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Abstract

In recent years, numerous studies have sought001
to enhance the capabilities of pretrained lan-002
guage models (PLMs) for Knowledge Graph003
Completion (KGC) tasks by integrating struc-004
tural information from knowledge graphs.005
However, existing approaches have not effec-006
tively combined the structural attributes of007
knowledge graphs with the textual descriptions008
of entities to generate robust entity encodings.009
To address this issue, this paper proposes Mo-010
CoKGC (Momentum Contrast Entity Encoding011
for Knowledge Graph Completion), which in-012
corporates three primary encoders: the entity-013
relation encoder, the entity encoder, and the014
momentum entity encoder. Momentum con-015
trast learning not only provides more negative016
samples but also allows for the gradual updat-017
ing of entity encodings. Consequently, we rein-018
troduce the generated entity encodings into the019
encoder to incorporate the graph’s structural in-020
formation. Additionally, MoCoKGC enhances021
the inferential capabilities of the entity-relation022
encoder through deep prompts of relations. On023
the standard evaluation metric, Mean Recipro-024
cal Rank (MRR), the MoCoKGC model demon-025
strates superior performance, achieving a 7.1%026
improvement on the WN18RR dataset and an027
11% improvement on the Wikidata5M dataset,028
while also surpassing the current best model029
on the FB15k-237 dataset. Through a series of030
experiments, this paper thoroughly examines031
the role and contribution of each component032
and parameter of the model.033

1 Introduction034

As an important method of knowledge representa-035

tion, the fundamental building blocks of a knowl-036

edge graph are factual triples, such as (Steve Jobs,037

founded, Apple Inc.). However, the process of con-038

structing knowledge graphs, whether manually or039

through automation, inevitably leads to the pres-040

ence of many missing triplets within the knowledge041

graph. Therefore, the knowledge graph completion 042

task (KGC) aims to complete the missing triples. 043

Among the numerous methods for KGC, knowl- 044

edge graph embedding (KGE) techniques are the 045

most classical and widely adopted. The core idea 046

behind these methods is to generate embedding 047

vectors for entities and relationships and use differ- 048

ent scoring functions to predict the missing triplets 049

(Bordes et al., 2013; Dettmers et al., 2018; Sun 050

et al., 2019; Balazevic et al., 2019). Building upon 051

this, some studies introduce the structure of knowl- 052

edge graphs as supplementary information in the 053

reasoning process to improve prediction accuracy 054

(Schlichtkrull et al., 2018; Vashishth et al., 2020; 055

Chen et al., 2021). 056

In recent years, researchers have begun explor- 057

ing the integration of Pre-trained Language Mod- 058

els (PLMs) into the task of KGC, aiming to im- 059

prove accuracy through the textual descriptions 060

of entities and relationships. Models based on 061

pre-trained language encoders can be broadly cat- 062

egorized into three types: (1) Cross-encoder mod- 063

els (Yao et al., 2019) ; (2) Bi-encoder models 064

(Wang et al., 2021a, 2022);(3) Single-encoder mod- 065

els (Liu et al., 2022b; Chen et al., 2023a). Al- 066

though cross-encoder models fully utilize the se- 067

mantic information of triplets, their performance is 068

often not as good as other methods due to the high 069

cost of obtaining negative samples during training. 070

Bi-encoder models, by separating the tail entity, 071

not only preserve the textual information of the 072

tail entity but also effectively increase the number 073

of negative samples. Single-encoder models, de- 074

spite removing the textual information of the tail 075

entity, demonstrate unique advantages by acquiring 076

a large number of negative samples for tail entities 077

and introducing graph information through entity 078

embeddings. 079

In order to preserve the textual information of en- 080

tities while flexibly integrating entity encoding into 081

the training and prediction phases of the model, this 082
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study adopts the momentum contrastive learning083

mechanism (He et al., 2020), thereby proposing084

the MoCoKGC model. This model draws inspi-085

ration from the Bi-encoder architecture, equipped086

with a head entity-relation encoder and an entity087

encoder. The distinction lies in that, within the088

MoCoKGC model, the update of entity encoding089

relies on a momentum entity encoder, rather than090

directly utilizing the entity encoder, thus achieving091

a smoothing of the entity encoding update process.092

Consequently, the MoCoKGC model exhibits two093

significant features compared to other methods: (1)094

Entity Queue. This queue is maintained in the order095

of entity encodings generated by the momentum en-096

tity encoder, providing the model with a rich source097

of negative tail entity samples; (2) Reutilization098

of entity encoding. Under this mechanism, entity099

encoding, as a part of integrating the structural in-100

formation of the knowledge graph, is re-imported101

into the encoder.102

In terms of experimental validation, the Mo-103

CoKGC model not only successfully preserved104

the textual information of entities but also flex-105

ibly integrated entity encoding into the model’s106

training and prediction processes. Its performance107

on standard datasets WN18RR, FB15k-237, and108

Wikidata5M demonstrates the model’s superior ca-109

pabilities: on the WN18RR dataset, in Mean Re-110

ciprocal Rank (MRR), the model achieved a 7.1%111

improvement, an 11% increase on the Wikidata5M112

dataset, and surpassed previous models on the113

FB15k-237 dataset. Furthermore, comparative ex-114

perimental data reveal that MoCoKGC effectively115

overcomes the inconsistency issues exhibited by116

PLMs when dealing with sparse and dense knowl-117

edge graphs (Wang et al., 2022).118

2 Related Work119

Knowledge Graph Completion (KGC) tasks is to120

predict missing triplet information within a knowl-121

edge graph. In the domain of knowledge graph122

embeddings, a typical method is TransE (Bordes123

et al., 2013), which utilizes the Euclidean distance124

between the sum of head entity and relation em-125

beddings and the tail entity embedding as a scoring126

function. The RotatE (Sun et al., 2019) method is127

based on the core concept of interpreting relations128

in the knowledge graph as rotational operations in129

complex space. Graph-based approaches, such as130

R-GCN (Schlichtkrull et al., 2018), address the131

problem of relation learning by introducing weight132

matrices for different types of relations in graph 133

neural networks, thereby capturing the unique se- 134

mantics of each relation type. 135

Methods based on Pre-trained Language Models 136

(PLMs), such as KG-BERT (Yao et al., 2019), 137

concatenate the descriptions of head entities, 138

relations, and tail entities, and directly obtain 139

the triplet score by inputting it into the BERT 140

(Devlin et al., 2019) model. StAR (Wang et al., 141

2021a) adopts a dual-encoder architecture, which 142

significantly reduces the inference time overhead 143

of language models. SimKGC (Wang et al., 2022) 144

introduces a contrastive learning approach. 145

146

Prompt Tuning has emerged as a strategy aimed 147

at significantly improving the performance of 148

PLMs by adding prompt tokens to the input. This 149

approach was initially developed to address the 150

challenge of fine-tuning Large Language Models 151

(LLMs) for downstream tasks (Brown et al., 152

2020). Recently, in KGC tasks, researchers have 153

improved the performance of PLMs through 154

immediate learning, Lv et al. (2022) adding 155

prompt templates and soft prompts to the input, 156

while Chen et al. (2022) and Liu et al. (2022b) 157

specified different soft prompt tokens for different 158

types of relations. This paper views relations as 159

deep prompt parameters and introduces entity 160

neighborhood prompts, achieving the objective of 161

leveraging both textual descriptions and knowledge 162

graph structural information. 163

164

Contrastive Learning by differentiating positive 165

and negative sample features, learns distinctive 166

feature representations and has been successfully 167

applied in multiple domains, including computer 168

vision. MoCo (He et al., 2020) proposed a 169

momentum-based contrastive learning method, ef- 170

fectively solving the problem of sample pair con- 171

struction in unsupervised learning by building a 172

dynamically changing encoder queue. SimCLR 173

(Chen et al., 2020), as a method of visual represen- 174

tation learning, significantly improved the perfor- 175

mance of image recognition tasks through large- 176

scale unsupervised contrastive learning. In KGC 177

tasks, SimKGC (Wang et al., 2022) treats tail enti- 178

ties as positive and negative samples, implementing 179

efficient training through three different simple neg- 180

ative sampling strategies. This paper combines the 181

momentum contrast method of MoCo, utilizing it 182

while dynamically updating entity encodings. 183
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3 Methodology184

3.1 Notations185

Knowledge Graphs (KGs) represent a crucial data186

structure for organizing and storing factual relation-187

ships in the real world, which can be formally rep-188

resented as G = {E ,R, T }. Here, E and R denote189

the sets of entities and relationships, respectively.190

T = {(h, r, t)} ⊆ E×R×E defines a set of triples,191

each comprising a head entity (h), a relation (r),192

and a tail entity (t). The task of KGC aims to fill193

in missing triples within a knowledge graph, with194

link prediction as its core task. This task focuses on195

predicting the missing entity part in given triples196

(h, r, ?) or (?, r, t).197

3.2 Neighborhood Prompts198

To integrate the structural information of knowl-199

edge graphs into pre-trained language models, this200

study proposes a method that utilizes the neighbor-201

hood information of entities as prompts. The neigh-202

borhood of an entity is defined as the directly con-203

nected entities and their corresponding relations,204

formally represented as follows:205

N(e) = {(ei, ri)|(ei, ri, e) ∈ T } (1)206

Given the variation in the neighborhood size of207

entities within knowledge graphs, this research in-208

troduces a parameter—σ—to standardize the di-209

mension of sampled neighborhood information.210

Specifically, when the neighborhood size of an en-211

tity exceeds the set σ, a corresponding number of212

entity-relation pairs are randomly extracted from213

this neighborhood to meet the σ; conversely, if the214

neighborhood size is smaller than the σ, specific215

padding tokens (pad tokens) are introduced to fill216

up to the σ. This treatment ensures the dimensional217

consistency of neighborhood information across all218

entities, facilitating subsequent processing. To ob-219

tain neighborhood prompts, entities and relations220

within the neighborhood are summed and then pro-221

cessed through a Multilayer Perceptron (MLP):222

pN(e) = MLP([e0 + r0, ..., eσ + rσ]) (2)223

3.3 Model Architecture224

The MoCoKGC model is comprised of three pri-225

mary components: the entity-relation encoder, the226

entity encoder, and the momentum entity encoder,227

as illustrated in Figure 1. The principal duties of228

these encoders are to generate encodings for the229

head entity and its relations, update the momentum230

entity encoder and pseudo-entity encodings, and 231

produce entity encodings, respectively. It is 232

noteworthy that the generation of entity encodings 233

is dependent on the slower-updating momentum 234

entity encoder, rather than the entity encoder. 235

Below, we provide a detailed explanation of these 236

three encoders. 237

238

Entity-Relation Encoder, the process initiates by 239

aggregating the encodings of all entities within the 240

vicinity of the head entity and their corresponding 241

relations, followed by processing through a Mul- 242

tilayer Perceptron (MLP) to obtain neighborhood 243

prompt information. Subsequently, the description 244

of the head entity, the relation description, and 245

the neighborhood prompt information are concate- 246

nated and inputted into a Transformer encoder. To 247

more effectively amalgamate various types of in- 248

formation, we employ the p-tuning v2 strategy, as 249

referenced in (Liu et al., 2022a), introducing the 250

relation as deep prompt information at every layer 251

of the Transformer encoder. The encoding of the 252

head entity-relation is acquired through a pooling 253

layer followed by normalization. This procedure 254

can be formalized as: 255

hr = ER_Encoder(d(h),d(r),pN(h),pr) (3) 256

In formula 3, d(h), d(r), pN(h), and pr respec- 257

tively represent the description of the head entity, 258

the description of the relation, the neighborhood 259

prompt of the head entity, and the relation prompt. 260

It is important to highlight that the relation 261

encoding within the neighborhood and the relation 262

parameters in the deep prompts are not identical. 263

264

Entity Encoder focuses on generating encodings 265

for tail entities without incorporating relation de- 266

scriptions or cues. This simplified processing dis- 267

tinguishes it from the entity-relation encoder. The 268

absence of relation inputs in this encoder is repre- 269

sented by 270

t = E_Encoder(d(t),pN(t)) (4) 271

In formula 4, d(t) and pN(t) respectively denote 272

the tail entity description and the neighborhood 273

prompt of the tail entity. 274

275

Momentum Entity Encoder shares its input for- 276

mat with the entity encoder, aimed at encoding the 277

tail entity. 278

t = ME_Encoder(d(t),pN(t)) (5) 279
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[SEP]
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Figure 1: The MoCoKGC framework primarily consists of three encoders: the entity-relation encoder, the entity
encoder, and the momentum entity encoder. As illustrated, the momentum entity encoder does not directly participate
in the gradient backpropagation process; its parameter updates are based on the Exponential Moving Average (EMA)
strategy. MoCoKGC updates entity encodings E using a momentum entity encoder and augments the number
of negative samples by maintaining an entity queue. Importantly, all entity encodings required for generating
neighborhood prompts are sourced from E .

However, its distinctive feature lies in how its pa-280

rameters are updated. Instead of using backpropa-281

gation for updates, this encoder’s parameters evolve282

iteratively based on the entity encoder’s parameters283

after each iteration. This method, known as the284

Exponential Moving Average (EMA):285

θME = mθME + (1−m)θE (6)286

Where θME and θE denote the parameters of the287

momentum entity encoder and the entity encoder,288

respectively. m ∈ [0, 1] represents the momentum289

coefficient. This process is also referred to as the290

Exponential Moving Average (EMA).291

It is crucial to highlight that the neighborhood292

representation of entity encodings, employed by293

all three encoders, is shared and generated by the294

momentum entity encoder. Conversely, the relation295

encoding is unique to each model component and296

is not shared.297

3.4 Negative Sampling298

In-batch Negatives like most contrastive learning299

methods, our study uses tail entities from within300

the same batch as negative samples. In our 301

approach, we not only utilize entity encodings as 302

positive and negative examples but also integrate 303

them into the representations of their respective 304

neighborhoods. 305

306

Entity Queue is maintained by MoCoKGC 307

throughout the training process to generate a larger 308

pool of negative sample entities. Unlike conven- 309

tional queues, the entity elements in this queue are 310

unique. If an entity that is about to be enqueued 311

is already present in the queue, it is first dequeued 312

and then enqueued again. This mechanism ensures 313

that a greater variety of different entities can be 314

stored while the queue length remains fixed. 315

3.5 Training and Inference 316

During the training phase of the model, considering 317

that the neighborhood sampling of the head entity 318

may contain the tail entity, and similarly, the neigh- 319

borhood sampling of the tail entity may include the 320

head entity, this study adopts a target link dropout 321

strategy after the neighborhood sampling process. 322
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Specifically, the target links existing in the neigh-323

borhoods of the head and tail entities are discarded324

and replaced with a padding token. This measure325

aims to ensure that training target data is not leaked326

into the model, thereby affecting the model’s gen-327

eralization capability. In addition to the dropout328

of target links, to enhance the diversity of neigh-329

borhood information, this study also introduces a330

mechanism to randomly drop entity-relation pairs331

in the neighborhood with a certain probability.332

As illustrated in Figure 1, the process of loss333

calculation in this study involves multiplying the334

generated head entity relation encoding hr with335

both the pseudo-entity encoding t and the actual336

entity encoding t, based on which the loss is cal-337

culated. This study employs the same method of338

calculating the loss function as SimKGC (Wang339

et al., 2022), use InfoNCE loss with additive mar-340

gin (Chen et al., 2020; Yang et al., 2019):341

L(hr, t) = − log
e(hrtT−γ)/τ

e(hrtT−γ)/τ +
∑|N |

i=1 e
(hrt

′
i

T
)/τ

(7)342

Where γ is the margin coefficient greater than 0,343

τ ∈ [0, 1] is the temperature coefficient and N is all344

negative sample entities. Based on the formula 7,345

the final loss function can be expressed as:346

loss = L(hr, t) + L(hr, t) (8)347

To enhance the update frequency of entity encod-348

ings, this study not only updates a portion of entity349

encodings at each iteration but also separately uti-350

lizes the momentum entity encoder for inference351

after a certain number of iterations, to achieve up-352

dates of all entities. After completing all training353

processes, a final update of all entities will be con-354

ducted.355

For the prediction inference of KGC, it is only356

necessary to generate the head entity-relation en-357

coding through the entity-relation encoder, and358

then multiply it with all entity encodings to obtain359

the predictive scores for all entities.360

scores = {hrt
T
i |ti ∈ E} (9)361

In terms of time complexity, the time complexity362

of this study in the test set is consistent with that of363

most KGC models, which is |Ttest|.364

4 Experiments365

4.1 Experimental Setup366

Dataset Evaluation In this study, three benchmark367

datasets were utilized to assess the performance368

of the proposed model, specifically: WN18RR, 369

FB15k-237, and Wikidata5M. Table 1 presents 370

the detailed distribution of these datasets. The 371

WN18RR dataset (Dettmers et al., 2018) is 372

constructed based on the WordNet knowledge 373

base (Miller, 1998), aimed at link prediction tasks, 374

containing entities represented by English phrases 375

and their semantic relationships. The FB15k-237 376

dataset (Toutanova et al., 2015) is a subset derived 377

from the Freebase knowledge base (Bollacker et al., 378

2008), encompassing entities in the real world 379

and their interrelations. The Wikidata5M dataset 380

(Wang et al., 2021b) is a large-scale knowledge 381

graph dataset, integrating information from the 382

Wikidata knowledge graph and Wikipedia pages, 383

providing Wikipedia page descriptions for each 384

entity. Compared to WN18RR and FB15k-237, the 385

Wikidata5M dataset surpasses them by two orders 386

of magnitude in both the number of entities and 387

triples, indicating its larger scale and complexity. 388

389

Evaluation Metrics In the task of KGC, the 390

assessment of model performance is primarily 391

achieved by measuring the ranking of target triples 392

among all potential triples’ scores. This study 393

adopts the commonly used evaluation metrics in 394

previous research, including Hits@1, Hits@3, 395

Hits@10, and MRR. The Hits@k metric measures 396

the frequency with which the target triple appears 397

among the top k triples with the highest scores, 398

while the MRR is the average of the reciprocal 399

ranks of the target triples. To enhance the accuracy 400

and fairness of the evaluation, we employed 401

the filtered ranking setting proposed by (Bordes 402

et al., 2013), which eliminates potential ranking 403

biases by excluding all possible triples (h, r, ?) 404

or (t, r−1, ?) that already exist in the training set. 405

Furthermore, following the random evaluation 406

protocol suggested by Sun et al. (2020), we 407

accurately assess model performance. 408

409

Implementation Details To ensure the compara- 410

bility of the results of this study with existing re- 411

search, we selected the "bert-base-uncased" ver- 412

sion of the BERT model as the Transformer en- 413

coder for this research. Utilizing the AdamW 414

Dataset # entity relation # train # valid # test
WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466
Wikidata5M 4,594,485 822 20,614,279 5,163 5,163

Table 1: Summary statistics of benchmark datasets.
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WN18RR FB15k-237 Wikidata5M

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Knowledge graph embedding method
TransE (Bordes et al., 2013)♢ 0.243 0.043 0.441 0.532 0.279 0.198 0.376 0.441 0.253 0.170 0.311 0.392
DistMult (Yang et al., 2015)♢ 0.444 0.412 0.470 0.504 0.281 0.199 0.301 0.446 0.253 0.209 0.278 0.334
ComplEx (Trouillon et al., 2016)♢ 0.449 0.409 0.469 0.530 0.278 0.194 0.297 0.450 0.308 0.255 - 0.398
R-GCN (Schlichtkrull et al., 2018)† 0.123 0.080 0.137 0.207 0.164 0.100 0.181 0.300 - - - -
ConvE (Dettmers et al., 2018)† 0.456 0.419 0.470 0.531 0.312 0.225 0.341 0.497 - - - -
RotatE (Sun et al., 2019)♢ 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533 0.290 0.234 0.322 0.390
TuckER (Balazevic et al., 2019) 0.470 0.443 0.482 0.526 0.358 0.266 0.394 0.544 - - - -
CompGCN (Vashishth et al., 2020) 0.479 0.443 0.494 0.546 0.355 0.264 0.390 0.535 - - - -
HittER (Chen et al., 2021) 0.503 0.462 0.516 0.584 0.373 0.279 0.409 0.558 - - - -
N-Former (Liu et al., 2022b) 0.486 0.443 0.501 0.578 0.372 0.277 0.412 0.556 - - - -
PLM-Based method
KG-BERT (Yao et al., 2019) 0.216 0.041 0.302 0.524 - - - 0.420 - - - -
StAR (Wang et al., 2021a) 0.401 0.243 0.491 0.709 0.296 0.205 0.322 0.482 - - - -
KEPLER(Wang et al., 2021b)♢ - - - - - - - - 0.210 0.173 0.224 0.277
KG-S2S (Chen et al., 2022) 0.574 0.531 0.595 0.661 0.336 0.257 0.373 0.498 - - - -
N-BERT (Liu et al., 2022b) 0.583 0.529 0.607 0.686 0.381 0.287 0.420 0.562 - - - -
SimKGC (Wang et al., 2022) 0.671 0.585 0.731 0.817 0.333 0.246 0.362 0.510 0.358 0.313 0.376 0.441
CSProm-KG (Chen et al., 2023b) 0.575 0.522 0.596 0.678 0.358 0.269 0.393 0.538 0.380 0.343 0.399 0.446
GHN (Qiao et al., 2023) 0.678 0.596 0.719 0.821 0.339 0.251 0.364 0.518 0.364 0.317 0.380 0.453
Ensemble method
StAR(Self-Adp) (Wang et al., 2021a) 0.551 0.459 0.594 0.732 0.365 0.266 0.404 0.562 - - - -
CoLE (Liu et al., 2022b) 0.587 0.532 0.608 0.694 0.389 0.294 0.430 0.574 - - - -
MoCoKGC(Ours) 0.742 0.665 0.792 0.881 0.391 0.296 0.431 0.580 0.490 0.435 0.517 0.591

Table 2: Experimental results for various baseline methods on WN18RR, FB15k-237, and Wikidata5M datasets. †: Results are
sourced from Wang et al. (2021a); ♢: Results are sourced from Chen et al. (2023b). The best methods are highlighted in bold,
with the most effective methods in each category underscored for emphasis. The results for the MoCoKGC model are reported
as the average of three experimental runs.

optimizer for model training. The learning rate415

was set to 5 × 10−5. The batch size was416

selected from the set {256, 512, 1024}. The417

range of the momentum coefficient m was cho-418

sen from {0, 0.5, 0.9, 0.99, 0.999}. The neigh-419

borhood sampling size σ was selected from420

the set {256, 512, 1024}. The length of the421

maintained entity queue was chosen from the422

set {512, 1024, 2048, 4096, 8192, 16384, 32768}.423

For further details, please refer to Appendix A.424

4.2 Main Results425

On the WN18RR, FB15k-237, and Wikidata5M426

datasets, we compared the MoCoKGC model with427

other leading models, as shown in Table 2. The428

experimental results demonstrate that MoCoKGC429

achieved state-of-the-art performance across all430

evaluation metrics. Notably, on the WN18RR and431

Wikidata5M datasets, MoCoKGC realized signifi-432

cant improvements of 7.1% (from 0.671 to 0.742)433

and 11% (from 0.343 to 0.399), respectively. As434

a method based on pre-trained language models435

(PLM-Based), MoCoKGC also achieved a 1.0%436

performance improvement (from 0.381 to 0.391)437

on the FB15k-237 dataset, surpassing the previous438

best ensemble learning approach.439

Furthermore, we conducted a separate analysis440

on the MRR values of models that performed well441

on the WN18RR and FB15k-237 datasets, as de-442

picted in Figure 2. The analysis revealed that 443

knowledge graph embedding methods exhibited rel- 444

atively balanced performance on these two datasets 445

(i.e., models that performed well on WN18RR also 446

excelled on FB15k-237). In PLM-based models, 447

SimKGC and GHN exhibit significant performance 448

improvements on the WN18RR dataset, yet they 449

lag on the FB15k-237 dataset. We attribute this 450

phenomenon to SimKGC’s use of entity descrip- 451

tions, generating entity encodings through an entity 452

encoder, and the absence of knowledge graph struc- 453

tural information during inference. MoCoKGC 454

successfully addressed the inconsistency in perfor- 455

mance of PLM-based models on these two datasets. 456

On the larger Wikidata5M dataset, the perfor- 457

mance improvement of MoCoKGC was especially 458

pronounced, which is closely related to the rich en- 459

tity textual descriptions and significant knowledge 460

graph structure within the Wikidata5M dataset. 461

Our proposed MoCoKGC model, as a PLM-based 462

method, not only integrates the entity encoder from 463

SimKGC (Wang et al., 2022) but also, like models 464

such as CoLE (Liu et al., 2022b) and CSProm-KG 465

(Chen et al., 2023b), incorporates the structure of 466

knowledge graphs (e.g., relation and neighborhood 467

prompts) into the model. This effectively com- 468

bines the advantages of textual descriptions with 469

the knowledge graph structure. 470
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Figure 2: MRR performance of different models on
WN18RR and FB15k-237 datasets.

4.3 Ablation Studies471

Model MRR Hits@1 Hits@10

MoCoKGC w/o momentum entity encoder 0.727 0.645 0.875
MoCoKGC w/o entity queue 0.735 0.657 0.877
MoCoKGC w/o neighborhood prompt 0.696 0.614 0.845
MoCoKGC w/o relation prompt 0.597 0.476 0.818

MoCoKGC 0.742 0.665 0.881

Table 3: Ablation Study regarding important compo-
nents in MoCoKGC on the benchmark of WN18RR.

Model MRR H@1 H@10

MoCoKGC w/o momentum entity encoder 0.369 0.280 0.548
MoCoKGC w/o entity queue 0.379 0.284 0.569
MoCoKGC w/o neighborhood prompt 0.385 0.292 0.570
MoCoKGC w/o relation prompt 0.327 0.242 0.496

MoCoKGC 0.391 0.296 0.580

Table 4: Ablation Study regarding important compo-
nents in MoCoKGC on the benchmark of FB15k-237.

Structural component. In the WN18RR and472

FB15k-237 datasets, we conducted an analysis to473

understand the roles of different components within474

MoCoKGC, as shown in Tables 3 and 4.475

In the experiment, I separately removed the mo-476

mentum entity encoder (using the entity encoder477

instead to generate entities) and the entity queue.478

It was observed that there was a decrease in per-479

formance on both datasets, and these two compo-480

nents exhibited similar behaviors on both datasets.481

This aligns with expectations, as they correspond to482

smoother entity updates and an increase in the num-483

ber of negative samples, both of which are related484

to entity generation. Removing both components485

had a more significant impact in FB15k-237, sug-486

gesting that learning entities in dense knowledge 487

graphs is more challenging. 488

Additionally, the absence of neighborhood 489

prompts also resulted in a performance decline, par- 490

ticularly in WN18RR, where performance dropped 491

by 4.9% (from 0.745 to 0.696). The impact of lack- 492

ing neighborhood prompts was greater than that of 493

removing the momentum entity encoder and entity 494

queue. This indicates that the neighborhood struc- 495

ture in WN18RR, as opposed to FB15k-237, can 496

be effectively utilized. This may relate to the intrin- 497

sic properties of the two knowledge graphs, where 498

WN18RR’s structure describes English phrases and 499

their semantic relationships, whereas FB15k-237, 500

as a real-world knowledge graph, has a more ran- 501

dom neighborhood structure. 502

More notably, the removal of relation prompts 503

led to a substantial performance decline of 14.5% 504

(from 0.745 to 0.597) and 6.4% (from 0.391 to 505

0.327) on the WN18RR and FB15k-237 datasets, 506

respectively. This phenomenon suggests that the 507

simple reuse of entity encodings might interfere 508

with the encoder’s effective capture of deep seman- 509

tic information about entities and their relations. 510

To overcome this issue, the introduction of relation 511

prompts is crucial for restoring and enhancing 512

the synergistic effect of textual semantics and 513

knowledge graph structural information within 514

PLMs. 515

516

m 0 0.5 0.9 0.99 0.999

MRR (WN18RR) 0.727 0.728 0.728 0.733 0.742
MRR (FB15k-237) 0.369 0.367 0.375 0.380 0.391

Table 5: Demonstrates the MRR of MoCoKGC on the
datasets WN18RR and FB15k-237, with varying mo-
mentum coefficient m used during training.

Momentum coefficient. In Table 5, we present 517

the results of the MRR for models trained 518

with different momentum coefficients m on the 519

WN18RR and FB15k-237 datasets. Analysis 520

indicates that higher momentum coefficients m 521

can stably enhance model performance, whereas 522

lower momentum coefficients m have not shown 523

significant improvement in performance. This 524

experimental outcome aligns with our initial 525

rationale for employing a momentum entity 526

encoder, which is to introduce a steady yet gradual 527

entity encoding update mechanism, in the hope of 528

achieving performance improvement. 529
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Figure 4: Variation of MRR with entity queue size on
FB15k-237 in MoCoKGC

Entity queue size. In the training framework531

of MoCoKGC, a pivotal component is the532

maintenance of a dynamic entity queue, aimed at533

accumulating and leveraging a broader spectrum534

of negative tail entity samples throughout the535

training process. To investigate the impact of536

the entity queue, we examined how variations537

in the size of the entity queue influence model538

performance. As illustrated in Figures 3 and 4,539

the Mean Reciprocal Rank (MRR) on WN18RR540

and FB15k-237 varies with different entity queue541

sizes. The results demonstrate a consistent upward542

trend in the MRR metric as the size of the entity543

queue increases. This indicates that expanding the544

entity queue significantly augments the quantity of545

effective negative entity samples, thereby exerting546

a positive impact on model performance.547

548

Impact of Training Set Size. During the train-549

ing process of the MoCoKGC model, we observed550

that the model could achieve commendable per-551

formance even with a limited amount of training552

20% 40% 60% 80% 100%
Training Set Size

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
RR

CSProm-KG
SimKGC
MoCoKGC

Figure 5: Variation of MRR with training set size
on Wikidata5M in MoCoKGC, with comparative final
MRR sesults from SimKGC and CSProm-KG on the
entire training set.

data. As depicted in Figure 5, for comparison pur- 553

poses, we presented the training outcomes of the 554

SimKGC and CSProm-KG models on the complete 555

training set in dashed lines. Notably, when utiliz- 556

ing only 20% of the training data, the MRR of the 557

MoCoKGC model could reach 0.460. This result 558

significantly surpasses the final performance of the 559

other two methods. This finding underscores the ex- 560

ceptional generalization capability of MoCoKGC 561

in scenarios of data scarcity. 562

Furthermore, we have added separate studies on 563

sampling size and model dimensions in Appendix 564

A. It is worth noting that in the WN18RR dataset, 565

we surpassed previous methods using only 26.4% 566

of the model size. 567

5 Conclusion 568

This study proposes MoCoKGC, a novel KGC 569

model that leverages momentum contrastive learn- 570

ing in conjunction with PMLs. By expanding the 571

pool of negative samples, it further enhances KGC 572

through the aggregation of entity textual descrip- 573

tions and their structural information. The Mo- 574

CoKGC model demonstrated superior performance 575

across multiple datasets. Furthermore, we further 576

validated the critical role of its constituent compo- 577

nents and parameter configurations. Future work 578

will focus on adapting MoCoKGC for open knowl- 579

edge graphs to better manage the emergence of new 580

entities. 581

6 Limitations 582

The MoCoKGC model relies on pre-trained lan- 583

guage models to integrate textual representations 584

with the structure of knowledge graphs. This re- 585

8



sults in an increase in training time and memory586

consumption as the length of the structure input587

into the model increases. In response, MoCoKGC588

opts for a compromise by sampling the neigh-589

borhoods of entities, rather than aggregating the590

entire knowledge graph structure as done by R-591

GCN (Schlichtkrull et al., 2018) and CompGCN592

(Vashishth et al., 2020). Moreover, the random593

sampling does not take into account the varying594

importance of different links within the neighbor-595

hood. This leads to the model predictions being596

more focused on the features within the sampled597

neighborhoods. In the future, we plan to address598

this issue.599
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A Details on Implementation823

# of GPUs 1
learning rate 5× 10−5

initial temperature τ 0.05
gradient clip 10
warmup steps 400
dropout 0.1
neighborhood dropout 0.1
weight decay 10−4

InfoNCE margin 0.02
momentum coefficient m 0.999
pooling mean

Table 6: Shared hyperparameters for MoCoKGC.

WN18RR FB15k-237 Wikidata5M
batch size 1024 256 1024
additional entity size 512 1024 512
max # of word tokens 64 128 64
neighborhood sampling size σ 16 128 32
entity queue size 16384 14541 16384
epochs 30 3 1

Table 7: Hyperparameters of the MoCoKGC model that
are not shared across different datasets.

In this study, the hyperparameter settings were824

primarily aligned with the configuration strategy of825

SimKGC (Wang et al., 2022). As demonstrated in826

Table 6, we have listed the hyperparameter settings827

shared across all datasets. Concurrently, Table 7828

showcases the specific hyperparameter configura-829

tions for the MoCoKGC model across different830

datasets.831

Given that the experiments were conducted us-832

ing a single GeForce RTX 4090 graphics card, and833

faced with memory capacity limitations, we em-834

ployed gradient accumulation techniques to enable835

larger batch sizes. It is noteworthy that, due to836

the infeasibility of directly applying conventional837

gradient accumulation methods in the contrastive838

learning process, we first generate all necessary839

contrastive encodings for the three encoders using840

smaller batch sizes and disabling gradient saving841

during each accumulation step. Subsequently, we842

update the entity-relation encoder and the entity843

encoder using gradient accumulation techniques.844

To eliminate the potential randomness introduced 845

by dropout operations, a random number is gener- 846

ated and recorded as the random seed during each 847

gradient accumulation, and this seed is set every 848

time an encoder is invoked. In addition to gradient 849

accumulation, in the experiments on Wikidata5M, 850

we stored the entity encodings in CPU memory 851

rather than in GPU memory to reduce the usage of 852

GPU memory. 853

During each training epoch, the MoCoKGC 854

model runs on a single GeForce RTX 4090 graph- 855

ics card, utilizing a configuration that includes four 856

workers for data loading. The runtime varies de- 857

pending on the dataset: it takes approximately 7 858

minutes for the WN18RR dataset, about 5 hours 859

for the FB15k-237 dataset, and roughly 65 hours 860

for the Wikidata5M dataset. 861

Furthermore, drawing from the practices of 862

SimKGC, we made the following adjustments to 863

the textual descriptions of entities: (1) the names of 864

neighboring entities in the training set are concate- 865

nated to the description of the entity, and the correct 866

entities are dynamically excluded from the input 867

text during the training process; (2) the descrip- 868

tions of inverse relations are formed by appending 869

the term "inverse" to the beginning of the original 870

relation descriptions. 871

Our implementation is based on open-source 872

project transformers 1. 873

B More Experiments 874

s
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M
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Figure 6: Variation of MRR with neighborhood sam-
pling size on WN18RR in MoCoKGC

The effects of the neighborhood prompt on the 875

performance of MoCoKGC are presented in Ta- 876

bles 3 and 4. Further analysis on the impact of the 877

1https://github.com/huggingface/transformers
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Figure 7: Variation of MRR with neighborhood sam-
pling size on FB15k-237 in MoCoKGC

neighborhood prompt’s length and the neighbor-878

hood sampling size, σ, is conducted. As illustrated879

in Figures 6 and 7, an ascending trend in MRR is880

observed with an increase in σ.881

For WN18RR, given the graph’s relative sparsity882

where each entity in the training dataset is con-883

nected to an average of 2.12 links, an increase in884

σ beyond a certain point results in the majority885

of the entity neighborhoods being smaller than σ.886

Hence, further increments in σ would only bene-887

fit a minority of entities, rendering limited overall888

improvements. Conversely, the graph for FB15k-889

237 is comparatively dense, with each entity in the890

training dataset having an average of 18.71 links.891

Thus, improvements can still be observed with σ892

increased to 128.893

Additionally, it is evident that for the sparser894

WN18RR, a neighborhood prompt length of just895

16 can enhance the MRR by 4.6%. In contrast,896

the denser FB15k-237 requires a greater length897

of neighborhood prompts for noticeable improve-898

ments.899

PLM parameters MRR Hits@1 Hits@10

bert-large 340M 0.740 0.667 0.876
bert-base 110M 0.742 0.665 0.881
bert-medium 42M 0.718 0.633 0.874
bert-small 29M 0.706 0.620 0.862
bert-tiny 4M 0.644 0.564 0.793

Table 8: Performance of MoCoKGC with PLMs of
different sizes on the WN18RR Dataset.

In Table 2, the bert-base is utilized as the Pre-900

trained Language Models (PLMs) for comparison901

with other relevant models. To investigate the im-902

pact of PLMs of different sizes on MoCoKGC,903

we conducted experiments using BERT models of904

varying sizes on WN18RR, as shown in Table 8. 905

It was observed that the use of a smaller BERT 906

(bert-small) yielded results on WN18RR reaching 907

0.706, surpassing other models listed in Table 2 908

while only utilizing 26.4% of the base model. 909

Overall, performance tends to improve as the 910

size of the PLMs increases, indicating a positive 911

correlation between the size of the PLMs and the 912

performance of MoCoKGC. However, further in- 913

creases with the bert-large model do not continue 914

to enhance MoCoKGC’s performance, suggesting 915

that there is a bottleneck in the textual features 916

utilized by MoCoKGC when the PLMs become 917

excessively large. 918
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