

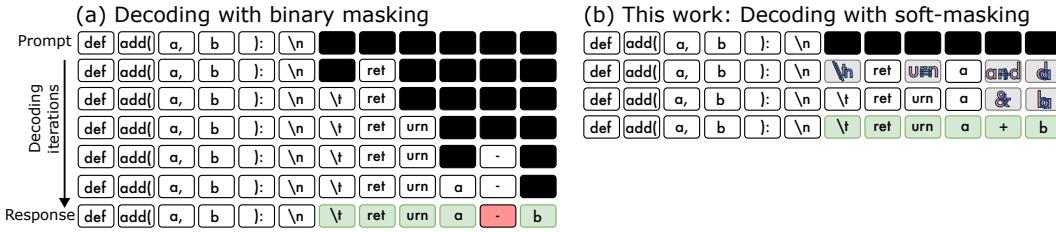
000 SOFT-MASKED DIFFUSION LANGUAGE MODELS

001
002
003 **Anonymous authors**

004 Paper under double-blind review

005 006 007 ABSTRACT

008
009 Diffusion models have demonstrated strong potential in language modeling, of-
010 fering various advantages over traditional autoregressive approaches. Their abil-
011 ity to generate and revise entire responses in parallel enables faster generation
012 and built-in self-correction mechanisms. Most modern diffusion-based language
013 models employ masked diffusion, where decoding involves iteratively processing
014 masked tokens based on a binary decision: either retaining the mask or replacing it
015 with the predicted token. However, this binary choice discards valuable predictive
016 information when the mask is retained. To address this limitation, we introduce
017 *soft-masking (SM)*, a novel method that dynamically blends the embedding of the
018 mask token with the embeddings of the top- k predicted tokens from the previous
019 decoding step, for each retained mask. This provides the model with a more in-
020 formative prior, preserving context from earlier computations and allowing partial
021 information about masked tokens to propagate beyond a single step. We propose
022 a training methodology that efficiently adapts masked diffusion language models
023 to incorporate SM. We demonstrate that training a 169M parameter model from
024 scratch with SM yields superior perplexity and MAUVE scores compared to bi-
025 nary masking baselines. Similarly, a pretrained model can be enhanced with SM
026 through continued pretraining. Finally, we finetune two state-of-the-art diffusion
027 models, Dream-7B and Dream-Coder-7B, with SM. SM consistently improves
028 performance across multiple coding benchmarks, particularly in high-throughput
029 settings.



Zhuang et al., 2025; Zhang et al., 2025). Such continuous feedback encodes multiple potential solutions in superposition (Zhu et al., 2025b), enabling simultaneous exploration of diverse paths and thereby potentially reducing the number of generated tokens required. However, training AR models with continuous feedback is slow, due to the sequential reliance on previous continuous token outputs.

As a promising alternative, diffusion models—originally developed for continuous domains in vision (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020)—have recently been adapted to natural language processing. These diffusion *language* models (DLMs) offer key advantages over AR models, including accelerated sampling (Inception et al., 2025), controllable generation (Li et al., 2022), bidirectional modeling, and built-in self-correction (Ye et al., 2024). Besides being more data-efficient than AR-models in training (Ni, 2025; Prabhudesai et al., 2025), they are particularly beneficial in non-causal tasks such as coding (Nie et al., 2025; Gong et al., 2025b; Xie et al., 2025). They consist of a forward process, which gradually corrupts data, and a backward process, which iteratively reverses this corruption to generate coherent outputs.

Masked DLMs (MDLMs) have emerged as the most scalable and effective approach. They implement the forward process as a categorical transition function, mapping tokens to an absorption state, typically represented by a [MASK] token (Austin et al., 2021a; Campbell et al., 2022; Lou et al., 2024; Sahoo et al., 2024; Ou et al., 2024; Shi et al., 2024). During decoding, the model makes a binary choice for each mask token: either replace it with a predicted token or retain the [MASK] (see Figure 1a). This discrete formulation allows for improved training and has enabled the development of large-scale MDLMs across both open-source (Gong et al., 2025a; Nie et al., 2025; Ye et al., 2025; Xie et al., 2025) and commercial (Inception et al., 2025; DeepMind, 2025) initiatives.

Despite their scalability, MDLMs are fundamentally constrained by the binary unmasking process, which discards valuable predictive information. Likewise, AR models commit to a single discrete sampling decision, with no opportunity for refinement. Motivated by the success of continuous feedback mechanisms in AR models, which preserve and leverage uncertainty over multiple candidates, we propose a new feedback mechanism for MDLMs that propagates this rich predictive information throughout the generation process.

This work: Continuous feedback in MDLMs via soft-masking We introduce soft-masking (SM), a simple yet effective mechanism for incorporating continuous feedback into MDLMs, as illustrated in Figure 1b. During decoding, SM enriches the [MASK] state with a convex combination of the top- k predicted tokens, weighted by their confidence scores. This allows the model to retain and propagate partial information across decoding steps, rather than discarding it through binary masking decisions. Our method integrates seamlessly into existing MDLM architectures, requiring minimal adaptation. Our contributions are as follows:

- We propose soft-masking (SM), a novel decoding mechanism that enhances the expressiveness of the [MASK] token in MDLMs. SM only adds three additional parameters, which can be efficiently learned together with the MDLM parameters using a parallelizable training procedure that enables MDLMs to leverage the richer feedback.
- We show that a 169M-parameter MDLM with SM trained from scratch on OpenWebText can enhance both validation perplexity and MAUVE scores in unconstrained generation. Further, SM can be integrated into a pretrained MDLM via pretraining continuation for only 100k steps.
- We demonstrate that SM generalizes to large-scale models by applying it to Dream-7B (Ye et al., 2025) and Dream-Coder-7B (Xie et al., 2025). After minimal finetuning, SM improves performance on HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021b) code generation benchmarks (including their plus versions (Liu et al., 2023)), particularly in high-throughput regimes with limited decoding iterations.
- SM can be readily integrated into other MDLM efficiency enhancement techniques, such as unmasking and caching. We show that SM complements an advanced unmasking scheduler, ReMDM (Wang et al., 2025), further improving unconstrained text generation quality. Moreover, SM can leverage caching and confidence-aware blockwise decoding from FastdLLM (Wu et al., 2025a), particularly improving generations in high-throughput settings.

108 **2 BACKGROUND: MASKED DIFFUSION LANGUAGE MODELS**
109

110 We begin by formulating general diffusion models (Sohl-Dickstein et al., 2015) and continue with
111 the forward and backward diffusion processes in MDLMs (Gong et al., 2025a). We denote scalars
112 with lower-case letters (x), vectors with bold lower-case letters (\mathbf{x}), sequences of length T with a
113 colon (e.g., $\mathbf{x}_{1:T}$), matrices with bold capital letters (\mathbf{X}), and the transpose with \mathbf{X}^\top .
114

115 Diffusion models describe a *forward* diffusion process as a Markov chain that progressively cor-
116 rupts the original data: $q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$. Here, $\mathbf{x}_0 \sim q_{\text{data}}(\mathbf{x}_0)$ is drawn from the
117 data distribution and $q(\mathbf{x}_t|\mathbf{x}_{t-1})$ describes the transition probability at step t . The marginalized
118 target distribution ($q(\mathbf{x}_T)$) should be stationary and cheap to generate (e.g., a Gaussian distribu-
119 tion). A *reverse* diffusion process aims to reconstruct the original data with a parameterized function
120 $p_\theta(\mathbf{x}_{0:T}) = p_\theta(\mathbf{x}_T) \prod_{t=1}^T p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$.
121

122 **2.1 MDLM MODELING**
123

124 **Forward corruption** We first focus on the corruption process for a single token; the extension to
125 sequences is discussed later. We represent language tokens as one-hot vectors $\mathbf{x} \in \{0, 1\}^{|\mathcal{V}|}$, where
126 $|\mathcal{V}|$ represents the cardinality of the vocabulary. The transition function in MDLMs is defined such
127 that, at each step, the token either remains unchanged or is mapped to a designated absorption state:
128 $[\text{MASK}] \in \mathcal{V}$. The transition can be expressed as $q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \text{Cat}(\mathbf{x}_t; \mathbf{Q}_t^\top \mathbf{x}_{t-1})$, where $\text{Cat}(\cdot, \mathbf{p})$
129 is the categorical distribution given a probability mass vector $\mathbf{p} \in \Delta^{|\mathcal{V}|-1}$, and $[\mathbf{Q}_t]_{i,j}$ denotes the
130 transition probability from token i to token j at time t . The marginal distribution after s steps is:
131

132
$$q(\mathbf{x}_s|\mathbf{x}_0) = \text{Cat}(\mathbf{x}_s|\overline{\mathbf{Q}}_s^\top \mathbf{x}_0) = \alpha_s \mathbf{x}_0 + (1 - \alpha_s) \mathbf{m},$$

133 where \mathbf{m} is the mask token, $\overline{\mathbf{Q}}_s = \prod_{t=1}^s \mathbf{Q}_t$, and α_s describes the probability of retaining the
134 original state. The schedule is typically chosen such that $\alpha_T = 0$, ensuring that the token is absorbed
135 into the masking state with probability 1 at the final step T . For example, a linear masking schedule
136 with $\alpha_t = (1 - t/T)$ is a popular choice (Austin et al., 2021a; Gong et al., 2025a; Nie et al., 2025).
137

138 **Reverse process** Decoding aims to reverse the corruption process by iteratively denoising the
139 data, starting from the absorbed (masked) state at time step T . First, note that the forward transition
140 probability between two time steps $0 \leq s < t \leq T$ is given by:
141

142
$$q(\mathbf{x}_s|\mathbf{x}_t) = \text{Cat}(\mathbf{x}_s; \overline{\mathbf{Q}}_{t|s}^\top \mathbf{x}_t),$$

143 where $\overline{\mathbf{Q}}_{t|s} = \overline{\mathbf{Q}}_s^{-1} \overline{\mathbf{Q}}_t$ represents the transition matrix from step t back to step s . Assuming access
144 to the ground-truth token \mathbf{x}_0 , the exact posterior transition from \mathbf{x}_t to \mathbf{x}_s can be computed via Bayes:
145

146
$$q(\mathbf{x}_s|\mathbf{x}_t, \mathbf{x}_0) = \frac{q(\mathbf{x}_t|\mathbf{x}_s)q(\mathbf{x}_s|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)} = \begin{cases} \frac{\alpha_s - \alpha_t}{1 - \alpha_t} \mathbf{x}_0 + \frac{1 - \alpha_s}{1 - \alpha_t} \mathbf{m} & \text{if } \mathbf{x}_t = \mathbf{m}, \\ \mathbf{x}_0 & \text{if } \mathbf{x}_t \neq \mathbf{m}. \end{cases}$$

147 Since \mathbf{x}_0 is unknown during inference, we approximate the posterior using a learnable function
148 $f_\theta(\mathbf{x}_t)$ that predicts the original token from the corrupted input:
149

150
$$\hat{q}(\mathbf{x}_s|\mathbf{x}_t, \mathbf{x}_0) = p_\theta(\mathbf{x}_s|\mathbf{x}_t, f_\theta(\mathbf{x}_t)).$$

151 Here, a learnable function¹ (f_θ) approximates the ground-truth (\mathbf{x}_0); hence, it imitates the denoising
152 from step t to step 0. Substituting the approximation into the closed-form expression yields the
153 parametric backward transition:
154

155
$$p_\theta(\mathbf{x}_s|\mathbf{x}_t) = \frac{\alpha_s - \alpha_t}{1 - \alpha_t} f_\theta(\mathbf{x}_t) + \frac{1 - \alpha_s}{1 - \alpha_t} \mathbf{m}. \quad (1)$$

156 ¹While original denoising models use time conditioning ($f_\theta(\mathbf{x}_t, t)$), Ou et al. (2024) present a method
157 without time conditioning. We omit time conditioning in our theoretical formulation. However, we show
158 experimentally that SM improves MDLMs *with* (Section 4.1) and *without* time conditioning (Section 4.2).
159

162 **Reverse process in natural language processing** The input consists of sequences of L tokens:
 163 $\mathbf{x}_0^{1:L}$. Decoding begins from a fully masked sequence: $\mathbf{x}_T^{1:L} = \mathbf{m}, \dots, \mathbf{m}$. At each time step t ,
 164 the current sequence estimate is passed through a bidirectional model (e.g., a non-causal Trans-
 165 former (Vaswani et al., 2017; Peebles & Xie, 2023)), yielding token-wise probability distributions:
 166 $\mathbf{p}_{t-1}^{1:L} = g_\theta(\mathbf{x}_t^{1:L})$, where $\mathbf{p}_{t-1}^l \in \Delta^{|\mathcal{V}|-1}$ is the predicted probability mass vector on the $|\mathcal{V}|$ -
 167 dimensional simplex for token l . Each probability mass vector (\mathbf{p}_{t-1}^l) is discretized using a sampling
 168 strategy (e.g., nucleus or argmax), yielding $\tilde{\mathbf{x}}_{t-1}^{1:L}$. Describing the sampling function with $h(\cdot)$, we
 169 can write the reverse process of the entire model as the functional composition of the sampling and
 170 model forward pass: $f_\theta = h \circ g_\theta$.
 171

172 **Training objective** Given a linear schedule of α_s , the parameters (θ) are optimized by minimizing:
 173

$$174 \mathcal{L}(\theta) = -\mathbb{E}_{t \sim U(0,1), \mathbf{x}_0 \sim q_{\text{data}}(\cdot), \mathbf{x}_t \sim q(\cdot | \mathbf{x}_0)} \left[\frac{1}{t} \sum_{i=1}^L \mathbf{1}_{\mathbf{x}_t^i = \mathbf{m}} \log \left((\mathbf{x}_0^i)^\top g_\theta(\mathbf{x}_0^i | \mathbf{x}_t^{1:L}) \right) \right], \quad (2)$$

177 where $\mathbf{1}_{\mathbf{x}_t^i = \mathbf{m}}$ is the identity function. The loss $\mathcal{L}(\theta)$ is an upper bound on the negative log likelihood
 178 of the data distribution (Shi et al., 2024; Ou et al., 2024). $U(0, 1)$ is the uniform distribution.
 179

180 2.2 MDLMs IN PRACTICE

182 **Unmasking strategies** Equation 1 suggests that the model *randomly* decides—based on the noise
 183 schedule α_t —whether or not to replace a masked token with the predicted value $f_\theta(\mathbf{x}_t)$. However,
 184 many MDLMs use additional unmasking heuristics that improve the generation quality. One ap-
 185 proach is to unmask a fixed number of tokens per step, guided not only by the noise schedule but
 186 also by the model’s confidence. For example, at time t , Dream-7B (Ye et al., 2025) selects $n \approx L/T$
 187 tokens that have the lowest entropy values. Here, T is the integer number of diffusion steps. More
 188 recent methods introduce exploratory (remasking) and accelerated (aggressive unmasking) decoding
 189 stages (Wei et al., 2025; Wang et al., 2025). Rütte et al. (2025) introduce an interpolation between
 190 masked and uniform diffusion, which introduces remasking already during the training stage.
 191

192 **Conditional generation** Conditioning the generative process on a prompt ($\mathbf{c}^{1:L_c}$) is straightfor-
 193 ward. For decoding, the prompt is simply prefixed to the (partially) masked solution at each iteration,
 i.e., $\mathbf{p}_{t-1}^{1:L} | \mathbf{c}^{1:L_c} = g_\theta([\mathbf{c}^{1:L_c}, \mathbf{x}_t^{1:L}])$, where only the last L tokens are updated.
 194

195 3 SOFT-MASKED DIFFUSION LANGUAGE MODELS

197 As elaborated above, the iterative decoding in MDLMs makes a *binary decision*: selecting either the
 198 original mask or the token predicted by the denoising model (f_θ). This binary choice results in a loss
 199 of valuable contextual information for the masked tokens. To overcome this limitation, we propose
 200 soft-masking (SM). SM augments the mask with intermediate context from the previous denoising
 201 step, thereby preserving informative cues and providing a richer input for the next denoising step.
 202

203 3.1 SOFT-MASKING (SM)

205 We introduce SM, illustrated in Figure 2, which enhances the denoising process in MDLMs. As
 206 shown, the overall denoising process follows the standard framework of MDLMs. However, instead
 207 of discarding previous predictions during masking or remasking, SM gently retains information from
 208 the past predictions and incorporates them into subsequent decoding steps. This provides richer
 209 feedback to guide the next denoising step. To enable this, SM relaxes the binary constraint on the
 210 feedback tokens (\mathbf{x}_{t-1}) provided to the denoising model, allowing them to represent a *distribution of solutions*,
 i.e., $\mathbf{x}_{t-1}^l \in \Delta^{|\mathcal{V}|-1}$ instead of the one-hot $\mathbf{x}_{t-1}^l \in \{0, 1\}^{|\mathcal{V}|}$.
 211

212 **General formulation** The feedback is formally defined as:
 213

$$214 \mathbf{x}_{t-1}^l = \text{sm}(\hat{\mathbf{x}}_{t-1}^l, \mathbf{p}_{t-1}^l) = \begin{cases} (1 - \lambda(\mathbf{p}_{t-1}^l)) \cdot \mathbf{m} + \lambda(\mathbf{p}_{t-1}^l) \sum_{i \in \text{top-}k(\mathbf{p}_{t-1}^l)} \pi_i \cdot \mathbf{v}_i & \text{if } \hat{\mathbf{x}}_{t-1}^l = \mathbf{m}, \\ \hat{\mathbf{x}}_{t-1}^l & \text{if } \hat{\mathbf{x}}_{t-1}^l \neq \mathbf{m}, \end{cases}$$

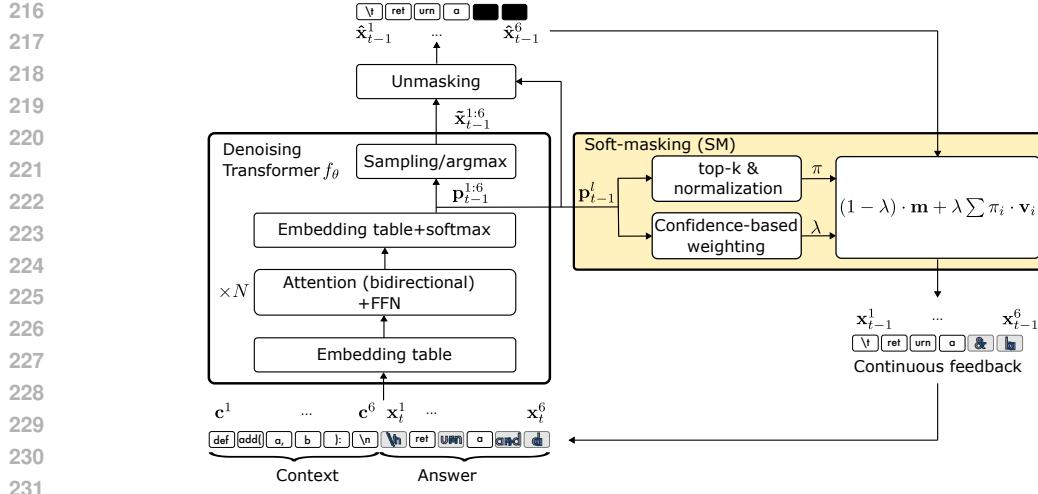


Figure 2: Iterative denoising in MDLMs using the proposed soft-masking (SM). Given a context, the aim is to predict the answer via iterative denoising of an initially fully masked response. Here, a bidirectional Transformer (f_θ) performs a single denoising step. This output is passed through an unmasking function that determines which tokens remain masked. Our proposed SM enriches the masked tokens by superposing them with the normalized top- k tokens at each position, weighted by a confidence parameter (λ). [See Appendix A for an algorithmic description.](#)

where \mathbf{p}_{t-1}^l is the probability mass vector and $\tilde{\mathbf{x}}_{t-1}^l$ is the discrete output from the denoising process. SM is applied only to masked tokens; previously predicted tokens remain unchanged. SM is implemented as a convex combination of the mask token and a weighted superposition of the top- k predicted tokens. Here, $\lambda \in [0, 1]$ controls the amount of feedback, $\mathbf{v}_i \in \{0, 1\}^{|\mathcal{V}|}$ is a one-hot vector representing token i , and π_i is the result of the probability mass vector being normalized over the top- k tokens: $\pi_i = [\mathbf{p}_{t-1}^l]_i / \sum_{j \in \text{top-}k(\mathbf{p}_{t-1}^l)} [\mathbf{p}_{t-1}^l]_j$, which ensures that $\sum_i \pi_i = 1$.

Confidence-based weighting In the following, we describe the dynamic weighting strategy for SM. Intuitively, a higher confidence should correspond to a greater weight on the model’s output, while a lower confidence should preserve more of the original mask token. To quantify confidence, we use the negative entropy of the probability mass vector \mathbf{p}_{t-1}^l , denoted as $-H(\mathbf{p}_{t-1}^l)$. To map this confidence score to a weight in $[0, \omega_s]$, we apply a scaled sigmoid function:

$$\lambda(\mathbf{p}_{t-1}) = \omega_s \cdot \sigma(\omega_a(-H(\mathbf{p}_{t-1}^l) - \omega_b)). \quad (3)$$

where $\sigma(\cdot)$ is the sigmoid function, and ω_a and ω_b control the steepness and offset, respectively. We control the amplitude of λ using a scaling factor $\omega_s \in [0, 1]$. Finally, we train the parameters during pretraining or finetuning.

3.2 LEARNING THE SM FEEDBACK

To teach the richer SM feedback to the model, we introduce a new training methodology that optimizes the SM parameters (ω) concurrently with the main backbone model’s parameters (θ). This method allows the model to dynamically learn the optimal weighting between the mask token and the predicted tokens for each position, while the backbone simultaneously adapts to the richer feedback. As illustrated in Algorithm 1, the training method is a *two-pass process*. Standard MDLMs rely on the analytical tractability of the marginal distribution $q(\mathbf{x}_t | \mathbf{x}_0)$ to enable efficient single-step sampling during training. However, the SM introduces a dynamic dependency on the model’s intermediate predictions, rendering the exact marginal distribution analytically intractable. Our two-pass approach serves as an approximation of this feedback-augmented marginal distribution $\tilde{q}(\mathbf{x}_t | \mathbf{x}_0)$. Specifically, we define the effective input state $\tilde{\mathbf{x}}_t = \text{sm}_\omega(\mathbf{x}_t, g_\theta(\mathbf{x}_t))$, where $\mathbf{x}_t \sim q(\cdot | \mathbf{x}_0)$, effectively maximizing the standard variational lower bound (Equation 2) using this proxy state.

270

Algorithm 1: Training with soft-masking (SM)

272

Input: Backbone g_θ , training corpus $q_{\text{data}}(\mathbf{x}_0)$, SM function with trainable parameters sm_ω , sampling bounds $0 \leq b_l < b_h \leq 1$, learning rates for backbone (η_{bb}) and SM (η_{sm}).

274

Output: Trained parameters for backbone (θ) and SM parameters (ω).

275

repeat

276

```

 $\mathbf{x}_0^{1:L} \sim q_{\text{data}}(\cdot);$  // Draw samples from data distribution
 $t \sim \text{U}(b_l, b_h);$  // Draw time step from bounded uniform distribution
 $\mathbf{x}_t^{1:L} \sim q(\cdot | \mathbf{x}_0^{1:L});$  // Corrupting samples
 $\tilde{\theta} \leftarrow \text{detach}(\theta);$  // Generate detached copy of backbone parameters
 $\tilde{\mathbf{p}}_{t-1}^{1:L} \leftarrow g_{\tilde{\theta}}(\mathbf{x}_t^{1:L});$  // First model pass without gradient
 $\mathbf{p}_{t-1}^{1:L} \leftarrow g_{\theta}(\text{sm}_{\omega}(\mathbf{x}_t^{1:L}, \tilde{\mathbf{p}}_{t-1}^{1:L}));$  // Second model pass with SM and gradient
 $\mathcal{L}(\theta, \omega) \leftarrow \frac{1}{t} \sum_{l=1}^L \mathbf{1}_{\mathbf{x}_t^l = \mathbf{m}} \log ((\mathbf{x}_0^l)^\top \mathbf{p}_{t-1}^l);$  // Compute loss
Update  $\theta$  and  $\omega$  based on loss  $\mathcal{L}$  with Adam optimizer using learning rates  $\eta_{\text{bb}}$  and  $\eta_{\text{sm}}$ ;
until end training;

```

100

287

288

First, we approximate the probability distribution of the previous denoising step by passing the corrupted data through the backbone without a gradient, yielding $\tilde{\mathbf{p}}_{t-1}^{1:L}$. This initial pass provides the necessary self-conditioning signal (the soft-masked representation) for the second pass, as practiced in (Chen et al., 2023). This distribution is then used to compute the soft-masked representation, which is passed through the backbone for a second time. The overall loss \mathcal{L} from this second pass is used to update the learnable parameters for both the backbone (θ) and the SM function (ω) using their respective learning rates, η_{bb} and η_{sm} . This approach can be highly parallelized with respect to the sequence length, unlike AR training with continuous CoT.

296

Arriola et al. (2024) showed that a narrower sampling interval for t reduces the gradient variance when optimizing \mathcal{L} with batched gradient descent. Hence, we sample from the interval $[b_l, b_h]$, $0 \leq b_l < b_h \leq 1$. Moreover, following the approach of Chen et al. (2023), we activate SM with probability $p_{\text{sm}} \in [0, 1]$. This prepares the model to cope with both soft-masked and standard inputs, which is particularly necessary at the beginning of the denoising process.

301

3.3 SM AS AN INTERPOLATION BETWEEN ABSORPTION AND UNIFORM DIFFUSION

303

This section provides a conceptual interpretation of the proposed SM mechanism. To this end, we consider two extreme values of the feedback-scaling parameter ($\lambda = 0$ and $\lambda = 1$) and simplify the feedback to a single value ($k = 1$). First, assuming $\lambda = 0$ recovers vanilla MDLM. The model can always revert to this behavior by setting the scaling factor $\omega_s = 0$. Second, $\lambda = 1$ feeds the previously predicted token (based on argmax) back to the denoising model:

309

$$\text{sm}(\hat{\mathbf{x}}_{t-1}^l, \mathbf{p}_{t-1}^l)_{\lambda=1, k=1} = \begin{cases} \mathbf{v}_{\text{argmax}(\mathbf{p}_i)} & \text{if } \hat{\mathbf{x}}_{t-1}^l = \mathbf{m}, \\ \hat{\mathbf{x}}_{t-1}^l & \text{if } \hat{\mathbf{x}}_{t-1}^l \neq \mathbf{m}. \end{cases}$$

312

A uniform DLM (Austin et al., 2021a) would receive the same feedback. However, the unmasking strategy remains active. Hence, this corner case can be interpreted as a masked DLM with uniform feedback for the masked states. This allows the model to explore different solutions through self-correction, enabled in the masked regions. Note SM’s forward corruption process ($\lambda = 1$) deviates from the uniform formulation: SM determines the distribution $q(\mathbf{x}_t | \mathbf{x}_0)$ with the denoising model (see lines 6 and 7 in Algorithm 1) rather than from a uniform categorical sampling.

319

Relaxing the scaling factor to take intermediate values $\lambda \in [0, 1]$ can then be seen as an interpolation between an MDLM and a mask-augmented uniform DLM. Importantly, this interpolation occurs in the spatial embedding space. Why might it be beneficial to retain a portion of the mask token besides attenuating low-confidence predictions? One reason is that many MDLMs are pretrained to predict masked tokens, and the presence of the mask likely still carries useful positional or structural information. This effect is particularly relevant for denoising models that do not use time conditioning.

324
 325 Table 1: Unconstrained generation after pretraining from scratch. We report MAUVE (\uparrow) and gen-
 326 erative perplexity (\downarrow) of $L = 1024$ generated tokens using MDLM (Sahoo et al., 2024) with binary
 327 masking or our SM. Evaluations are tabulated by varying NFE budgets². For unmasking, we use
 328 either the standard or the more recent ReMDM (Wang et al., 2025); the highest scores are bolded.
 329 *Gain* shows the performance improvement between the SM and the baseline MDLM. \dagger Results of
 330 evaluating the ground-truth data and equal-backbone AR model are taken from (Sahoo et al., 2024).
 331

Unmasking	Feedback	Gradient updates	Forward passes	MAUVE \uparrow				Generative perplexity \downarrow			
				1/8	1/4	1/2	1/1	1/8	1/4	1/2	1/1
Standard	Binary	1M	1M	0.017	0.025	0.036	0.034	60.02	54.95	52.36	50.46
	Our SM (iso-compute)	0.5M	1M	0.143	0.417	0.498	0.596	41.08	31.97	27.36	24.63
	<i>Gain</i>			+0.126	+0.392	+0.462	+0.562	-18.93	-22.98	-24.99	-25.83
	Our SM (iso-update)	1M	2M	0.155	0.383	0.535	0.602	39.61	30.74	26.12	23.53
	<i>Gain</i>			+0.138	+0.358	+0.499	+0.568	-20.41	-24.21	-26.23	-26.93
ReMDM	Binary	1M	1M	0.075	0.199	0.292	0.411	42.53	31.05	21.75	28.62
	Our SM (iso-compute)	0.5M	1M	0.316	0.667	0.559	0.766	29.90	18.08	11.40	17.29
	<i>Gain</i>			+0.241	+0.468	+0.267	+0.355	-12.63	-12.97	-10.35	-11.33
	Our SM (iso-update)	1M	2M	0.263	0.626	0.511	0.774	29.62	17.58	10.85	16.72
	<i>Gain</i>			+0.189	+0.427	+0.219	+0.363	-12.91	-13.48	-10.90	-11.90
AR ($T = 1024$) \dagger		0.5M	0.5M	0.760				12.1			
Data \dagger				1.0				14.8			

342 Table 2: MAUVE (\uparrow) of unconstrained generation after pretraining continuation. *Gain* shows the
 343 performance improvement between the SM and the binary MDLM with pretraining continuation.
 344

Unmasking	Feedback	Gradient updates	NFE budget			
			1/8	1/4	1/2	1/1
Standard	Binary	1M	0.017	0.025	0.036	0.034
	Binary	1M+100k	0.018 \pm 0.000	0.027 \pm 0.005	0.032 \pm 0.003	0.038 \pm 0.002
	Our SM (iso-compute)	1M+50k	0.054 \pm 0.009	0.129 \pm 0.029	0.200 \pm 0.038	0.259 \pm 0.024
	<i>Gain</i>		+0.036	+0.101	+0.168	+0.221
	Our SM (iso-update)	1M+100k	0.059 \pm 0.007	0.139 \pm 0.021	0.232 \pm 0.026	0.211 \pm 0.145
	<i>Gain</i>		+0.041	+0.112	+0.200	+0.173
ReMDM	Binary	1M	0.075	0.199	0.292	0.411
	Binary	1M+100k	0.052 \pm 0.005	0.180 \pm 0.030	0.315 \pm 0.032	0.421 \pm 0.021
	Our SM (iso-compute)	1M+50k	0.137 \pm 0.011	0.441 \pm 0.064	0.610 \pm 0.020	0.693 \pm 0.033
	<i>Gain</i>		+0.084	+0.262	+0.295	+0.272
	Our SM (iso-update)	1M+100k	0.146 \pm 0.014	0.432 \pm 0.035	0.617 \pm 0.020	0.692 \pm 0.034
	<i>Gain</i>		+0.094	+0.252	+0.302	+0.271

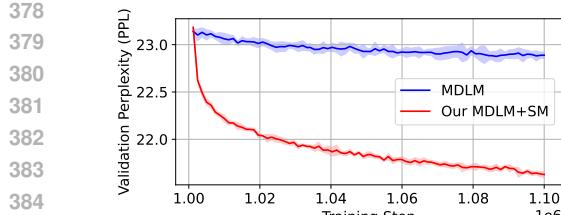
4 EXPERIMENTS

360 **General setup** We begin by evaluating SM on a small-scale language modeling benchmark, using
 361 a 169M-parameter MDLM (Sahoo et al., 2024) to demonstrate its benefits with both standard and
 362 improved unmasking strategies. We then apply SM to the large-scale Dream-7B (Ye et al., 2025) and
 363 Dream-Coder-7B (Xie et al., 2025) models, showing improvements on downstream coding tasks. In
 364 addition to training from scratch, we assess the efficiency of adapting existing models via continued
 365 pretraining (for small-scale models) or finetuning (for large-scale models). In the pretraining con-
 366 tinuation and finetuning setup, the baseline models with binary masking are trained with the same
 367 procedure for a fair comparison. Crucially, since our proposed training algorithm (Alg. 1) requires
 368 two model forward passes per iteration (versus one in the standard training), we evaluate SM under
 369 two distinct computational budgets: (1) **Iso-update**: We match the total number of gradient updates
 370 (N). This isolates learning efficiency but requires roughly twice the wall-clock time for SM. (2)
 371 **Iso-compute**: We match the total number of model forward passes. In this setting, SM is trained for
 372 $N/2$ number steps, ensuring the total computational cost remains equivalent to the baseline.

4.1 LANGUAGE MODELING

375 **Setup** We evaluate SM on language modeling using a 169M-parameter MDLM (Sahoo et al.,
 376 2024) trained on the OpenWebText (OWT) (Gokaslan & Cohen, 2019). The model utilizes a Dif-

377 ²The NFE budget (Appendix B.2) is the ratio between the diffusion steps and the max generation length.



(a) Validation perplexity on OWT.

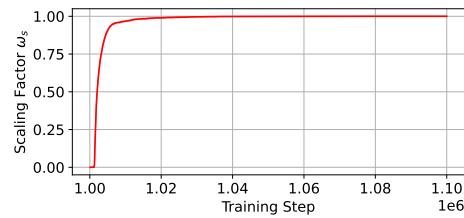
(b) SM's learned scaling factor (ω_s).

Figure 3: Continuing MDLM pretraining on OpenWebText. We show the average \pm standard deviation (shaded) across 5 seeds. SM is configured with $k = 3$. (a) Our SM yields better (lower) validation perplexity than binary masking. (b) The model learns to fully use SM by increasing its influence over the scaling factor ω_s .

fusion Transformer (DiT) backbone (Peebles & Xie, 2023), which integrates time-step conditioning into an encoder-only transformer. We investigate two training regimes for SM (with $k = 3$): (1) pretraining from scratch for up to 1M steps, and (2) efficient adaptation, where we apply continued pretraining to a pretrained binary MDLM for an additional 100k steps. For evaluation, we report perplexity on the OWT validation set (computed via the two-pass SM objective). As a second measure, we assess the unconstrained generation quality using both generative perplexity and the MAUVE score (Pillutla et al., 2021), the latter serving as a robust metric for diversity and quality. We vary the number of function evaluations (NFE) between 128 and 1024 (representing 1/8 to 1/1 of the compute budget). Importantly, both the baseline MDLM and our MDLM with SM require the same number of model passes. In addition to MDLM’s standard unmasking, we also evaluate the models with a recent remasking strategy (ReMDM; Wang et al. 2025). Appendix B.1 provides additional details on the experimental setup.

Results Table 1 shows that our SM model trained from scratch, both under the iso-compute and iso-update budgets, consistently improves the MAUVE score (by up to +0.568 points) and the generative perplexity (by up to -26.93 points) when using standard unmasking. Interestingly, the iso-compute SM model (with $N/2=0.5M$ pretraining steps) even slightly outperforms the iso-update model at certain lower NFE budgets (e.g., NFE 1/4). Thus, we observe that SM is particularly effective in compute-restricted training regimes. Moreover, SM can further benefit from advanced remasking strategies, surpassing ReMDM with the binary MDLM (by up to +0.468 MAUVE points), and even outperforming the AR MAUVE score (0.760) at the highest compute budget (achieving 0.774). Table 5 in Appendix C.2 also shows that SM maintains the entropy. Additionally, our MDLM with SM achieves superior OWT validation perplexities (21.47 in iso-update and 22.36 in iso-compute), as shown in Appendix C.1.

Next, we demonstrate that SM can be efficiently integrated into a pre-existing binary MDLM via continued pretraining for up to 100k steps. As shown in Figure 3a, our SM decreases the validation perplexity on OWT (from 23.14 to 21.63). Binary MDLM (without SM) also improves the perplexity, but by a much smaller margin (from 23.14 to 22.88). Figure 3b shows that MDLM learns to make use of the richer SM feedback by increasing the scale from initially near-zero to close to 1. The gain in validation perplexity transfers to unconstrained generation (Table 2) in pretraining continuation too, where SM consistently improves the MAUVE score across all NFE budgets and unmasking strategies. Finally, all observations regarding the MAUVE score transfer to generative perplexities and entropy, as shown in Appendix C.2.

Ablations We evaluate our SM design choices on language modeling in Appendix C.3. We find that using SM 80% of the time and $k = 3$ superposition yields the best validation perplexities. Moreover, an alternative SM feedback with softmax (with a trainable temperature) instead of top-k achieves competitive validation perplexities, at the cost of higher compute and memory demands. Even though the softmax allows for propagating the gradients to the first model pass, making the update based on both model passes does not improve the perplexities while increasing the computational cost. Finally, Appendix C.5 shows that the overhead in inference by SM is small (12%).

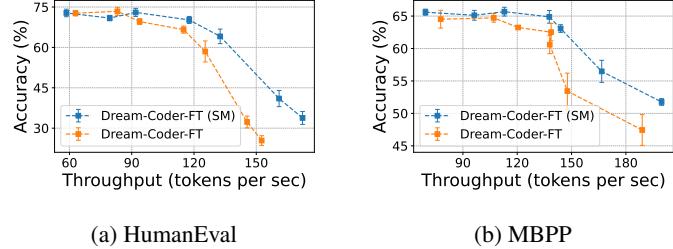
432
 433 Table 3: Accuracy (%) on coding tasks. Evaluations are tabulated by varying NFE budgets. We fine-
 434 tune the models with 5 seeds and report the mean accuracy (\pm standard deviation). SM is configured
 435 with $k=1$. *Gain* shows the comparison between the SM model and the finetuned baseline. The best
 436 performing model is marked in bold. The learned SM parameters are given in Appendix C.10.

NFE budget	Feedback	FT steps	Dream-Coder-7B (instruct)				Dream-7B (instruct)			
			HumanEval	HumanEval+	MBPP	MBPP+	HumanEval	HumanEval+	MBPP	MBPP+
1/4	Binary	-	25.0	25.0	27.4	29.4	18.9	17.1	26.6	30.2
	Binary	33.5k	28.5(± 1.3)	27.7(± 1.8)	25.9(± 1.5)	24.6(± 1.7)	19.0(± 1.7)	15.9(± 2.8)	27.0(± 1.6)	29.2(± 1.5)
	Our SM <i>Gain</i>	33.5k	29.5 (± 1.8)	28.2 (± 1.7)	33.2 (± 1.8)	29.4 (± 1.9)	24.8 (± 1.8)	23.0 (± 1.3)	32.3 (± 1.3)	36.7 (± 1.0)
			<i>+1.0</i>	<i>+0.5</i>	<i>+7.3</i>	<i>+4.8</i>	<i>+5.8</i>	<i>+7.1</i>	<i>+5.3</i>	<i>+7.5</i>
1/2	Binary	-	54.9	50.6	51.6	51.3	31.1	29.3	42.8	45.8
	Binary	33.5k	53.8(± 1.4)	49.3(± 1.6)	49.8(± 0.9)	53.2 (± 1.5)	33.0(± 3.0)	29.5(± 3.4)	43.1(± 0.4)	39.6(± 2.7)
	Our SM <i>Gain</i>	33.5k	57.2 (± 2.7)	52.6 (± 2.0)	56.2 (± 0.7)	56.4 (± 1.4)	38.3 (± 1.9)	33.8 (± 2.6)	48.4 (± 1.2)	54.7 (± 1.8)
			<i>+3.4</i>	<i>+3.3</i>	<i>+6.4</i>	<i>+3.2</i>	<i>+5.3</i>	<i>+4.3</i>	<i>+5.3</i>	<i>+15.1</i>
1/1	Binary	-	75.0	69.5	65.8	70.4	57.9	53.0	57.8	63.5
	Binary	33.5k	75.7(± 1.7)	68.9(± 2.0)	65.6(± 0.8)	68.1 (± 1.1)	59.5 (± 1.8)	53.0 (± 1.0)	58.3 (± 0.1)	62.8 (± 0.7)
	Our SM <i>Gain</i>	33.5k	76.2 (± 1.4)	70.4 (± 1.3)	67.0 (± 0.7)	69.6 (± 0.9)	57.8(± 1.9)	50.0(± 0.7)	56.4(± 1.2)	61.9(± 0.8)
			<i>+0.5</i>	<i>+1.5</i>	<i>+1.4</i>	<i>+1.5</i>	<i>-1.7</i>	<i>-3.0</i>	<i>-1.9</i>	<i>-0.9</i>

449 4.2 CODE GENERATION

450
 451 **Setup** We integrate SM into the state-of-the-art Dream-7B (Ye et al., 2025) and Dream-Coder-
 452 7B (Xie et al., 2025) instruction-tuned models. For finetuning, we aim to use the same SFT datasets
 453 as the original models. Dream-7B uses Tulu 3 (Lambert et al., 2025) and SmolLM2 (Allal et al.,
 454 2025); Dream-Coder-7B uses Ling-Coder-SFT (Codefuse & Team, 2025). We deploy parameter-
 455 efficient finetuning using weight-decomposed low-rank adaptation (DoRA; Liu et al. 2024) on 270k
 456 curated training samples with a batchsize of 8, yielding 33.5k update steps. We test the models on
 457 two coding tasks, HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021b), as well as on
 458 their plus version (Liu et al., 2023). **We report results in iso-update training, and show similar gains**
 459 **in iso-compute in Appendix C.7.** See Appendix B.2 for more details on the experimental setup.

460
 461 **Results** The mean results are
 462 given in Table 3, tabulated
 463 based on the NFE budget of
 464 the decoding. First, we see
 465 that finetuned models (without
 466 SM) can maintain the per-
 467 formance of the original models,
 468 validating our finetuning pro-
 469 cedure. Second, the bene-
 470 fits observed in small-scale lan-
 471 guage modeling transfer to per-
 472 formance gains in large-scale
 473 models: the table shows a per-
 474 formance boost on nearly all tasks (up to 11.3%). The gains are particularly prominent at lower NFE
 475 budgets. Furthermore, we show that SM complements other efficiency-enhancement mechanisms.
 476 Figure 4 reports the mean performance of the finetuned Dream-Coder-7B models, with and with-
 477 out SM, when combined with Fast-dLLM’s blockwise caching and confidence-aware decoding (Wu
 478 et al., 2025a). The performance is plotted as a function of the token throughput, which is indirectly
 479 determined from the block length of the blockwise decoding—with longer blocks correlating with
 higher throughputs. The benefits of SM become more promising at higher throughputs.



480 Figure 4: Integrating SM into Fast-dLLM. We plot Dream-Coder-
 481 7B performance vs. throughput with both binary feedback and our
 482 SM. SM again excels in high-throughput settings.

483 **Ablations** To validate our design choices, we perform extensive ablation studies on the Dream
 484 models. In Appendix C.6, we evaluate SM on math tasks and notice similar performance gains. In
 485 Appendix C.8, we vary the number of top- k contributions. We find that $k = 1$ is optimal for coding
 486 tasks and $k = 3$ yields the best overall results. We also tested a trainable k selection, by replacing
 487 the top- k filtering with a softmax that uses a trainable temperature. However, this did not improve
 488 the performance. Finally, Appendix C.9 applies SM only in certain periods during denoising. We
 489 find that SM is particularly beneficial in the first 20% of decoding steps.

486 **5 RELATED WORKS**

488 **Continuous feedback in AR** COCONUT (Hao et al., 2024) feeds continuous token predictions
 489 back into the model to enhance reasoning capabilities. This requires training from scratch—an in-
 490 herently sequential process due to its reliance on previous continuous token outputs. To reduce
 491 computational demands, many have proposed summarizing sequences of tokens into higher-level
 492 continuous representations or concepts (LCM Team et al., 2024; Tack et al., 2025; Geiping et al.,
 493 2025). Approximate training methods such as Jacobi iterations (Wu et al., 2025b) further mitigate
 494 sequential training bottlenecks by iteratively refining AR thought tokens. More recent methods
 495 feed weighted superpositions of token predictions back into the model without additional training
 496 (Zhuang et al., 2025; Zhang et al., 2025), enabling lightweight and training-free continuous
 497 feedback. While these approaches can improve task performance, AR models often suffer from un-
 498 reliable halting behavior, necessitating entropy-based heuristics to terminate decoding. In contrast,
 499 our SM introduces continuous feedback directly into MDLMs, preserving parallelism during train-
 500 ing and inference, incurring only constant overhead during training, and avoiding halting heuristics.

501 **Discrete vs. continuous representations in diffusion modeling** Continuous DLMs maintain a
 502 continuous latent space throughout the diffusion process and perform a discretization step at the
 503 final readout (Li et al., 2022; Dieleman et al., 2022; Gong et al., 2022; Strudel et al., 2022; Gong
 504 et al., 2023; Gulrajani & Hashimoto, 2023); however, they generally achieve lower performance and
 505 do not allow for adaptation from pretrained AR models. Several works explore hybrid represen-
 506 tations. HART (Tang et al., 2025) augments a discrete AR-based image predictor with a residual
 507 continuous diffusion model to correct quantization errors, but remains dependent on unidirectional
 508 AR generation, limiting self-correction. **Self-conditioning** (Chen et al., 2023) is a closely related
 509 approach that uses a similar two-pass training methodology in training. However, their use of con-
 510 catenation increases the model complexity due to the resultant higher input dimensionality, a critical
 511 architectural difference from our method. Furthermore, it does not inherently offer a mechanism
 512 for a smooth adaptation. Sahoo et al. (2025) derive discrete uniform-state diffusion from contin-
 513 uous Gaussian models, enabling faster training and generation, though scalability and downstream
 514 performance remain unproven. Chao et al. (2025) propose fine-grained token representations using
 515 l -dimensional vectors with base- b values, allowing partial unmasking during denoising, which is
 516 most effective with many decoding steps ($T \gg L$). In contrast, our SM approach improves decod-
 517 ing performance while maintaining constant input dimensionality. By superposing the [MASK] token
 518 and top- k predictions, SM introduces continuous feedback without increasing complexity.

519 **Efficiency improvements of MDLMs** dLLM-Cache (Liu et al., 2025) introduces caching to
 520 MDLMs, maintaining an almost static cache for prompts and a dynamic cache for the responses.
 521 This yields a speedup of up to $9\times$ for long prompts at iso-accuracy. Semi-autoregressive generation
 522 via block diffusion (Arriola et al., 2024; Nie et al., 2025), optionally combined with caching (Wu
 523 et al., 2025a), offers speedups but compromises full bidirectionality. NFE efficiency and generation
 524 quality have also been improved through dynamic unmasking strategies (Jin et al., 2025; Wei et al.,
 525 2025; Wang et al., 2025), which adapt the masking schedule during decoding. These techniques are
 526 complementary to our SM approach and can be readily integrated, as we have already demonstrated
 527 by integrating ReMDM (Wang et al., 2025) and Fast-dLLM (Wu et al., 2025a) with SM.

528 **6 CONCLUSION**

530 We introduced soft-masking (SM), a lightweight mechanism for incorporating continuous feedback
 531 into masked diffusion language models (MDLMs). By blending the [MASK] token with a convex
 532 combination of top- k predictions during iterative decoding, SM enables more expressive and flexi-
 533 ble updates without increasing model complexity. Applied to both small and large-scale MDLMs,
 534 SM consistently improves performance across language modeling and coding tasks. These results
 535 demonstrate that continuous feedback can enhance the capabilities of discrete diffusion models.

536 **Limitations and future works** Even though the training with SM is parallelizable in the sequence
 537 length, it requires an additional forward pass, which increases the complexity. We see future work
 538 in incorporating reinforcement learning-based methods (Black et al., 2023; Zhao et al., 2025; Zhu
 539 et al., 2025a) to leverage the richer feedback.

540 ETHICS STATEMENT
541542 This work does not involve human subjects, personally identifiable information, or sensitive data.
543 All experiments were conducted using publicly available models and datasets. The proposed method
544 is intended for research in code generation and was evaluated in controlled settings. Our focus on
545 improving model performance in low-compute budget environments was a central consideration to
546 mitigate environmental impact. The authors declare no known conflicts of interest.
547548 REPRODUCIBILITY STATEMENT
549550 This paper describes the proposed SM method, including the training Algorithm 1 in Section 3.
551 The setup used for training and evaluating our model on language modeling tasks is described in
552 Appendix B.1. The setup used for training and evaluating the Dream models for code generation
553 is available in Appendix B.2. The code is provided in the supplementary materials, along with the
554 required experimental environments. Moreover, the provided README.md gives a step-by-step
555 tutorial of how to apply soft-masking to the Dream models and reproduce all results in the paper.
556557 ACKNOWLEDGMENTS
558559 We thank Ronan Tanios for his contributions to the experimental evaluation. Moreover, we are
560 grateful to Abu Sebastian for the managerial support.
561562 REFERENCES
563

564 Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo,
565 Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav,
566 Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
567 Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
568 Thomas Wolf. SmoLM2: When smol goes big – data-centric training of a small language model.
569 *arXiv preprint arXiv:2502.02737*, 2025. URL <https://arxiv.org/abs/2502.02737>.

570 Marianne Arriola, Aaron Gokaslan, Justin T. Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
571 ham Sekhar Sahoo, and Volodymyr Kuleshov. Block Diffusion: Interpolating Between Autore-
572 gressive and Diffusion Language Models. In *The Thirteenth International Conference on Learn-
573 ing Representations (ICLR)*, October 2024. URL <https://openreview.net/forum?id=tyEyYT267x>.

574 Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
575 Denoising Diffusion Models in Discrete State-Spaces. In *Advances in Neural Information Pro-
576 cessing Systems (NeurIPS)*, volume 35, November 2021a. URL <https://openreview.net/forum?id=h7-XixPCAL>.

577 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
578 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
579 language models. *arXiv preprint arXiv:2108.07732*, 2021b. URL <https://arxiv.org/abs/2108.07732>.

580 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training Diffusion
581 Models with Reinforcement Learning. In *The Twelfth International Conference on Learning
582 Representations (ICLR)*, October 2023. URL <https://openreview.net/forum?id=YCWjhGrJFD>.

583 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
584 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
585 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
586 Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
587 Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
588 and Dario Amodei. Language Models are Few-Shot Learners. In *Advances in Neural Information*

594 *Processing Systems (NeurIPS)*, volume 33, 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfc4967418bfb8ac142f64a-Paper.pdf.

595

596

597 Andrew Campbell, Joe Benton, and Valentin De Bortoli. A Continuous Time Framework for Discrete Denoising Models. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 35, 2022.

598

599

600

601 Chen-Hao Chao, Wei-Fang Sun, Hanwen Liang, Chun-Yi Lee, and Rahul G. Krishnan. Beyond Masked and Unmasked: Discrete Diffusion Models via Partial Masking. *arXiv preprint arXiv:2505.18495*, May 2025. doi: 10.48550/arXiv.2505.18495. URL <http://arxiv.org/abs/2505.18495>.

602

603

604

605 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebbgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating Large Language Models Trained on Code. *arXiv preprint arXiv:2107.03374*, July 2021. doi: 10.48550/arXiv.2107.03374. URL <http://arxiv.org/abs/2107.03374>.

606

607

608

609

610

611

612

613

614

615

616

617 Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog Bits: Generating Discrete Data using Diffusion Models with Self-Conditioning. In *The Eleventh International Conference on Learning Representations (ICLR)*, 2023. URL <https://openreview.net/forum?id=3itjR9QxFw>.

618

619

620

621 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training Verifiers to Solve Math Word Problems. *arXiv preprint arXiv:2110.14168*, November 2021. doi: 10.48550/arXiv.2110.14168. URL <http://arxiv.org/abs/2110.14168>.

622

623

624

625

626 Codefuse and Ling Team. Every sample matters: Leveraging mixture-of-experts and high-quality data for efficient and accurate code LLM. *arXiv preprint arXiv:2503.17793*, 2025. URL <https://arxiv.org/abs/2503.17793>.

627

628

629

630 DeepMind. Gemini Diffusion, 2025. URL <https://deepmind.google/models/gemini-diffusion/>.

631

632 Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H. Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data. *arXiv preprint arXiv:2211.15089*, December 2022. doi: 10.48550/arXiv.2211.15089. URL <http://arxiv.org/abs/2211.15089>.

633

634

635

636

637 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach. In *ES-FoMo III: 3rd Workshop on Efficient Systems for Foundation Models*, 2025. URL <https://openreview.net/forum?id=D6o6Bwtq7h>.

638

639

640

641

642 Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. <http://Skylion007.github.io/OpenWebTextCorpus>, 2019.

643

644

645 Shanshan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. DiffuSeq: Sequence to Sequence Text Generation with Diffusion Models. In *The Eleventh International Conference on Learning Representations (ICLR)*, September 2022. URL https://openreview.net/forum?id=jQj_rLVXs_j.

646

647

648 Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. DiffuSeq-v2: Bridging
 649 Discrete and Continuous Text Spaces for Accelerated Seq2Seq Diffusion Models. In *Findings of*
 650 *the Association for Computational Linguistics: EMNLP 2023*, December 2023. doi: 10.18653/v
 651 1/2023.findings-emnlp.660. URL <https://aclanthology.org/2023.findings-emnlp.660/>.

653 Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
 654 Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling Diffusion Language
 655 Models via Adaptation from Autoregressive Models. In *The Thirteenth International Conference*
 656 *on Learning Representations (ICLR)*, May 2025a. URL <https://openreview.net/forum?id=j1tSLYKwg8>.

658 Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
 659 Yizhe Zhang. DiffuCoder: Understanding and Improving Masked Diffusion Models for Code
 660 Generation. *arXiv preprint arXiv:2506.20639*, June 2025b. doi: 10.48550/arXiv.2506.20639.
 661 URL <http://arxiv.org/abs/2506.20639>.

663 Ishaan Gulrajani and Tatsunori Hashimoto. Likelihood-Based Diffusion Language Models. In *Ad-*
 664 *vances in Neural Information Processing Systems (NeurIPS)*, volume 37, November 2023. URL
 665 <https://openreview.net/forum?id=e2MCL6hObn¬eId=ueUWS1aqxE>.

666 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
 667 Zhang, Shirong Ma, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
 668 Zhihong Shao, Zhuoshu Li, Ziyi Gao, et al. DeepSeek-R1 incentivizes reasoning in LLMs through
 669 reinforcement learning. *Nature*, 645(8081):633–638, September 2025. ISSN 1476-4687. doi:
 670 10.1038/s41586-025-09422-z. URL <https://doi.org/10.1038/s41586-025-09422-z>.

672 Shibo Hao, Sainbayar Sukhbaatar, Dijia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
 673 Tian. Training Large Language Models to Reason in a Continuous Latent Space. *arXiv preprint*
 674 *arXiv:2412.06769*, December 2024. doi: 10.48550/arXiv.2412.06769. URL <http://arxiv.org/abs/2412.06769>.

676 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In *Advances*
 677 *in Neural Information Processing Systems (NeurIPS)*, volume 34, 2020. URL <https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf>.

681 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
 682 Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
 683 Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xu-
 684 ancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-Coder Technical Report. *arXiv*
 685 *preprint arXiv:2409.12186*, November 2024. doi: 10.48550/arXiv.2409.12186. URL
 686 <http://arxiv.org/abs/2409.12186>.

687 Labs Inception, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
 688 Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, Aditya Grover, and
 689 Volodymyr Kuleshov. Mercury: Ultra-Fast Language Models Based on Diffusion. *arXiv preprint*
 690 *arXiv:2506.17298*, 2025. doi: 10.48550/arXiv.2506.17298. URL <http://arxiv.org/abs/2506.17298>.

693 Xiangqi Jin, Yuxuan Wang, Yifeng Gao, Zichen Wen, Biqing Qi, Dongrui Liu, and Linfeng
 694 Zhang. Thinking Inside the Mask: In-Place Prompting in Diffusion LLMs. *arXiv preprint*
 695 *arXiv:2508.10736*, August 2025. doi: 10.48550/arXiv.2508.10736. URL <http://arxiv.org/abs/2508.10736>.

697 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 698 man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik,
 699 Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm,
 700 Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
 701 Pushing frontiers in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2025.
 URL <https://arxiv.org/abs/2411.15124>.

702 LCM Team, Loïc Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Be-
 703 len Alastrauey, Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R. Costa-jussà,
 704 David Dale, Hady Elsahar, Kevin Heffernan, João Maria Janeiro, Tuan Tran, Christophe Rop-
 705 ers, Eduardo Sánchez, Robin San Roman, Alexandre Mourachko, Safiyyah Saleem, and Holger
 706 Schwenk. Large Concept Models: Language Modeling in a Sentence Representation Space.
 707 *arXiv preprint arXiv:2412.08821*, December 2024. doi: 10.48550/arXiv.2412.08821. URL
 708 <http://arxiv.org/abs/2412.08821>.

709 Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
 710 LM Improves Controllable Text Generation. In *Advances in Neural Information Processing Sys-
 711 tems (NeurIPS)*, volume 36, October 2022. URL <https://openreview.net/forum?id=3s9IrEsjLyk>.

712 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 713 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth
 714 International Conference on Learning Representations (ICLR)*, 2024. URL [https://openre-
 716 view.net/forum?id=v8L0pN6EOi](https://openre-

 715 view.net/forum?id=v8L0pN6EOi).

717 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
 718 chatGPT really correct? rigorous evaluation of large language models for code generation. In
 719 *Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS)*, 2023. URL
 720 <https://openreview.net/forum?id=1qvx610Cu7>.

721 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 722 Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. *arXiv
 723 preprint arXiv:2402.09353*, 2024. URL <https://arxiv.org/abs/2402.09353>.

724 Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang,
 725 and Linfeng Zhang. dLLM-Cache: Accelerating Diffusion Large Language Models with Adaptive
 726 Caching. *arXiv preprint arXiv:2506.06295*, May 2025. doi: 10.48550/arXiv.2506.06295. URL
 727 <http://arxiv.org/abs/2506.06295>.

728 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 729 of the data distribution. In *Proceedings of the 41st International Conference on Machine Learning
 730 (ICML)*, volume 235, July 2024. URL [https://openreview.net/forum?id=CNicRI
 732 VIPA](https://openreview.net/forum?id=CNicRI

 731 VIPA).

733 Jinjie Ni. Diffusion Language Models are Super Data Learners, 2025. URL [https://jinjie
 736 ni.notion.site/Diffusion-Language-Models-are-Super-Data-Learner
 737 s-239d8f03a866800ab196e49928c019ac](https://jinjie

 734 ni.notion.site/Diffusion-Language-Models-are-Super-Data-Learner

 735 s-239d8f03a866800ab196e49928c019ac). Notion Blog.

738 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
 739 Ji-Rong Wen, and Chongxuan Li. Large Language Diffusion Models. In *ICLR 2025 Workshop
 740 on Deep Generative Model in Machine Learning: Theory, Principle and Efficacy*, February 2025.
 741 doi: 10.48550/arXiv.2502.09992. URL [https://openreview.net/forum?id=wz161t
 743 IUj6](https://openreview.net/forum?id=wz161t

 742 IUj6).

743 OpenAI. Learning to reason with LLMs, September 2024. URL [https://openai.com/index/learning-to-reason-
 745 with-langs/](https://openai.com/index

 744 /learning-to-reason-with-langs/).

746 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
 747 Your Absorbing Discrete Diffusion Secretly Models the Conditional Distributions of Clean Data.
 748 October 2024. URL <https://openreview.net/forum?id=sMyXP8Tnm>.

749 William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. pp. 4195–4205,
 750 2023. URL [https://openaccess.thecvf.com/content/ICCV2023/html/Peeb
 753 les_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.
 754 html](https://openaccess.thecvf.com/content/ICCV2023/html/Peeb

 751 les_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.

 752 html).

755 Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
 756 and Zaid Harchaoui. MAUVE: Measuring the gap between neural text and human text using

756 divergence frontiers. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
 757 *Advances in Neural Information Processing Systems (NeurIPS)*, 2021. URL [https://open](https://openreview.net/forum?id=Tqx7nJp7PR)
 758 [review.net/forum?id=Tqx7nJp7PR](https://openreview.net/forum?id=Tqx7nJp7PR).

759

760 Mihir Prabhudesai, Mengning Wu, Amir Zadeh, Katerina Fragkiadaki, and Deepak Pathak. Diffu-
 761 sion Beats Autoregressive in Data-Constrained Settings. *arXiv preprint arXiv:2507.15857*, Au-
 762 gust 2025. doi: 10.48550/arXiv.2507.15857. URL <http://arxiv.org/abs/2507.15857>.

763

764 Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 765 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 766 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 767 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 768 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 769 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report.
 770 *arXiv preprint arXiv:2412.15115*, January 2025. doi: 10.48550/arXiv.2412.15115. URL <http://arxiv.org/abs/2412.15115>.

771

772 Qwen Team. QwQ: Reflect Deeply on the Boundaries of the Unknown, November 2024.
 773 URL <https://qwenlm.github.io/blog/qwq-32b-preview/>.
 774 <https://qwenlm.github.io/blog/qwq-32b-preview/>.

775

776 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 777 models are unsupervised multitask learners, 2019. URL <https://storage.prod.resea>
 778 [rchhub.com/uploads/papers/2020/06/01/language-models.pdf](https://storage.prod.resea).

779

780 Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas
 781 Hofmann. Generalized Interpolating Discrete Diffusion. *arXiv preprint arXiv:2503.04482*, June
 782 2025. doi: 10.48550/arXiv.2503.04482. URL <http://arxiv.org/abs/2503.04482>.

783

784 Subham Sekhar Sahoo, Marianne Arriola, and Yair Schiff. Simple and Effective Masked Diffusion
 785 Language Models. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 38,
 786 2024. URL <https://openreview.net/forum?id=L4uaAR4ArM>.

787

788 Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin Chiu, and
 789 Volodymyr Kuleshov. The Diffusion Duality. *arXiv preprint arXiv:2506.10892*, June 2025. doi:
 10.48550/arXiv.2506.10892. URL <http://arxiv.org/abs/2506.10892>.

790

791 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and General-
 792 ized Masked Diffusion for Discrete Data. In *Advances in Neural Information Processing Systems
 793 (NeurIPS)*, 2024. URL <https://openreview.net/forum?id=xcqSOfHt4g>.

794

795 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsuper-
 796 vised Learning using Nonequilibrium Thermodynamics. In *Proceedings of the 32nd Inter-
 797 national Conference on Machine Learning (ICML)*, volume 32, June 2015. URL <https://proceedings.mlr.press/v37/sohl-dickstein15.html>. ISSN: 1938-7228.

798

799 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
 800 Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
 801 *International Conference on Learning Representations (ICLR)*, October 2020. URL <https://openreview.net/forum?id=PxTIG12RRHS>.

802

803 Robin Strudel, Corentin Tallec, Florent Altché, Yilun Du, Yaroslav Ganin, Arthur Mensch, Will
 804 Grathwohl, Nikolay Savinov, Sander Dieleman, Laurent Sifre, and Rémi Leblond. Self-
 805 conditioned Embedding Diffusion for Text Generation. *arXiv preprint arXiv:211.04236*, Novem-
 806 ber 2022. doi: 10.48550/arXiv.2211.04236. URL <http://arxiv.org/abs/2211.04236>.

807

808 Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao,
 809 Yuandong Tian, Jason Weston, and Xian Li. LLM Pretraining with Continuous Concepts.
 810 *arXiv preprint arXiv:2502.08524*, February 2025. doi: 10.48550/arXiv.2502.08524. URL
<http://arxiv.org/abs/2502.08524>.

810 Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang,
 811 Han Cai, Yao Lu, and Song Han. HART: Efficient Visual Generation with Hybrid Autoregressive
 812 Transformer. In *The Thirteenth International Conference on Learning Representations (ICLR)*,
 813 2025. URL <https://openreview.net/forum?id=q5s0v4xQe4>.

814 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 815 Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. In *Advances in Neural In-*
 816 *formation Processing Systems (NeurIPS)*, volume 30, 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

817 Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking Discrete
 818 Diffusion Models with Inference-Time Scaling. *arXiv preprint arXiv:2503.00307*, May 2025. doi:
 819 10.48550/arXiv.2503.00307. URL <http://arxiv.org/abs/2503.00307>.

820 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 821 Quoc V. Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language
 822 Models. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 36, October
 823 2022. URL https://openreview.net/forum?id=_VjQ1MeSB_J.

824 Qingyan Wei, Yaojie Zhang, Zhiyuan Liu, Dongrui Liu, and Linfeng Zhang. Accelerating Diffusion
 825 Large Language Models with SlowFast Sampling: The Three Golden Principles. *arXiv preprint*
 826 *arXiv:2506.10848*, June 2025. doi: 10.48550/arXiv.2506.10848. URL <http://arxiv.org/abs/2506.10848>.

827 Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
 828 Han, and Enze Xie. Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV
 829 Cache and Parallel Decoding. *arXiv preprint arXiv:2505.22618*, July 2025a. doi: 10.48550/arX
 830 iv.2505.22618. URL <http://arxiv.org/abs/2505.22618>.

831 Haoyi Wu, Zhihao Teng, and Kewei Tu. Parallel Continuous Chain-of-Thought with Jacobi Iteration,
 832 June 2025b. URL <http://arxiv.org/abs/2506.18582>. arXiv:2506.18582 [cs].

833 Zhihui Xie, Jiacheng Ye, Lin Zheng, Jiahui Gao, Jingwei Dong, Zirui Wu, Xueliang Zhao,
 834 Shansan Gong, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream-Coder 7B: An Open Dif-
 835 fusion Language Model for Code. *arXiv preprint arXiv:2509.01142*, September 2025. doi:
 836 10.48550/arXiv.2509.01142. URL <http://arxiv.org/abs/2509.01142>.

837 Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Jiahui Gao, Han Shi, Chuan Wu, Xin Jiang,
 838 Zhenguo Li, Wei Bi, and Lingpeng Kong. Diffusion of Thought: Chain-of-Thought Reasoning in
 839 Diffusion Language Models. *Advances in Neural Information Processing Systems (NeurIPS)*, 37,
 840 December 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/hash/be30024e7fa2c29cac7a6dafcbb8571f-Abstract-Conference.html.

841 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 842 Kong. Dream 7B: Diffusion Large Language Models. *arXiv preprint arXiv:2508.15487*, August
 843 2025. doi: 10.48550/arXiv.2508.15487. URL <http://arxiv.org/abs/2508.15487>.

844 Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
 845 and Xin Eric Wang. Soft Thinking: Unlocking the Reasoning Potential of LLMs in Continuous
 846 Concept Space. *arXiv preprint arXiv:2505.15778*, May 2025. doi: 10.48550/arXiv.2505.15778.
 847 URL <http://arxiv.org/abs/2505.15778>.

848 Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling Reasoning in Dif-
 849 fusion Large Language Models via Reinforcement Learning. *arXiv preprint arXiv:2504.12216*,
 850 June 2025. doi: 10.48550/arXiv.2504.12216. URL <http://arxiv.org/abs/2504.12216>.

851 Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
 852 Chen, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. LLaDA 1.5: Variance-Reduced Prefer-
 853 ence Optimization for Large Language Diffusion Models. *arXiv preprint arXiv:2505.19223*, May
 854 2025a. doi: 10.48550/arXiv.2505.19223. URL <http://arxiv.org/abs/2505.19223>.

864 Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Reasoning
865 by Superposition: A Theoretical Perspective on Chain of Continuous Thought. *arXiv preprint*
866 *arXiv:2505.12514*, May 2025b. doi: 10.48550/arXiv.2505.12514. URL <http://arxiv.org/abs/2505.12514>.
867

868 Yufan Zhuang, Liyuan Liu, Chandan Singh, Jingbo Shang, and Jianfeng Gao. Text Generation
869 Beyond Discrete Token Sampling. *arXiv preprint arXiv:2505.14827*, May 2025. doi: 10.48550/a
870 *rXiv.2505.14827*. URL <http://arxiv.org/abs/2505.14827>.
871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918	CONTENTS	
919		
920		
921	1 Introduction	1
922		
923	2 Background: Masked Diffusion Language Models	3
924	2.1 MDLM Modeling	3
925	2.2 MDLMs in Practice	4
926		
927		
928	3 Soft-Masked Diffusion Language Models	4
929	3.1 Soft-Masking (SM)	4
930	3.2 Learning the SM Feedback	5
931	3.3 SM as an Interpolation Between Absorption and Uniform Diffusion	6
932		
933		
934	4 Experiments	7
935	4.1 Language Modeling	7
936	4.2 Code Generation	9
937		
938		
939	5 Related Works	10
940		
941		
942	6 Conclusion	10
943		
944	A Inference with SM	19
945		
946	B Experimental setup	19
947	B.1 Language Modeling	19
948	B.2 Code Generation	20
949		
950		
951	C More Results and Ablations	23
952		
953	C.1 Language Modeling: OWT Validation Perplexity	23
954	C.2 Language Modeling: Generative Perplexity and Entropy	23
955	C.3 Language Modeling: Training Share, Top-k, Softmax, and Gradient Updates	24
956		
957	C.4 Language Modeling: Inference Speed	25
958	C.5 Language Modeling: SM Visualization	26
959		
960	C.6 Mathematical Reasoning	26
961	C.7 Coding: Iso-Compute Models	26
962	C.8 Coding: Top- k And Trainable Softmax Temperature	26
963		
964	C.9 Coding: Time-dependent Masking	27
965	C.9.1 Early vs. Late Stage SM Impact	28
966	C.9.2 When Is SM Most Beneficial?	29
967		
968	C.10 Coding: Learned SM-feedback Parameters	29
969		
970		
971		

Algorithm 2: Inference with soft-masking (SM)

Input: Backbone g_θ , SM function with parameters sm_ω , generation length L , number of denoising steps T .

Output: Generated sequence $\hat{x}_0^{1:L}$.

1 $\mathbf{x}_T^{1:L} \leftarrow \mathbf{m}, \mathbf{m}, \dots, \mathbf{m}$; $\text{// Initialize sequence with full masks}$
 2 **repeat**
 3 | $\mathbf{p}_{t-1}^{1:L} \leftarrow g_\theta(\mathbf{x}_t^{1:L})$; $\text{// Backbone pass with SM}$
 4 | $\tilde{\mathbf{x}}_{t-1}^{1:L} \leftarrow \text{sample}(\mathbf{p}_{t-1}^{1:L})$; $\text{// Sample from backbone distribution (e.g., nucleus)}$
 5 | $\hat{\mathbf{x}}_{t-1}^{1:L} \leftarrow \text{unmask}(\tilde{\mathbf{x}}_{t-1}^{1:L}, \mathbf{p}_{t-1}^{1:L}, t, T, L)$; $\text{// Unmasking (e.g., based on entropy)}$
 6 | $\mathbf{x}_{t-1}^{1:L} \leftarrow sm_\omega(\hat{\mathbf{x}}_{t-1}^{1:L}, \mathbf{p}_t^{1:L})$; $\text{// Computing SM feedback}$
 7 | $t \leftarrow t - 1$
 8 **until** $t=0$;

A INFERENCE WITH SM

Algorithm 2 describes the inference procedure with SM.

B EXPERIMENTAL SETUP

This appendix provides details on the experiments conducted for language modeling and code generation. All experiments were run on [1–2 compute nodes](#) with 1–8 NVIDIA A100 GPUs, each with 80 Gigabytes of VRAM.

B.1 LANGUAGE MODELING

Pretraining from scratch The pretraining experiments follow the setup by Sahoo et al. (2024). We use a bidirectional Transformer backbone with 12 layers, 12 attention heads, and 768 hidden dimensions. The model is tokenized using the GPT-2 tokenizer (Radford et al., 2019). Pretraining is performed on the same OpenWebText (OWT) (Gokaslan & Cohen, 2019) split, with the last 100k documents reserved for validation. We use an AdamW optimizer with a linear learning warm-up for the first 2500 steps, and then keeping it constant at $\eta_{bb} = 3e-4$ and $\eta_{sm} = 1e-2$ for the backbone and the SM parameters, respectively. We train the model for 1M training steps using a batchsize of 512, which yields 262B tokens seen during training. The dropout rate is set at 0.1. Training was performed on 2 compute nodes, each with 8 A100 GPUs (80 Gigabytes of VRAM each), using a batchsize of 32 per device and deploying gradient accumulation to achieve an effective batchsize of 512.

Pretraining continuation Our starting checkpoint was pretrained on OWT for 1M steps and was released by Sahoo et al. (2024). We train the model for 100k training steps [using the same hyperparameters as in pretraining from scratch](#). We train each model with 5 different seeds (1, 2, 3, 4, 5) to account for training variability. Training was performed on 4 A100 GPUs (80 Gigabytes of VRAM each) using a batchsize of 32 per device and deploying gradient accumulation to achieve an effective batchsize of 512. Pretraining one model took approximately 64 hours and 139 hours for binary and SM, respectively.

Soft-masking parameterization For the SM feedback, we add a trainable module to the model. This module contains all SM logic and augments the input embeddings with SM before the main forward process. We initialize the three SM-feedback parameters with the parameters given in Appendix B.2. We have a few imposed constraints on these values: $\omega_s \in [0, 1]$, $\omega_a \geq 0$, and $\omega_b \leq 0$. To account for these constraints, we apply simple re-parameterizations during training:

- ω_s is passed through a sigmoid, ensuring it remains in $[0, 1]$.
- ω_a and ω_b (negative version) are each passed through a softplus, guaranteeing non-negativity.

1026 Before inference, the learned parameters are de-parameterized: we take the direct output of the
 1027 optimization, apply the inverse transforms, and for ω_b additionally negate the result so that it respects
 1028 the $\omega_b \leq 0$ constraint. All other SM parameters (i.e., k) are specified in our added module. We
 1029 simply perform a forward pass through this module to get the mixing weights for the new input
 1030 embeddings.

1031

1032 **Generative perplexity, entropy, and MAUVE in unconstrained generation** Our unconstrained
 1033 generation evaluation follows the experimental setup by Wang et al. (2025). We perform uncon-
 1034 strained generation of 5000 samples ($L = 1024$) per model with a batchsize of 1 using nucleus
 1035 sampling with $p = 0.9$. We use GPT-2 large for measuring the generative perplexity. Moreover, we
 1036 use GPT-2 large as the embedding model for MAUVE score computation, where we set the MAUVE
 1037 scaling hyperparameter to 5. Concerning RemDM unmasking, we use the max-capped schedule
 1038 ($\eta_{\text{cap}} = 0.04$) for fast sampling ($T < L$) and the loop-strategy ($t_{\text{on}} = 0.55, t_{\text{off}} = 0.05, \alpha(t_{\text{on}}) =$
 1039 $0.9, \eta_{\text{cap}} = 0.02$) for inference-time scaling ($T \geq L$).

1040

1041 **B.2 CODE GENERATION**

1042 This appendix describes the details of our finetuning experiments on Dream-7B and Dream-Coder-
 1043 7B.

1044

1045 **Backbone models** We use the pretrained Dream-7B (Ye et al., 2025) and Dream-Coder-7B (Xie
 1046 et al., 2025) backbones, respectively. Both of these are 7B parameter models that are adapted from
 1047 the Qwen2.5 family (Qwen et al., 2025; Hui et al., 2024). For both models, we use the instruction-
 1048 tuned versions.

1049

1050 **Tasks** We primarily evaluate on four code synthesis benchmarks:

1051

- **HumanEval** Chen et al. (2021): a benchmark of 164 Python programming problems de-
 1053 signed to test a model’s ability to write correct and functional code from natural language
 1054 specifications.
- **MBPP** Austin et al. (2021b): a benchmark consisting of 974 “Mostly Basic Programming
 1056 Problems,” each specified in natural language and accompanied by input–output test cases,
 1057 targeting introductory-level programming tasks. We only perform evaluation with the 500
 1058 samples in the test subset. It is important to note that some works report higher scores for
 1059 the Dream models on the MBPP task. This is a result of using a hand-checked, “sanitized”
 1060 subset of the data, instead of the standard lm-eval version that we used.
- **EvalPlus: HumanEval+ and MBPP+** Liu et al. (2023): Extended benchmarks involving
 1062 adding more unique test cases and correcting any inaccurate ground-truth solutions.

1063

1064 For our experiments, we use the standard `instruct` implementations of these benchmarks as
 1065 implemented by `lm-evaluation-harness` at the time of writing. For HumanEval+, we
 1066 created a custom `instruct` version of the task, using the same prompt as `humaneval_in-
 1067 struct`. All tasks were evaluated in a zero-shot setting with a temperature of 0.1, a top-p value of
 1068 0.9, and the entropy-based unmasking algorithm. The HumanEval tasks were evaluated with a max
 1069 generation length of 768, and the MBPP tasks were evaluated with a generation length of 512.

1070

1071 **NFE Budget** MDLMs typically have a maximum generation length as a parameter during gener-
 1072 ation. For our experiments, we use 768 for HumanEval(+) and 512 for MBPP(+). These models
 1073 also have a parameter that quantifies the number of diffusion steps that should be taken to unveil all
 1074 tokens. Typically, diffusion models set the same number of steps as the number of maximum tokens.
 1075 In these cases, exactly one token is unmasked at each diffusion step.

1076

1077 Decreasing the number of diffusion steps leads to a much more efficient computation—by unmask-
 1078 ing more than one token each step. From a computational cost perspective, this is essentially a
 1079 linear relationship. If four tokens are unmasked at each denoising step, the generation will hap-
 pen $4 \times$ faster than if only one is sampled each step. This leads us to define the NFE budget of a
 generation:

1080 Given a fixed-length generation task with a max number of tokens, the NFE budget of the generation
 1081 will be:

$$1083 \text{NFE budget} = \frac{\text{\# of diffusion steps}}{\text{max \# of tokens}} \quad (4)$$

1085 In our experiments, we discuss NFE budgets of 1/4, 1/2, and 1/1. If the NFE budget is 1/n, it means
 1086 that, on average, n tokens are unmasked per step.

1088 **General setup and hyperparameters** We aimed to keep the finetuning implementation as close
 1089 to the original Dream-7B (Ye et al., 2025) SFT implementation as possible. Due to the fact that the
 1090 exact SFT implementation code is unavailable, we use the DiffuLLaMa code (Gong et al., 2025a)
 1091 and the Dream paper (Ye et al., 2025) for reference. Algorithm 1 displays an overview of the
 1092 algorithm that we use. The only change for scaling the algorithm for finetuning larger models is
 1093 that, rather than updating the full weights, we update only the weights of a light-weight parameter-
 1094 efficient finetuning (PEFT) module. As our PEFT module, we use a DoRA adaptor with parameters:
 1095 rank $r = 16$ and $\alpha = 16$. We apply the module only to the attention matrices: `["q_proj", "k`
 1096 `_proj", "v_proj", "o_proj"]`. When finetuning the SM versions, we only use the *two pass*
 1097 *approach* and activate SM with $p_{\text{sm}} = 0.5$. We didn't see as much of an effect as language modeling
 1098 with varying this value. We use an AdamW optimizer with cosine scheduling, a 0.03 warmup ratio
 1099 and a max gradient norm of 7.0. The learning rates are capped at $\eta_{\text{bb}} = 1e-5$ and $\eta_{\text{sm}} = 1e-2$ for the
 1100 DoRA and the SM parameters, respectively. The finetuning is performed with an effective batch size
 1101 of 8 on one A100 40GB GPU and takes about 71 hours for 33.5k gradient steps.

1102 **Training corpus** For the training corpus, we aimed to use the same datasets that were used by the
 1103 Dream models (Ye et al., 2025; Xie et al., 2025) in the SFT phase of their Instruct model training.

- 1105 • **Dream-7B** The authors report instruction-tuning with ...1.8M *instruction-response pairs*
 1106 *from Tulu 3 (Lambert et al., 2025) and SmollM2 (Allal et al., 2025)*... We use the same mix.
 1107 For the Tulu 3 data, we use `allenai/tulu-3-sft-mixture`, consisting of 939,000
 1108 pairs in their *training* set. Since there is no validation set, we hold out a random 1% of
 1109 these pairs for validation. For the SmollM2 data, we use `HuggingFaceTB/smoltalk`,
 1110 consisting of both a training set with 1.04M pairs and a test set with 54.9k pairs. We used
 1111 the defined *test* set for validation. These datasets are the concatenated and shuffled to make
 1112 up our training corpus.
- 1113 • **Dream-Coder-7B** For the Coder model, Xie et al. (2025) specify explicitly that they use
 1114 `inclusionAI/Ling-Coder-SFT` (Codefuse & Team, 2025) for their SFT training.
 1115 We use the same dataset. This dataset consists of 4.48M pairs. We hold out a random 1%
 1116 at the beginning to be used for validation.

1117 **Preprocessing** The preprocessing of these question-answer pairs is executed as follows:

- 1119 1. **Max train/validation size.** We first sample 300,000 datapoints to use for training and 500
 1120 to use for evaluation.
- 1121 2. **Context and response splitting.** All datapoints contain a sequence of *user* and *assistant*
 1122 messages. We consider the last assistant message to be the *response* and all other previous
 1123 messages to make up the *context*. We apply the respective models' chat template to the
 1124 messages before tokenization.
- 1125 3. **Filtering the dataset.** We conduct dataset filtering on three different attributes of the data:
 1126 (1) inputs > 2048 tokens; (2) responses < 5 tokens; (3) any examples with tool-calling
 1127 (i.e., using `<tool_call>` and `</tool_call>`). After filtering, we are typically left with ap-
 1128 proximately 270,000 context-response pairs. While this varies with our sampling seed, the
 1129 total number of tokens in our training set is often just under 200 million. These 200 million
 1130 tokens consist of a fifty-fifty split between prompt and response tokens.
- 1131 4. **Padding with `<eos>` tokens.** After finetuning, we want the diffusion model to retain its
 1132 ability to decide when to end its generation process. In MDLMs, this is typically done by
 1133 predicting `<eos>` tokens for all the end positions that the model does not want to use. In
 order to ensure this is a part of the training process we add $n_{\text{end}} \sim \text{Uniform}(0, 50)$ `<eos>`

1134 tokens to the end of each training sample.³ The amount of padding that is added to the
 1135 training set varies for each sample.

1136 5. **Partially masking the responses for training.** We only apply masks to the response
 1137 tokens during the training process. This is performed in the following way: First, as Algo-
 1138 rithm 1 describes, a mask probability value $t \sim \text{Uniform}(b_l, b_h)$ is sampled. This value t is
 1139 then used as the masking probability: a fraction t of the *response* tokens are masked for the
 1140 loss calculation. Arriola et al. (2024) found that sampling extremely low/high t can lead to
 1141 high variance in the gradient norms, making training quite difficult. For this reason, we use
 1142 a clipped noise schedule of $(b_l, b_h) = (0.2, 0.8)$. The masks are sampled uniquely for each
 1143 sample.

1144 1145 **SM-feedback parameter initialization** As mentioned in Section 3.1, we introduced a mapping
 1146 from the entropy to the amount of feedback:

$$1147 \quad 1148 \quad \lambda^l(\mathbf{p}_{t-1}^l) = \omega_s \cdot \sigma\left(\omega_a(-H(\mathbf{p}_{t-1}^l) - \omega_b)\right). \quad (5)$$

1149 These parameters: ω_a, ω_b and ω_s are learnable during the training process. We ensure that the scale
 1150 value, s , is initialized close to 0 at the start (slightly larger due to the sigmoid reparameterization
 1151 discussed in Appendix B.1. This ensures that the model only adds SM-feedback if it learns that
 1152 this is optimal via the finetuning process. For the steepness and center of the sigmoid, we conduct
 1153 a small statistical analysis of the expected entropy distribution. Although the theoretical range of
 1154 $-H(\mathbf{p}_{t-1}^l)$ is $[-\log(|\mathcal{V}|), 0]$, in practice we observed that 95% of values were above $\text{LB} \approx -1.5$.
 1155 For this reason, we initialize the center of the sigmoid at $b = \text{LB}/2$ and choose $a = -10/\text{LB}$.
 1156 Effectively, this normalizes the negative entropy to be between $[0, 1]$ before applying a sigmoid of
 1157 $a' = 10, b' = 0.5$. We found that the learning rate for the hyperparameters needed to be set much
 1158 higher than for the DoRA adaptor in order for them to be able to traverse the entire range of options.
 1159 The rate was set to $\eta_{\text{sm}} = 1e-2$ for the training process.

1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185

1186 ³It is not documented exactly how Dream performs this step, but for LLaDa, the authors describe always
 1187 training with 2048 tokens—padding all responses until this point. Unfortunately, since these tokens must be
 1188 considered in the loss, a large amount of these tokens can very much dilute the loss calculation.

1188 C MORE RESULTS AND ABLATIONS

1190 C.1 LANGUAGE MODELING: OWT VALIDATION PERPLEXITY

1192 In this appendix, we benchmark the validation perplexity of SM against state-of-the-art methods.
 1193 We note that, in contrast to standard baselines, SM necessitates two model passes for perplexity
 1194 evaluation. As demonstrated in Table 4, our method achieves superior performance compared to all
 1195 other diffusion models in the iso-update regime. Furthermore, even under the stricter iso-compute
 1196 constraint, SM outperforms MDLM and SEDD and remains competitive with GIDD+.

1197 Table 4: Validation perplexity on OWT. \dagger Results for AR and SEDD were taken from (Sahoo et al.,
 1198 2025).

	Gradient updates	Forward passes	Training tokens	PPL
AR \dagger	0.5M	0.5M	262B	17.54
SEDD \dagger (Lou et al., 2024)	1M	1M	262B	≤ 24.10
MDLM \dagger (Sahoo et al., 2024)	1M	1M	262B	≤ 23.21
GIDD+ (Rütte et al., 2025)	1M	1M	262B	≤ 22.29
Our MDLM+SM (iso-compute)	0.5M	1M	131B	≤ 22.36
Our MDLM+SM (iso-update)	1M	2M	262B	≤ 21.47

1209 C.2 LANGUAGE MODELING: GENERATIVE PERPLEXITY AND ENTROPY

1211 This section analyzes the generative perplexity and the entropy observed during unconstrained generation.
 1212 Table 5 shows the generative perplexity and the entropy when training MDLM with SM from scratch.
 1213 The reported generative perplexity is repeated from Table 1 to facilitate comparison.
 1214 As shown, our SM maintains an entropy on par with the binary masking baseline. For ReMDM
 1215 unmasking, SM shows its lowest entropy at the 1/2 NFE budget (5.234 and 5.217 for iso-compute
 1216 and iso-update, respectively). While still being higher than binary masking entropy (5.209), this in-
 1217 dicates a highly low-diversity output, which likely explains the observed degradation in the MAUVE
 1218 score, despite the simultaneously low generative perplexity (11.40 and 10.85). This suggests that
 1219 the ReMDM unmasking process might require specific hyperparameter tuning to balance diversity
 1220 with human-like text generation (MAUVE).

1221 Table 6 and Table 7 respectively show the generative perplexity and entropy for the continuation of
 1222 pretraining. Here, too, SM consistently improves the generative perplexity while maintaining the
 1223 entropy.

1224 Table 5: Generative perplexity (\downarrow) and entropy (\uparrow) with pretraining from scratch. We perform un-
 1225 constrained generation of $L = 1024$ tokens using MDLM (Sahoo et al., 2024) with binary masking
 1226 or our SM. Evaluations are tabulated by varying NFE budgets. For unmasking, we use either the
 1227 standard or the more recent ReMDM (Wang et al., 2025); the highest scores are bolded. *Gain* shows
 1228 the performance improvement between the SM and the baseline MDLM.

1231 Unmasking	Feedback	Gradient updates	Forward passes	Generative Perplexity \downarrow				Entropy \uparrow			
				1/8	1/4	1/2	1/1	1/8	1/4	1/2	1/1
1232 Standard	Binary	1M	1M	60.02	54.95	52.36	50.46	5.508	5.482	5.464	5.450
	Our SM (iso-compute)	0.5M	1M	41.08	31.97	27.36	24.63	5.496	5.448	5.409	5.374
	<i>Gain</i>			-18.93	-22.98	-24.99	-25.83				
	Our SM (iso-update)	1M	2M	39.61	30.74	26.12	23.53	5.488	5.438	5.398	5.357
1236 ReMDM	Binary	1M	1M	42.53	31.05	21.75	28.62	5.424	5.336	5.209	5.368
	Our SM (iso-compute)	0.5M	1M	29.90	18.08	11.40	17.29	5.424	5.334	5.234	5.349
	<i>Gain</i>			-12.63	-12.97	-10.35	-11.33				
	Our SM (iso-update)	1M	2M	29.62	17.58	10.85	16.72	5.416	5.323	5.217	5.338
1240 AR ($T = 1024$)				12.1				5.22			
1241 Data				14.8				5.44			

Table 6: Generative perplexity (\downarrow) with pretraining continuation. We perform unconstrained generation of $L = 1024$ tokens using MDLM (Sahoo et al., 2024) with binary masking or our SM. For unmasking, we use either standard or ReMDM (Wang et al., 2025); the highest scores are bolded. *Gain* shows the performance improvement between the SM and the binary MDLM with pretraining continuation.

Unmasking	Feedback	Pretraining steps	Number of function evaluations (NFEs)			
			1/8	1/4	1/2	1/1
Standard	Binary	1M	60.02	54.95	52.36	50.46
	Binary	1M+100k	59.99 \pm 0.68	54.71 \pm 0.55	52.15 \pm 0.69	50.63 \pm 0.72
	Our SM (iso-compute)	1M+50k	51.10 \pm 0.89	43.25 \pm 0.80	39.44 \pm 0.74	37.46 \pm 0.80
	<i>Gain</i>		-8.89	-11.46	-12.71	-13.18
	Our SM (iso-update)	1M+100k	50.99 \pm 0.41	42.75 \pm 0.39	38.56 \pm 0.43	35.81 \pm 1.24
	<i>Gain</i>		-9.00	-11.97	-13.59	-14.82
ReMDM	Binary	1M	42.53	31.05	21.75	28.62
	Binary	1M+100k	42.85 \pm 0.68	31.07 \pm 0.39	21.74 \pm 0.38	28.65 \pm 0.33
	Our SM (iso-compute)	1M+50k	39.61 \pm 0.87	26.29 \pm 0.73	17.65 \pm 0.47	22.47 \pm 0.36
	<i>Gain</i>		-3.24	-4.78	-4.08	-6.18
	Our SM (iso-update)	1M+100k	39.52 \pm 0.33	25.93 \pm 0.22	17.23 \pm 0.16	22.10 \pm 0.21
	<i>Gain</i>		-3.33	-5.14	-4.51	-6.54

Table 7: Entropy (\uparrow) with pretraining continuation. We perform unconstrained generation of $L = 1024$ tokens using MDLM (Sahoo et al., 2024) with binary masking or our SM. For unmasking, we use either standard or ReMDM (Wang et al., 2025).

Unmasking	Feedback	Pretraining steps	Number of function evaluations (NFEs)			
			1/8	1/4	1/2	1/1
Standard	Binary	1M	5.508	5.482	5.464	5.450
	Binary	1M+100k	5.503 \pm 0.005	5.477 \pm 0.006	5.458 \pm 0.005	5.447 \pm 0.007
	Our SM (iso-compute)	1M+50k	5.534 \pm 0.004	5.503 \pm 0.004	5.480 \pm 0.003	5.467 \pm 0.007
	Our SM (iso-update)	1M+100k	5.542 \pm 0.003	5.509 \pm 0.003	5.485 \pm 0.004	5.453 \pm 0.036
	Binary	1M	5.424	5.336	5.209	5.368
	Binary	1M+100k	5.423 \pm 0.007	5.333 \pm 0.007	5.200 \pm 0.005	5.361 \pm 0.005
ReMDM	Our SM (iso-compute)	1M+50k	5.476 \pm 0.006	5.396 \pm 0.008	5.302 \pm 0.005	5.410 \pm 0.004
	Our SM (iso-update)	1M+100k	5.482 \pm 0.005	5.404 \pm 0.004	5.312 \pm 0.003	5.416 \pm 0.005

C.3 LANGUAGE MODELING: TRAINING SHARE, TOP- k , SOFTMAX, AND GRADIENT UPDATES

This appendix ablates the SM training probability (p_{sm}) and the top- k value in the language modeling experiments. Recall that k is the number of predicted tokens—generated from the previous step—that will be combined with the mask token. We start with a default configuration of $p_{sm} = 0.8$ and $k = 3$ and vary each parameter separately. As shown in Figure 5a, increasing the SM training probability from 0.5 to 0.8 improves the performance. This is likely due to the model learning to leverage continuous feedback more effectively, as a higher probability means it is exposed to the soft-masking mechanism more frequently during training. Increasing the SM training probability to 1 is detrimental, as the model loses its ability to handle binary masking, which is essential for the initial decoding steps.

Figure 5b shows that the perplexity improves when increasing k from 1 to 5, with only a marginal gain observed between $k = 3$ and $k = 5$. Beyond the top- k study, we investigated an alternative SM mechanism using a trainable softmax temperature. This method calculates probabilities using a learned temperature applied across the entire vocabulary, \mathcal{V} , letting the model scale the range of its own feedback. In Figure 5b, we denote this ablation $k = |\mathcal{V}|$ to signify that it considers the entire vocabulary. As shown, this method can slightly improve the perplexity. Crucially, the softmax mechanism is differentiable (in contrast to the non-differentiable top- k selection), which allows for the backpropagation of gradients to the first model pass. However, we did not observe any further improvements in perplexity when applying the gradients on both forward passes (see the “ $k = |\mathcal{V}|$ (two updates)”).

Overall, we decided to use the top- $k = 3$ option as the final configuration. The softmax approach, while theoretically interesting, comes with increased compute and memory demands (due to storing $|\mathcal{V}|$ -dimensional vectors) and did not show a conclusive benefit in downstream coding performance (see Appendix C.8).

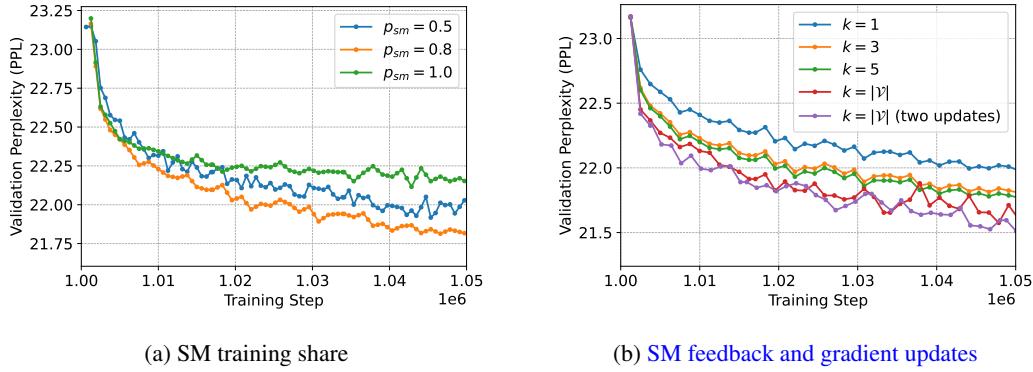


Figure 5: Ablation study language modeling on OWT. Default SM parameters are $p_{sm} = 0.8$ and $k = 3$.

C.4 LANGUAGE MODELING: INFERENCE SPEED

This appendix analyzes the inference time for both SM and binary masking when unconditionally generating samples using $L = 1024$ diffusion steps on an NVIDIA A100 GPU. We use the inference script provided by ReMDM (Wang et al., 2025). The setup uses ancillary sampling, where the backbone’s forward pass is not called if the predictive logits have not changed in the previous iteration (i.e., caching). SM is configured with $k = 3$. We measure the time using Python’s cProfile.

Figure 6 shows that SM yields a small overhead of 12.5% (22.26 s vs. 19.78 s). One can see that checking the activation change (‘`torch.allclose`’) yields a major overhead in both configurations. Diving a bit deeper, one can notice that the MDLM with SM calls the backbone more often than binary masking (651 vs. 636 calls). This is likely because the more detailed input representation from SM causes the state to change more frequently, resulting in fewer cache hits. Besides, SM slightly increases the complexity on two fronts. First, computing the SM distribution requires a total of 1.61 s (0.00248 s per call), which is dominated by the top-k computation. Moreover, the sparse embedding (a weighted sum of $k + 1$ tokens) is slightly more complex than the standard embedding (a single token lookup), increasing the per-call time for the backbone by 1.7% (from 0.01728 s to 0.01757 s per call). In summary, the 2.48 s total overhead from SM is primarily composed of the 1.61 s for the SM calculation, with the remaining time due to a 1.7% increase in per-call backbone cost and a 2.4% increase in the total number of backbone calls. Despite the small overhead, the generation quality is significantly increased, as can be seen in Table 2.

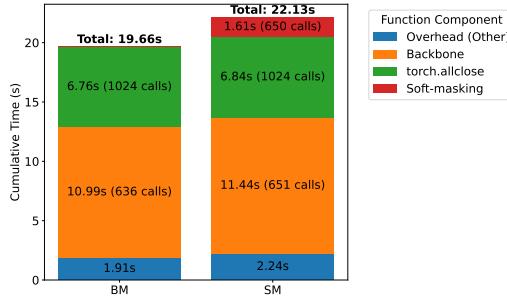


Figure 6: Cumulative time for unconditionally generating $L=1024$ tokens on an NVIDIA A100 GPU using standard unmasking.

1350
1351

C.5 LANGUAGE MODELING: SM VISUALIZATION

1352
1353
1354
1355
1356
1357
1358
1359

This appendix provides further insight into SM’s decoding dynamics. As an illustrative example, we analyze an unconstrained generation trajectory of $L = 8$ tokens over $T = 8$ steps. Note that we use a standard sampling schedule without caching or confidence-based unmasking heuristics. As shown in Figure 7, SM’s confidence (indicated by color intensity) generally increases over the denoising steps. However, high SM confidence does not strictly dictate the final outcome: the top-1 predicted token within the SM evolves over time, and the final sampled token can differ from the highly confident SM prediction of the previous step (e.g., the transition from “search” to “word” at $t = 3$ for the second token).

1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

Figure 7: Unconstrained generation trajectory of $L = 8$ tokens over $T = 8$ steps using an MDLM with Soft-Masking (trained from scratch, iso-compute, 500k steps). Green-shaded cells indicate masked tokens where SM is active; color intensity corresponds to the SM confidence, with darker green indicating higher certainty. The text inside these cells displays the current top-1 predicted token. Bold, unshaded text represents tokens that have been unmasked (sampled) and fixed.

1381
1382

C.6 MATHEMATICAL REASONING

1383
1384
1385
1386
1387
1388
1389
1390
1391

We also perform experiments on mathematical reasoning tasks GSM8k (Cobbe et al., 2021) and Math-500 (Lightman et al., 2024). These evaluations are shown in Table 8. Both evaluations were performed with lm-evaluation-harness in a zero-shot setting. The max generation length for GSM8k was 256, and for Math-500 it was set to 512. These values were the same as the default ones used by Dream-7B in their original evaluation scripts. Since the MATH tasks are more difficult, the model often needs more generation space to come to the final answer.

1392
1393

C.7 CODING: Iso-COMPUTE MODELS

1394
1395
1396
1397

Table 9 shows SM’s performance in the iso-compute training setup. Note that in this more restricted setup, the model does only see half of the data, as there is no data repetition in finetuning. While the variance across seeds increased slightly, we still observe consistent gains with SM, primarily in low NFE budgets.

1398
1399
1400C.8 CODING: TOP- k AND TRAINABLE SOFTMAX TEMPERATURE1401
1402
1403

We also perform ablation tests on k . For these tests, we finetune four models, each with the exact same configuration, but with one key exception: we train each of these models with a different k -value $\in [1, 3, 5, 10]$. We use the same seed for all models to ensure the same training data and initial setup.

Table 8: Accuracy (%) on math tasks. Evaluations are displayed under varying computational NFE budgets. We finetune the models with 5 seeds and report the mean accuracy (\pm standard deviation). SM is configured with $k=3$. *Gain* shows the comparison between the SM model and the finetuned baseline.

				Dream-7B	
		NFE budget	Feedback	FT steps	
				GSM8k	Math-500
1/4	Binary	1/4	-	57.8	14.2
	Binary		33.5k	59.5(± 1.1)	17.3(± 1.2)
	Our SM		33.5k	62.3(± 2.3)	19.8(± 2.1)
	<i>Gain</i>			+2.8	+2.5
1/2	Binary	1/2	-	76.0	36.6
	Binary		33.5k	76.5(± 1.6)	36.3(± 0.8)
	Our SM		33.5k	79.4(± 0.5)	38.8(± 1.8)
	<i>Gain</i>			+2.9	+2.5
1/1	Binary	1/1	-	82.0	45.6
	Binary		33.5k	82.9(± 1.0)	42.7(± 1.4)
	Our SM		33.5k	84.0(± 0.7)	41.4(± 1.2)
	<i>Gain</i>			+1.1	-1.3

Table 9: Accuracy (%) on coding tasks. SM has been finetuned in the iso-compute training setting. Evaluations are tabulated by varying NFE budgets. We finetune the models with 5 seeds and report the mean accuracy (\pm standard deviation). SM is configured with $k=1$. *Gain* shows the comparison between the SM model and the finetuned baseline. The best performing model is marked in bold.

NFE budget	Feedback	FT steps	Dream-Coder-7B (instruct)				Dream-7B (instruct)				
			HumanEval	HumanEval+	MBPP	MBPP+	HumanEval	HumanEval+	MBPP	MBPP+	
1/4	Binary	1/4	25.0	25.0	27.4	29.4	18.9	17.1	26.6	30.2	
	Binary		33.5k	28.5(± 1.3)	27.7(± 1.8)	25.9(± 1.5)	24.6(± 1.7)	19.0(± 1.7)	15.9(± 2.8)	27.0(± 1.6)	29.2(± 1.5)
	Our SM		16.75k	30.4(± 1.9)	29.0(± 1.3)	27.8(± 1.9)	28.8(± 3.7)	24.8(± 5.7)	22.4(± 4.7)	28.2(± 1.9)	36.1(± 2.0)
	<i>Gain</i>		+1.9	+1.3	+1.9	+4.3	+4.3	+5.8	+6.5	+1.2	+6.9
1/2	Binary	1/2	54.9	50.6	51.6	51.3	31.1	29.3	42.8	45.8	
	Binary		33.5k	53.8(± 1.4)	49.3(± 1.6)	49.8(± 0.9)	53.2(± 1.5)	33.0(± 3.0)	29.5(± 3.4)	43.1(± 0.4)	39.6(± 2.7)
	Our SM		16.75k	59.4(± 2.7)	54.3(± 1.9)	49.8(± 0.5)	55.2(± 1.7)	38.5(± 2.7)	33.9(± 2.8)	44.3(± 2.4)	53.6(± 2.8)
	<i>Gain</i>		+5.6	+5.0	0.0	+2.1	+5.5	+4.4	+1.2	+14.0	
1/1	Binary	1/1	75.0	69.5	65.8	70.4	57.9	53.0	57.8	63.5	
	Binary		33.5k	75.7(± 1.7)	68.9(± 2.0)	65.6(± 0.8)	68.1(± 1.1)	59.5(± 1.8)	53.0(± 1.0)	58.3(± 0.1)	62.8(± 0.7)
	Our SM		16.75k	75.9(± 1.4)	68.5(± 0.7)	66.6(± 1.2)	68.6(± 1.2)	58.0(± 2.9)	50.7(± 3.3)	57.8(± 1.2)	62.2(± 0.8)
	<i>Gain</i>		+0.2	-0.4	+1.0	+0.5	-1.5	-2.3	-0.5	-0.6	

We also train a *fifth* model with a **trainable softmax temperature**. This method uses probabilities calculated with a learned temperature instead of using the top-k predicted tokens, letting the model scale the range of its own feedback. In the results table, we call this ablation $k = |V|$

The results given in Table 10 illustrate a degrading performance with higher k values, with $k = 1$ and $k = 3$ having the highest average performance. However, all k ablations perform better than both of our baselines on average. This further illustrates the success of our proposed method.

C.9 CODING: TIME-DEPENDENT MASKING

We explored three methods of time-dependent (TD) feedback. By time-dependence, we mean scaling the amount of SM feedback as a function of the point in the decoding process (i.e. t). The basic assumption here is that, the model may benefit from having more or less feedback at different steps in the diffusion process. For the following, let $t = T, \dots, 1$ be our current denoising step, with T being the *first* step in the *reverse* process. Let $g(\mathbf{p}) = \omega_s \cdot \sigma(\omega_a(-H(\mathbf{p}_{t-1}^l) - \omega_b))$ be the *default* (non-time-dependent) defined in equation 3.

1. **No TD.** In this adaptation, we apply no time-dependent feedback modification. SM is applied exactly as described above.

Task	NFE budget	Binary feedback		SM feedback with top- k				
		No FT	33.5 FT steps	33.5k FT steps				
		-	-	$k = 1$	$k = 3$	$k = 5$	$k = 10$	$k = \mathcal{V} $
Humaneval	1/4	18.9	17.7	25.6	23.8	24.4	20.1	25.0
	1/2	31.1	33.5	35.4	36.0	35.4	34.1	34.1
	1/1	57.9	57.3	60.4	56.1	60.4	63.4	58.5
MBPP	1/4	26.6	27.2	32.8	31.4	27.8	27.6	27.2
	1/2	42.8	43.6	49.6	48.0	45.4	45.6	44.4
	1/1	57.8	58.4	56.2	57.6	57.2	56.8	57.8
GSM8k	1/4	57.8	60.0	63.3	62.9	63.3	60.9	62.3
	1/2	76.0	78.7	80.3	79.8	80.9	81.7	78.9
	1/1	82.0	83.5	82.9	84.6	84.2	83.6	84.0
Math-500	1/4	14.2	18.6	21.8	22.0	20.6	19.2	20.2
	1/2	36.6	37.0	35.4	41.4	40.4	39.0	37.2
	1/1	45.6	42.0	38.4	41.2	43.2	43.2	44.4
Avg.		All	45.6	46.5	48.5	48.7	<u>48.6</u>	47.9
								47.8

Table 10: Comparison of different finetuned (FT) models, each trained with a different k value. The $k = |\mathcal{V}|$ ablation is trained and evaluated with a learnable softmax temperature. Evaluations are performed on all three computational budgets and four math and coding evaluation tasks. The binary baselines are also included for comparison. We see that $k = 1, 3$ and 5 perform best, with degrading performance at higher k values. The best performing model is highlighted in bold, and the second best is underlined.

2. **Stepwise TD feedback function.** This time-dependent feedback defines a threshold value $0 \leq t' \leq T$. At the threshold, the model switches between SM and Binary as follows:

$$\text{Binary} \rightarrow \text{SM stepwise TD function: } \lambda^l(\mathbf{p}_{t-1}^l) = g(\mathbf{p}) \cdot \mathbf{1}_{(t \leq t')}$$

$$\text{SM} \rightarrow \text{Binary stepwise TD function: } \lambda^l(\mathbf{p}_{t-1}^l) = g(\mathbf{p}) \cdot \mathbf{1}_{(t \geq t')}$$

3. **Linear TD feedback function.** For the last formulation, we add a linear time-dependence to the feedback magnitude. Again, this entails a model switch from SM to Binary, or vice versa. The switch happens with a linear transition function:

$$\text{Binary} \rightarrow \text{SM linear TD function: } \lambda^l(\mathbf{p}_{t-1}^l) = \left(1 - \frac{t}{T}\right) [g(\mathbf{p})]$$

$$\text{SM} \rightarrow \text{Binary linear TD function: } \lambda^l(\mathbf{p}_{t-1}^l) = \left(\frac{t}{T}\right) [g(\mathbf{p})]$$

Note that these expressions are written this way because, in the reverse process, the time index t decreases from $T \rightarrow 1$. Although we did not explicitly finetune the models to incorporate external time-dependence (TD) in the feedback function, we perform ablation studies on the TD during inference.

C.9.1 EARLY VS. LATE STAGE SM IMPACT

We first look at a simple comparison of whether SM is more beneficial at the *early* or *late* stages of denoising. To test this, we use the **stepwise feedback function**: Specifically, we compare the **SM**→**Binary** and the **Binary**→**SM** stepwise TD functions. We define each with thresholds set such that 80% of denoising steps use SM and the remaining 20% use Binary:

1. **Binary**→**SM** stepwise TD feedback with threshold $t' = 0.8$: SM only during the *last* 80% of the denoising steps.

1512 2. **SM \rightarrow Binary stepwise TD feedback with threshold $t' = 0.2$:** SM only during the *first*
 1513 80% of the denoising steps.

1515 The results given in Table 11 evaluate both approaches, comparing them with both binary baselines.
 1516 We can clearly see that ablation (2) performs significantly better than ablation (1), suggesting that
 1517 SM is necessary during the early denoising steps.

Task	Binary feedback		SM feedback TD	
	No FT	33.5 FT steps	33.5k FT steps	
	-	-	Binary \rightarrow SM	SM \rightarrow Binary
Humaneval	18.9	19.0 (± 1.7)	17.4 (± 0.9)	24.8 (± 1.1)
MBPP	26.6	27.0 (± 1.6)	25.2 (± 1.3)	30.9 (± 0.5)
GSM8k	57.8	59.5 (± 1.1)	59.3 (± 1.1)	61.6 (± 2.5)
Math-500	14.2	17.3 (± 1.2)	18.2 (± 0.8)	20.2 (± 1.9)
Avg.	29.4	31.4	30.0	34.4

1529 Table 11: Comparison of whether SM is more beneficial at the early or later stages of the denoising
 1530 process. Both ablations Binary \rightarrow SM and SM \rightarrow Binary involve a denoising process in which 80%
 1531 of the steps are with SM and the remaining 20% are with binary masking. We find that placing the
 1532 SM steps at the beginning of denoising results in a much greater performance boost. These ablations
 1533 are compared with our fully binary baselines. The two ablation columns are the *mean* performance
 1534 of the finetuned SM models with $k=3$ and a stepwise time-dependence. For each task, the best
 1535 performing model is highlighted in bold. These evaluations are performed at an NFE budget of 1/4.

C.9.2 WHEN Is SM MOST BENEFICIAL?

1539 After confirming that SM is necessary during the early denoising steps, we can start looking at
 1540 the exact steps of the denoising where SM is more beneficial. To further understand this time-
 1541 dependence, we compare five forms of our SM \rightarrow Binary TD feedback: (1) no time-dependence
 1542 (TD); (2) linear SM \rightarrow Binary TD; (3)-(5) SM \rightarrow Binary stepwise TD feedback with thresholds of
 1543 $t' = 0.2$, $t' = 0.5$, and $t' = 0.8$.

1544 The results are given in Table 12. We tabulate with the *mean* of the finetuned binary models to show
 1545 that all given TD ablations of SM still perform better than the binary feedback.

Task	Binary feedback		SM feedback with top- k					
	No FT	33.5 FT steps	33.5k FT steps					
	No TD	No TD	No TD	Linear	$t' = 0.2$	$t' = 0.5$	$t' = 0.8$	
Humaneval	18.9	19.0 (± 1.7)	24.8 (± 1.1)	22.4 (± 1.2)	24.8 (± 1.1)	24.8 (± 1.1)	24.8 (± 1.1)	
MBPP	26.6	27.0 (± 1.6)	30.8 (± 0.5)	28.4 (± 1.0)	30.9 (± 0.5)	30.7 (± 0.5)	30.6 (± 0.6)	
GSM8k	57.8	59.5 (± 1.1)	62.3 (± 2.3)	61.6 (± 0.8)	61.6 (± 2.5)	61.8 (± 2.2)	59.8 (± 1.9)	
Math-500	14.2	17.3 (± 1.2)	19.8 (± 2.1)	20.4 (± 1.4)	20.2 (± 1.9)	19.8 (± 1.4)	18.2 (± 1.8)	
Avg.	29.4	31.4	34.4	33.2	34.4	34.3	33.3	

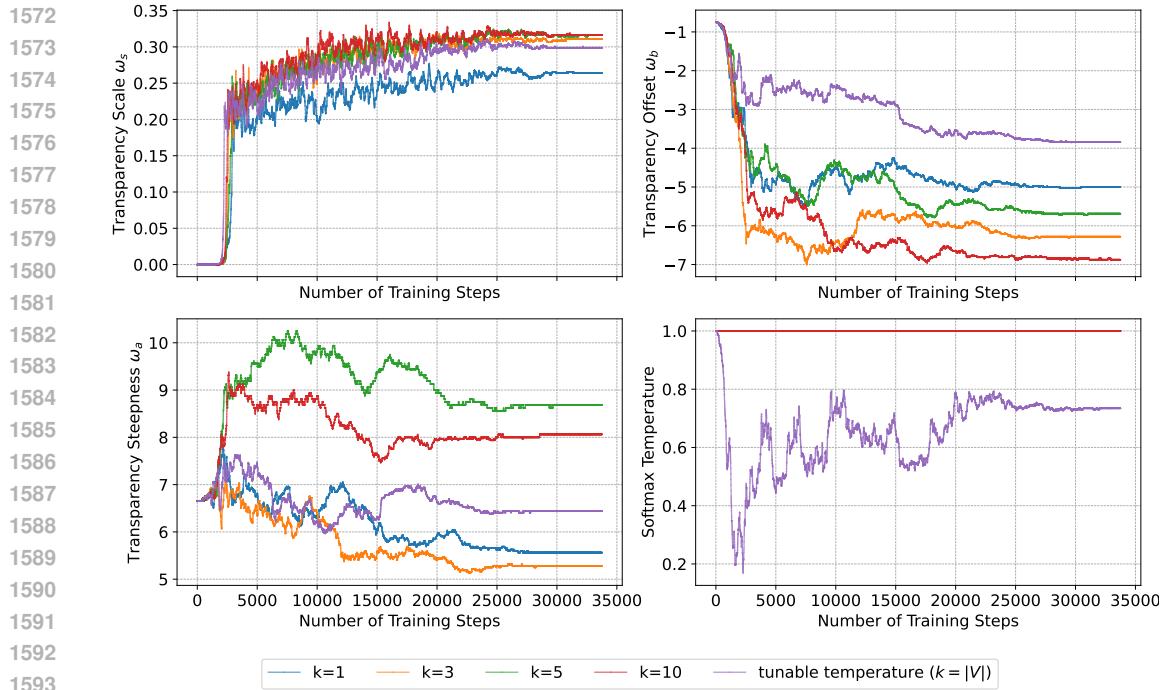
1557 Table 12: Comparison of varying forms of TD. All TD functions transition from SM \rightarrow Binary
 1558 with different processes. These ablations are compared with our binary baselines. All SM abla-
 1559 tion columns are the *mean* performance of the finetuned SM models with $k=3$ and the associated
 1560 TD. For each task, the best performing model is highlighted in bold.

C.10 CODING: LEARNED SM-FEEDBACK PARAMETERS

1564 As we discussed in Section 3.1, we add the SM-feedback parameters: SM-scaling = ω_s , SM-
 1565 offset = ω_b , and SM-steepness = ω_a to the computation graph, allowing the optimizer to train these
 1566 parameters. We also add the softmax temperature for our $k = |\mathcal{V}|$ ablation (Section C.8). The

1566 progression of these parameters throughout the full training of our SM-FT models is illustrated in
 1567 Figure 8. We find that the learned scale is much lower than in the language modeling. This is likely
 1568 due to the absence of time conditioning. Since the model has no other cues telling it at what stage it
 1569 is at in the decoding and/or which tokens are actually masked, it relies on the existence of the mask
 1570 tokens for this information.

1571



1594 Figure 8: Plots of all four tunable hyperparameters over all of my SM-FT runs and ablations. We
 1595 show the evolution of the SM-scale (top-left), the SM-offset (top-right), the SM-steepness (bottom-
 1596 left), and the tunable softmax temperature (bottom-right) (for the $k = |V|$ ablation described in
 1597 Section C.8).

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619