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ABSTRACT

Deep active learning (DAL) methods have shown significant improvements in
sample efficiency compared to simple random sampling. While these studies
are valuable, they nearly always assume that optimal DAL hyperparameter (HP)
settings are known in advance, or optimize the HPs through repeating DAL several
times with different HP settings. Here, we argue that in real-world settings, or in
the wild, there is significant uncertainty regarding good HPs, and their optimization
contradicts the premise of using DAL (i.e., we require labeling efficiency). In
this study, we evaluate the performance of eleven modern DAL methods on eight
benchmark problems as we vary a key HP shared by all methods: the pool ratio.
Despite adjusting only one HP, our results indicate that eight of the eleven DAL
methods sometimes underperform relative to simple random sampling and some
frequently perform worse. Only three methods always outperform random sampling
(albeit narrowly), and we find that these methods all utilize diversity to select
samples - a relatively simple criterion. Our findings reveal the limitations of
existing DAL methods when deployed in the wild, and present this as an important
new open problem in the field.

1 INTRODUCTION

In this work, we focus on the application of active learning to deep neural networks (DNNs),
sometimes referred to as Deep Active Learning (DAL) Roy et al. (2018). Broadly speaking, the
premise of DAL is that some training instances will yield superior performance compared to others.
Therefore, we can improve the training sample efficiency of DNNs by selecting the best training
instances. A large number of methods have been investigated in recent years for DAL Settles
(2009); Ren et al. (2021); Holzmüller et al. (2023), often reporting significant improvements in
sample efficiency compared to simpler strategies, such as random sampling Tsymbalov et al. (2018);
Käding et al. (2018); Kee et al. (2018). While these studies provide valuable insights, they nearly
always assume good DAL hyperparameter (HP) settings are known in advance, or alternatively, they
optimize the HPs (e.g., by repeating DAL several times with different HP settings). To our knowledge
however, there is little evidence that one can assume good hyperparameters are known in advance
for novel problems (see Section 3, where we find HP settings in the literature vary widely across
problems). Moreover, running a DAL method multiple times in search of good HP settings may result
in significant label inefficiency, even when compared to random sampling. Therefore, in real-world
settings where DAL is applied to a novel problem, or in the wild as we term it here, the best DAL
HPs are not generally known in advance, and it is unclear whether DAL still offers advantages (e.g.,
compared to random sampling) when accounting for HP uncertainty. If DAL models do not reliably
outperform simple random sampling in the presence of HP uncertainty, it greatly undermines their
value, and the likelihood that they will be adopted. Despite the significance of this problem, it has
received little attention in the literature.

Contributions In this work, we perform the first systematic evaluation of DAL in the wild. We focus
our investigation on DAL for regression, where to our knowledge, most applicable DAL methods
are pool-based, and therefore they share an important HP: the pool ratio, γ (see Section 3.3). Using
this property of regression problems, we evaluate a large number of DAL models as we vary a single
HP, their γ setting, thereby providing a distribution of performance that one can expect in real-world
settings (i.e., in the wild), where the best setting for γ is uncertain. We note that most DAL models
have several (often unique) HPs that exhibit uncertainty, and each can contribute to performance
variability of DAL methods in the wild. However, examining variability with respect to all of these
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Figure 1: Schematic diagram for pool-based DAL procedure. In the input space X, the triangles
represent labeled data (L), and the circles represent unlabeled data (D for the full set of unlabeled
data, andU for subsampled unlabeled pool). At each step, after the model is trained using the existing
training set L, a subset of unlabeled data U is sampled and evaluated by the AL criteria q(x). Then,
the top-k points according to q(x) are labeled by the oracle function.

HPs would require a lengthy exposition, and would be computationally costly. Therefore we focus on
γ, which mitigates the aforementioned challenges, while still providing sufficient empirical evidence
to support our main conclusions.

To support our investigation, we assembled eight scientific computing regression problems to examine
the performance of DAL methods in this setting; to our knowledge, this is the first such benchmark
of its kind. We then identified past and recent DAL methods that are suitable for regression, totaling
eleven methods

To support our study, we identified eleven DAL methods that are suitable for regression. We then
examined the performance of these DAL methods on each of eight benchmark problems, compared
to simple random sampling, as we vary their γ settings. Our results indicate that their performance
varies significantly with respect to γ, and that the best HP varies for different DAL/dataset with no
single γ value working best across all settings, confirming our hypothesis that there is significant
uncertainty regarding the best HP setting for novel problems. We also find that most of the DAL
methods sometimes underperform simple random sampling and some frequently perform much
worse:

• We compile a large benchmark of eleven state-of-the-art DAL methods across eight datasets.
For some of our DAL methods, we are the first to adapt them to regression. Upon publication,
we will publish the datasets and code to facilitate reproducibility.

• Using our benchmark, we perform the first analysis of DAL performance in the wild. Using
γ as an example, we systematically demonstrate the rarely-discussed problem that most
DAL models are often outperformed by simple random sampling when we account for HP
uncertainty.

• We analyze the factors that contribute to the robustness of DAL in the wild, with respect to
γ.

2 RELATED WORKS

2.1 ACTIVE LEARNING BENCHMARKS

The majority of existing AL benchmarks are for classification tasks, rather than regression Jose
et al. (2024), and many AL methods for classification cannot be applied to regression. Some
existing studies include Zhan et al. (2021), which benchmarked AL using a Support Vector Machine
(SVM) with 17 AL methods on 35 datasets. Yang & Loog (2018) benchmarked logistic regression
with 12 AL methods and 44 datasets. Meduri et al. (2020) benchmarked specific entity matching
application (classification) of AL with 3 AL methods on 12 datasets, with 3 different types of
classifiers (DNN, SVM, and Tree-based). Trittenbach et al. (2021) benchmarked an AL application
in outlier detection on 20 datasets and discussed the limitation of simple metrics extensively. Hu et al.
(2021) benchmarked 5 classification tasks (including both image and text) using DNN. Beck et al.
(2021) benchmarked multiple facets of DAL on 5 image classification tasks. For the regression AL
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benchmark, O’Neill et al. (2017) benchmarked 5 AL methods and 7 UCI 1 datasets, but they only
employed linear models. Wu et al. (2019) compared 5 AL methods on 12 UCI regression datasets,
also using linear regression models. Our work is fundamentally different from both, as we use
DNNs as our regressors, and we employ several recently-published problems that also involved DNN
regressors, making them especially relevant for DAL study. The recent study by Holzmüller et al.
(2023) is the only work that is similar to ours, in which the authors benchmarked 8 pool-based DAL
methods for regression on 15 datasets. The primary focus of their work was to propose a novel DAL
regression framework, termed LCMD; meanwhile the focus of our work is to investigate DAL in the
wild. Consequently, Holzmüller et al. (2023) presents different performance metrics and conclusions
compared to our study.

2.2 ACTIVE LEARNING FOR REGRESSION PROBLEMS

Regression problems have received (relatively) little attention compared to classification Ren et al.
(2021); Guyon et al. (2011). For the limited AL literature dedicated to regression tasks, Expected
Model Change (EMC) Settles (2008); Cai et al. (2013) was explored, where an ensemble of models
was used to estimate the true label of a new query point using both linear regression and tree-based
regressors. Gaussian processes were also used with a natural variance estimate on unlabeled points
in a similar paradigm Käding et al. (2018). Smith et al. (2018) used Query By Committee (QBC),
which trains multiple networks and finds the most disagreeing unlabeled points of the committee
of models trained. Tsymbalov et al. (2018) used the Monte Carlo drop-out under a Bayesian
setting, also aiming for maximally disagreed points. Yu & Kim (2010) found x-space-only methods
outperforming y-space methods in robustness. Yoo & Kweon (2019) proposed an uncertainty-based
mechanism that learns to predict the loss using an auxiliary model that can be used on regression tasks.
Ranganathan et al. (2020) and Käding et al. (2016) used Expected Model Output Change (EMOC)
with Convolutional Neural Network (CNN) on image regression tasks with different assumptions.
We included all these methods that used deep learning in our benchmark.

2.3 DAL IN THE WILD

To our knowledge, all empirical studies of pool-based DAL methods assume that an effective pool
ratio hyperparameter, γ, is known apriori. While the majority of works assumed the original training
set as the fixed, unlabeled pool, Yoo & Kweon (2019) limited their method to a subset of 10k instances
instead of the full unlabeled set and Beluch et al. (2018) used subsampling to create the pool U (and
hence γ). In real-world settings - in the wild - we are not aware of any method to set γ a priori, and
there has been no study of DAL methods under this setting. Therefore, we believe ours is the first
such study.

3 PROBLEM SETTING

In this work, we focus on DAL for regression problems, which comprise a significant portion of DAL
problems involving DNNs Jose et al. (2024). As discussed in Section 1, nearly all DAL methods for
regression are pool-based, which is one of the three major paradigms of AL, along with stream-based
and query synthesis. Settles (2009)

3.1 FORMAL DESCRIPTION

Let Li = (Xi, Y i) be the dataset used to train a regression model at the ith iteration of active learning.
We assume access to some oracle, denoted f : X → Y , that can accurately produce the target values,
y ∈ Y associated with input values x ∈ X . Since we focus on DAL, we assume a DNN as our
regression model, denoted f̂ . We assume that some relatively small number of N0 labeled training
instances are available to initially train f̂ , denoted L0. In each iteration of DAL, we must choose k
query instances to be labeled by the oracle, yielding a set of labeled instances, denoted Q, that is
added to the training dataset. Our goal is then to choose Q that maximizes the performance of the
DNN-based regression models over unseen test data at each iteration of active learning.

1University of California Irvine Machine Learning Repository
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3.2 POOL-BASED DEEP ACTIVE LEARNING

General pool-based DAL methods assume that we have some pool U of NU unlabeled instances from
which we can choose the k instances to label. The set U is sampled from a larger and potentially-
infinite set, denoted D, and NU is a HP chosen by the DAL user. We note that in some DAL
applications, such as computer vision, it is conventional to utilize all available unlabeled data for U ,
and the pool size is not often explicitly varied or discussed. However, this convention is equivalent
to setting U = D, and thereby implicitly setting the NU HP. Most pool-based methods rely upon
some acquisition function q : X → R to assign some scalar value to each x ∈ U indicating its
"informativeness", or utility for training f̂ . In each iteration of active learning, q is used to evaluate
all instances in U , and the top k are chosen to be labeled and included in L.

Figure 2: Pool-based DAL for uncertainty-based mechanism. q(x) is the acquisition metric. (a, b) are
two scenarios of the pool ratio (γ) being too small (4 in a) or too large (32 in b) in k (step size) of 2.

3.3 THE POOL RATIO HYPERPARAMETER, γ

We define the pool ratio as γ = NU/k. By definition, NU and k are hyperparameters of pool-based
problems, and therefore γ also is. While one could, in principle, vary NU and k independently, this is
not often done in practice. Typically k is set as small as possible, limited by computational resources.
This leaves NU as the major free hyperparameter; however, prior research has found that its impact
depends strongly on its size relative to k Kee et al. (2018); Tsymbalov et al. (2018); Käding et al.
(2018), encoded in γ. Given a fixed value of k, increasing NU can lead to the discovery of points
with higher values of q(x) due to denser sampling of the input space. However, a larger NU also
increases the similarity of the points, which provides redundant information to the model - a problem
referred to as mode collapse Burbidge et al. (2007); Ren et al. (2021); Kee et al. (2018). In the limit
as NU → ∞, all of the k selected query points will be located near the same x ∈ X that has the
highest value of q(x). This tradeoff is illustrated in Fig. 2 for a simple problem, and has also been
noted in Cacciarelli & Kulahci (2024).

In most real-world settings, there is a substantial quantity of unlabeled data (often infinite), and the
user has the freedom (or burden) of choosing a suitable γ setting for their problem by varying the
size of U . Crucially, and as we show in our experiments, choosing a sub-optimal γ value can result in
poorer performance than naive random sampling. This is not necessarily a problem if either (i) one γ
setting works across most problems or, alternatively, (ii) γ can be optimized on new problems without
using labels. To the best of our knowledge, there is no method for optimizing γ on a new problem
without running multiple trials of AL to find the best one (i.e., collecting labels), defeating the
purpose of AL in real-world settings. Furthermore, the value of γ varies widely across the literature,
suggesting that suitable settings for γ indeed vary across problems (see supplement for a list).

4 BENCHMARK REGRESSION PROBLEMS

To compose our benchmarks, we focused primarily upon problems in scientific computing, which is
an important emerging problem setting Subramanian et al. (2024); Takamoto et al. (2022); Majid
& Tudisco (2024). We propose eight regression problems to include in our benchmark set: two
simple toy problems (SINE, ROBO), four contemporary problems from publications in diverse fields
of science and engineering (STACK, ADM, FOIL, HYDR) and two problems solving ordinary
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Table 1: Benchmark datasets dimensionality and oracle functions. Dimx,y are the dimensionality of
x and y. Note that ODE solutions are implemented in the form of analytical functions as well.

DATASET SINE ROBO STACK ADM FOIL HYDR BESS DAMP

Dimx 1 4 5 14 5 6 2 3
Dimy 1 2 201 2000 1 1 1 100
ORACLE ANALYTICAL NUMERICAL SIMULATOR DNN RANDOM FOREST ODE SOLUTION

differential equations (also prevalent in engineering). Summary details of our benchmark problems
can be found in Table 1 and Table 2.

We utilized four major selection criteria, beyond choosing scientific computing problems: (i) diversity:
we sought to include a set of problems that span different disciplines (aero and fluid-dynamics, materi-
als science), and problems that require physical experiments (e.g., FOIL, HYDRO) versus simulators
(e.g., ADM); (ii) availability of labeled data: the problems we chose (unlike many high dimension
ones) all had sufficiently large amount of labeled data, allowing us to easily study the impact of
different pool ratios; (iii) dimensionality: we sought problems with relatively low dimensionality
because they mitigate computational costs allowing for more extensive experimentation, while still
being representative of many contemporary scientific computing problems (e.g., labeling can be
highly expensive, severely limiting total labeled data, and making even low-dimensional problems
challenging); (iv) difficulty: the problems in our dataset are also “difficult” in the sense that the
accuracy of the learners (i.e., the DNN regressors) can vary significantly depending upon which data
are labeled, making it possible to distinguish between more/less effective AL approaches. Although
this is not the only notion of “difficulty” that may be relevant for selecting benchmark problems, we
believe this is the most important one, and has been used in recent DAL studies Holzmüller et al.
(2023). We now describe our benchmark problems:

Table 2: Details of used oracles. Along with details in our repository (to be made public after
publication), we provide information on the oracles’ source publication, type of ML model, source of
training data, quantity of data, and error level. For all datasets, we adopt an 80-20 train-test split.

DATASET TYPE OF ML MODEL SOURCE OF DATA QUANTITY OF DATA TEST MSE

ADM DENG ET AL. (2021B) ENSEMBLE OF DNNS NUMERICAL SIMULATOR 160K SAMPLES 6.00E-05
FOIL DUA & GRAFF (2017) RANDOM FOREST REAL-WORLD EXPERIMENTS 1503 SAMPLES 8.63E-03
HYDRO DUA & GRAFF (2017) RANDOM FOREST REAL-WORLD EXPERIMENTS 302 SAMPLES 3.97E-02

1D sine wave (SINE) A noiseless 1-dimensional sinusoid with smoothly-varying frequency. 2D
robotic arm (ROBO) Ren et al. (2020) The goal is to predict the 2-D spatial location of the endpoint
of a robotic arm based on its three joint angles. Stacked material (STACK) Chen et al. (2019)
The goal is to predict the 201-D reflection spectrum of a material based on the thickness of its five
layers. Artificial Dielectric Material (ADM) Deng et al. (2021b) The goal is to predict the 2000-D
reflection spectrum of a material based on its 14-D geometric structure. Full wave electromagnetic
simulations were utilized in Deng et al. (2021a) to label data in the original work, requiring 1-2
minutes per input point. NASA Airfoil (FOIL) Dua & Graff (2017) The goal is to predict the sound
pressure of an airfoil based on the structural properties of the foil, such as its angle of attack and
chord length. This problem was published by NASA Brooks et al. (1989) and the instance labels were
obtained from a series of real-world aerodynamic tests in an anechoic wind tunnel. It has been used
in other AL literature Wu (2018); Liu & Wu (2020); Jose et al. (2024). Hydrodynamics (HYDR)
Dua & Graff (2017) The goal is to predict the residual resistance of a yacht hull in water based on its
shape. This problem was published by the Technical University of Delft, and the instance labels were
obtained by real-world experiments using a model yacht hull in the water. It is also referred to as the
"Yacht" dataset in some AL literature Wu et al. (2019); Cai et al. (2013); Jose et al. (2024). Bessel
function (BESS) The goal is to predict the value of the solution to Bessel’s differential equation,
a second-order ordinary differential equation that is common in many engineering problems. The
inputs are the function order α and input position x. The order α is limited to non-negative integers
below 10. Damping Oscillator (DAMP) The goal is to predict the full-swing trajectory of a damped
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Table 3: List of benchmarked methods. L is the labeled set, Q is the already selected query points
with dist being L2 distance, f̂(x) is model estimate of x, f(x) is oracle label of x, µ(x) is the average
of ensemble model output, N is number of models in the ensemble, Nk is the k-nearest-neighbors,
sim is cosine similarity, ϕ is current model parameter, ϕ′ is the updated parameter, L(ϕ; (x′, y′)) is
the loss of model with parameter ϕ on new labeled data (x′, y′), floss(x) is the auxiliary model that
predicts the relative loss

METHOD ACQUISITION FUNCTION (Q)

CORE-SET (GSX) min
x∈L∪Q

dist(x∗, x)
SENER & SAVARESE (2017)

GREEDY SAMPLING IN Y (GSY) min
y∈L∪Q

dist(f̂(x∗), y)
WU ET AL. (2019)

IMPROVED GREEDY SAMPLING (GSXY) min
(x,y)∈L∪Q

dist(x∗, x) ∗ dist(f̂(x∗), y)
WU ET AL. (2019)

QUERY BY COMMITTEE (QBC)
1

N

N∑
n=1

(f̂n(x
∗)− µ(x∗))2KEE ET AL. (2018)

QBC W/ DIVERSITY qQBC(x
∗) + qdiv(x

∗)
(QBCDIV) KEE ET AL. (2018) (qdiv(x

∗) = qGSx(x
∗))

QBC W/ DIVERSITY & DENSITY qQBC(x
∗) + qdiv(x

∗) + qden(x
∗)

(QBCDIVDEN) KEE ET AL. (2018) (qden(x
∗) =

1

k

∑
x∈Nk(x

∗)

sim(x∗, x))

BAYESIAN BY DISAGREEMENT (BALD)
qQBC(x

∗) WITH DROPOUTTSYMBALOV ET AL. (2018)
EXPECTED MODEL OUTPUT CHANGE Ey′|x′Ex||f̂(x∗;ϕ′)− f̂(x∗;ϕ)||1

(EMOC) RANGANATHAN ET AL. (2020) ≈ Ex||∇ϕf̂(x;ϕ) ∗ ∇ϕL(ϕ; (x∗′ , y′))||1
LEARNING LOSS YOO & KWEON (2019) floss(x

∗)
CLUSTER-VARIANCE

qQBC(x)
∗ IN CLUSTERSCITOVSKY ET AL. (2021)

DENSITY-AWARE CORE-SET
qGSx(x

∗) + qden(x
∗)(DACS)KIM & SHIN (2022)

oscillator in the first 100 time steps, of the solution to a second-order ordinary differential equation.
The input is the magnitude, damping coefficient, and frequency of the oscillation.

From the literature, we found eleven AL methods that are (i) applicable to regression problems, (ii)
with DNN-based regressors, making them suitable for benchmark regression problems. Due to space
constraints, we list each method in Table 3 along with key details, and refer readers to the supplement
for full details. Some of the methods have unique HPs that must be set by the user. In these cases, we
adopt HP settings suggested by the methods’ authors, shown in Table 3. Upon publication, we will
publish code for all of these methods to support future benchmarking.

5 BENCHMARK EXPERIMENT DESIGN

In our experiments, we compare eleven state-of-the-art DAL methods on eight scientific computing
problems. We evaluate the performance of our DAL methods as a function of γ on each of our
benchmark problems, with γ ∈ [2, 4, 8, 16, 32, 64] (i.e., at each step we sample our U with k ∗ γ
points). Following convention Kee et al. (2018); Tsymbalov et al. (2018), we assume a small training
dataset is available at the outset of active learning, T 0, which has N0 = 80 randomly sampled training
instances. We then run each DAL model to T 50 AL steps, each step identifying k = 40 points to be
labeled from a fresh, randomly generated pool of size k ∗γ. For each benchmark problem, we assume
an appropriate neural network architecture is known apriori. Each experiment (i.e., the combination
of dataset, DAL model, and γ value) is run 5 times to account for randomness. The MSE is calculated
over a set of 4000 test points that are uniformly sampled within the x-space boundary. To reduce
unnecessary noise related to our core hypothesis, we use the same (randomly sampled) unlabeled
pools across different DAL methods.
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Figure 3: Performance of each DAL method (x-axis) in terms of nAUCMSE (y-axis). For each DAL
method, we report a bar indicating the range of nAUCMSE values obtained as we vary the pool
ratio, γ ∈ [2, 4, ..., 64]; for a given DAL method, we report one bar for each of the eight benchmark
problems, indicated by a unique color in the legend. Each bar is bisected by a solid black and magenta
line, respectively. The black line represents the average nAUCMSE value across all settings of γ.
The magenta line represents the performance using γprior (see Section 6 for details). The dashed red
line at nAUCMSE = 1 corresponds to the performance obtained using random sampling. Note that
some vertical bars are intentionally clipped at the top to improve the visualization overall.

We must train a regression model for each combination of problem and DAL method. Because
some DAL methods require an ensemble model (e.g., QBC), we use an ensemble of 10 DNNs as
the regressor for all of our DAL algorithms (except for the ADM problem, which is set to 5 due
to the GPU RAM limit). More details on the models used and training procedures can be found in
the supplement. Following convention Käding et al. (2018); Wu (2018); O’Neill et al. (2017), we
summarize our DAL performance by the area under curve (AUC) of the error plot. We report the full
MSE vs # labeled point plots in the supplement. For the AUC calculation, we use ’sklearn.metrics.auc’
Pedregosa et al. (2011) then further normalize by such AUC of random sampling method for easier
visualization. All reported results are given in the unit of normalized AUC of MSE (nAUCMSE).

6 EXPERIMENTAL RESULTS

The performance of all eleven DAL methods on all eight benchmark datasets is summarized in Fig. 3.
The y-axis is the normalized nAUCMSE , the x-axis is the DAL methods of interest, and the color
code represents the different benchmark datasets. The horizontal red dashed line represents the
performance of random sampling, which by definition is equal to one (see Section 5). Further details
about Fig. 3 are provided in its caption. We next discuss the results, with a focus on findings that are
most relevant to DAL in the wild.

The results in Fig. 3 indicate that all of our benchmark DAL methods are sensitive to their setting
of γ - a central hypothesis of this work. As indicated by the vertical bars in Fig. 3, the nAUCMSE

obtained by each DAL method varies substantially with respect to γ. For most of the DAL methods,
there exist settings of γ (often many) that cause them to perform worse than random sampling. This
has significant implications for DAL in the wild since, to our knowledge, there is no general method
for estimating a good γ setting prior to collecting large quantities of labeled data (e.g., to run trials
of DAL with different γ settings), and DAL methods may perform worse, and unreliably, when
accounting for the uncertainty of γ.

6.1 DALS ARE SENSITIVE TO THEIR POOL RATIO, γ

The sensitivity of DAL regression models to γ may be less significant if there exist γ settings that
tend to perform well across most problems (for a given DAL method). Fig. 4 presents a histogram of
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Figure 4: Frequency histogram of the best pool ratio values found in each DAL. For a given DAL
method, this figure shows the frequency (% out of 8) that a particular pool ratio (x-axis) performs the
best in terms of average nAUCMSE metric.

the best-performing γ settings for each DAL method. The results indicate that for each method there
is no setting of γ that performs best across all problems. This corroborates our observations from
the literature where we found a wide range of γ settings used across studies. However, we do see
that some methods tend to have similar γ settings across all problems. For example, DACS has its
best performance near γ = 2, although DACS performs poorly overall. GSxy, however, is one of the
best-performing methods overall, and its best-performing settings cluster around γ = 16. Given this
observation, we investigate how well we can perform if we use historical results for a given method
to choose a γ value for future problems. We emulate this scenario by evaluating the performance
of each DAL method when adopting the best single γ setting from Fig. 4 (i.e., the setting that wins
across the most benchmarks), which we term γprior, and then apply it across all benchmarks. The
result of this strategy is given by the magenta line in Fig. 3. In most (but not all) cases, γprior yields
lower MSE than the average MSE of all γ settings (the black lines). In some cases, γprior yields
substantial overall performance improvements, such as for GSx and GSxy, suggesting that this is a
reasonable γ selection strategy, although the benefits seem to vary across DAL models. However,
even when using γprior, the performance of DAL models still varies greatly, and many models still
perform worse than random sampling. Therefore, while γprior may often be beneficial, it does not
completely mitigate γ-uncertainty.

6.2 DO ANY DAL METHODS OUTPERFORM RANDOM SAMPLING IN THE WILD?

The results indicate that several DAL methods tend to obtain much lower nAUCMSE (i.e., they are
better) than random sampling. This includes methods such as GSx, GSxy, GSy, QBC-x (variations
of QBC) and ClusterVar. The results therefore suggest that these methods are beneficial more
often than not, compared to random sampling - an important property. However, as discussed in
Section 6.1, all DAL methods exhibit significant performance variance with respect to γ, and some of
the aforementioned methods still sometimes perform worse than random sampling. For example, this
is the case of QBC, GSy, and QBCDivDen on the SINE problem. In settings where DAL is useful,
the cost of collecting labels tends to be high, and therefore the risk of poor DAL performance (e.g.,
relative to simple random sampling) may strongly deter its use. Therefore, another important criteria
is performance robustness: do any DAL methods consistently perform better than random sampling,
in the wild? Our results indicate that GSx, GSxy, and QBCDiv always perform at least as well as
random sampling, and often substantially better, regardless of the problem or γ setting. Note that all
three robust DALs (GSx, GSxy, QBCDiv) employ x-space diversity in their loss function, which we
discuss further in Section 6.3.
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Figure 5: A representative, combined plot with nAUCMSE performance (bottom, y-axis at left,
solid) and collapse metric, nDiv (upper, y-axis at right, more transparent) for each of the eleven DAL
models at all pool ratios (color coded) for robotic arm dataset (ROBO). Dashed horizontal red lines
starting from both y axes represent the random sampling’s average nAUCMSE and nDiv at 1.

6.3 SAMPLE DIVERSITY IS IMPORTANT FOR DAL IN THE WILD

Our results indicate that the best-performing DAL methods are GSx, GSxy, and QBCDiv. We
say these methods are "best" because they are both robust (see Section 6.2), and they also usually
yield lower MSEs, than other DAL methods. These methods share the common property that they
encourage training data diversity, as measured by x-space distance between points. Interestingly, GSx
only relies on x-space diversity. These results suggest that x-space diversity is a highly effective DAL
acquisition criterion. Furthermore, and in contrast to other criteria, seeking points that maximize
x-space diversity does not (by definition) increase the risk of mode collapse. Consequently, increasing
γ results in greater diversity but without any increased risk of mode collapse (more details in Fig. 5).
This may be a major reason why GSx, GSxy, and QBCDiv are less sensitive to γ, and provide much
more robust performance in the wild than other DAL methods. While sampling methods that use
diversity have been found to be promising Jose et al. (2024), our work provides evidence, for the
first time, that sampling based upon diversity may be robust to hyperparameter uncertainty (we only
examine uncertainty of γ) while other popular sampling criteria (e.g., estimated model error) seem to
be much less reliable in the wild.

To corroborate these findings, we evaluated the x-space diversity of each DAL method as a function
of γ. In particular, we calculated the diversity metric as the average nearest neighbor distance

Div =
1

|T |

T∑
t

1

K

K∑
i

min
x∗∈QT

dist(x∗, xi)

where Qt represents the queried batch at active learning step t and |T | = 50 is the total number of
active learning steps. Note that this metric is similar to, but not a simple average of qGSx(x) as Div
only focuses on per batch diversity and does not take the labeled set into consideration. It is also
further normalized (nDiv) by the value of random sampling for each dataset separately. The lower
this metric’s value, the more severe the mode collapse issue would be.

The nDiv is plotted in the top half of Fig. 5 using the inverted right y-axis. For the obvious failure
cases (BALD, EMOC and Learning Loss) in this particular dataset (their nAUCMSE exceeds 1), a
clear trend of mode collapse can be observed in the upper half of the plot (nDiv much lower than 1).
Meanwhile, a strong correlation between the pool ratio and the diversity metric can be observed: (i)
For GSx and GSxy methods, which seek to maximize diversity, their diversity increases monotonically
with larger pool ratio. (ii) For uncertainty-based methods (BALD, EMOC, LearningLoss, QBC,
MSE), which seek to maximize query uncertainty, their diversity decreases monotonically with larger
pool ratios. (iii) For combined methods like QBCDiv and QBCDivDen, the relationship between
pool ratio and diversity shows a weak correlation, consistent with the benefits of having diversity
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as a selection criterion. (iv) Lastly, we observe that all top-performing methods have high diversity,
regardless of γ, suggesting it is an important condition for effective DAL.

7 CONCLUSIONS

For the first time, we evaluated eleven state-of-the-art DAL methods on eight benchmark datasets for
regression in the wild, where we assume that the best pool ratio hyperparameter, γ, is uncertain. We
summarize our findings as follows:

• DAL methods for regression often perform worse than simple random sampling, when evalu-
ated in the wild. Using γ as an example, we systematically demonstrate the rarely-discussed
problem that most DAL models are often outperformed by simple random sampling when
we account for HP uncertainty.

• Some DAL methods were relatively robust, and outperformed random sampling robustly in
the wild (e.g., GSx, GSxy, QBCDiv).

• Insofar as robustness to pool ratio is concerned, our results suggest that DAL approaches
utilizing sample diversity tend to be much more robust in the wild than other popular
selection criteria.

7.1 LIMITATIONS

One limitation of this work is that we focused on scientific computing benchmark problems, and
problems with relatively low dimensionality. Including higher dimensional problems is an especially
important opportunity for future work due to the importance of vision problems in the DAL commu-
nity, and also because sensitivity to pool ratio has been noted in that setting as well Yoo & Kweon
(2019); Sener & Savarese (2017), but not studied systematically. Another important limitation is
that we constrained our evaluation of DAL methods to uncertainty in their pool ratio. Future studies
would benefit from evaluating each DAL approach with respect to uncertainty in all of its relevant
DAL HPs (i.e., those that require labeled data to be optimized), providing a more comprehensive
assessment of modern DAL methods in the wild.
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