). The resulting posterior predictive
is p(glin

w (x) | D) = N
(
gw∗(x),Jw∗(x)Λ−1Jw∗(x)⊤

)
thus adding an uncertainty estimate around

the standard neural network’s prediction gw∗(x). Since the precision Λ ∈ Rp×p is typically pro-
hibitively large, it is often approximated by its diagonal or a product of Kronecker factors (Ritter
et al., 2018). Laplace approximations scale to large datasets and models, and have been shown to
provide well-calibrated uncertainty estimates (Immer et al., 2021; Daxberger et al., 2021).

The Laplace also provides an approximation to the marginal likelihood allowing for model selection.
Making the dependance of the prior on its hyperparameters θ explicit, the marginal likelihood is
approximated by

log p(D | θ) ≈ log p(D |w∗) + log p(w∗ | θ) + p

2
log 2π − 1

2
log detΛ (A.1)

We can then maximize the marginal likelihood by gradient ascent to find the neural network’s prior
parameters.

Function-space priors for Laplace approximations. While the choice of prior strongly affects the
resulting posterior distribution, meaningful prior beliefs over neural network weights are very difficult
to specify due to non-interpretability of the weights. FSP-Laplace (Cinquin et al., 2024) allows to
specify meaningful prior beliefs using a GP prior within the framework of Laplace approximations.
Specifically, the posterior approximation remains q(w | D) = N

(
w∗,Λ−1

)
but the posterior

mean w∗ under the GP prior g ∼ GP (m, k) is found by maximizing RFSP (w) = log p(D |
w)− 1/2 ∥gw−m∥2Hk

where ∥ · ∥Hk
is the RKHS norm under the kernel k, and the posterior precision

is given by Λ = − ∇2
wRFSP (w)

∣∣
w=w∗ .

A.4 MOLECULAR FOUNDATION MODELS

Molecular foundation models are a class of large-scale neural networks pre-trained on vast datasets of
molecular structures (e.g., SMILES) and their properties (Chithrananda et al., 2020; Ross et al., 2022;
Soares et al., 2024a). These models leverage the transformer architecture, which has demonstrated
strong performance in natural language processing and is increasingly applied to generate molecular
data with robust accuracy Mathiasen et al. (2024).

The transformer architecture captures long-range dependencies in sequential data using K-head
self-attention. Given an input sequence X ∈ RT×N , it computes

O = [H1, . . . ,HK ]W⊤
O ∈ RT×O

Hi = softmax

(
1√
D
(XQ⊤

i )(XK⊤
i )⊤

)
(X⊤Vi) ∈ RT×D

where [. . . ] is the column-wise stacking operator, WO ∈ RO×KD and Qi,Ki,Vi ∈ RD×N are
linear projections. Composing a multi-head self-attention layer with normalization layers and residual
connections yields a transformer module, many of which are then stacked to form a transformer
model.

Molecular foundation models are pre-trained using self-supervised masked language modeling on
large generic datasets such as MoleculeNet Wu et al. (2018). In this approach, some tokens in the
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input sequence are randomly masked, and the model is trained to reconstruct these masked tokens.
Foundation models are then fine-tuned to specific applications where typically less data is available.
Due to their very large size, fine-tuning all the model parameters is prohibitively expensive. As a
solution, parameter-efficient fine-tuning (PEFT) only updates a subset of the parameters, keeping the
rest frozen (Houlsby et al., 2019; Hu et al., 2022).

Low-rank adaptation (LoRA) (Hu et al., 2022) is a popular PEFT method that introduces low-rank
updates to a subset of parameters (typically attention weights), significantly reducing computational
and memory requirements. Given a frozen pre-trained weight W ∗ ∈ RD×N , LoRA adds low-rank
factors A ∈ RZ×N and B ∈ RZ×D in a new weight W = W ∗ +B⊤A. Z is typically small (e.g.,
Z = 8) such that the factors only introduce a small amount of new parameters.

Bayesian LoRA approximates the neural network’s posterior with respect to the LoRA weights either
using the Laplace approximation (Yang et al., 2024) or SWAG (Onal et al., 2024; Maddox et al.,
2019).

A.5 ROGI-XD

The roughness index (ROGI-XD) quantifies the difficulty of a materials discovery task, with higher
values indicating greater optimization complexity. Given a dataset D = {(xi, yi)}Ni=1 of molecular
feature and objective value pairs, we define ROGI as follows. The labels yi are normalized such that
all pairwise differences in objective values fall within the range [0, 1].

ROGI is computed by applying complete-linkage clustering at varying distance thresholds t ∈ [0, 1],
ensuring that all points within a cluster are separated by at most t. At each threshold, we compute
the standard deviation of objective values across clusters. As t increases, this standard deviation
decreases monotonically. The area under this curve defines ROGI:

ROGI =
∫ 1

0

2(σ0 − σt)dt (A.2)

where σt denotes the standard deviation at threshold t (Aldeghi et al., 2022; Graff et al., 2023).
Intuitively, when similar inputs exhibit large variations in objective values, dispersion across clusters
decreases sharply at low thresholds, leading to a higher ROGI. This metric has been used to compare
model performance across datasets and feature representations.

However, Graff et al. (2023) showed that ROGI systematically underestimates roughness in high-
dimensional feature spaces. As dimensionality increases, normalized pairwise distances become more
concentrated near 1, reducing ROGI values even when the underlying structure remains complex. To
correct for this, ROGI-XD replaces the pairwise distance with 1− logNclusters/ logN , where Nclusters
is the number of clusters at a given step in the dendrogram and N is the dataset size. This adjustment
makes ROGI-XD invariant to both dimensionality and dataset size, yielding a more robust measure
of roughness across different molecular representations.

B EXTENDED EXPERIMENTAL SETUP DESCRIPTION

B.1 DATASETS

We conduct our experiments on well-established benchmarks: six materials discovery tasks from
Kristiadi et al. (2024) and two additional drug discovery tasks, AMPC and D4, from Graff et al. (2021).
The materials discovery tasks include minimizing the redox potential (REDOXMER) and solvation
energy (SOLVATION) of battery electrolytes (Agarwal et al., 2021), maximizing the fluorescence
oscillator strength of lasers (LASER; Strieth-Kalthoff et al., 2024c), maximizing the power conversion
efficiency (PCE) of photovoltaic materials (PHOTOVOLTAICS; Lopez et al., 2016), and maximizing
the π − π∗ transition wavelength of organic photoswitches (PHOTOSWITCH; Griffiths et al., 2022).
For drug discovery, the tasks KINASE, AMPC, and D4 aim to minimize docking scores, a critical
metric for evaluating potential binders (Graff et al., 2021).
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B.2 FEATURES

We consider three types of features: data-driven, generic hand-crafted, and expert hand-crafted
features.

Data-driven features We use 784-dimensional embeddings extracted by average pooling of the
final layer of the MolFormer (Ross et al., 2022) and Chemistry-T5 (T5-chem; Christofidellis et al.,
2023) models. T5-Chem uses the just-smiles prompting strategy from Kristiadi et al. (2024).

Generic hand-crafted features These features include the 1024-bit Morgan fingerprints with
radius 3 (Morgan, 1965) as well as all the molecular descriptors from the Mordred Python package
(Moriwaki et al., 2018).

Expert hand-crafted features We use the FM-DFT (foundation model predicted density functional
theory) properties, force-field energy, and the maximum degree of conjugation. The FM-DFT features
are predicted using the SMI-TED model (Soares et al., 2024b), fine-tuned on the QM9 dataset
(Ramakrishnan et al., 2014; Ruddigkeit et al., 2012), which achieves state-of-the-art performance on
QM9. The Merck molecular force-field energy (force field), computed using RDKit, is particularly
relevant for tasks like SOLVATION, KINASE, AMPC, and D4. Both FM-DFT and force-field energy
are general molecular properties applicable across all datasets. Finally, the maximum degree of
conjugation, a simple computation, is expected to be especially relevant for datasets similar to
PHOTOVOLTAICS, LASER, PHOTOSWITCH, and REDOXMER.

B.3 ACQUISITION FUNCTION

In all experiments, we use the Thompson sampling (Thompson, 1933) acquisition function for its
simplicity. Kristiadi et al. (2024) found that Thompson sampling and expected improvement perform
similarly on average, making it a reasonable default choice.

B.4 BAYESIAN OPTIMIZATION INITIALIZATION

At the beginning of the BO campaign, we standardize the features of all candidates in X to have zero
mean and unit variance, and standardize labels in Dt before training the surrogate models. We start
the BO with an initial dataset of 10 function evaluations drawn uniformly from the set of candidates
X .

B.5 SURROGATE MODELS

Gaussian process surrogates For GP surrogates, we use the Tanimoto covariance function (Grif-
fiths et al., 2023) when using fingerprint features and otherwise a Matérn-5/2 covariance function
with automatic relevance determination (ARD), as it is generally considered a more realistic default
choice for BO than RBF (Snoek et al., 2012; Garnett, 2023). When combining fingerprints with other
features, we apply Tanimoto to the fingerprint components and Matérn-5/2 to the rest. We include
a scale parameter controlling the variance of the prior and constrain the lengthscales to the range
[10−3, 103] to prevent numerical instabilities when using the aggressive L-BFGS optimizer.

Bayesian neural networks For the BNN, we use a two-layer multi-layer perceptron with 50 hidden
units each and tanh activations. We approximate the posterior using the linearized Laplace with the
Kronecker-factored posterior covariance approximation (Ritter et al., 2018; Immer et al., 2021). We
pose a Gaussian prior on the weights p(w) =

∏L
l=1 N

(
0l, σ

2
p,lIl

)
, with an independent variance

parameter σ2
p,l per layer. We fit the prior parameters and the likelihood’s observation noise by

maximizing the marginal likelihood after training the neural network (i.e., the so-called posthoc
Laplace approximation). We also run experiments with FSP-Laplace (Cinquin et al., 2024), which
approximates the posterior using the Laplace but under a GP prior, using the same neural network
architecture, and the same prior as the GP surrogates.
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Bayesian LoRA We consider a Bayesian fine-tuned MolFormer network (Ross et al., 2022) apply-
ing the Laplace approximation to its LoRA weights, following Kristiadi et al. (2024). We use the
same hyperparamters as Kristiadi et al. (2024) for both simple LoRA and Bayesian LoRA fine-tuning.

B.6 METRICS

We measure BO performance by tracking the optimal value over time and by using the GAP score
(Jiang et al., 2020) to aggregate over all BO tasks. The GAP score is computed by converting each
task to a maximization problem, normalizing the objective values to the range [0, 1], and averaging
over all tasks. In each figure, we report the mean and standard error of the score across 5 repetitions
with different random seeds.

B.7 SOFTWARE

We use the BOTorch (Balandat et al., 2020) Python package for the Bayesian optimization experiments
and GPyTorch (Gardner et al., 2018) for GP models. When using fingerprints, we use the Tanimoto
covariance function from Gauche (Griffiths et al., 2023). PyTorch (Paszke et al., 2019) serves as
our framework for neural networks. We retrieve Chemical-T5, MolFormer, and SMI-TED models
from Hugging Face using the Transformers library and use the PEFT package for LoRA. We
implement Bayesian LoRA fine-tuning using code from https://github.com/wiseodd/
lapeft-bayesopt (Kristiadi et al., 2024). For the Laplace approximation, we rely on the
Laplace-PyTorch package (Daxberger et al., 2021).

B.8 HARDWARE

We ran our experiments using Intel Xeon Gold CPUs and Nvidia 2080Ti GPUs with 11GB of memory.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 RESULTS FOR ROGI

The roughness index (ROGI-XD; see detailed description in Appendix A.5) quantifies objective
function variability and correlates with test error (Aldeghi et al., 2022). We compute ROGI for each
dataset under different feature representations, using Tanimoto distance for fingerprints and Euclidean
distance otherwise.

We find that the choice of features significantly influences ROGI, sometimes leading to large variations
for the same dataset (see Figure C.1). For example, in SOLVATION, T5-Chem features yield a ROGI
of ∼0.06, while the degree of conjugation results in a ROGI of ∼0.18.

ROGI-XD generally correlates with average cumulative regret but does not always accurately reflect
task difficulty. In our experiments, it exhibits a Pearson correlation of at least 0.5 with average
cumulative regret in five out of eight tasks (see Figure C.2). However, it fails to fully capture
optimization complexity. For instance, D4, the most difficult task with the highest cumulative
regret, has among the lowest ROGI scores (0.080–0.115). In contrast, PHOTOVOLTAICS, which is
both challenging and highly variable, has the highest ROGI. These results suggest that while ROGI
captures variability in molecular representations, it does not reliably explain Bayesian optimization
(BO) difficulty or sensitivity to hyperparameter choices.

We find that fine-tuning typically reduces ROGI-XD, with notable decreases observed in PHOTO-
VOLTAICS, REDOXMER, and LASER (see Figure C.3). However, lower ROGI-XD does not always
lead to better BO performance. For example, despite a significant reduction in ROGI for PHOTO-
VOLTAICS, BO performance remains unchanged. Conversely, D4 and SOLVATION exhibit stable
ROGI values yet show substantial improvements with fine-tuning. In contrast, LASER and AMPC
display a clearer relationship between ROGI reduction and improved BO performance. These findings
indicate that while ROGI-XD provides insight into objective variability, it is not a reliable predictor
of BO performance across all tasks.

C.2 ADDITIONAL BAYESIAN OPTIMIZATION RESULTS
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Figure C.1: Different feature representations induce different roughness index (ROGI-XD).
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fine-tuning. Fine-tuning does not systematically decrease the ROGI.
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and activation function.
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Figure C.6: GAP metric for FSP-Laplace Bayesian LoRA surrogates across different design choices
(for MolFormer features). Average BO performance is sensitive to the choice of learning rate for the
LoRA and regression head weights, but no longer to the choice of covariance function.
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Figure C.7: Mean and standard deviation of the optimal value found during the BO at each time step
across different features (for Gaussian process surrogate models). The dark dashed line shows the
optimal value for each task.
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Figure C.8: Mean and standard deviation of the optimal value found during the BO at each time step
across different features (for Laplace approximation surrogate models, Bayesian neural network).
The dark dashed line shows the optimal value for each task.
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Figure C.9: Mean and standard deviation of the optimal value found during the BO at each time step
across different features (for FSP-Laplace surrogate models, i.e., Bayesian neural network with a GP
prior). The dark dashed line shows the optimal value for each task.
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Figure C.10: Mean and standard deviation of the optimal value found during the BO at each time
step for GP, Laplace and FSP-Laplace surrogate models and different feature fine-tuning strategies
(fixed features, fine-tuned features and Bayesian fine-tuned surrogates). The dark dashed line shows
the optimal value for each task.
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Figure C.11: Mean and standard deviation of the optimal value found during BO at each time step for
GP surrogates across different design choices (for MolFormer features). The dark dashed line shows
the optimal value for each task.
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Figure C.12: Mean and standard deviation of the optimal value found during BO at each time step for
Laplace surrogates across different design choices (for MolFormer features). The dark dashed line
shows the optimal value for each task.
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Figure C.13: Mean and standard deviation of the optimal value found during BO at each time step for
FSP-Laplace surrogates across different design choices (for MolFormer features). The dark dashed
line shows the optimal value for each task.

26



Published as a workshop paper at AI4Mat-ICLR 2025

1.2

1.0

0.8

So
lv

at
io

n 
(↓

)

σ2
y  initialization

0.1
0.01
0.001
0.0001
Random

Activation
ReLU
LReLU

Learning rate
0.0001
0.00001
0.000001

Weight decay
0.00001
0.0001
0.001

LoRA rank
4
8
16

LoRA learning rate
0.001
0.0001
0.00001

1.6

1.7

1.8

R
ed

ox
m

er
 (
↓)

9.5

9.0

K
in

as
e 

(↓
)

100 200
t

500

550

600

Ph
ot

os
w

itc
he

s (
↑)

100 200
t

100 200
t

100 200
t

100 200
t

100 200
t

Figure C.14: Mean and standard deviation of the optimal value found during BO at each time step for
Laplace Bayesian LoRA surrogates across different design choices (for MolFormer features). The
dark dashed line shows the optimal value for each task.
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Figure C.15: Mean and standard deviation of the optimal value found during BO at each time step for
FSP-Laplace Bayesian LoRA surrogates across different design choices (for MolFormer features).
The dark dashed line shows the optimal value for each task.
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