WHAT ACTUALLY MATTERS FOR MATERIALS DISCOV-ERY: PITFALLS AND RECOMMENDATIONS IN BAYESIAN OPTIMIZATION

Tristan Cinquin ^{*,t} Stanley Lo^u Felix Strieth-Kalthoff^w Alán Aspuru-Guzik^u Geoff Pleiss^{b,v} Robert Bamler^t Tim G. J. Rudnerⁿ Vincent Fortuin^{h,m} Agustinus Kristiadi^v

^tTübingen AI Center, University of Tübingen ^uUniversity of Toronto ^wUniversity of Wuppertal ^bUniversity of British Columbia ^vVector Institute ⁿNew York University ^hHelmholtz AI ^mTU Munich

ABSTRACT

Materials discovery underpins innovation in many fields such as energy storage and therapeutics delivery, but it requires time- and resource-intensive chemical synthesis and testing. Bayesian optimization (BO) with Gaussian processes (GPs) or Bayesian neural networks (BNNs) offers a promising solution to accelerate materials discovery, but the full landscape of features and surrogate models is still poorly understood. In this work, we systematically investigate the impact of key design choices and identify pitfalls of current methodologies and opportunities for improvements. These include: (1) GPs with the default initialization scheme perform hardly any better than random policies; (2) BNNs are highly sensitive to hyperparameters; (3) expert-designed molecular features underperform compared to learned and even simple, generic features; and (4) simple feature fine-tuning significantly enhances performance, contrary to the conventional practice of using fixed features or costly Bayesian fine-tuning schemes. We identify the design choices that matter for BO in materials discovery, namely using a simple but wellinitialized surrogate with feature fine-tuning. Our work provides recommendations for practitioners towards more cost-effective BO for materials discovery.

1 INTRODUCTION

The discovery of new materials with desirable properties underpins advances in many fields, from polymer-protein hybrids (Tamasi et al., 2022) to solid-state electrolytes (Shimizu et al., 2020; Benayad et al., 2022) and organic laser emitters (Strieth-Kalthoff et al., 2024a). However, materials discovery involves time-consuming and resource-intensive lab work: the design, synthesis, purification, and characterization of materials from vast sets of molecules (Abolhasani & Kumacheva, 2023).

To focus this expensive laboratory effort on promising candidate materials, various works (Angello et al., 2022; Tom et al., 2024) highlight the promises of Bayesian optimization (BO; Močkus, 1975; Jones et al., 1998b; Garnett, 2023; Khatamsaz et al., 2023) in materials discovery. BO approximates a black-box objective function (e.g., a physical measurement) with a probabilistic surrogate model and uses posterior probabilities to balance the exploration of uncertain regions against the exploitation of promising candidates across the vast and complex molecular design space. Although the central proposition of BO is to take into account the cost of evaluating the objective function, many previous works use synthetic or pre-collected data, and do not discuss the fact that method design and model selection is usually an iterative process, during which one already uses some of the data (Riquelme

^{*}Correspondence to: tristan.cinquin@uni-tuebingen.de.

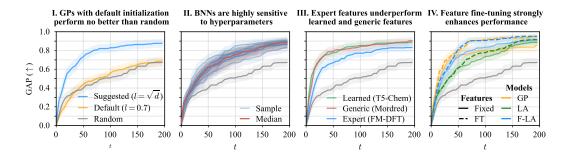


Figure 1: We find that (I) stationary GPs perform poorly with default lengthscale l initialization, (II) BNNs are highly sensitive to hyperparameters, and well-initialized GPs generally outperform BNNs (LA). (III) generic and learned features derived from foundation models are often better than expert ones, especially (IV) when learned features are additionally fine-tuned (FT).

et al., 2018; Li et al., 2024a). In real world settings, it is unrealistic to assume access to an optimal surrogate model, as optimizing the surrogate model requires costly experimental data that BO aims to minimize. Thus, any application of BO to real-world problems requires a domain-specific understanding of the input features and surrogate models design space.

In this work, we systematically investigate this design space for BO in the domain of materials discovery. In this domain, the selection of a surrogate model, hyperparameters, initializations, molecular features, and strategies for fine-tuning representations is still underexplored. For example, there has been recent interest in replacing traditional Gaussian process (GP) surrogate models with Bayesian neural networks (BNNs) based on highly expressive fine-tuned foundation models that leverage large molecular datasets (Kristiadi et al., 2024), but the trade-offs of using such highly sophisticated models remain unclear. Further, the design space for input features of the surrogate model spans fingerprints (Rogers & Hahn, 2010), hand-crafted features such as those available in the Mordred Python package (Moriwaki et al., 2018), expensive and expert-run density functional theory (DFT) calculations (Burke, 2012), and, recently, data-driven features derived from molecular foundation models (Soares et al., 2024a) and feature fine-tuning (Kristiadi et al., 2024).

Our goal is to provide a concise overview of the wide range of design choices, and to identify the major factors of BO performance, to replace educated guessing by evidence-based recommendations. To do so, we evaluate the performance of various surrogate models, priors, molecular features, and fine-tuning strategies in a systematic empirical study across eight real-world materials discovery BO tasks. By examining their influence on BO performance, we identify several key pitfalls in current methodologies and recommendations for improvements, challenging some of the current de-facto wisdom in BO for materials discovery. Particularly, we find that (see Figure 1):

- 1. GPs with stationary covariance functions can perform poorly if not carefully initialized; however, well-initialized GPs typically outperform BNNs.
- 2. BNNs exhibit high sensitivity to hyperparameter configurations, but this can be improved by using GP-based functional priors.
- 3. Learned features and generic hand-crafted features outperform expert-designed features.
- 4. **Simple (non-Bayesian) fine-tuning** of features derived from foundation models with new data at each BO iteration **significantly enhances performance**.

Based on these findings, we formulate a set of recommendations for practitioners and provide a course correction for future research on this topic.

2 BACKGROUND

We start by presenting a background on materials discovery, Bayesian optimization, Bayesian neural networks, and molecular foundation models. We provide an extended discussion in Appendix A.

2.1 MATERIALS DISCOVERY

Materials discovery is the task of searching through the chemical space of 10^{200} materials (Restrepo, 2022) for candidates with desirable properties. This generally requires the design, synthesis, purification, characterization, and testing of the candidate, which involves a plethora of design parameters and observable metrics. The lack of data and poor understanding of the structure-property relationships makes materials discovery challenging (Agrawal & Choudhary, 2016). Consequently, the traditional approach of trial-and-error following human intuition or design-of-experiments (i.e., combinatorial search) is too slow and inefficient to explore the vast landscape (Shahriari et al., 2015), which has led to the growing interest in using BO for chemical tasks (Angello et al., 2022; Tom et al., 2024).

2.2 BAYESIAN OPTIMIZATION

Bayesian Optimization (BO) is a sequential optimization method to find the maximum of an unknown function $f : \mathcal{X} \mapsto \mathcal{Y}$ that is expensive to evaluate (Garnett, 2023). BO requires (i) a probabilistic surrogate model g that approximates f, (ii) an observation model p(y | g(x)) for the data, (iii) a prior p(g) for the surrogate, and (iv) an acquisition function α that guides the selection of the evaluation points. At each iteration t, the acquisition function uses the surrogate's posterior $p(g | \mathcal{D}_t) \propto$ $p(\mathcal{D}_t | g) p(g)$ on the observations \mathcal{D}_t accumulated so far to balance *exploration* in regions where the objective is unobserved against *exploitation* in regions where the objective is known to yield promising candidates via $x_t = \arg \max_{x \in \mathcal{X}} \alpha(p(g(x) | \mathcal{D}_t))$. In materials discovery, the search space \mathcal{X} is a discrete set of molecules, simplifying the search. While the default surrogate models remain Gaussian processes (GPs; Rasmussen & Williams, 2006), there has been a recent interest in Bayesian neural networks (BNNs), which have shown promising results (Kristiadi et al., 2024).

2.3 BAYESIAN NEURAL NETWORKS

BNNs recast training neural networks as approximating the Bayesian posterior distribution over their weights given the data and thus approximate epistemic uncertainty. The posterior yields predictions consistent with the data within its support, while being uncertain far away from the data. Since this inference is intractable, various approximations are used, such as the Laplace approximation.

Laplace approximation. The Laplace approximation (MacKay, 1992) models a neural network's posterior as a Gaussian. Its mean is the maximum a posteriori (MAP) parameter estimate, which is found by maximizing the log-posterior (i.e., standard regularized neural network training), and its covariance is the inverse of the Hessian (i.e., the curvature of the loss). Further approximations, such as a linearization of the neural network around its MAP estimate and a Kronecker-factored low-rank approximation of the resulting Hessian, are often applied to reduce computation. Laplace approximations scale to large datasets, and models and have been shown to provide well-calibrated uncertainty estimates (Daxberger et al., 2021; Immer et al., 2021).

Function-space priors for Laplace approximations. The choice of prior strongly affects the resulting posterior distribution, but meaningful prior beliefs over neural network weights are very difficult to specify. FSP-Laplace (Cinquin et al., 2024) remedies this by allowing to specify meaningful prior beliefs in function space using a GP prior. The posterior approximation of FSP-Laplace is still a Gaussian over weights, as in the normal Laplace approximation.

2.4 MOLECULAR FOUNDATION MODELS

Molecular foundation models are a class of large-scale neural networks pre-trained on vast datasets of molecular structures and their properties (Chithrananda et al., 2020; Ross et al., 2022; Soares et al., 2024a). These models leverage the transformer architecture, which has demonstrated strong performance in large language models (LLMs) and is increasingly applied to generate molecular data with robust accuracy Mathiasen et al. (2024). Similar to LLMs, molecular foundation models can be fine-tuned on specific tasks where fewer data are available. Since fine-tuning all parameters is often prohibitively expensive, parameter-efficient fine-tuning (PEFT) methods, such as low-rank adaptation (LoRA; Hu et al., 2022), only update a small subset of the parameters, keeping the rest frozen (Houlsby et al., 2019; Hu et al., 2022). LoRA weights can also be Laplace approximated, allowing for a Bayesian approach to fine-tuning (Yang et al., 2024; Onal et al., 2024).

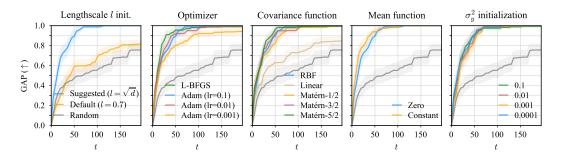


Figure 2: GAP metric for Gaussian process surrogates across different design choices (for MolFormer features). We see that the lengthscale initialization is crucial, and the choice of optimizer and covariance function matter to some extent, while the mean function and observation noise do not.

3 EXPERIMENTAL SETUP

This section presents the datasets, surrogate models, features and metrics we use in our experiments. We provide additional details on our setup in Appendix B.

Dataset We conduct our experiments on well-established benchmarks: six materials discovery tasks from Kristiadi et al. (2024) and two additional drug discovery tasks, AMPC and D4, from Graff et al. (2021). The materials discovery tasks include minimizing the redox potential (REDOXMER) and solvation energy (SOLVATION) of battery electrolytes (Agarwal et al., 2021), maximizing the fluorescence oscillator strength of lasers (LASER; Strieth-Kalthoff et al., 2024c), maximizing the power conversion efficiency (PCE) of photovoltaic materials (PHOTOVOLTAICS; Lopez et al., 2016), and maximizing the $\pi - \pi^*$ transition wavelength of organic photoswitches (PHOTOSWITCH; Griffiths et al., 2022). For drug discovery, KINASE, AMPC, and D4 aim to minimize docking scores, a critical metric for evaluating potential binders (Graff et al., 2021).

Surrogate models We use GP and BNN surrogates. For GPs, we use the Tanimoto covariance function (Griffiths et al., 2023) when using fingerprint features and otherwise a Matérn-5/2, as it is generally a default for BO (Snoek et al., 2012; Balandat et al., 2020). For the BNN, we use a tanh-activated two layer neural network with 50 hidden units each, and approximate the posterior using the linearized Laplace with the Kronecker-factored covariance approximation (Ritter et al., 2018; Immer et al., 2021). We also compare with FSP-Laplace (Cinquin et al., 2024), which computes a Laplace-approximation on the same network but under a GP functional prior rather than a weight-space prior. Finally, we consider a Bayesian fine-tuned MolFormer model (Ross et al., 2022) applying the Laplace to its LoRA weights Kristiadi et al. (2024). We use the Thompson sampling (Thompson, 1933) acquisition function for its simplicity and good performance (Kristiadi et al., 2024).

Features We consider three types of features: data-driven, generic hand-crafted, and expert handcrafted features. For data-driven features, we use embeddings extracted from the MolFormer (Ross et al., 2022) and Chemistry-T5 (T5-chem; Christofidellis et al., 2023) models. Generic hand-crafted features include Morgan fingerprints (Morgan, 1965) and all molecular descriptors from the Mordred package (Moriwaki et al., 2018). Expert hand-crafted features consist of FM-DFT (foundation model predicted density functional theory) properties, force-field energy, and the maximum degree of conjugation. The FM-DFT features are predicted using the SMI-TED model (Soares et al., 2024b) fine-tuned on the QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014). The Merck molecular force-field energy (force field) is particularly relevant for tasks like SOLVATION, KINASE, AMPC, and D4. Both FM-DFT and force-field energy are general molecular properties applicable across all datasets. Finally, the maximum degree of conjugation is expected to be mostly relevant for datasets similar to PHOTOVOLTAICS, LASER, PHOTOSWITCH, and REDOXMER.

Metrics We measure BO performance by tracking the optimal value over time and by using the GAP score (Jiang et al., 2020) to aggregate over all BO tasks. The GAP score is computed by converting each task to a maximization problem, normalizing the objective values to the range [0, 1], and averaging over all tasks. In each figure, we report the mean and standard error of the scores across 5 repetitions with different random seeds.

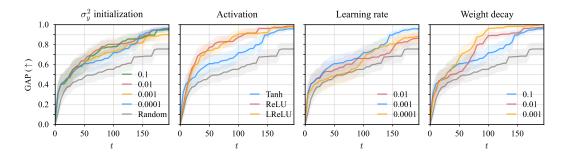


Figure 3: GAP metric for Bayesian neural network surrogates (Laplace approximation) across different design choices (for MolFormer features). We see that the choice of activation, learning rate and weight decay have a strong influence on BO performance but not the initialization of the observation noise.

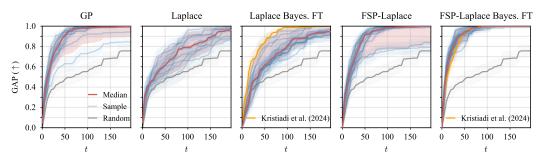


Figure 4: GAP metrics for GP, Laplace, Laplace Bayesian LoRA, FSP-Laplace and FSP-Laplace Bayesian LoRA surrogate models. Each blue line is the GAP score for one instance of hyperparameters, the red line is the median GAP score, and the red interval is the [0.05, 0.95] inter-quantile range. We see that GP surrogates generally show better performance than BNNs and are less sensitive to their hyperparameters. This behavior can be recovered in BNNs using GP priors with FSP-Laplace.

4 AN IN-DEPTH EMPIRICAL STUDY OF BO FOR MATERIALS DISCOVERY

4.1 All you need is a well-initialized GP surrogate

First, we explore key design choices for Gaussian process surrogate models. To evaluate the impact of individual components, we start from a reference configuration (blue line in Figure 2) and perform an ablation study by varying one factor at a time while keeping all other settings fixed. We investigate lengthscale initialization, optimizer, covariance function, mean function, and observation noise initialization. For the following experiments, we use the data-driven MolFormer features, as they were shown to perform best by Kristiadi et al. (2024), and they are amenable to affordable feature fine-tuning. Our results highlight several critical findings: proper initialization of stationary covariance functions is essential for strong performance, linear covariance functions consistently underperform compared to well-initialized stationary alternatives, and quasi-Newton optimizers such as L-BFGS significantly enhance BO performance compared to Adam.

Proper lengthscale initialization is key. Proper initialization of GP surrogate models with stationary covariance functions is essential for effective BO. Using GPyTorch's (Gardner et al., 2018) default lengthscale initialization (l = 0.691) for marginal likelihood optimization results in poor performance, barely outperforming random molecule selection (Figure 2, left panel, orange line). Initializing lengthscales proportional to the square root of the input dimensionality d—as suggested by Hvarfner et al. (2024) for EI-based BO—significantly improves performance across all BO tasks (see task-specific details in Figure C.11). Larger lengthscales mitigate the effect of increased Euclidean distances in high-dimensional feature spaces, enabling the stationary covariance functions to maintain meaningful correlations over longer ranges. Importantly, this failure mode often goes undetected, potentially hindering BO performance without clear diagnostic signals, especially for unaware practitioners using their own covariance functions.

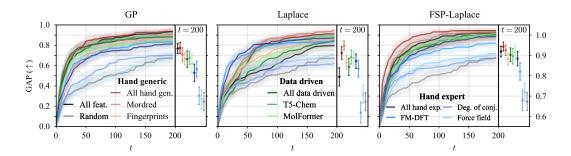


Figure 5: GAP score for GP, Laplace and FSP-Laplace surrogate models across different types of features. We find that generic hand-crafted (fingerprints, Mordred) and data-driven (MolFormer, T5-Chem) features perform better on average than hand-crafted expert features (FM-DFT, force field, degree of conjugation). Concatenating a group of features generally performs as well as the best feature in the group. The (shared) legend is split across panels due to space constraints.

The choice of optimizer matters. We find that the optimizer used for marginal likelihood optimization significantly affects BO performance. While the Adam optimizer (Kingma & Ba, 2015) is a common choice and the default in GPyTorch, it is primarily designed for stochastic optimization. For deterministic model selection criteria like the marginal likelihood, Adam converges slower than quasi-Newton methods such as L-BFGS (Liu & Nocedal, 1989), which achieve much faster convergence due to their line search capabilities. Additionally, Adam requires tuning a learning rate, which can strongly influence the resulting GP hyperparameters. While quasi-Newton methods might be computationally prohibitive for high-dimensional neural network training, optimizing GP hyperparameters is feasible due to their relatively low dimensionality. We observe that using L-BFGS for hyperparameter optimization allows BO to obtain high objective values in fewer iterations compared to Adam (see green line in second panel of Figure 2 and task-specific results in Figure C.11). Furthermore, BO performance with Adam deteriorates significantly when the learning rate is poorly chosen. We hypothesize that Adam may have trouble converging to good GP hyperparameters or may get stuck in a poor local optimum. This issue may easily go unnoticed: a lower learning rate could perform adequately during initial BO iterations when fewer data points are available, but fail to adapt as the number of observations grows in later BO iterations.

The prior covariance should be Matérn, but smoothness doesn't matter. We find that Matérn covariance functions provide good BO performance, and this performance is robust to the ν hyperparameter which controls smoothness. Matérn 1/2, 3/2, 5/2, and RBF (equivalent to Matérn with $\nu = \infty$) covariances achieve nearly identical performance, all significantly outperforming the linear covariance function (which should thus be avoided).

Mean function & observation noise initialization do not matter much. Since we standardize targets when training the surrogate models, a zero mean function should be the correct model specification. Indeed, we find that using a constant or zero mean function does not make a difference (see the fourth panel in Figure 2). We also observe no significant variation in performance across different initializations of the observation noise (see the last panel in Figure 2).

4.2 YOUR BNN IS PROBABLY NOT WELL TUNED

Second, we explore key design choices for BNN surrogates. Just like with GPs, we evaluate the impact of individual components by starting from a reference configuration (blue line in Figures 3 and C.4 to C.6) and perform an ablation study by varying one setting at a time keeping others fixed.

BNNs with weight space priors are particularly sensitive to hyperparameters. We find that BNNs are highly sensitive to hyperparameter choices (see Laplace methods in Figure 4). As shown in Figure 3, variations in activation functions, learning rates, and weight decay significantly impact average BO performance. However, similar to GPs, BNNs are relatively insensitive to the initialization of observation noise. Notably, no single configuration proves optimal across all tasks. For example, while the tanh activation performs best for AMPC, it performs worst for REDOXMER and SOLVATION (see Figure C.12).

BNNs with GP priors are more robust. For this analysis, we initialize the lengthscales as recommended in Section 4.1 and use the L-BFGS optimizer for GP hyperparameter tuning. Unlike BNNs with weight space priors (i.e., Laplace), we find that BNNs with GP priors using FSP-Laplace significantly improve the robustness of average BO performance across different hyperparameter choices (Figure 4). BO performance remains stable across various activation functions, observation noise initializations, and context point types (see Figure C.5). However, FSP-Laplace remains sensitive to learning rates and performs poorly with the Linear covariance function, which is similarly ineffective for GPs. As with GPs and Laplace, significant variability exists across BO datasets, and no single configuration is universally optimal for all (e.g., the tanh activation performs best on PHOTOVOLTAICS but worst on AMPC and D4, see Figure C.13).

Comparing surrogate models. The sensitivity of surrogate models to hyperparameters complicates comparisons, as better-performing configurations may remain undetected. For GP surrogate models, robust BO performance is achieved as long as key design choices, such as lengthscale initialization and the optimizer, are appropriately set. Once these are configured, BO consistently finds high objective values regardless of the choices for the stationary covariance function, mean function, or observation noise initialization.

In contrast, the Laplace approximation exhibits high sensitivity to hyperparameters and generally underperforms compared to GP surrogates. Even the best-performing Laplace configurations fail to match the median GP surrogate and well-informed GP designs that avoid linear covariance functions. Importantly, no hyperparameter configuration for the Laplace approximation consistently works across tasks. However, FSP-Laplace improves performance relative to the standard Laplace approximation and is competitive with the best GP surrogate models.

4.3 EXPERT FEATURES UNDERPERFORM GENERAL FEATURES

Generic and data-driven features outperform expert features. Hand-crafted generic features (fingerprints, Mordred) and data-driven features (MolFormer, T5-Chem) outperform hand-crafted expert features (FM-DFT, force field energy, degree of conjugation) on average across all surrogate models (see Figure 5). Expert features, particularly force-field energy and degree of conjugation, perform the worst on average, even on tasks where they are expected to provide a strong signal (e.g., degree of conjugation for PHOTOVOLTAICS, LASER, PHOTOSWITCH, REDOXMER; force field energy for SOLVATION, KINASE, AMPC, D4; see Figures C.7 to C.9).

Certain features perform well on average but show high task-specific variability; for example, FM-DFT typically excels on KINASE but usually underperforms elsewhere, while fingerprints perform well overall but fail on KINASE and AMPC. Mordred is the most robust, with consistently good performance, followed by MolFormer and T5-Chem. This might seem to suggest that Mordred features should be the default choice, but we will see in the next section that the data-driven features can be further improved using simple fine-tuning techniques.

It is worth noting that concatenating features generally does not degrade BO performance and mostly matches the best-performing feature in the set, suggesting limited complementarity among feature types (see Figure 5). A notable exception is the Laplace with all features combined, which underperforms compared to most other individual features. In contrast, for GP and FSP-Laplace combining all features performs comparably to hand-crafted generic features and better than data-driven or expert features. Feature concatenation also reduces variability across tasks, making "all features" a consistent top performer. This improvement over Laplace is likely due to the ARD used in the GP prior, which provides a feature selection mechanism.

ROGI-XD generally correlates with average cumulative regret but not task difficulty. The roughness index (ROGI-XD; see detailed description in Appendix A.5) measures objective function variability and correlates with test error (Aldeghi et al., 2022). In our experiments, ROGI-XD shows a Pearson correlation of at least 0.5 with average cumulative regret on 5 of the 8 tasks, but it does not fully capture task difficulty (see Figure C.2). For example, D4, the hardest task with the highest regret, has among the lowest ROGI scores (~0.080–0.115), while PHOTOVOLTAICS, which is both challenging and highly variable, has the highest ROGI. Thus, while ROGI can help identify variability in molecular features, it does not consistently explain BO difficulty or sensitivity to hyperparameter choices.

4.4 FINE-TUNING HAS A POSITIVE IMPACT ON PERFORMANCE

As ROGI-XD is correlated with cumulative regret, and prior work (Graff et al., 2023) demonstrates that fine-tuning reduces ROGI, we explore LoRA and Bayesian LoRA fine-tuning strategies to improve BO performance. At each BO iteration, LoRA fine-tuning (FT) first updates the MolFormer model h_{ϕ} with the current observations \mathcal{D}_t , before generating a new dataset \mathcal{F}_t of data-driven molecular features using h_{ϕ} . \mathcal{F}_t is subsequently used to compute the surrogate's posterior $p(g | \mathcal{F}_t)$ (see Algorithm 1). In contrast, Bayesian LoRA fine-tuning (Bayes. FT; Yang et al., 2024; Kristiadi et al., 2024) directly uses a fine-tuned MolFormer as a surrogate model, thus jointly training the LoRA and regression head weights, and incorporates posterior uncertainties via a Laplace approximation on *both* (vs. just g in LoRA FT). Bayesian LoRA FT is thus more expensive due to posterior estimation over the LoRA weights.

Fine-tuning strongly improves BO performance. LoRA feature fine-tuning consistently improves average BO performance and reduces variance over fixed features (see Figure 6). In particular, feature fine-tuning over a GP strongly outperforms standard GPs on average, and especially on harder datasets like AMPC and D4 (see Figure C.10). FSP-Laplace also shows significant improvements, also especially on hard tasks, while the gains for Laplace in general are less pronounced. Bayesian LoRA fine-tuning performs comparably to standard LoRA finetuning on average, offering improvements in some cases (e.g., FSP-Laplace and Laplace on REDOXMER) but falling short on others (e.g., FSP-Laplace and Laplace on PHOTOSWITCH; see Figure 6).

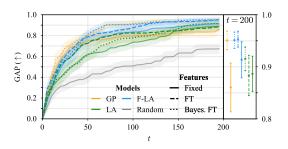


Figure 6: GAP score for GP and BNN surrogates with standard fixed and fine-tuned MolFormer features. Fine-tuning significantly improves performance, especially for GP and FSP-Laplace. We also include a comparison with the best performing fixed features of Figure 5 (Fixed best).

Fine-tuning improves robustness to hyperparameters. Bayesian LoRA is less sensitive to hyperparameters than (non-fine-tuned) Laplace models (see Figure 4). For instance, learning rates strongly influence performance, but weight decay, activation functions, and the rank of LoRA factors have minimal impact (see Figure C.4). Incorporating Bayesian LoRA fine-tuning with a GP prior enhances robustness by reducing sensitivity to covariance function choices (see Figures C.13 and C.15). However, sensitivity to learning rate persists. We note that the parameters from Kristiadi et al. (2024) consistently yield strong performance (see orange line in Figure 4). For both Laplace and FSP-Laplace Bayesian LoRA, we observe substantial variability in performance across datasets, with no configuration being universally optimal (see Figures C.14 and C.15).

5 A PRACTICAL RECIPE FOR BO IN MATERIALS DISCOVERY

For reliable BO, use Matérn GP surrogates. We recommend using Gaussian process surrogate models g. They are fast, reliable, and perform very competitively overall (see Figure 4). We propose to use a Matérn covariance function (for instance, a Matérn-5/2 since it works best in Figure 2) with automatic-relevance determination, and to initialize the lengthscales to the square root of the feature dimension and the covariance function variance σ_f^2 to 1. We then advise using a zero mean function, which is the mean of the labels after normalization. While this particular configuration has little influence on the BO performance, it avoids unnecessary parameters. The initialization of the observation noise σ_y^2 should depend on the dataset. A safe option from Deisenroth et al. (2020) is to assume a certain signal-to-noise ratio (SNR) and to select the noise to match this SNR = σ_f/σ_y . In our datasets, we found that BO performance was largely insensitive to this initialization but this might differ for other datasets. We finally recommend using the L-BFGS optimizer with the strong_wolfe line search strategy provided by PyTorch (and otherwise default parameters). Since this optimizer is quite aggressive, adding constraints prevents the lengthscales from becoming too small ($l < 10^{-3}$) or too large ($l > 10^3$). This optimizer quickly and reliably converges to a (local) maximum of the marginal likelihood.

Improve BO performance by finetuning features. We recommend using learned data-driven features obtained from a foundation model such as MolFormer, and to fine-tune the learned representations as one collects more data. Algorithm 1 summarizes our recommendations. At each BO iteration t, we first fine-tune the foundation model h_{ϕ} on the observations \mathcal{D}_t found so far using LoRA, generate a new set of fixed features \mathcal{F}_t by average pooling of h_{ϕ} 's last layer, standardize all features and observed labels, and then proceed with standard BO. This strategy demonstrates a strong increase

Algorithm 1 A Recipe for effective materials discovery with Bayesian Optimization using LoRA feature fine-tuning

Require: Molecule set \mathcal{X} , objective f, stationary GP surrogate g, foundation model h_{ϕ} , acquisition function α , initial dataset $\mathcal{D}_1 = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^m$, budget T. 1: for t = 1 to T do Fine-tune h_{ϕ} on \mathcal{D}_t with LoRA 2: 3: Build dataset $\mathcal{F}_t = \{(h_{\phi}(\boldsymbol{x}_i), y_i) \mid (\boldsymbol{x}_i, y_i) \in \mathcal{D}_t\}$ ▷ Standardize features & labels 4: Compute posterior $p(g \mid \mathcal{F}_t)$ 5: Find $\boldsymbol{x}_{t+1} = \arg \max_{\boldsymbol{x} \in \mathcal{X}} \alpha(p(g(\boldsymbol{h}_{\boldsymbol{\phi}}(\boldsymbol{x})) \mid \mathcal{F}_t))$ 6: Evaluate objective $y_{t+1} = f(\boldsymbol{x}_{t+1})$ Augment dataset $\mathcal{D}_{t+1} = \mathcal{D}_t \cup \{(\boldsymbol{x}_{t+1}, y_{t+1})\}$ 7: 8: Remove x_{t+1} from molecule set $\mathcal{X} = \mathcal{X} \setminus \{x_{t+1}\}$ 9: end for 10: **Return:** Best molecule $\boldsymbol{x}^* = \arg \max_{\boldsymbol{x} \in \mathcal{D}_{T+1}} f(\boldsymbol{x})$

in average performance over fixed features and is even slightly better than the best performing features (see Figure C.10). Fine-tuning remains affordable on low-end consumer-grade GPU (and, in practice, will be completely dwarfed in BO for materials discovery by the cost for synthesis and testing).

Alternatively, if fine-tuning is not an option, we recommend using the concatenation of fingerprint and Mordred features. While these features do not perform as well as LoRA fine-tuned MolFormer features and have higher variance, they are nevertheless competitive (see fixed best in Figure 5). If the practitioner happens to have other features at their disposal, we recommend concatenating them as well as, for GPs, more features do not seem to hurt BO performance and make it more robust on some tasks (see Figure 5). If fingerprint features are included, a Tanimoto covariance function should be used. On a side note, we recommend standardizing features before starting BO. Unlike BO in continuous domains, this is possible in the discrete case since all features are available to us from the start. We also suggest standardizing the observed labels before fitting surrogates.

6 RELATED WORK

Various surrogate models for BO in materials discovery have been proposed, but GPs remain the *de facto* practitioners' choice (e.g., Zuo et al., 2021; Griffiths et al., 2022; Strieth-Kalthoff et al., 2024b; Schmid et al., 2024). Recently, BNNs and even foundation models have also been used for materials discovery (e.g., Kristiadi et al., 2024; Ramos et al., 2023). However, such expressive surrogates bring increased complexity due to the ever-growing number of moving parts. In this work, we deliberately pause and attempt to answer which moving parts practitioners and researchers should focus on.

Principled efforts in evaluating BO algorithms have only been made recently. Li et al. (2024b) studied various surrogate models for BO in general. Kristiadi et al. (2023) discussed the deficiencies of NN-based surrogates. However, they did not study materials discovery problems. While Hickman et al. (2023a) provided a chemistry-focused benchmark, they focused on providing the benchmarking library itself. Meanwhile, Liang et al. (2021); Griffiths et al. (2023) focused on evaluating non-BNN surrogates for materials discovery. While BNNs are known to be notoriously sensitive to hyperparameters, discussions about this issue in sequential decision-making tasks are largely absent, with the notable exceptions of Li et al. (2024a) for BO and Riquelme et al. (2018) for bandits. Our work not provides only the performance evaluation of BO surrogates for materials discovery in the age of foundation models, but also actionable recommendations for practitioners.

7 CONCLUSION

In this work, we systematically analyzed key design choices of surrogate models and molecular features in Bayesian optimization for materials discovery. We found that (1) default-initialized GPs perform hardly any better than random search, (2) BNNs are highly sensitive to hyperparameters, (3) learned and generic molecular features outperform expert-designed features, and (4) simple fine-tuning of molecular representations significantly improves performance, making costly Bayesian fine-tuning unnecessary. Based on our results, we identified the design choices that matter for cost-effective BO in materials discovery, namely using a simple but well-initialized surrogate model with simple feature fine-tuning.

BIBLIOGRAPHY

- Milad Abolhasani and Eugenia Kumacheva. The rise of self-driving labs in chemical and materials sciences. *Nature Synthesis*, 2(6):483–492, 2023.
- Garvit Agarwal, Hieu Doan, Lily Robertson, and Rajeev Assary. Discovery of energy storage molecular materials using quantum chemistry-guided multiobjective bayesian optimization. *Chemistry* of Materials, 33, 10 2021. doi:10.1021/acs.chemmater.1c02040.
- Ankit Agrawal and Alok Choudhary. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science. *Apl Materials*, 4(5), 2016.
- Matteo Aldeghi, David E Graff, Nathan Frey, Joseph A Morrone, Edward O Pyzer-Knapp, Kirk E Jordan, and Connor W Coley. Roughness of molecular property landscapes and its impact on modellability. *Journal of Chemical Information and Modeling*, 62(19):4660–4671, 2022.
- Nicholas H Angello, Vandana Rathore, Wiktor Beker, Agnieszka Wołos, Edward R Jira, Rafał Roszak, Tony C Wu, Charles M Schroeder, Alán Aspuru-Guzik, Bartosz A Grzybowski, et al. Closed-loop optimization of general reaction conditions for heteroaryl suzuki-miyaura coupling. *Science*, 378 (6618):399–405, 2022.
- Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res., 3 (null):397–422, March 2003. ISSN 1532-4435.
- The GPyOpt authors. GPyOpt: A bayesian optimization framework in python. http://github.com/SheffieldML/GPyOpt, 2016.
- Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In *Advances in Neural Information Processing Systems 33*, 2020. URL http://arxiv.org/abs/1910.06403.
- Anass Benayad, Diddo Diddens, Andreas Heuer, Anand Narayanan Krishnamoorthy, Moumita Maiti, Frédéric Le Cras, Maxime Legallais, Fuzhan Rahmanian, Yuyoung Shin, Helge Stein, et al. Highthroughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface development research. Advanced Energy Materials, 12(17):2102678, 2022.
- Kieron Burke. Perspective on density functional theory. *The Journal of chemical physics*, 136(15), 2012.
- Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: large-scale selfsupervised pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885, 2020.
- Dimitrios Christofidellis, Giorgio Giannone, Jannis Born, Ole Winther, Teodoro Laino, and Matteo Manica. Unifying molecular and textual representations via multi-task language modelling. In Proceedings of the 40th International Conference on Machine Learning, ICML'23. JMLR.org, 2023.
- Tristan Cinquin, Marvin Pförtner, Vincent Fortuin, Philipp Hennig, and Robert Bamler. FSPlaplace: Function-space priors for the laplace approximation in bayesian deep learning. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=83vxe8alV4.
- Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp Hennig. Laplace redux–effortless Bayesian deep learning. In *NeurIPS*, 2021.
- Marc Peter Deisenroth, Yicheng Luo, and Mark van der Wilk. A practical guide to gaussian processes, 2020. URL https://infallible-thompson-49de36.netlify.app.
- Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson. Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. In *Advances in Neural Information Processing Systems*, 2018.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

- Jose Garrido Torres, Sii Hong Lau, Pranay Anchuri, Jason Stevens, Jose Tabora, Jun Li, Alina Borovika, Ryan Adams, and Abigail Doyle. A multi-objective active learning platform and web app for reaction optimization. *ChemRxiv*, 2022. doi:10.26434/chemrxiv-2022-cljcp.
- David Graff, Eugene Shakhnovich, and Connor Coley. Accelerating high-throughput virtual screening through molecular pool-based active learning. *Chemical Science*, 12, 04 2021. doi:10.1039/D0SC06805E.
- David E Graff, Edward O Pyzer-Knapp, Kirk E Jordan, Eugene I Shakhnovich, and Connor W Coley. Evaluating the roughness of structure–property relationships using pretrained molecular representations. *Digital Discovery*, 2(5):1452–1460, 2023.
- Ryan-Rhys Griffiths, Jake L Greenfield, Aditya R Thawani, Arian R Jamasb, Henry B Moss, Anthony Bourached, Penelope Jones, William McCorkindale, Alexander A Aldrick, Matthew J Fuchter, et al. Data-driven discovery of molecular photoswitches with multioutput gaussian processes. *Chemical Science*, 13(45):13541–13551, 2022. doi:10.1039/D2SC04306H.
- Ryan-Rhys Griffiths, Leo Klarner, Henry B. Moss, Aditya Ravuri, Sang Truong, Samuel Stanton, Gary Tom, Bojana Rankovic, Yuanqi Du, Arian Jamasb, Aryan Deshwal, Julius Schwartz, Austin Tripp, Gregory Kell, Simon Frieder, Anthony Bourached, Alex Chan, Jacob Moss, Chengzhi Guo, Johannes Durholt, Saudamini Chaurasia, Felix Strieth-Kalthoff, Alpha A. Lee, Bingqing Cheng, Alán Aspuru-Guzik, Philippe Schwaller, and Jian Tang. GAUCHE: A library for Gaussian processes in chemistry. In *NeurIPS*, 2023.
- Riley Hickman, Priyansh Parakh, Austin Cheng, Qianxiang Ai, Joshua Schrier, Matteo Aldeghi, and Alán Aspuru-Guzik. Olympus, enhanced: Benchmarking mixed-parameter and multi-objective optimization in chemistry and materials science. *ChemRxiv*, 2023a.
- Riley Hickman, Malcolm Sim, Sergio Pablo-García, Ivan Woolhouse, Han Hao, Zeqing Bao, Pauric Bannigan, Christine Allen, Matteo Aldeghi, and Alán Aspuru-Guzik. Atlas: A Brain for Self-driving Laboratories, September 2023b.
- Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2790–2799. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr. press/v97/houlsby19a.html.
- Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum? id=nZeVKeeFYf9.
- Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. Vanilla Bayesian optimization performs great in high dimensions. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 20793–20817. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/hvarfner24a.html.
- Florian Häse, Loïc M. Roch, Christoph Kreisbeck, and Alán Aspuru-Guzik. Phoenics: A bayesian optimizer for chemistry. *ACS Central Science*, 4(9):1134–1145, 2018.
- Alexander Immer, Maciej Jan Korzepa, and M. Bauer. Improving predictions of bayesian neural nets via local linearization. In *International Conference on Artificial Intelligence and Statistics*, 2021. URL https://api.semanticscholar.org/CorpusID:221172984.
- Shali Jiang, Henry Chai, Javier Gonzalez, and Roman Garnett. BINOCULARS for efficient, nonmyopic sequential experimental design. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 4794–4803. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/jiang20b.html.

- Donald Jones, Matthias Schonlau, and William Welch. Efficient global optimization of expensive black-box functions. *Journal of Global Optimization*, 13:455–492, 12 1998a. doi:10.1023/A:1008306431147.
- Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive black-box functions. *Journal of Global optimization*, 13:455–492, 1998b.
- Danial Khatamsaz, Raymond Neuberger, Arunabha M Roy, Sina Hossein Zadeh, Richard Otis, and Raymundo Arróyave. A physics informed bayesian optimization approach for material design: application to niti shape memory alloys. *npj Computational Materials*, 9(1):221, 2023.
- Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.
- Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, and Vincent Fortuin. Promises and pitfalls of the linearized laplace in bayesian optimization, 2023. URL https://arxiv.org/abs/2304.08309.
- Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alan Aspuru-Guzik, and Geoff Pleiss. A sober look at LLMs for material discovery: Are they actually good for Bayesian optimization over molecules? In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 25603–25622. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/kristiadi24a.html.
- Yucen Lily Li, Tim G. J. Rudner, and Andrew Gordon Wilson. A study of bayesian neural network surrogates for bayesian optimization. In *The Twelfth International Conference on Learning Representations*, 2024a. URL https://openreview.net/forum?id=SA19ijj44B.
- Yucen Lily Li, Tim GJ Rudner, and Andrew Gordon Wilson. A study of Bayesian neural network surrogates for Bayesian optimization. In *ICLR*, 2024b.
- Qiaohao Liang, Aldair E Gongora, Zekun Ren, Armi Tiihonen, Zhe Liu, Shijing Sun, James R Deneault, Daniil Bash, Flore Mekki-Berrada, Saif A Khan, et al. Benchmarking the performance of Bayesian optimization across multiple experimental materials science domains. *npj Computational Materials*, 7(1):188, 2021.
- Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization. *Math. Program.*, 45(1–3):503–528, August 1989. ISSN 0025-5610.
- Steven Lopez, Edward Pyzer-Knapp, Gregor Simm, Trevor Lutzow, Kewei Li, Laszlo Seress, Johannes Hachmann, and Alán Aspuru-Guzik. The harvard organic photovoltaic dataset. *Scientific Data*, 3, 09 2016. doi:10.1038/sdata.2016.86.
- David John Cameron MacKay. Bayesian methods for adaptive models. 1992. URL https: //api.semanticscholar.org/CorpusID:123141880.
- Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson. A simple baseline for bayesian uncertainty in deep learning. In Advances in Neural Information Processing Systems, pp. 13153–13164, 2019.
- Alexander Mathiasen, Hatem Helal, Paul Balanca, Adam Krzywaniak, Ali Parviz, Frederik Hvilshøj, Blazej Banaszewski, Carlo Luschi, and Andrew William Fitzgibbon. Reducing the cost of quantum chemical data by backpropagating through density functional theory. *arXiv preprint arXiv:2402.04030*, 2024.
- J. Močkus. On Bayesian Methods for Seeking the Extremum, pp. 400–404. Springer Berlin Heidelberg, Berlin, Heidelberg, 1975. ISBN 978-3-662-38527-2. doi:10.1007/978-3-662-38527-2_55. URL https://doi.org/10.1007/978-3-662-38527-2_55.

- Harry L. Morgan. The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. *Journal of Chemical Documentation*, 5:107–113, 1965. URL https://api.semanticscholar.org/CorpusID:62164893.
- Hirotomo Moriwaki, Yu-Shi Tian, Norihito Kawashita, and Tatsuya Takagi. Mordred: a molecular descriptor calculator. *Journal of cheminformatics*, 10:1–14, 2018.
- Emre Onal, Klemens Flöge, Emma Caldwell, Arsen Sheverdin, and Vincent Fortuin. Gaussian stochastic weight averaging for bayesian low-rank adaptation of large language models. In *Sixth Symposium on Advances in Approximate Bayesian Inference Non Archival Track*, 2024. URL https://openreview.net/forum?id=LZrCBQBCzl.
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library, 2019. URL https://arxiv.org/abs/1912.01703.
- Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum chemistry structures and properties of 134 kilo molecules. *Scientific Data*, 1, 2014.
- Mayk Caldas Ramos, Shane S Michtavy, Marc D Porosoff, and Andrew D White. Bayesian optimization of catalysts with in-context learning. *arXiv preprint arXiv:2304.05341*, 2023.
- Carl Edward Rasmussen and Christopher K. I. Williams. *Gaussian Processes for Machine Learning*. The MIT Press, 2006.
- Guillermo Restrepo. Chemical space: limits, evolution and modelling of an object bigger than our universal library. *Digital Discovery*, 1(5):568–585, 2022.
- Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An empirical comparison of bayesian deep networks for thompson sampling. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id= SyYe6k-CW.
- Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural networks. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=Skdvd2xAZ.
- David Rogers and Mathew Hahn. Extended-connectivity fingerprints. *Journal of chemical information* and modeling, 50(5):742–754, 2010.
- Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan, Inkit Padhi, Youssef Mroueh, and Payel Das. Large-scale chemical language representations capture molecular structure and properties. *Nature Machine Intelligence*, 4(12):1256–1264, 2022. doi:10.1038/s42256-022-00580-7.
- Lars Ruddigkeit, Ruud Deursen, Lorenz Blum, and Jean-Louis Reymond. Enumeration of 166 billion organic small molecules in the chemical universe database gdb-17. *Journal of chemical information and modeling*, 52, 10 2012. doi:10.1021/ci300415d.
- Stefan P. Schmid, Ella Miray Rajaonson, Cher Tian Ser, Mohammad Haddadnia, Shi Xuan Leong, Alan Aspuru-Guzik, Agustinus Kristiadi, Kjell Jorner, and Felix Strieth-Kalthoff. If optimizing for general parameters in chemistry is useful, why is it hardly done? In AI for Accelerated Materials Design - NeurIPS 2024, 2024.
- Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1): 148–175, 2015.
- Ryota Shimizu, Shigeru Kobayashi, Yuki Watanabe, Yasunobu Ando, and Taro Hitosugi. Autonomous materials synthesis by machine learning and robotics. *APL Materials*, 8(11), 2020.

- Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/ 2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf.
- Eduardo Soares, Victor Shirasuna, Emilio Vital Brazil, Renato Cerqueira, Dmitry Zubarev, and Kristin Schmidt. A large encoder-decoder family of foundation models for chemical language. *arXiv preprint arXiv:2407.20267*, 2024a.
- Eduardo Soares, Victor Shirasuna, Emilio Vital Brazil, Renato Cerqueira, Dmitry Zubarev, and Kristin Schmidt. A large encoder-decoder family of foundation models for chemical language, 2024b. URL https://arxiv.org/abs/2407.20267.
- Felix Strieth-Kalthoff, Han Hao, Vandana Rathore, Joshua Derasp, Théophile Gaudin, Nicholas H Angello, Martin Seifrid, Ekaterina Trushina, Mason Guy, Junliang Liu, et al. Delocalized, asynchronous, closed-loop discovery of organic laser emitters. *Science*, 384(6697):eadk9227, 2024a.
- Felix Strieth-Kalthoff, Han Hao, Vandana Rathore, Joshua Derasp, Théophile Gaudin, Nicholas H Angello, Martin Seifrid, Ekaterina Trushina, Mason Guy, Junliang Liu, et al. Delocalized, asynchronous, closed-loop discovery of organic laser emitters. *Science*, 384(6697):eadk9227, 2024b.
- Felix Strieth-Kalthoff, Han Hao, Vandana Rathore, Joshua Derasp, Théophile Gaudin, Nicholas Angello, Martin Seifrid, Ekaterina Trushina, Mason Guy, Junliang Liu, Xun Tang, Masashi Mamada, Wesley Wang, Tuul Tsagaantsooj, Cyrille Lavigne, Robert Pollice, Tony Wu, Kazuhiro Hotta, Leticia Bodo, and Alán Aspuru-Guzik. Delocalized, asynchronous, closed-loop discovery of organic laser emitters. *Science (New York, N.Y.)*, 384:eadk9227, 05 2024c. doi:10.1126/science.adk9227.
- Matthew J Tamasi, Roshan A Patel, Carlos H Borca, Shashank Kosuri, Heloise Mugnier, Rahul Upadhya, N Sanjeeva Murthy, Michael A Webb, and Adam J Gormley. Machine learning on a robotic platform for the design of polymer–protein hybrids. *Advanced Materials*, 34(30):2201809, 2022.
- William R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933. ISSN 00063444. URL http://www.jstor.org/stable/2332286.
- Gary Tom, Stefan P Schmid, Sterling G Baird, Yang Cao, Kourosh Darvish, Han Hao, Stanley Lo, Sergio Pablo-García, Ella M Rajaonson, Marta Skreta, et al. Self-driving laboratories for chemistry and materials science. *Chemical Reviews*, 124(16):9633–9732, 2024.
- Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. *Chemical science*, 9(2):513–530, 2018.
- Adam X. Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation for large language models. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=FJiUyzOF1m.
- Yunxing Zuo, Mingde Qin, Chi Chen, Weike Ye, Xiangguo Li, Jian Luo, and Shyue Ping Ong. Accelerating materials discovery with Bayesian optimization and graph deep learning. *Materials Today*, 51:126–135, 2021.

APPENDIX

A EXTENDED BACKGROUND

A.1 MATERIALS DISCOVERY

Materials discovery is the daunting task of searching through the chemical space of 10^{200} materials (Restrepo, 2022) for candidates with desirable properties. Materials discovery generally requires the design, synthesis, purification, characterization, and testing of the candidate material, which involves a plethora of design parameters and observable metrics. Often, there is a lack of data and poor understanding of the structure-property relationships in materials discovery (Agrawal & Choudhary, 2016) which makes it challenging. As a consequence, the traditional approach of trial-and-error following human intuition or design-of-experiments (i.e. combinatorial search) is too slow and inefficient to explore the vast landscape (Shahriari et al., 2015; Tom et al., 2024). To remedy this, material scientists have turned to Bayesian optimization because of its data efficiency, versatility in black-box model selection, uncertainty quantification, and recent success in chemical optimization tasks (Tom et al., 2024; Angello et al., 2022).

A.2 BAYESIAN OPTIMIZATION

Let $f : \mathcal{X} \mapsto \mathcal{Y}$ be an unknown function that is expensive to evaluate. Bayesian Optimization (BO) is a sequential optimization method to find the maximum $\mathbf{x}^* = \arg \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$. BO requires (i) a probabilistic surrogate model g that approximates the objective f, (ii) an observation model $p(y \mid g(\mathbf{x}))$ for the data, (iii) a prior p(g) for the surrogate, and (iv) an acquisition function α which guides the selection of the evaluation points. At each iteration, α uses the surrogate model's posterior $p(g \mid \mathcal{D}_t) \propto p(\mathcal{D}_t \mid g) p(g)$ on past (potentially noisy) function evaluations $\mathcal{D}_t = \{(\mathbf{x}_i, y_i)\}$ to balance between *exploration* in regions where f is unobserved and *exploitation* in regions where f is known to yield promising candidates. When applied to materials discovery, the search space is a discrete set of molecules $\mathcal{X} = \{\mathbf{x}_i\}_{i=1}^M$, and we only need to evaluate α at all unlabeled candidate molecules to find its maximum. This simplifies BO and is embarrassingly parallel. We describe discrete BO in Algorithm A.1.

While the default surrogate models remain Gaussian processes (GPs) (Rasmussen & Williams, 2006), there has been a recent interest in Bayesian neural networks (BNNs), which have shown promising results (Kristiadi et al., 2024). GPs $g \sim \mathcal{GP}(m, k)$ are defined by mean $m : \mathcal{X} \mapsto \mathcal{Y}$ and covariance functions $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ which allow to specify prior knowledge about the objective function f, and BNNs are defined by a neural network g_w . Common choices of acquisition function α include Thompson sampling (Thompson, 1933), expected improvement (Jones et al., 1998a), and the upper-confidence bound (Auer, 2003). Finally, material scientist typically use the Gryffin (Häse et al., 2018), GPyOpt (authors, 2016), BoTorch (Balandat et al., 2020), EDBO+ (Garrido Torres et al., 2022), and Atlas (Hickman et al., 2023b) Python packages for their materials discovery campaigns.

A.3 BAYESIAN NEURAL NETWORKS

Let $g_{\boldsymbol{w}} : \mathcal{X} \mapsto \mathcal{Y}$ be a neural network with parameters $\boldsymbol{w} \in \mathcal{W} \subset \mathbb{R}^p$. Given data \mathcal{D} , Bayesian neural networks are defined in terms of a likelihood $p(\mathcal{D} \mid \boldsymbol{w})$ and a weight-space prior $p(\boldsymbol{w})$. BNNs recast training as approximating the (intractable) posterior $p(\boldsymbol{w} \mid \mathcal{D}) \propto p(\mathcal{D} \mid \boldsymbol{w}) p(\boldsymbol{w})$ thus naturally capturing epistemic uncertainty due to learning with finite data. Crucially, the posterior yields predictions consistent with the data within its support, while being uncertain far away from the data. Multiple approximate inference algorithms exist, either based on a set of samples (e.g., MCMC) or a parametric distribution (e.g., variational inference and Laplace approximations).

Laplace approximations. The Laplace (MacKay, 1992) approximates the neural network's posterior by a Gaussian $q(\boldsymbol{w} \mid \mathcal{D}) = \mathcal{N}(\boldsymbol{w}^*, \boldsymbol{\Lambda}^{-1})$ where \boldsymbol{w}^* is found by maximizing the log-posterior $\log p(\boldsymbol{w} \mid \mathcal{D})$ (i.e., standard regularized neural network training) and $\boldsymbol{\Lambda} = -\nabla_{\boldsymbol{w}}^2 \log p(\boldsymbol{w} \mid \mathcal{D})|_{\boldsymbol{w}=\boldsymbol{w}^*}$ is the Hessian. To avoid computing prohibitively expensive Hessians of the neural network with respect to its parameters, it is common to first linearize the neural network around the posterior mean $\boldsymbol{w}^* g_{\boldsymbol{w}}^{\text{lin}}(\boldsymbol{x}) = g_{\boldsymbol{w}^*}(\boldsymbol{x}) + J_{\boldsymbol{w}^*}(\boldsymbol{x})(\boldsymbol{w}-\boldsymbol{w}^*)$ where $J_{\boldsymbol{w}^*}(\boldsymbol{x}) = \nabla_{\boldsymbol{w}} g_{\boldsymbol{w}}(\boldsymbol{x})|_{\boldsymbol{w}=\boldsymbol{w}^*}$ is the Jacobian,

Algorithm A.1 Bayesian Optimization for materials discovery

Require: Molecule candidate set \mathcal{X} , objective function f, surrogate model g, acquisition function α , initial dataset $\mathcal{D}_1 = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^m$, budget T.

- 1: for t = 1 to T do
- 2: Compute posterior $p(g \mid \mathcal{D}_t)$
- 3: Find candidate $\boldsymbol{x}_{t+1} = \arg \max_{\boldsymbol{x} \in \mathcal{X}} \alpha(p(g \mid \mathcal{D}_t))$
- 4: Evaluate objective $y_{t+1} = f(\boldsymbol{x}_{t+1})$
- 5: Augment dataset $\mathcal{D}_{t+1} = \mathcal{D}_t \cup \{(\boldsymbol{x}_{t+1}, y_{t+1})\}$
- 6: Remove x_{t+1} from molecule set $\mathcal{X} = \mathcal{X} \setminus \{x_{t+1}\}$
- 7: end for
- 8: Return: Best molecule $x^* = \arg \max_{x \in D_T} f(x)$

before computing Λ under this approximation (Immer et al., 2021). The resulting posterior predictive is $p(g_{\boldsymbol{w}}^{\text{lin}}(\boldsymbol{x}) | \mathcal{D}) = \mathcal{N}(g_{\boldsymbol{w}^*}(\boldsymbol{x}), J_{\boldsymbol{w}^*}(\boldsymbol{x})\Lambda^{-1}J_{\boldsymbol{w}^*}(\boldsymbol{x})^{\top})$ thus adding an uncertainty estimate around the standard neural network's prediction $g_{\boldsymbol{w}^*}(\boldsymbol{x})$. Since the precision $\Lambda \in \mathbb{R}^{p \times p}$ is typically prohibitively large, it is often approximated by its diagonal or a product of Kronecker factors (Ritter et al., 2018). Laplace approximations scale to large datasets and models, and have been shown to provide well-calibrated uncertainty estimates (Immer et al., 2021; Daxberger et al., 2021).

The Laplace also provides an approximation to the marginal likelihood allowing for model selection. Making the dependance of the prior on its hyperparameters θ explicit, the marginal likelihood is approximated by

$$\log p(\mathcal{D} \mid \boldsymbol{\theta}) \approx \log p(\mathcal{D} \mid \boldsymbol{w}^*) + \log p(\boldsymbol{w}^* \mid \boldsymbol{\theta}) + \frac{p}{2} \log 2\pi - \frac{1}{2} \log \det \boldsymbol{\Lambda}$$
(A.1)

We can then maximize the marginal likelihood by gradient ascent to find the neural network's prior parameters.

Function-space priors for Laplace approximations. While the choice of prior strongly affects the resulting posterior distribution, meaningful prior beliefs over neural network weights are very difficult to specify due to non-interpretability of the weights. FSP-Laplace (Cinquin et al., 2024) allows to specify meaningful prior beliefs using a GP prior within the framework of Laplace approximations. Specifically, the posterior approximation remains $q(\boldsymbol{w} \mid \mathcal{D}) = \mathcal{N}(\boldsymbol{w}^*, \boldsymbol{\Lambda}^{-1})$ but the posterior mean \boldsymbol{w}^* under the GP prior $g \sim \mathcal{GP}(m, k)$ is found by maximizing $R_{FSP}(\boldsymbol{w}) = \log p(\mathcal{D} \mid \boldsymbol{w}) - \frac{1}{2} \|g_{\boldsymbol{w}} - m\|_{\mathbb{H}_k}^2$ where $\|\cdot\|_{\mathbb{H}_k}$ is the RKHS norm under the kernel k, and the posterior precision is given by $\boldsymbol{\Lambda} = -\nabla_{\boldsymbol{w}}^2 R_{FSP}(\boldsymbol{w})|_{\boldsymbol{w}=\boldsymbol{w}^*}$.

A.4 MOLECULAR FOUNDATION MODELS

Molecular foundation models are a class of large-scale neural networks pre-trained on vast datasets of molecular structures (e.g., SMILES) and their properties (Chithrananda et al., 2020; Ross et al., 2022; Soares et al., 2024a). These models leverage the transformer architecture, which has demonstrated strong performance in natural language processing and is increasingly applied to generate molecular data with robust accuracy Mathiasen et al. (2024).

The transformer architecture captures long-range dependencies in sequential data using K-head self-attention. Given an input sequence $X \in \mathbb{R}^{T \times N}$, it computes

$$\boldsymbol{O} = [\boldsymbol{H}_1, \dots, \boldsymbol{H}_K] \boldsymbol{W}_O^{\top} \in \mathbb{R}^{T \times O}$$
$$\boldsymbol{H}_i = \operatorname{softmax} \left(\frac{1}{\sqrt{D}} (\boldsymbol{X} \boldsymbol{Q}_i^{\top}) (\boldsymbol{X} \boldsymbol{K}_i^{\top})^{\top} \right) (\boldsymbol{X}^{\top} \boldsymbol{V}_i) \in \mathbb{R}^{T \times D}$$

where [...] is the column-wise stacking operator, $W_O \in \mathbb{R}^{O \times KD}$ and $Q_i, K_i, V_i \in \mathbb{R}^{D \times N}$ are linear projections. Composing a multi-head self-attention layer with normalization layers and residual connections yields a transformer module, many of which are then stacked to form a transformer model.

Molecular foundation models are pre-trained using self-supervised masked language modeling on large generic datasets such as MoleculeNet Wu et al. (2018). In this approach, some tokens in the

input sequence are randomly masked, and the model is trained to reconstruct these masked tokens. Foundation models are then fine-tuned to specific applications where typically less data is available. Due to their very large size, fine-tuning all the model parameters is prohibitively expensive. As a solution, parameter-efficient fine-tuning (PEFT) only updates a subset of the parameters, keeping the rest frozen (Houlsby et al., 2019; Hu et al., 2022).

Low-rank adaptation (LoRA) (Hu et al., 2022) is a popular PEFT method that introduces low-rank updates to a subset of parameters (typically attention weights), significantly reducing computational and memory requirements. Given a frozen pre-trained weight $W^* \in \mathbb{R}^{D \times N}$, LoRA adds low-rank factors $A \in \mathbb{R}^{Z \times N}$ and $B \in \mathbb{R}^{Z \times D}$ in a new weight $W = W^* + B^\top A$. Z is typically small (e.g., Z = 8) such that the factors only introduce a small amount of new parameters.

Bayesian LoRA approximates the neural network's posterior with respect to the LoRA weights either using the Laplace approximation (Yang et al., 2024) or SWAG (Onal et al., 2024; Maddox et al., 2019).

A.5 ROGI-XD

The roughness index (ROGI-XD) quantifies the difficulty of a materials discovery task, with higher values indicating greater optimization complexity. Given a dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ of molecular feature and objective value pairs, we define ROGI as follows. The labels y_i are normalized such that all pairwise differences in objective values fall within the range [0, 1].

ROGI is computed by applying complete-linkage clustering at varying distance thresholds $t \in [0, 1]$, ensuring that all points within a cluster are separated by at most t. At each threshold, we compute the standard deviation of objective values across clusters. As t increases, this standard deviation decreases monotonically. The area under this curve defines ROGI:

$$\operatorname{ROGI} = \int_0^1 2(\sigma_0 - \sigma_t) dt \tag{A.2}$$

where σ_t denotes the standard deviation at threshold t (Aldeghi et al., 2022; Graff et al., 2023). Intuitively, when similar inputs exhibit large variations in objective values, dispersion across clusters decreases sharply at low thresholds, leading to a higher ROGI. This metric has been used to compare model performance across datasets and feature representations.

However, Graff et al. (2023) showed that ROGI systematically underestimates roughness in highdimensional feature spaces. As dimensionality increases, normalized pairwise distances become more concentrated near 1, reducing ROGI values even when the underlying structure remains complex. To correct for this, ROGI-XD replaces the pairwise distance with $1 - \log N_{\text{clusters}} / \log N$, where N_{clusters} is the number of clusters at a given step in the dendrogram and N is the dataset size. This adjustment makes ROGI-XD invariant to both dimensionality and dataset size, yielding a more robust measure of roughness across different molecular representations.

B EXTENDED EXPERIMENTAL SETUP DESCRIPTION

B.1 DATASETS

We conduct our experiments on well-established benchmarks: six materials discovery tasks from Kristiadi et al. (2024) and two additional drug discovery tasks, AMPC and D4, from Graff et al. (2021). The materials discovery tasks include minimizing the redox potential (REDOXMER) and solvation energy (SOLVATION) of battery electrolytes (Agarwal et al., 2021), maximizing the fluorescence oscillator strength of lasers (LASER; Strieth-Kalthoff et al., 2024c), maximizing the power conversion efficiency (PCE) of photovoltaic materials (PHOTOVOLTAICS; Lopez et al., 2016), and maximizing the $\pi - \pi^*$ transition wavelength of organic photoswitches (PHOTOSWITCH; Griffiths et al., 2022). For drug discovery, the tasks KINASE, AMPC, and D4 aim to minimize docking scores, a critical metric for evaluating potential binders (Graff et al., 2021).

B.2 FEATURES

We consider three types of features: data-driven, generic hand-crafted, and expert hand-crafted features.

Data-driven features We use 784-dimensional embeddings extracted by average pooling of the final layer of the MolFormer (Ross et al., 2022) and Chemistry-T5 (T5-chem; Christofidellis et al., 2023) models. T5-Chem uses the just-smiles prompting strategy from Kristiadi et al. (2024).

Generic hand-crafted features These features include the 1024-bit Morgan fingerprints with radius 3 (Morgan, 1965) as well as all the molecular descriptors from the Mordred Python package (Moriwaki et al., 2018).

Expert hand-crafted features We use the FM-DFT (foundation model predicted density functional theory) properties, force-field energy, and the maximum degree of conjugation. The FM-DFT features are predicted using the SMI-TED model (Soares et al., 2024b), fine-tuned on the QM9 dataset (Ramakrishnan et al., 2014; Ruddigkeit et al., 2012), which achieves state-of-the-art performance on QM9. The Merck molecular force-field energy (force field), computed using RDKit, is particularly relevant for tasks like SOLVATION, KINASE, AMPC, and D4. Both FM-DFT and force-field energy are general molecular properties applicable across all datasets. Finally, the maximum degree of conjugation, a simple computation, is expected to be especially relevant for datasets similar to PHOTOVOLTAICS, LASER, PHOTOSWITCH, and REDOXMER.

B.3 ACQUISITION FUNCTION

In all experiments, we use the Thompson sampling (Thompson, 1933) acquisition function for its simplicity. Kristiadi et al. (2024) found that Thompson sampling and expected improvement perform similarly on average, making it a reasonable default choice.

B.4 BAYESIAN OPTIMIZATION INITIALIZATION

At the beginning of the BO campaign, we standardize the features of all candidates in \mathcal{X} to have zero mean and unit variance, and standardize labels in \mathcal{D}_t before training the surrogate models. We start the BO with an initial dataset of 10 function evaluations drawn uniformly from the set of candidates \mathcal{X} .

B.5 SURROGATE MODELS

Gaussian process surrogates For GP surrogates, we use the Tanimoto covariance function (Griffiths et al., 2023) when using fingerprint features and otherwise a Matérn-5/2 covariance function with automatic relevance determination (ARD), as it is generally considered a more realistic default choice for BO than RBF (Snoek et al., 2012; Garnett, 2023). When combining fingerprints with other features, we apply Tanimoto to the fingerprint components and Matérn-5/2 to the rest. We include a scale parameter controlling the variance of the prior and constrain the lengthscales to the range $[10^{-3}, 10^3]$ to prevent numerical instabilities when using the aggressive L-BFGS optimizer.

Bayesian neural networks For the BNN, we use a two-layer multi-layer perceptron with 50 hidden units each and tanh activations. We approximate the posterior using the linearized Laplace with the Kronecker-factored posterior covariance approximation (Ritter et al., 2018; Immer et al., 2021). We pose a Gaussian prior on the weights $p(w) = \prod_{l=1}^{L} \mathcal{N}(\mathbf{0}_l, \sigma_{p,l}^2 \mathbf{I}_l)$, with an independent variance parameter $\sigma_{p,l}^2$ per layer. We fit the prior parameters and the likelihood's observation noise by maximizing the marginal likelihood after training the neural network (i.e., the so-called posthoc Laplace approximation). We also run experiments with FSP-Laplace (Cinquin et al., 2024), which approximates the posterior using the Laplace but under a GP prior, using the same neural network architecture, and the same prior as the GP surrogates. **Bayesian LoRA** We consider a Bayesian fine-tuned MolFormer network (Ross et al., 2022) applying the Laplace approximation to its LoRA weights, following Kristiadi et al. (2024). We use the same hyperparamters as Kristiadi et al. (2024) for both simple LoRA and Bayesian LoRA fine-tuning.

B.6 METRICS

We measure BO performance by tracking the optimal value over time and by using the GAP score (Jiang et al., 2020) to aggregate over all BO tasks. The GAP score is computed by converting each task to a maximization problem, normalizing the objective values to the range [0, 1], and averaging over all tasks. In each figure, we report the mean and standard error of the score across 5 repetitions with different random seeds.

B.7 SOFTWARE

We use the BOTorch (Balandat et al., 2020) Python package for the Bayesian optimization experiments and GPyTorch (Gardner et al., 2018) for GP models. When using fingerprints, we use the Tanimoto covariance function from Gauche (Griffiths et al., 2023). PyTorch (Paszke et al., 2019) serves as our framework for neural networks. We retrieve Chemical-T5, MolFormer, and SMI-TED models from Hugging Face using the Transformers library and use the PEFT package for LoRA. We implement Bayesian LoRA fine-tuning using code from https://github.com/wiseodd/lapeft-bayesopt (Kristiadi et al., 2024). For the Laplace approximation, we rely on the Laplace-PyTorch package (Daxberger et al., 2021).

B.8 HARDWARE

We ran our experiments using Intel Xeon Gold CPUs and Nvidia 2080Ti GPUs with 11GB of memory.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 RESULTS FOR ROGI

The roughness index (ROGI-XD; see detailed description in Appendix A.5) quantifies objective function variability and correlates with test error (Aldeghi et al., 2022). We compute ROGI for each dataset under different feature representations, using Tanimoto distance for fingerprints and Euclidean distance otherwise.

We find that the choice of features significantly influences ROGI, sometimes leading to large variations for the same dataset (see Figure C.1). For example, in SOLVATION, T5-Chem features yield a ROGI of ~ 0.06 , while the degree of conjugation results in a ROGI of ~ 0.18 .

ROGI-XD generally correlates with average cumulative regret but does not always accurately reflect task difficulty. In our experiments, it exhibits a Pearson correlation of at least 0.5 with average cumulative regret in five out of eight tasks (see Figure C.2). However, it fails to fully capture optimization complexity. For instance, D4, the most difficult task with the highest cumulative regret, has among the lowest ROGI scores (0.080–0.115). In contrast, PHOTOVOLTAICS, which is both challenging and highly variable, has the highest ROGI. These results suggest that while ROGI captures variability in molecular representations, it does not reliably explain Bayesian optimization (BO) difficulty or sensitivity to hyperparameter choices.

We find that fine-tuning typically reduces ROGI-XD, with notable decreases observed in PHOTO-VOLTAICS, REDOXMER, and LASER (see Figure C.3). However, lower ROGI-XD does not always lead to better BO performance. For example, despite a significant reduction in ROGI for PHOTO-VOLTAICS, BO performance remains unchanged. Conversely, D4 and SOLVATION exhibit stable ROGI values yet show substantial improvements with fine-tuning. In contrast, LASER and AMPC display a clearer relationship between ROGI reduction and improved BO performance. These findings indicate that while ROGI-XD provides insight into objective variability, it is not a reliable predictor of BO performance across all tasks.

C.2 ADDITIONAL BAYESIAN OPTIMIZATION RESULTS

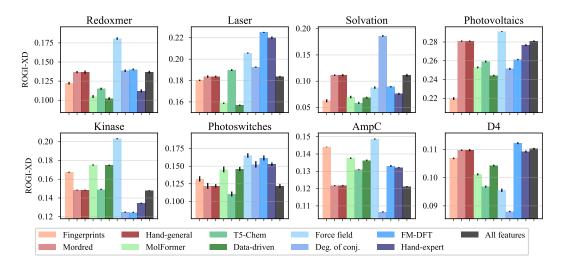


Figure C.1: Different feature representations induce different roughness index (ROGI-XD).

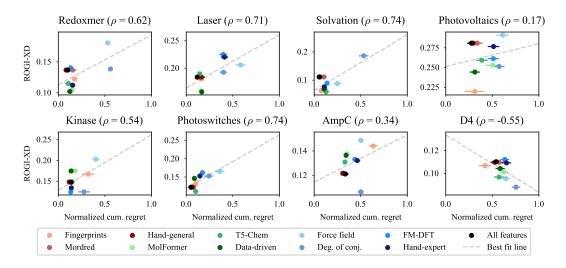


Figure C.2: Roughness index (ROGI-XD) shows a strong positive Pearson correlation ($\rho > 0.5$) with the cumulative regret of the GAP score on 5/8 datasets.

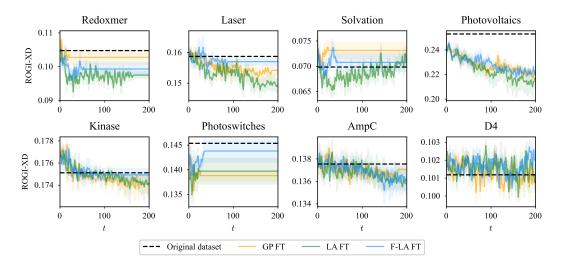


Figure C.3: Rolling average of the roughness index (ROGI) against the BO iteration during feature fine-tuning. Fine-tuning does not systematically decrease the ROGI.

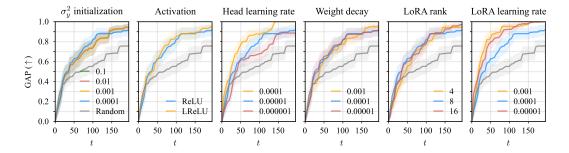


Figure C.4: GAP metric for Laplace Bayesian LoRA surrogates across different design choices (for MolFormer features). The choice of learning rate for the LoRA and regression head strongly influences the average BO performance but not the choice of weight decay, rank of the LoRA factors and activation function.

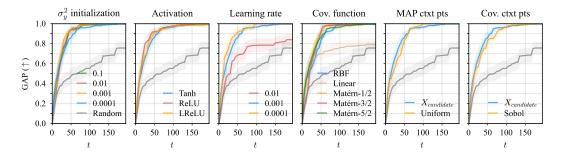


Figure C.5: GAP metric for FSP-Laplace surrogates across different design choices (for MolFormer features). We find BO performance is sensitive to the choice of learning rate and performs poorly for the linear covariance function, which is similarly ineffective for GP surrogates Figure 2, but not for other hyperparameters. Notably, average BO performance with FSP-Laplace is more stable to different choices of hyperparameters than with Laplace surrogates.

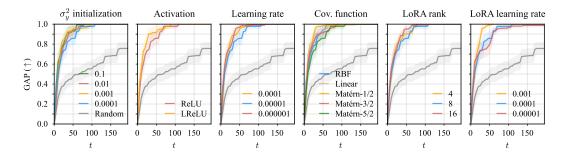


Figure C.6: GAP metric for FSP-Laplace Bayesian LoRA surrogates across different design choices (for MolFormer features). Average BO performance is sensitive to the choice of learning rate for the LoRA and regression head weights, but no longer to the choice of covariance function.

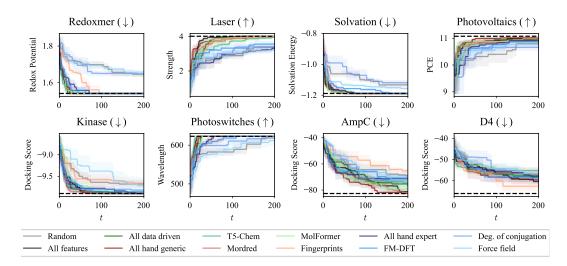


Figure C.7: Mean and standard deviation of the optimal value found during the BO at each time step across different features (for Gaussian process surrogate models). The dark dashed line shows the optimal value for each task.

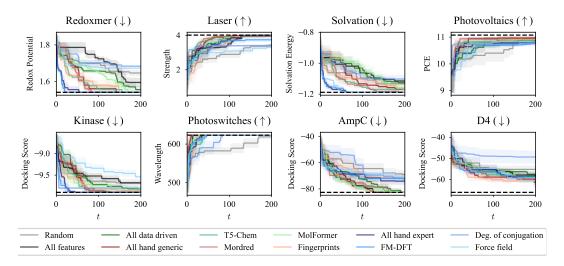


Figure C.8: Mean and standard deviation of the optimal value found during the BO at each time step across different features (for Laplace approximation surrogate models, Bayesian neural network). The dark dashed line shows the optimal value for each task.

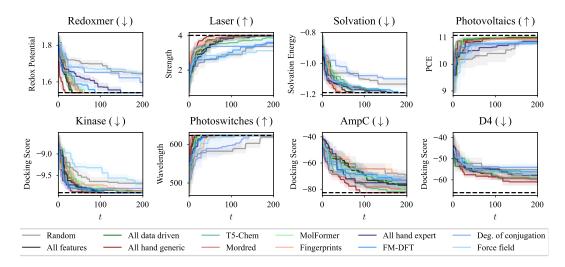


Figure C.9: Mean and standard deviation of the optimal value found during the BO at each time step across different features (for FSP-Laplace surrogate models, i.e., Bayesian neural network with a GP prior). The dark dashed line shows the optimal value for each task.

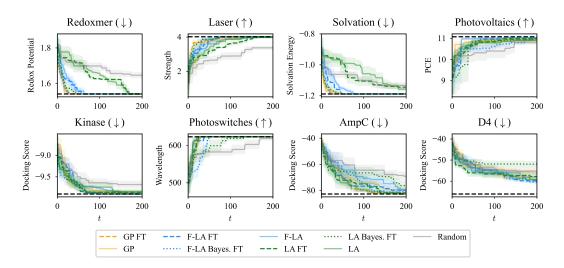


Figure C.10: Mean and standard deviation of the optimal value found during the BO at each time step for GP, Laplace and FSP-Laplace surrogate models and different feature fine-tuning strategies (fixed features, fine-tuned features and Bayesian fine-tuned surrogates). The dark dashed line shows the optimal value for each task.

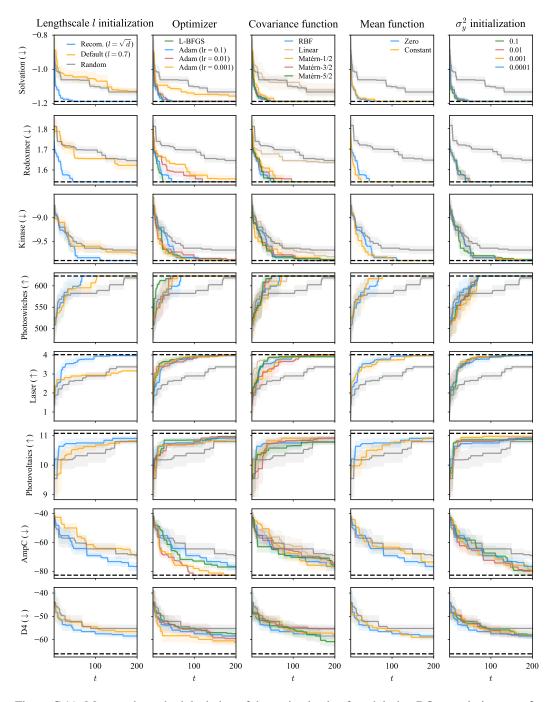


Figure C.11: Mean and standard deviation of the optimal value found during BO at each time step for GP surrogates across different design choices (for MolFormer features). The dark dashed line shows the optimal value for each task.

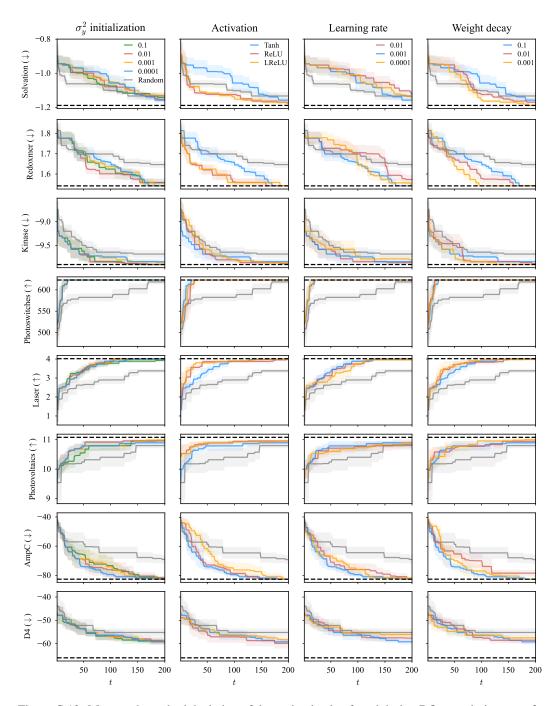


Figure C.12: Mean and standard deviation of the optimal value found during BO at each time step for Laplace surrogates across different design choices (for MolFormer features). The dark dashed line shows the optimal value for each task.

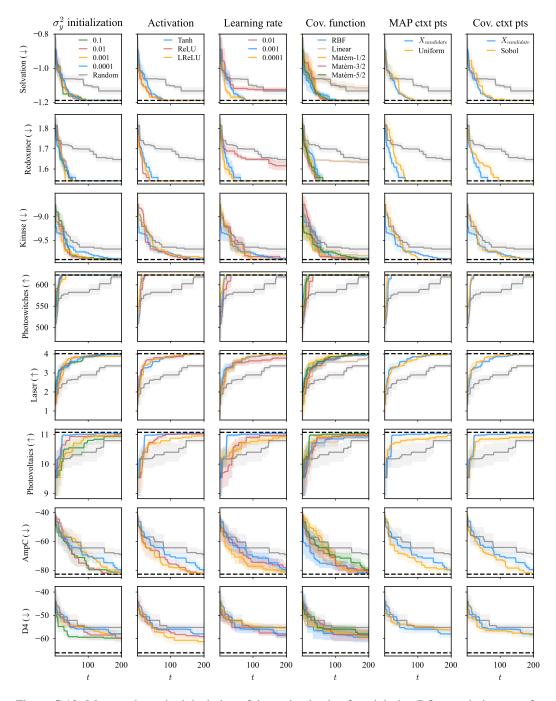


Figure C.13: Mean and standard deviation of the optimal value found during BO at each time step for FSP-Laplace surrogates across different design choices (for MolFormer features). The dark dashed line shows the optimal value for each task.

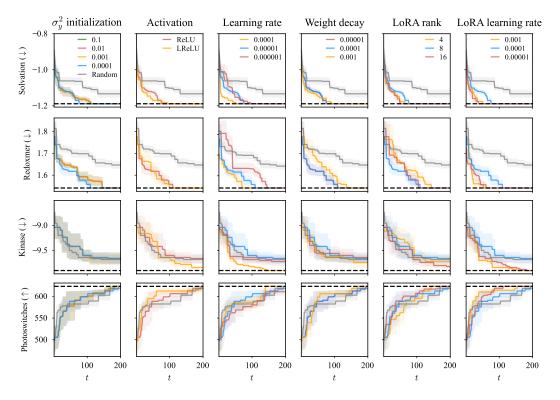


Figure C.14: Mean and standard deviation of the optimal value found during BO at each time step for Laplace Bayesian LoRA surrogates across different design choices (for MolFormer features). The dark dashed line shows the optimal value for each task.

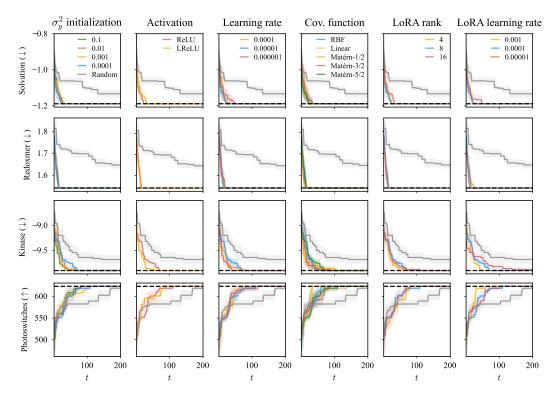


Figure C.15: Mean and standard deviation of the optimal value found during BO at each time step for FSP-Laplace Bayesian LoRA surrogates across different design choices (for MolFormer features). The dark dashed line shows the optimal value for each task.