
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SOFT-MASKED DIFFUSION LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have demonstrated strong potential in language modeling, of-
fering various advantages over traditional autoregressive approaches. Their abil-
ity to generate and revise entire responses in parallel enables faster generation
and built-in self-correction mechanisms. Most modern diffusion-based language
models employ masked diffusion, where decoding involves iteratively processing
masked tokens based on a binary decision: either retaining the mask or replacing it
with the predicted token. However, this binary choice discards valuable predictive
information when the mask is retained. To address this limitation, we introduce
soft-masking (SM), a novel method that dynamically blends the embedding of the
mask token with the embeddings of the top-k predicted tokens from the previous
decoding step, for each retained mask. This provides the model with a more in-
formative prior, preserving context from earlier computations and allowing partial
information about masked tokens to propagate beyond a single step. We propose
a training methodology that efficiently adapts masked diffusion language models
to incorporate SM. We demonstrate that training a 169M parameter model from
scratch with SM yields superior perplexity and MAUVE scores compared to bi-
nary masking baselines. Similarly, a pretrained model can be enhanced with SM
through continued pretraining. Finally, we finetune two state-of-the-art diffusion
models, Dream-7B and Dream-Coder-7B, with SM. SM consistently improves
performance across multiple coding benchmarks, particularly in high-throughput
settings.

def add(\n): ret a

def add(\n): ret urn

urn bdef a, a +badd(\n

\t

\t): ret

a, b

a, b

def add(\n):a, b

a

urn

D
ec

od
in

g
it
er

at
io

ns

Prompt

Response

(a) Decoding with binary masking (b) This work: Decoding with soft-masking

da\t\n and+
&+

urn=def add(\n): ret

def add(\n): ret

urn bdef a, a -badd(\n

\t

\t): ret

a, b

a, b

def add(\n): ret urn\ta, b

def add(\n): ret urn -\ta, b

def add(\n): ret -\ta, ab

def add(\n):a, b

ba

Figure 1: Illustrative answer generation using masked diffusion language models (MDLMs) via
iterative decoding with (a) standard binary masking or (b) our proposed soft-masking. Our soft-
masking enriches the feedback for the next decoding step by superposing the masked tokens with
the previously predicted top-k candidates, enabling more accurate and faster generation.

1 INTRODUCTION

Generative large language models (LLMs) have transformed natural language processing. LLMs
typically operate in an autoregressive (AR) mode (Vaswani et al., 2017; Brown et al., 2020), where
the next token in a sequence is predicted based on the previously generated tokens. While AR mod-
els have proven highly effective, their sequential nature makes inference computationally expensive,
leading to high latency and costs. These inference costs are particularly pronounced in large rea-
soning models (OpenAI, 2024; Guo et al., 2025; Qwen Team, 2024), where different solutions are
validated through sequential exploration via chain-of-thought (CoT) (Wei et al., 2022).

As a potential remedy, recent work has shown that incorporating continuous feedback, rather than
relying solely on discrete, sampled tokens, can improve AR model’s performance (Hao et al., 2024;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Zhuang et al., 2025; Zhang et al., 2025). Such continuous feedback encodes multiple potential
solutions in superposition (Zhu et al., 2025b), enabling simultaneous exploration of diverse paths
and thereby potentially reducing the number of generated tokens required. However, training AR
models with continuous feedback is slow, due to the sequential reliance on previous continuous
token outputs.

As a promising alternative, diffusion models—originally developed for continuous domains in vi-
sion (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020)—have recently been adapted
to natural language processing. These diffusion language models (DLMs) offer key advantages
over AR models, including accelerated sampling (Inception et al., 2025), controllable generation (Li
et al., 2022), bidirectional modeling, and built-in self-correction (Ye et al., 2024). Besides being
more data-efficient than AR-models in training (Ni, 2025; Prabhudesai et al., 2025), they are partic-
ularly beneficial in non-causal tasks such as coding (Nie et al., 2025; Gong et al., 2025b; Xie et al.,
2025). They consist of a forward process, which gradually corrupts data, and a backward process,
which iteratively reverses this corruption to generate coherent outputs.

Masked DLMs (MDLMs) have emerged as the most scalable and effective approach. They imple-
ment the forward process as a categorical transition function, mapping tokens to an absorption state,
typically represented by a [MASK] token (Austin et al., 2021a; Campbell et al., 2022; Lou et al.,
2024; Sahoo et al., 2024; Ou et al., 2024; Shi et al., 2024). During decoding, the model makes a
binary choice for each mask token: either replace it with a predicted token or retain the [MASK] (see
Figure 1a). This discrete formulation allows for improved training and has enabled the development
of large-scale MDLMs across both open-source (Gong et al., 2025a; Nie et al., 2025; Ye et al., 2025;
Xie et al., 2025) and commercial (Inception et al., 2025; DeepMind, 2025) initiatives.

Despite their scalability, MDLMs are fundamentally constrained by the binary unmasking process,
which discards valuable predictive information. Likewise, AR models commit to a single discrete
sampling decision, with no opportunity for refinement. Motivated by the success of continuous feed-
back mechanisms in AR models, which preserve and leverage uncertainty over multiple candidates,
we propose a new feedback mechanism for MDLMs that propagates this rich predictive information
throughout the generation process.

This work: Continuous feedback in MDLMs via soft-masking We introduce soft-
masking (SM), a simple yet effective mechanism for incorporating continuous feedback into
MDLMs, as illustrated in Figure 1b. During decoding, SM enriches the [MASK] state with a con-
vex combination of the top-k predicted tokens, weighted by their confidence scores. This allows
the model to retain and propagate partial information across decoding steps, rather than discard-
ing it through binary masking decisions. Our method integrates seamlessly into existing MDLM
architectures, requiring minimal adaptation. Our contributions are as follows:

• We propose soft-masking (SM), a novel decoding mechanism that enhances the expressive-
ness of the [MASK] token in MDLMs. SM only adds three additional parameters, which can
be efficiently learned together with the MDLM parameters using a parallelizable training
procedure that enables MDLMs to leverage the richer feedback.

• We show that a 169M-parameter MDLM with SM trained from scratch on OpenWebText
can enhance both validation perplexity and MAUVE scores in unconstrained generation.
Further, SM can be integrated into a pretrained MDLM via pretraining continuation for
only 100k steps.

• We demonstrate that SM generalizes to large-scale models by applying it to Dream-7B (Ye
et al., 2025) and Dream-Coder-7B (Xie et al., 2025). After minimal finetuning, SM im-
proves performance on HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021b)
code generation benchmarks (including their plus versions (Liu et al., 2023)), particularly
in high-throughput regimes with limited decoding iterations.

• SM can be readily integrated into other MDLM efficiency enhancement techniques, such
as unmasking and caching. We show that SM complements an advanced unmasking sched-
uler, ReMDM (Wang et al., 2025), further improving unconstrained text generation quality.
Moreover, SM can leverage caching and confidence-aware blockwise decoding from Fast-
dLLM (Wu et al., 2025a), particularly improving generations in high-throughput settings.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND: MASKED DIFFUSION LANGUAGE MODELS

We begin by formulating general diffusion models (Sohl-Dickstein et al., 2015) and continue with
the forward and backward diffusion processes in MDLMs (Gong et al., 2025a). We denote scalars
with lower-case letters (x), vectors with bold lower-case letters (x), sequences of length T with a
colon (e.g., x1:T), matrices with bold capital letters (X), and the transpose with X⊤.

Diffusion models describe a forward diffusion process as a Markov chain that progressively cor-
rupts the original data: q(x1:T |x0) =

∏T
t=1 q(xt|xt−1). Here, x0 ∼ qdata(x0) is drawn from the

data distribution and q(xt|xt−1) describes the transition probability at step t. The marginalized
target distribution (q(xT)) should be stationary and cheap to generate (e.g., a Gaussian distribu-
tion). A reverse diffusion process aims to reconstruct the original data with a parameterized function
pθ(x0:T) = pθ(xT)

∏T
t=1 pθ(xt−1|xt).

2.1 MDLM MODELING

Forward corruption We first focus on the corruption process for a single token; the extension to
sequences is discussed later. We represent language tokens as one-hot vectors x ∈ {0, 1}|V|, where
|V| represents the cardinality of the vocabulary. The transition function in MDLMs is defined such
that, at each step, the token either remains unchanged or is mapped to a designated absorption state:
[MASK] ∈ V . The transition can be expressed as q(xt|xt−1) = Cat(xt;Q

⊤
t xt−1), where Cat(·,p)

is the categorical distribution given a probability mass vector p ∈ ∆|V|−1, and [Qt]i,j denotes the
transition probability from token i to token j at time t. The marginal distribution after s steps is:

q(xs|x0) = Cat(xs|Q
⊤
s x0) = αsx0 + (1− αs)m,

where m is the mask token, Qs =
∏s

t=1 Qt, and αs describes the probability of retaining the
original state. The schedule is typically chosen such that αT = 0, ensuring that the token is absorbed
into the masking state with probability 1 at the final step T . For example, a linear masking schedule
with αt = (1− t/T) is a popular choice (Austin et al., 2021a; Gong et al., 2025a; Nie et al., 2025).

Reverse process Decoding aims to reverse the corruption process by iteratively denoising the
data, starting from the absorbed (masked) state at time step T . First, note that the forward transition
probability between two time steps 0 ≤ s < t ≤ T is given by:

q(xs|xt) = Cat(xs;Q
⊤
t|sxt),

where Qt|s = Q
−1

s Qt represents the transition matrix from step t back to step s. Assuming access
to the ground-truth token x0, the exact posterior transition from xt to xs can be computed via Bayes:

q(xs|xt,x0) =
q(xt|xs)q(xs|x0)

q(xt|x0)
=

{
αs−αt

1−αt
x0 +

1−αs

1−αt
m if xt = m,

x0 if xt ̸= m.

Since x0 is unknown during inference, we approximate the posterior using a learnable function
fθ(xt) that predicts the original token from the corrupted input:

q̂(xs|xt,x0) = pθ(xs|xt, fθ(xt)).

Here, a learnable function1 (fθ) approximates the ground-truth (x0); hence, it imitates the denoising
from step t to step 0. Substituting the approximation into the closed-form expression yields the
parametric backward transition:

pθ(xs|xt) =
αs − αt

1− αt
fθ(xt) +

1− αs

1− αt
m. (1)

1While original denoising models use time conditioning (fθ(xt, t)), Ou et al. (2024) present a method
without time conditioning. We omit time conditioning in our theoretical formulation. However, we show
experimentally that SM improves MDLMs with (Section 4.1) and without time conditioning (Section 4.2).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Reverse process in natural language processing The input consists of sequences of L tokens:
x1:L
0 . Decoding begins from a fully masked sequence: x1:L

T = m, ...,m. At each time step t,
the current sequence estimate is passed through a bidirectional model (e.g., a non-causal Trans-
former (Vaswani et al., 2017; Peebles & Xie, 2023)), yielding token-wise probability distributions:
p1:L
t−1 = gθ(x

1:L
t), where pl

t−1 ∈ ∆|V|−1 is the predicted probability mass vector on the |V|-
dimensional simplex for token l. Each probability mass vector (pl

t−1) is discretized using a sampling
strategy (e.g., nucleus or argmax), yielding x̃1:L

t−1. Describing the sampling function with h(·), we
can write the reverse process of the entire model as the functional composition of the sampling and
model forward pass: fθ = h ◦ gθ.

Training objective Given a linear schedule of αs, the parameters (θ) are optimized by minimizing:

L(θ) = −Et∼U(0,1),x0∼qdata(·),xt∼q(·|x0
)

[
1

t

L∑
i=1

1xi
t=mlog

(
(xi

0)
⊤gθ(x

i
0|x1:L

t)
)]

, (2)

where 1xi
t=m is the identity function. The loss L(θ) is an upper bound on the negative log likelihood

of the data distribution (Shi et al., 2024; Ou et al., 2024). U(0, 1) is the uniform distribution.

2.2 MDLMS IN PRACTICE

Unmasking strategies Equation 1 suggests that the model randomly decides—based on the noise
schedule αt—whether or not to replace a masked token with the predicted value fθ(xt). However,
many MDLMs use additional unmasking heuristics that improve the generation quality. One ap-
proach is to unmask a fixed number of tokens per step, guided not only by the noise schedule but
also by the model’s confidence. For example, at time t, Dream-7B (Ye et al., 2025) selects n ≈ L/T
tokens that have the lowest entropy values. Here, T is the integer number of diffusion steps. More
recent methods introduce exploratory (remasking) and accelerated (aggressive unmasking) decoding
stages (Wei et al., 2025; Wang et al., 2025). Rütte et al. (2025) introduce an interpolation between
masked and uniform diffusion, which introduces remasking already during the training stage.

Conditional generation Conditioning the generative process on a prompt (c1:Lc) is straightfor-
ward. For decoding, the prompt is simply prefixed to the (partially) masked solution at each iteration,
i.e., p1:L

t−1|c1:Lc = gθ([c
1:Lc ,x1:L

t]), where only the last L tokens are updated.

3 SOFT-MASKED DIFFUSION LANGUAGE MODELS

As elaborated above, the iterative decoding in MDLMs makes a binary decision: selecting either the
original mask or the token predicted by the denoising model (fθ). This binary choice results in a loss
of valuable contextual information for the masked tokens. To overcome this limitation, we propose
soft-masking (SM). SM augments the mask with intermediate context from the previous denoising
step, thereby preserving informative cues and providing a richer input for the next denoising step.

3.1 SOFT-MASKING (SM)

We introduce SM, illustrated in Figure 2, which enhances the denoising process in MDLMs. As
shown, the overall denoising process follows the standard framework of MDLMs. However, instead
of discarding previous predictions during masking or remasking, SM gently retains information from
the past predictions and incorporates them into subsequent decoding steps. This provides richer
feedback to guide the next denoising step. To enable this, SM relaxes the binary constraint on the
feedback tokens (xt−1) provided to the denoising model, allowing them to represent a distribution
of solutions, i.e., xl

t−1 ∈ ∆|V|−1 instead of the one-hot xl
t−1 ∈ {0, 1}|V |.

General formulation The feedback is formally defined as:

xl
t−1 = sm(x̂l

t−1,p
l
t−1) =

{(
1− λ(pl

t−1)
)
·m+ λ(pl

t−1)
∑

i∈top-k(pl
t−1)

πi · vi if x̂l
t−1 = m,

x̂l
t−1 if x̂l

t−1 ̸= m,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Embedding table

Context Answer

... ...

Attention (bidirectional)
+FFN

...

Embedding table+softmax

Sampling/argmax
Denoising
Transformer

Unmasking

...

Soft-masking (SM)

Continuous feedback

top-k &
normalization

Confidence-based
weighting

def add(\n): ret aa, b da\t\n and+urn=

ret urn\t a

ret urn\t a &+ ba

Figure 2: Iterative denoising in MDLMs using the proposed soft-masking (SM). Given a context,
the aim is to predict the answer via iterative denoising of an initially fully masked response. Here,
a bidirectional Transformer (fθ) performs a single denoising step. This output is passed through an
unmasking function that determines which tokens remain masked. Our proposed SM enriches the
masked tokens by superposing them with the normalized top-k tokens at each position, weighted by
a confidence parameter (λ). See Appendix A for an algorithmic description.

where pl
t−1 is the probability mass vector and x̂l

t−1 is the discrete output from the denoising pro-
cess. SM is applied only to masked tokens; previously predicted tokens remain unchanged. SM is
implemented as a convex combination of the mask token and a weighted superposition of the top-k
predicted tokens. Here, λ ∈ [0, 1) controls the amount of feedback, vi ∈ {0, 1}|V| is a one-hot
vector representing token i, and πi is the result of the probability mass vector being normalized over
the top-k tokens: πi = [pl

t−1]i/
∑

j∈top-k(pl
t−1)

[pl
t−1]j , which ensures that

∑
i πi = 1.

Confidence-based weighting In the following, we describe the dynamic weighting strategy for
SM. Intuitively, a higher confidence should correspond to a greater weight on the model’s output,
while a lower confidence should preserve more of the original mask token. To quantify confidence,
we use the negative entropy of the probability mass vector pl

t−1, denoted as −H(pl
t−1). To map

this confidence score to a weight in [0, ωs], we apply a scaled sigmoid function:

λ(pt−1) = ωs · σ
(
ωa

(
−H(pl

t−1)− ωb

))
. (3)

where σ(·) is the sigmoid function, and ωa and ωb control the steepness and offset, respectively. We
control the amplitude of λ using a scaling factor ωs ∈ [0, 1]. Finally, we train the parameters during
pretraining or finetuning.

3.2 LEARNING THE SM FEEDBACK

To teach the richer SM feedback to the model, we introduce a new training methodology that op-
timizes the SM parameters (ω) concurrently with the main backbone model’s parameters (θ). This
method allows the model to dynamically learn the optimal weighting between the mask token and
the predicted tokens for each position, while the backbone simultaneously adapts to the richer feed-
back. As illustrated in Algorithm 1, the training method is a two-pass process. Standard MDLMs
rely on the analytical tractability of the marginal distribution q(xt|x0) to enable efficient single-step
sampling during training. However, the SM introduces a dynamic dependency on the model’s inter-
mediate predictions, rendering the exact marginal distribution analytically intractable. Our two-pass
approach serves as an approximation of this feedback-augmented marginal distribution q̃(xt|x0).
Specifically, we define the effective input state x̃t = smω(xt, gθ(xt)), where xt ∼ q(·|x0), effec-
tively maximizing the standard variational lower bound (Equation 2) using this proxy state.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: Training with soft-masking (SM)
Input: Backbone gθ, training corpus qdata(x0), SM function with trainable parameters smω ,

sampling bounds 0 ≤ bl < bh ≤ 1, learning rates for backbone (ηbb) and SM (ηsm).
Output: Trained parameters for backbone (θ) and SM parameters (ω).

1 repeat
2 x1:L

0 ∼ qdata(·) ; // Draw samples from data distribution

3 t ∼ U(bl, bh) ; // Draw time step from bounded uniform distribution

4 x1:L
t ∼ q(·|x1:L

0) ; // Corrupting samples

5 θ̃ ← detach(θ) ; // Generate detached copy of backbone parameters

6 p̃1:L
t−1 ← gθ̃

(
x1:L
t

)
; // First model pass without gradient

7 p1:L
t−1 ← gθ

(
smω(x

1:L
t , p̃1:L

t−1)
)

; // Second model pass with SM and gradient

8 L(θ, ω)← 1
t

∑L
l=1 1xi

t=mlog
(
(xi

0)
⊤pi

t−1

)
; // Compute loss

9 Update θ and ω based on loss L with Adam optimizer using learning rates ηbb and ηsm;
10 until end training;

First, we approximate the probability distribution of the previous denoising step by passing the
corrupted data through the backbone without a gradient, yielding p̃1:L

t−1. This initial pass provides the
necessary self-conditioning signal (the soft-masked representation) for the second pass, as practiced
in (Chen et al., 2023). This distribution is then used to compute the soft-masked representation,
which is passed through the backbone for a second time. The overall loss L from this second pass
is used to update the learnable parameters for both the backbone (θ) and the SM function (ω) using
their respective learning rates, ηbb and ηsm. This approach can be highly parallelized with respect to
the sequence length, unlike AR training with continuous CoT.

Arriola et al. (2024) showed that a narrower sampling interval for t reduces the gradient variance
when optimizing L with batched gradient descent. Hence, we sample from the interval [bl, bh],
0 ≤ bl < bh ≤ 1. Moreover, following the approach of Chen et al. (2023), we activate SM with
probability psm ∈ [0, 1]. This prepares the model to cope with both soft-masked and standard inputs,
which is particularly necessary at the beginning of the denoising process.

3.3 SM AS AN INTERPOLATION BETWEEN ABSORPTION AND UNIFORM DIFFUSION

This section provides a conceptual interpretation of the proposed SM mechanism. To this end, we
consider two extreme values of the feedback-scaling parameter (λ = 0 and λ = 1) and simplify
the feedback to a single value (k = 1). First, assuming λ = 0 recovers vanilla MDLM. The model
can always revert to this behavior by setting the scaling factor ωs = 0. Second, λ = 1 feeds the
previously predicted token (based on argmax) back to the denoising model:

sm(x̂l
t−1,p

l
t−1)λ=1,k=1 =

{
vargmax(pi) if x̂l

t−1 = m,

x̂l
t−1 if x̂l

t−1 ̸= m.

A uniform DLM (Austin et al., 2021a) would receive the same feedback. However, the unmasking
strategy remains active. Hence, this corner case can be interpreted as a masked DLM with uniform
feedback for the masked states. This allows the model to explore different solutions through self-
correction, enabled in the masked regions. Note SM’s forward corruption process (λ = 1) deviates
from the uniform formulation: SM determines the distribution q(xt|x0) with the denoising model
(see lines 6 and 7 in Algorithm 1) rather than from a uniform categorical sampling.

Relaxing the scaling factor to take intermediate values λ ∈ [0, 1] can then be seen as an interpolation
between an MDLM and a mask-augmented uniform DLM. Importantly, this interpolation occurs in
the spatial embedding space. Why might it be beneficial to retain a portion of the mask token besides
attenuating low-confidence predictions? One reason is that many MDLMs are pretrained to predict
masked tokens, and the presence of the mask likely still carries useful positional or structural infor-
mation. This effect is particularly relevant for denoising models that do not use time conditioning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Unconstrained generation after pretraining from scratch. We report MAUVE (↑) and gen-
erative perplexity (↓) of L = 1024 generated tokens using MDLM (Sahoo et al., 2024) with binary
masking or our SM. Evaluations are tabulated by varying NFE budgets2. For unmasking, we use
either the standard or the more recent ReMDM (Wang et al., 2025); the highest scores are bolded.
Gain shows the performance improvement between the SM and the baseline MDLM. †Results of
evaluating the ground-truth data and equal-backbone AR model are taken from (Sahoo et al., 2024).

Gradient Forward MAUVE ↑ Generative perplexity ↓
Unmasking Feedback updates passes 1/8 1/4 1/2 1/1 1/8 1/4 1/2 1/1

Standard

Binary 1M 1M 0.017 0.025 0.036 0.034 60.02 54.95 52.36 50.46
Our SM (iso-compute) 0.5M 1M 0.143 0.417 0.498 0.596 41.08 31.97 27.36 24.63

Gain +0.126 +0.392 +0.462 +0.562 -18.93 -22.98 -24.99 -25.83
Our SM (iso-update) 1M 2M 0.155 0.383 0.535 0.602 39.61 30.74 26.12 23.53

Gain +0.138 +0.358 +0.499 +0.568 -20.41 -24.21 -26.23 -26.93

ReMDM

Binary 1M 1M 0.075 0.199 0.292 0.411 42.53 31.05 21.75 28.62
Our SM (iso-compute) 0.5M 1M 0.316 0.667 0.559 0.766 29.90 18.08 11.40 17.29

Gain +0.241 +0.468 +0.267 +0.355 -12.63 -12.97 -10.35 -11.33
Our SM (iso-update) 1M 2M 0.263 0.626 0.511 0.774 29.62 17.58 10.85 16.72

Gain +0.189 +0.427 +0.219 +0.363 -12.91 -13.48 -10.90 -11.90

AR (T = 1024)† 0.5M 0.5M 0.760 12.1

Data† 1.0 14.8

Table 2: MAUVE (↑) of unconstrained generation after pretraining continuation. Gain shows the
performance improvement between the SM and the binary MDLM with pretraining continuation.

Gradient NFE budget

Unmasking Feedback updates 1/8 1/4 1/2 1/1

Standard

Binary 1M 0.017 0.025 0.036 0.034
Binary 1M+100k 0.018(±0.000) 0.027(±0.005) 0.032(±0.003) 0.038(±0.002)

Our SM (iso-compute) 1M+50k 0.054(±0.009) 0.129(±0.029) 0.200(±0.038) 0.259(±0.024)

Gain +0.036 +0.101 +0.168 +0.221
Our SM (iso-update) 1M+100k 0.059(±0.007) 0.139(±0.021) 0.232(±0.026) 0.211(±0.145)

Gain +0.041 +0.112 +0.200 +0.173

ReMDM

Binary 1M 0.075 0.199 0.292 0.411
Binary 1M+100k 0.052(±0.005) 0.180(±0.030) 0.315(±0.032) 0.421(±0.021)

Our SM (iso-compute) 1M+50k 0.137(±0.011) 0.441(±0.064) 0.610(±0.020) 0.693(±0.033)

Gain +0.084 +0.262 +0.295 +0.272
Our SM (iso-update) 1M+100k 0.146(±0.014) 0.432(±0.035) 0.617(±0.020) 0.692(±0.034)

Gain +0.094 +0.252 +0.302 +0.271

4 EXPERIMENTS

General setup We begin by evaluating SM on a small-scale language modeling benchmark, using
a 169M-parameter MDLM (Sahoo et al., 2024) to demonstrate its benefits with both standard and
improved unmasking strategies. We then apply SM to the large-scale Dream-7B (Ye et al., 2025) and
Dream-Coder-7B (Xie et al., 2025) models, showing improvements on downstream coding tasks. In
addition to training from scratch, we assess the efficiency of adapting existing models via continued
pretraining (for small-scale models) or finetuning (for large-scale models). In the pretraining con-
tinuation and finetuning setup, the baseline models with binary masking are trained with the same
procedure for a fair comparison. Crucially, since our proposed training algorithm (Alg. 1) requires
two model forward passes per iteration (versus one in the standard training), we evaluate SM under
two distinct computational budgets: (1) Iso-update: We match the total number of gradient updates
(N). This isolates learning efficiency but requires roughly twice the wall-clock time for SM. (2)
Iso-compute: We match the total number of model forward passes. In this setting, SM is trained for
N/2 number steps, ensuring the total computational cost remains equivalent to the baseline.

4.1 LANGUAGE MODELING

Setup We evaluate SM on language modeling using a 169M-parameter MDLM (Sahoo et al.,
2024) trained on the OpenWebText (OWT) (Gokaslan & Cohen, 2019). The model utilizes a Dif-

2The NFE budget (Appendix B.2) is the ratio between the diffusion steps and the max generation length.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1.00 1.02 1.04 1.06 1.08 1.10
Training Step 1e6

22.0

22.5

23.0

Va
lid

at
io

n
Pe

rp
le

xi
ty

 (P
PL

)
MDLM
Our MDLM+SM

(a) Validation perplexity on OWT.

1.00 1.02 1.04 1.06 1.08 1.10
Training Step 1e6

0.00

0.25

0.50

0.75

1.00

Sc
al

in
g

Fa
ct

or

s

(b) SM’s learned scaling factor (ωs).

Figure 3: Continuing MDLM pretraining on OpenWebText. We show the average ± standard de-
viation (shaded) across 5 seeds. SM is configured with k = 3. (a) Our SM yields better (lower)
validation perplexity than binary masking. (b) The model learns to fully use SM by increasing its
influence over the scaling factor ωs.

fusion Transformer (DiT) backbone (Peebles & Xie, 2023), which integrates time-step conditioning
into an encoder-only transformer. We investigate two training regimes for SM (with k = 3): (1)
pretraining from scratch for up to 1M steps, and (2) efficient adaptation, where we apply continued
pretraining to a pretrained binary MDLM for an additional 100k steps. For evaluation, we report per-
plexity on the OWT validation set (computed via the two-pass SM objective). As a second measure,
we assess the unconstrained generation quality using both generative perplexity and the MAUVE
score (Pillutla et al., 2021), the latter serving as a robust metric for diversity and quality. We vary
the number of function evaluations (NFE) between 128 and 1024 (representing 1/8 to 1/1 of the
compute budget). Importantly, both the baseline MDLM and our MDLM with SM require the same
number of model passes. In addition to MDLM’s standard unmasking, we also evaluate the models
with a recent remasking strategy (ReMDM; Wang et al. 2025). Appendix B.1 provides additional
details on the experimental setup.

Results Table 1 shows that our SM model trained from scratch, both under the iso-compute and
iso-update budgets, consistently improves the MAUVE score (by up to +0.568 points) and the gen-
erative perplexity (by up to -26.93 points) when using standard unmasking. Interestingly, the iso-
compute SM model (with N/2=0.5M pretraining steps) even slightly outperforms the iso-update
model at certain lower NFE budgets (e.g., NFE 1/4). Thus, we observe that SM is particularly ef-
fective in compute-restricted training regimes. Moreover, SM can further benefit from advanced re-
masking strategies, surpassing ReMDM with the binary MDLM (by up to +0.468 MAUVE points),
and even outperforming the AR MAUVE score (0.760) at the highest compute budget (achieving
0.774). Table 5 in Appendix C.2 also shows that SM maintains the entropy. Additionally, our
MDLM with SM achieves superior OWT validation perplexities (21.47 in iso-update and 22.36 in
iso-compute), as shown in Appendix C.1.

Next, we demonstrate that SM can be efficiently integrated into a pre-existing binary MDLM via
continued pretraining for up to 100k steps. As shown in Figure 3a, our SM decreases the validation
perplexity on OWT (from 23.14 to 21.63). Binary MDLM (without SM) also improves the per-
plexity, but by a much smaller margin (from 23.14 to 22.88). Figure 3b shows that MDLM learns
to make use of the richer SM feedback by increasing the scale from initially near-zero to close to
1. The gain in validation perplexity transfers to unconstrained generation (Table 2) in pretraining
continuation too, where SM consistently improves the MAUVE score across all NFE budgets and
unmasking strategies. Finally, all observations regarding the MAUVE score transfer to generative
perplexities and entropy, as shown in Appendix C.2.

Ablations We evaluate our SM design choices on language modeling in Appendix C.3. We find
that using SM 80% of the time and k = 3 superposition yields the best validation perplexities.
Moreover, an alternative SM feedback with softmax (with a trainable temperature) instead of top-k
achieves competitive validation perplexities, at the cost of higher compute and memory demands.
Even though the softmax allows for propagating the gradients to the first model pass, making the
update based on both model passes does not improve the perplexities while increasing the compu-
tational cost. Finally, Appendix C.5 shows that the overhead in inference by SM is small (12%).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Accuracy (%) on coding tasks. Evaluations are tabulated by varying NFE budgets. We fine-
tune the models with 5 seeds and report the mean accuracy (± standard deviation). SM is configured
with k=1. Gain shows the comparison between the SM model and the finetuned baseline. The best
performing model is marked in bold. The learned SM parameters are given in Appendix C.10.

Dream-Coder-7B (instruct) Dream-7B (instruct)

NFE
budget Feedback FT

steps HumanEval HumanEval+ MBPP MBPP+ HumanEval HumanEval+ MBPP MBPP+

1/4

Binary - 25.0 25.0 27.4 29.4 18.9 17.1 26.6 30.2
Binary 33.5k 28.5(±1.3) 27.7(±1.8) 25.9(±1.5) 24.6(±1.7) 19.0(±1.7) 15.9(±2.8) 27.0(±1.6) 29.2(±1.5)

Our SM 33.5k 29.5(±1.8) 28.2(±1.7) 33.2(±1.8) 29.4(±1.9) 24.8(±1.8) 23.0(±1.3) 32.3(±1.3) 36.7(±1.0)

Gain +1.0 +0.5 +7.3 +4.8 +5.8 +7.1 +5.3 +7.5

1/2

Binary - 54.9 50.6 51.6 51.3 31.1 29.3 42.8 45.8
Binary 33.5k 53.8(±1.4) 49.3(±1.6) 49.8(±0.9) 53.2(±1.5) 33.0(±3.0) 29.5(±3.4) 43.1(±0.4) 39.6(±2.7)

Our SM 33.5k 57.2(±2.7) 52.6(±2.0) 56.2(±0.7) 56.4(±1.4) 38.3(±1.9) 33.8(±2.6) 48.4(±1.2) 54.7(±1.8)

Gain +3.4 +3.3 +6.4 +3.2 +5.3 +4.3 +5.3 +15.1

1/1

Binary - 75.0 69.5 65.8 70.4 57.9 53.0 57.8 63.5
Binary 33.5k 75.7(±1.7) 68.9(±2.0) 65.6(±0.8) 68.1(±1.1) 59.5(±1.8) 53.0(±1.0) 58.3(±0.1) 62.8(±0.7)

Our SM 33.5k 76.2(±1.4) 70.4(±1.3) 67.0(±0.7) 69.6(±0.9) 57.8(±1.9) 50.0(±0.7) 56.4(±1.2) 61.9(±0.8)

Gain +0.5 +1.5 +1.4 +1.5 -1.7 -3.0 -1.9 -0.9

4.2 CODE GENERATION

Setup We integrate SM into the state-of-the-art Dream-7B (Ye et al., 2025) and Dream-Coder-
7B (Xie et al., 2025) instruction-tuned models. For finetuning, we aim to use the same SFT datasets
as the original models. Dream-7B uses Tulu 3 (Lambert et al., 2025) and SmolLM2 (Allal et al.,
2025); Dream-Coder-7B uses Ling-Coder-SFT (Codefuse & Team, 2025). We deploy parameter-
efficient finetuning using weight-decomposed low-rank adaptation (DoRA; Liu et al. 2024) on 270k
curated training samples with a batchsize of 8, yielding 33.5k update steps. We test the models on
two coding tasks, HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021b), as well as on
their plus version (Liu et al., 2023). We report results in iso-update training, and show similar gains
in iso-compute in Appendix C.7. See Appendix B.2 for more details on the experimental setup.

60 90 120 150
Throughput (tokens per sec)

30

45

60

75

Ac
cu

ra
cy

 (%
)

Dream-Coder-FT (SM)
Dream-Coder-FT

(a) HumanEval

90 120 150 180
Throughput (tokens per sec)

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

Dream-Coder-FT (SM)
Dream-Coder-FT

(b) MBPP

Figure 4: Integrating SM into Fast-dLLM. We plot Dream-Coder-
7B performance vs. throughput with both binary feedback and our
SM. SM again excels in high-throughput settings.

Results The mean results are
given in Table 3, tabulated
based on the NFE budget of
the decoding. First, we see
that finetuned models (without
SM) can maintain the perfor-
mance of the original models,
validating our finetuning pro-
cedure. Second, the bene-
fits observed in small-scale lan-
guage modeling transfer to per-
formance gains in large-scale
models: the table shows a per-
formance boost on nearly all tasks (up to 11.3%). The gains are particularly prominent at lower NFE
budgets. Furthermore, we show that SM complements other efficiency-enhancement mechanisms.
Figure 4 reports the mean performance of the finetuned Dream-Coder-7B models, with and with-
out SM, when combined with Fast-dLLM’s blockwise caching and confidence-aware decoding (Wu
et al., 2025a). The performance is plotted as a function of the token throughput, which is indirectly
determined from the block length of the blockwise decoding—with longer blocks correlating with
higher throughputs. The benefits of SM become more promising at higher throughputs.

Ablations To validate our design choices, we perform extensive ablation studies on the Dream
models. In Appendix C.6, we evaluate SM on math tasks and notice similar performance gains. In
Appendix C.8, we vary the number of top-k contributions. We find that k = 1 is optimal for coding
tasks and k = 3 yields the best overall results. We also tested a trainable k selection, by replacing
the top-k filtering with a softmax that uses a trainable temperature. However, this did not improve
the performance. Finally, Appendix C.9 applies SM only in certain periods during denoising. We
find that SM is particularly beneficial in the first 20% of decoding steps.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 RELATED WORKS

Continuous feedback in AR COCONUT (Hao et al., 2024) feeds continuous token predictions
back into the model to enhance reasoning capabilities. This requires training from scratch—an in-
herently sequential process due to its reliance on previous continuous token outputs. To reduce
computational demands, many have proposed summarizing sequences of tokens into higher-level
continuous representations or concepts (LCM Team et al., 2024; Tack et al., 2025; Geiping et al.,
2025). Approximate training methods such as Jacobi iterations (Wu et al., 2025b) further mitigate
sequential training bottlenecks by iteratively refining AR thought tokens. More recent methods
feed weighted superpositions of token predictions back into the model without additional train-
ing (Zhuang et al., 2025; Zhang et al., 2025), enabling lightweight and training-free continuous
feedback. While these approaches can improve task performance, AR models often suffer from un-
reliable halting behavior, necessitating entropy-based heuristics to terminate decoding. In contrast,
our SM introduces continuous feedback directly into MDLMs, preserving parallelism during train-
ing and inference, incurring only constant overhead during training, and avoiding halting heuristics.

Discrete vs. continuous representations in diffusion modeling Continuous DLMs maintain a
continuous latent space throughout the diffusion process and perform a discretization step at the
final readout (Li et al., 2022; Dieleman et al., 2022; Gong et al., 2022; Strudel et al., 2022; Gong
et al., 2023; Gulrajani & Hashimoto, 2023); however, they generally achieve lower performance and
do not allow for adaptation from pretrained AR models. Several works explore hybrid represen-
tations. HART (Tang et al., 2025) augments a discrete AR-based image predictor with a residual
continuous diffusion model to correct quantization errors, but remains dependent on unidirectional
AR generation, limiting self-correction. Self-conditioning (Chen et al., 2023) is a closely related
approach that uses a similar two-pass training methodology in training. However, their use of con-
catenation increases the model complexity due to the resultant higher input dimensionality, a critical
architectural difference from our method. Furthermore, it does not inherently offer a mechanism
for a smooth adaptation. Sahoo et al. (2025) derive discrete uniform-state diffusion from contin-
uous Gaussian models, enabling faster training and generation, though scalability and downstream
performance remain unproven. Chao et al. (2025) propose fine-grained token representations using
l-dimensional vectors with base-b values, allowing partial unmasking during denoising, which is
most effective with many decoding steps (T ≫ L). In contrast, our SM approach improves decod-
ing performance while maintaining constant input dimensionality. By superposing the [MASK] token
and top-k predictions, SM introduces continuous feedback without increasing complexity.

Efficiency improvements of MDLMs dLLM-Cache (Liu et al., 2025) introduces caching to
MDLMs, maintaining an almost static cache for prompts and a dynamic cache for the responses.
This yields a speedup of up to 9× for long prompts at iso-accuracy. Semi-autoregressive generation
via block diffusion (Arriola et al., 2024; Nie et al., 2025), optionally combined with caching (Wu
et al., 2025a), offers speedups but compromises full bidirectionality. NFE efficiency and generation
quality have also been improved through dynamic unmasking strategies (Jin et al., 2025; Wei et al.,
2025; Wang et al., 2025), which adapt the masking schedule during decoding. These techniques are
complementary to our SM approach and can be readily integrated, as we have already demonstrated
by integrating ReMDM (Wang et al., 2025) and Fast-dLLM (Wu et al., 2025a) with SM.

6 CONCLUSION

We introduced soft-masking (SM), a lightweight mechanism for incorporating continuous feedback
into masked diffusion language models (MDLMs). By blending the [MASK] token with a convex
combination of top-k predictions during iterative decoding, SM enables more expressive and flexi-
ble updates without increasing model complexity. Applied to both small and large-scale MDLMs,
SM consistently improves performance across language modeling and coding tasks. These results
demonstrate that continuous feedback can enhance the capabilities of discrete diffusion models.

Limitations and future works Even though the training with SM is parallelizable in the sequence
length, it requires an additional forward pass, which increases the complexity. We see future work
in incorporating reinforcement learning-based methods (Black et al., 2023; Zhao et al., 2025; Zhu
et al., 2025a) to leverage the richer feedback.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data.
All experiments were conducted using publicly available models and datasets. The proposed method
is intended for research in code generation and was evaluated in controlled settings. Our focus on
improving model performance in low-compute budget environments was a central consideration to
mitigate environmental impact. The authors declare no known conflicts of interest.

REPRODUCIBILITY STATEMENT

This paper describes the proposed SM method, including the training Algorithm 1 in Section 3.
The setup used for training and evaluating our model on language modeling tasks is described in
Appendix B.1. The setup used for training and evaluating the Dream models for code generation
is available in Appendix B.2. The code is provided in the supplementary materials, along with the
required experimental environments. Moreover, the provided README.md gives a step-by-step
tutorial of how to apply soft-masking to the Dream models and reproduce all results in the paper.

ACKNOWLEDGMENTS

We thank Ronan Tanios for his contributions to the experimental evaluation. Moreover, we are
grateful to Abu Sebastian for the managerial support.

REFERENCES

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav,
Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. SmolLM2: When smol goes big – data-centric training of a small language model.
arXiv preprint arXiv:2502.02737, 2025. URL https://arxiv.org/abs/2502.02737.

Marianne Arriola, Aaron Gokaslan, Justin T. Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block Diffusion: Interpolating Between Autore-
gressive and Diffusion Language Models. In The Thirteenth International Conference on Learn-
ing Representations (ICLR), October 2024. URL https://openreview.net/forum?i
d=tyEyYT267x.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
Denoising Diffusion Models in Discrete State-Spaces. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 35, November 2021a. URL https://openreview.net
/forum?id=h7-XixPCAL.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021b. URL https://arxiv.org/ab
s/2108.07732.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training Diffusion
Models with Reinforcement Learning. In The Twelfth International Conference on Learning
Representations (ICLR), October 2023. URL https://openreview.net/forum?id=YC
WjhGrJFD.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models are Few-Shot Learners. In Advances in Neural Information

11

https://arxiv.org/abs/2502.02737
https://openreview.net/forum?id=tyEyYT267x
https://openreview.net/forum?id=tyEyYT267x
https://openreview.net/forum?id=h7-XixPCAL
https://openreview.net/forum?id=h7-XixPCAL
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://openreview.net/forum?id=YCWjhGrJFD
https://openreview.net/forum?id=YCWjhGrJFD

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Processing Systems (NeurIPS), volume 33, 2020. URL https://proceedings.neurip
s.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64
a-Paper.pdf.

Andrew Campbell, Joe Benton, and Valentin De Bortoli. A Continuous Time Framework for Dis-
crete Denoising Models. In Advances in Neural Information Processing Systems (NeurIPS), vol-
ume 35, 2022.

Chen-Hao Chao, Wei-Fang Sun, Hanwen Liang, Chun-Yi Lee, and Rahul G. Krishnan. Be-
yond Masked and Unmasked: Discrete Diffusion Models via Partial Masking. arXiv preprint
arXiv:2505.18495, May 2025. doi: 10.48550/arXiv.2505.18495. URL http://arxiv.org/
abs/2505.18495.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code. arXiv preprint arXiv:2107.03374, July 2021. doi:
10.48550/arXiv.2107.03374. URL http://arxiv.org/abs/2107.03374.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog Bits: Generating Discrete Data using
Diffusion Models with Self-Conditioning. In The Eleventh International Conference on Learning
Representations (ICLR), 2023. URL https://openreview.net/forum?id=3itjR9Qx
Fw.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training Verifiers to Solve Math Word Problems. arXiv preprint arXiv:2110.14168,
November 2021. doi: 10.48550/arXiv.2110.14168. URL http://arxiv.org/abs/2110
.14168.

Codefuse and Ling Team. Every sample matters: Leveraging mixture-of-experts and high-quality
data for efficient and accurate code LLM. arXiv preprint arXiv:2503.17793, 2025. URL https:
//arxiv.org/abs/2503.17793.

DeepMind. Gemini Diffusion, 2025. URL https://deepmind.google/models/gemin
i-diffusion/.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data. arXiv
preprint arXiv:2211.15089, December 2022. doi: 10.48550/arXiv.2211.15089. URL http:
//arxiv.org/abs/2211.15089.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up Test-Time Compute with
Latent Reasoning: A Recurrent Depth Approach. In ES-FoMo III: 3rd Workshop on Efficient
Systems for Foundation Models, 2025. URL https://openreview.net/forum?id=D6
o6Bwtq7h.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io
/OpenWebTextCorpus, 2019.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. DiffuSeq: Sequence to
Sequence Text Generation with Diffusion Models. In The Eleventh International Conference on
Learning Representations (ICLR), September 2022. URL https://openreview.net/for
um?id=jQj-_rLVXsj.

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2505.18495
http://arxiv.org/abs/2505.18495
http://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=3itjR9QxFw
https://openreview.net/forum?id=3itjR9QxFw
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2503.17793
https://arxiv.org/abs/2503.17793
https://deepmind.google/models/gemini-diffusion/
https://deepmind.google/models/gemini-diffusion/
http://arxiv.org/abs/2211.15089
http://arxiv.org/abs/2211.15089
https://openreview.net/forum?id=D6o6Bwtq7h
https://openreview.net/forum?id=D6o6Bwtq7h
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://openreview.net/forum?id=jQj-_rLVXsj
https://openreview.net/forum?id=jQj-_rLVXsj

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. DiffuSeq-v2: Bridging
Discrete and Continuous Text Spaces for Accelerated Seq2Seq Diffusion Models. In Findings of
the Association for Computational Linguistics: EMNLP 2023, December 2023. doi: 10.18653/v
1/2023.findings-emnlp.660. URL https://aclanthology.org/2023.findings-e
mnlp.660/.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling Diffusion Language
Models via Adaptation from Autoregressive Models. In The Thirteenth International Conference
on Learning Representations (ICLR), May 2025a. URL https://openreview.net/for
um?id=j1tSLYKwg8.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. DiffuCoder: Understanding and Improving Masked Diffusion Models for Code
Generation. arXiv preprint arXiv:2506.20639, June 2025b. doi: 10.48550/arXiv.2506.20639.
URL http://arxiv.org/abs/2506.20639.

Ishaan Gulrajani and Tatsunori Hashimoto. Likelihood-Based Diffusion Language Models. In Ad-
vances in Neural Information Processing Systems (NeurIPS), volume 37, November 2023. URL
https://openreview.net/forum?id=e2MCL6hObn¬eId=ueUWS1aqtE.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
Zhihong Shao, Zhuoshu Li, Ziyi Gao, et al. DeepSeek-R1 incentivizes reasoning in LLMs through
reinforcement learning. Nature, 645(8081):633–638, September 2025. ISSN 1476-4687. doi:
10.1038/s41586-025-09422-z. URL https://doi.org/10.1038/s41586-025-094
22-z.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training Large Language Models to Reason in a Continuous Latent Space. arXiv preprint
arXiv:2412.06769, December 2024. doi: 10.48550/arXiv.2412.06769. URL http://arxiv.
org/abs/2412.06769.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Advances
in Neural Information Processing Systems (NeurIPS), volume 34, 2020. URL https://proc
eedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179c
a4b-Paper.pdf.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xu-
ancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-Coder Technical Report. arXiv
preprint arXiv:2409.12186, November 2024. doi: 10.48550/arXiv.2409.12186. URL
http://arxiv.org/abs/2409.12186.

Labs Inception, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, Aditya Grover, and
Volodymyr Kuleshov. Mercury: Ultra-Fast Language Models Based on Diffusion. arXiv preprint
arXiv:2506.17298, 2025. doi: 10.48550/arXiv.2506.17298. URL http://arxiv.org/ab
s/2506.17298.

Xiangqi Jin, Yuxuan Wang, Yifeng Gao, Zichen Wen, Biqing Qi, Dongrui Liu, and Linfeng
Zhang. Thinking Inside the Mask: In-Place Prompting in Diffusion LLMs. arXiv preprint
arXiv:2508.10736, August 2025. doi: 10.48550/arXiv.2508.10736. URL http://arxi
v.org/abs/2508.10736.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm,
Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
Pushing frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2025.
URL https://arxiv.org/abs/2411.15124.

13

https://aclanthology.org/2023.findings-emnlp.660/
https://aclanthology.org/2023.findings-emnlp.660/
https://openreview.net/forum?id=j1tSLYKwg8
https://openreview.net/forum?id=j1tSLYKwg8
http://arxiv.org/abs/2506.20639
https://openreview.net/forum?id=e2MCL6hObn¬eId=ueUWS1aqtE
https://doi.org/10.1038/s41586-025-09422-z
https://doi.org/10.1038/s41586-025-09422-z
http://arxiv.org/abs/2412.06769
http://arxiv.org/abs/2412.06769
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
http://arxiv.org/abs/2409.12186
http://arxiv.org/abs/2506.17298
http://arxiv.org/abs/2506.17298
http://arxiv.org/abs/2508.10736
http://arxiv.org/abs/2508.10736
https://arxiv.org/abs/2411.15124

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

LCM Team, Loı̈c Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Be-
len Alastruey, Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R. Costa-jussà,
David Dale, Hady Elsahar, Kevin Heffernan, João Maria Janeiro, Tuan Tran, Christophe Rop-
ers, Eduardo Sánchez, Robin San Roman, Alexandre Mourachko, Safiyyah Saleem, and Holger
Schwenk. Large Concept Models: Language Modeling in a Sentence Representation Space.
arXiv preprint arXiv:2412.08821, December 2024. doi: 10.48550/arXiv.2412.08821. URL
http://arxiv.org/abs/2412.08821.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
LM Improves Controllable Text Generation. In Advances in Neural Information Processing Sys-
tems (NeurIPS), volume 36, October 2022. URL https://openreview.net/forum?i
d=3s9IrEsjLyk.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations (ICLR), 2024. URL https://openre
view.net/forum?id=v8L0pN6EOi.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS), 2023. URL
https://openreview.net/forum?id=1qvx610Cu7.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024. URL https://arxiv.org/abs/2402.09353.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang,
and Linfeng Zhang. dLLM-Cache: Accelerating Diffusion Large Language Models with Adaptive
Caching. arXiv preprint arXiv:2506.06295, May 2025. doi: 10.48550/arXiv.2506.06295. URL
http://arxiv.org/abs/2506.06295.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In Proceedings of the 41st International Conference on Machine Learning
(ICML), volume 235, July 2024. URL https://openreview.net/forum?id=CNicRI
VIPA.

Jinjie Ni. Diffusion Language Models are Super Data Learners, 2025. URL https://jinjie
ni.notion.site/Diffusion-Language-Models-are-Super-Data-Learner
s-239d8f03a866800ab196e49928c019ac. Notion Blog.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large Language Diffusion Models. In ICLR 2025 Workshop
on Deep Generative Model in Machine Learning: Theory, Principle and Efficacy, February 2025.
doi: 10.48550/arXiv.2502.09992. URL https://openreview.net/forum?id=wzl61t
IUj6.

OpenAI. Learning to reason with LLMs, September 2024. URL https://openai.com/ind
ex/learning-to-reason-with-llms/. https://openai.com/index/learning-to-reason-
with-llms/.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
Your Absorbing Discrete Diffusion Secretly Models the Conditional Distributions of Clean Data.
October 2024. URL https://openreview.net/forum?id=sMyXP8Tanm.

William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. pp. 4195–4205,
2023. URL https://openaccess.thecvf.com/content/ICCV2023/html/Peeb
les_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.
html.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaid Harchaoui. MAUVE: Measuring the gap between neural text and human text using

14

http://arxiv.org/abs/2412.08821
https://openreview.net/forum?id=3s9IrEsjLyk
https://openreview.net/forum?id=3s9IrEsjLyk
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2402.09353
http://arxiv.org/abs/2506.06295
https://openreview.net/forum?id=CNicRIVIPA
https://openreview.net/forum?id=CNicRIVIPA
https://jinjieni.notion.site/Diffusion-Language-Models-are-Super-Data-Learners-239d8f03a866800ab196e49928c019ac
https://jinjieni.notion.site/Diffusion-Language-Models-are-Super-Data-Learners-239d8f03a866800ab196e49928c019ac
https://jinjieni.notion.site/Diffusion-Language-Models-are-Super-Data-Learners-239d8f03a866800ab196e49928c019ac
https://openreview.net/forum?id=wzl61tIUj6
https://openreview.net/forum?id=wzl61tIUj6
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openreview.net/forum?id=sMyXP8Tanm
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

divergence frontiers. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems (NeurIPS), 2021. URL https://open
review.net/forum?id=Tqx7nJp7PR.

Mihir Prabhudesai, Mengning Wu, Amir Zadeh, Katerina Fragkiadaki, and Deepak Pathak. Diffu-
sion Beats Autoregressive in Data-Constrained Settings. arXiv preprint arXiv:2507.15857, Au-
gust 2025. doi: 10.48550/arXiv.2507.15857. URL http://arxiv.org/abs/2507.158
57.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report.
arXiv preprint arXiv:2412.15115, January 2025. doi: 10.48550/arXiv.2412.15115. URL http:
//arxiv.org/abs/2412.15115.

Qwen Team. QwQ: Reflect Deeply on the Boundaries of the Unknown, November 2024.
URL h t t p s : / / q w e n l m . g i t h u b . i o / b l o g / q w q- 3 2 b - p r e v i e w /.
https://qwenlm.github.io/blog/qwq-32b-preview/.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019. URL https://storage.prod.resea
rchhub.com/uploads/papers/2020/06/01/language-models.pdf.

Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas
Hofmann. Generalized Interpolating Discrete Diffusion. arXiv preprint arXiv:2503.04482, June
2025. doi: 10.48550/arXiv.2503.04482. URL http://arxiv.org/abs/2503.04482.

Subham Sekhar Sahoo, Marianne Arriola, and Yair Schiff. Simple and Effective Masked Diffusion
Language Models. In Advances in Neural Information Processing Systems (NeurIPS), volume 38,
2024. URL https://openreview.net/forum?id=L4uaAR4ArM.

Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin Chiu, and
Volodymyr Kuleshov. The Diffusion Duality. arXiv preprint arXiv:2506.10892, June 2025. doi:
10.48550/arXiv.2506.10892. URL http://arxiv.org/abs/2506.10892.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and General-
ized Masked Diffusion for Discrete Data. In Advances in Neural Information Processing Systems
(NeurIPS), 2024. URL https://openreview.net/forum?id=xcqSOfHt4g.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsuper-
vised Learning using Nonequilibrium Thermodynamics. In Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML), volume 32, June 2015. URL https:
//proceedings.mlr.press/v37/sohl-dickstein15.html. ISSN: 1938-7228.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
International Conference on Learning Representations (ICLR), October 2020. URL https:
//openreview.net/forum?id=PxTIG12RRHS.

Robin Strudel, Corentin Tallec, Florent Altché, Yilun Du, Yaroslav Ganin, Arthur Mensch, Will
Grathwohl, Nikolay Savinov, Sander Dieleman, Laurent Sifre, and Rémi Leblond. Self-
conditioned Embedding Diffusion for Text Generation. arXiv preprint arXiv:211.04236, Novem-
ber 2022. doi: 10.48550/arXiv.2211.04236. URL http://arxiv.org/abs/2211.04236.

Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao,
Yuandong Tian, Jason Weston, and Xian Li. LLM Pretraining with Continuous Concepts.
arXiv preprint arXiv:2502.08524, February 2025. doi: 10.48550/arXiv.2502.08524. URL
http://arxiv.org/abs/2502.08524.

15

https://openreview.net/forum?id=Tqx7nJp7PR
https://openreview.net/forum?id=Tqx7nJp7PR
http://arxiv.org/abs/2507.15857
http://arxiv.org/abs/2507.15857
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115
https://qwenlm.github.io/blog/qwq-32b-preview/
https://storage.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf
https://storage.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf
http://arxiv.org/abs/2503.04482
https://openreview.net/forum?id=L4uaAR4ArM
http://arxiv.org/abs/2506.10892
https://openreview.net/forum?id=xcqSOfHt4g
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
http://arxiv.org/abs/2211.04236
http://arxiv.org/abs/2502.08524

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang,
Han Cai, Yao Lu, and Song Han. HART: Efficient Visual Generation with Hybrid Autoregressive
Transformer. In The Thirteenth International Conference on Learning Representations (ICLR),
2025. URL https://openreview.net/forum?id=q5sOv4xQe4.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. In Advances in Neural In-
formation Processing Systems (NeurIPS), volume 30, 2017. URL https://proceedings.
neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c
4a845aa-Paper.pdf.

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking Discrete
Diffusion Models with Inference-Time Scaling. arXiv preprint arXiv:2503.00307, May 2025. doi:
10.48550/arXiv.2503.00307. URL http://arxiv.org/abs/2503.00307.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models. In Advances in Neural Information Processing Systems (NeurIPS), volume 36, October
2022. URL https://openreview.net/forum?id=_VjQlMeSB_J.

Qingyan Wei, Yaojie Zhang, Zhiyuan Liu, Dongrui Liu, and Linfeng Zhang. Accelerating Diffusion
Large Language Models with SlowFast Sampling: The Three Golden Principles. arXiv preprint
arXiv:2506.10848, June 2025. doi: 10.48550/arXiv.2506.10848. URL http://arxiv.org/
abs/2506.10848.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV
Cache and Parallel Decoding. arXiv preprint arXiv:2505.22618, July 2025a. doi: 10.48550/arX
iv.2505.22618. URL http://arxiv.org/abs/2505.22618.

Haoyi Wu, Zhihao Teng, and Kewei Tu. Parallel Continuous Chain-of-Thought with Jacobi Iteration,
June 2025b. URL http://arxiv.org/abs/2506.18582. arXiv:2506.18582 [cs].

Zhihui Xie, Jiacheng Ye, Lin Zheng, Jiahui Gao, Jingwei Dong, Zirui Wu, Xueliang Zhao,
Shansan Gong, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream-Coder 7B: An Open Dif-
fusion Language Model for Code. arXiv preprint arXiv:2509.01142, September 2025. doi:
10.48550/arXiv.2509.01142. URL http://arxiv.org/abs/2509.01142.

Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Jiahui Gao, Han Shi, Chuan Wu, Xin Jiang,
Zhenguo Li, Wei Bi, and Lingpeng Kong. Diffusion of Thought: Chain-of-Thought Reasoning in
Diffusion Language Models. Advances in Neural Information Processing Systems (NeurIPS), 37,
December 2024. URL https://proceedings.neurips.cc/paper_files/paper
/2024/hash/be30024e7fa2c29cac7a6dafcbb8571f-Abstract-Conference.
html.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7B: Diffusion Large Language Models. arXiv preprint arXiv:2508.15487, August
2025. doi: 10.48550/arXiv.2508.15487. URL http://arxiv.org/abs/2508.15487.

Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
and Xin Eric Wang. Soft Thinking: Unlocking the Reasoning Potential of LLMs in Continuous
Concept Space. arXiv preprint arXiv:2505.15778, May 2025. doi: 10.48550/arXiv.2505.15778.
URL http://arxiv.org/abs/2505.15778.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling Reasoning in Dif-
fusion Large Language Models via Reinforcement Learning. arXiv preprint arXiv:2504.12216,
June 2025. doi: 10.48550/arXiv.2504.12216. URL http://arxiv.org/abs/2504.122
16.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. LLaDA 1.5: Variance-Reduced Prefer-
ence Optimization for Large Language Diffusion Models. arXiv preprint arXiv:2505.19223, May
2025a. doi: 10.48550/arXiv.2505.19223. URL http://arxiv.org/abs/2505.19223.

16

https://openreview.net/forum?id=q5sOv4xQe4
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/2503.00307
https://openreview.net/forum?id=_VjQlMeSB_J
http://arxiv.org/abs/2506.10848
http://arxiv.org/abs/2506.10848
http://arxiv.org/abs/2505.22618
http://arxiv.org/abs/2506.18582
http://arxiv.org/abs/2509.01142
https://proceedings.neurips.cc/paper_files/paper/2024/hash/be30024e7fa2c29cac7a6dafcbb8571f-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/be30024e7fa2c29cac7a6dafcbb8571f-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/be30024e7fa2c29cac7a6dafcbb8571f-Abstract-Conference.html
http://arxiv.org/abs/2508.15487
http://arxiv.org/abs/2505.15778
http://arxiv.org/abs/2504.12216
http://arxiv.org/abs/2504.12216
http://arxiv.org/abs/2505.19223

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Reasoning
by Superposition: A Theoretical Perspective on Chain of Continuous Thought. arXiv preprint
arXiv:2505.12514, May 2025b. doi: 10.48550/arXiv.2505.12514. URL http://arxiv.or
g/abs/2505.12514.

Yufan Zhuang, Liyuan Liu, Chandan Singh, Jingbo Shang, and Jianfeng Gao. Text Generation
Beyond Discrete Token Sampling. arXiv preprint arXiv:2505.14827, May 2025. doi: 10.48550/a
rXiv.2505.14827. URL http://arxiv.org/abs/2505.14827.

17

http://arxiv.org/abs/2505.12514
http://arxiv.org/abs/2505.12514
http://arxiv.org/abs/2505.14827

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Background: Masked Diffusion Language Models 3

2.1 MDLM Modeling . 3

2.2 MDLMs in Practice . 4

3 Soft-Masked Diffusion Language Models 4

3.1 Soft-Masking (SM) . 4

3.2 Learning the SM Feedback . 5

3.3 SM as an Interpolation Between Absorption and Uniform Diffusion 6

4 Experiments 7

4.1 Language Modeling . 7

4.2 Code Generation . 9

5 Related Works 10

6 Conclusion 10

A Inference with SM 19

B Experimental setup 19

B.1 Language Modeling . 19

B.2 Code Generation . 20

C More Results and Ablations 23

C.1 Language Modeling: OWT Validation Perplexity 23

C.2 Language Modeling: Generative Perplexity and Entropy 23

C.3 Language Modeling: Training Share, Top-k, Softmax, and Gradient Updates 24

C.4 Language Modeling: Inference Speed . 25

C.5 Language Modeling: SM Visualization . 26

C.6 Mathematical Reasoning . 26

C.7 Coding: Iso-Compute Models . 26

C.8 Coding: Top-k And Trainable Softmax Temperature 26

C.9 Coding: Time-dependent Masking . 27

C.9.1 Early vs. Late Stage SM Impact . 28

C.9.2 When Is SM Most Beneficial? . 29

C.10 Coding: Learned SM-feedback Parameters . 29

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2: Inference with soft-masking (SM)
Input: Backbone gθ, SM function with parameters smω , generation length L, number of

denoising steps T .
Output: Generated sequence x̂1:L

0 .

1 x1:L
T ←m,m, ...,m ; // Initialize sequence with full masks

2 repeat
3 p1:L

t−1 ← gθ
(
x1:L
t

)
; // Backbone pass with SM

4 x̃1:L
t−1 ← sample(p1:L

t−1); // Sample from backbone distribution (e.g., nucleus)

5 x̂1:L
t−1 ← unmask(x̃1:L

t−1,p
1:L
t−1, t, T, L); // Unmasking (e.g., based on entropy)

6 x1:L
t−1 ← smω(x̂

1:L
t ,p1:L

t) ; // Computing SM feedback

7 t← t− 1
8 until t=0;

A INFERENCE WITH SM

Algorithm 2 describes the inference procedure with SM.

B EXPERIMENTAL SETUP

This appendix provides details on the experiments conducted for language modeling and code gen-
eration. All experiments were run on 1–2 compute nodes with 1–8 NVIDIA A100 GPUs, each with
80 Gigabytes of VRAM.

B.1 LANGUAGE MODELING

Pretraining from scratch The pretraining experiments follow the setup by Sahoo et al. (2024).
We use a bidirectional Transformer backbone with 12 layers, 12 attention heads, and 768 hidden
dimensions. The model is tokenized using the GPT-2 tokenizer (Radford et al., 2019). Pretraining
is performed on the same OpenWebText (OWT) (Gokaslan & Cohen, 2019) split, with the last 100k
documents reserved for validation. We use an AdamW optimizer with a linear learning warm-up
for the first 2500 steps, and then keeping it constant at ηbb =3e-4 and ηsm =1e-2 for the backbone
and the SM parameters, respectively. We train the model for 1M training steps using a batchsize of
512, which yields 262B tokens seen during training. The dropout rate is set at 0.1. Training was
performed on 2 compute nodes, each with 8 A100 GPUs (80 Gigabytes of VRAM each), using a
batchsize of 32 per device and deploying gradient accumulation to achieve an effective batchsize of
512.

Pretraining continuation Our starting checkpoint was pretrained on OWT for 1M steps and was
released by Sahoo et al. (2024). We train the model for 100k training steps using the same hyperpa-
rameters as in pretraining from scratch. We train each model with 5 different seeds (1, 2, 3, 4, 5) to
account for training variability. Training was performed on 4 A100 GPUs (80 Gigabytes of VRAM
each) using a batchsize of 32 per device and deploying gradient accumulation to achieve an effective
batchsize of 512. Pretraining one model took approximately 64 hours and 139 hours for binary and
SM, respectively.

Soft-masking parameterization For the SM feedback, we add a trainable module to the model.
This module contains all SM logic and augments the input embeddings with SM before the main
forward process. We initialize the three SM-feedback parameters with the parameters given in Ap-
pendix B.2. We have a few imposed constraints on these values: ωs ∈ [0, 1], ωa ≥ 0, and ωb ≤ 0.
To account for these constraints, we apply simple re-parameterizations during training:

• ωs is passed through a sigmoid, ensuring it remains in [0, 1].

• ωa and ωb (negative version) are each passed through a softplus, guaranteeing non-
negativity.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Before inference, the learned parameters are de-parameterized: we take the direct output of the
optimization, apply the inverse transforms, and for ωb additionally negate the result so that it respects
the ωb ≤ 0 constraint. All other SM parameters (i.e., k) are specified in our added module. We
simply perform a forward pass through this module to get the mixing weights for the new input
embeddings.

Generative perplexity, entropy, and MAUVE in unconstrained generation Our unconstrained
generation evaluation follows the experimental setup by Wang et al. (2025). We perform uncon-
strained generation of 5000 samples (L = 1024) per model with a batchsize of 1 using nucleus
sampling with p = 0.9. We use GPT-2 large for measuring the generative perplexity. Moreover, we
use GPT-2 large as the embedding model for MAUVE score computation, where we set the MAUVE
scaling hyperparameter to 5. Concerning ReMDM unmasking, we use the max-capped schedule
(ηcap = 0.04) for fast sampling (T < L) and the loop-strategy (ton = 0.55, toff = 0.05, α(ton) =
0.9, ηcap = 0.02) for inference-time scaling (T ≥ L).

B.2 CODE GENERATION

This appendix describes the details of our finetuning experiments on Dream-7B and Dream-Coder-
7B.

Backbone models We use the pretrained Dream-7B (Ye et al., 2025) and Dream-Coder-7B (Xie
et al., 2025) backbones, respectively. Both of these are 7B parameter models that are adapted from
the Qwen2.5 family (Qwen et al., 2025; Hui et al., 2024). For both models, we use the instruction-
tuned versions.

Tasks We primarily evaluate on four code synthesis benchmarks:

• HumanEval Chen et al. (2021): a benchmark of 164 Python programming problems de-
signed to test a model’s ability to write correct and functional code from natural language
specifications.

• MBPP Austin et al. (2021b): a benchmark consisting of 974 “Mostly Basic Programming
Problems,” each specified in natural language and accompanied by input–output test cases,
targeting introductory-level programming tasks. We only perform evaluation with the 500
samples in the test subset. It is important to note that some works report higher scores for
the Dream models on the MBPP task. This is a result of using a hand-checked, ”sanitized”
subset of the data, instead of the standard lm-eval version that we used.

• EvalPlus: HumanEval+ and MBPP+ Liu et al. (2023): Extended benchmarks involving
adding more unique test cases and correcting any inaccurate ground-truth solutions.

For our experiments, we use the standard instruct implementations of these benchmarks as
implemented by lm-evaluation-harness at the time of writing. For HumanEval+, we
created a custom instruct version of the task, using the same prompt as humaneval_inst
ruct. All tasks were evaluated in a zero-shot setting with a temperature of 0.1, a top-p value of
0.9, and the entropy-based unmasking algorithm. The HumanEval tasks were evaluated with a max
generation length of 768, and the MBPP tasks were evaluated with a generation length of 512.

NFE Budget MDLMs typically have a maximum generation length as a parameter during gener-
ation. For our experiments, we use 768 for HumanEval(+) and 512 for MBPP(+). These models
also have a parameter that quantifies the number of diffusion steps that should be taken to unveil all
tokens. Typically, diffusion models set the same number of steps as the number of maximum tokens.
In these cases, exactly one token is unmasked at each diffusion step.

Decreasing the number of diffusion steps leads to a much more efficient computation—by unmask-
ing more than one token each step. From a computational cost perspective, this is essentially a
linear relationship. If four tokens are unmasked at each denoising step, the generation will hap-
pen 4× faster than if only one is sampled each step. This leads us to define the NFE budget of a
generation:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Given a fixed-length generation task with a max number of tokens, the NFE budget of the generation
will be:

NFE budget =
of diffusion steps

max # of tokens
(4)

In our experiments, we discuss NFE budgets of 1/4, 1/2, and 1/1. If the NFE budget is 1/n, it means
that, on average, n tokens are unmasked per step.

General setup and hyperparameters We aimed to keep the finetuning implementation as close
to the original Dream-7B (Ye et al., 2025) SFT implementation as possible. Due to the fact that the
exact SFT implementation code is unavailable, we use the DiffuLLaMa code (Gong et al., 2025a)
and the Dream paper (Ye et al., 2025) for reference. Algorithm 1 displays an overview of the
algorithm that we use. The only change for scaling the algorithm for finetuning larger models is
that, rather than updating the full weights, we update only the weights of a light-weight parameter-
efficient finetuning (PEFT) module. As our PEFT module, we use a DoRA adaptor with parameters:
rank r = 16 and α = 16. We apply the module only to the attention matrices: ["q_proj","k
_proj","v_proj","o_proj"]. When finetuning the SM versions, we only use the two pass
approach and activate SM with psm = 0.5. We didn’t see as much of an effect as language modeling
with varying this value. We use an AdamW optimizer with cosine scheduling, a 0.03 warmup ratio
and a max gradient norm of 7.0. The learning rates are capped at ηbb =1e-5 and ηsm =1e-2 for the
DoRA and the SM parameters, respectively. The finetuning is performed with an effective batch size
of 8 on one A100 40GB GPU and takes about 71 hours for 33.5k gradient steps.

Training corpus For the training corpus, we aimed to use the same datasets that were used by the
Dream models (Ye et al., 2025; Xie et al., 2025) in the SFT phase of their Instruct model training.

• Dream-7B The authors report instruction-tuning with ...1.8M instruction-response pairs
from Tulu 3 (Lambert et al., 2025) and SmolLM2 (Allal et al., 2025)... We use the same mix.
For the Tulu 3 data, we use allenai/tulu-3-sft-mixture, consisting of 939,000
pairs in their training set. Since there is no validation set, we hold out a random 1% of
these pairs for validation. For the SmolLM2 data, we use HuggingFaceTB/smoltalk,
consisting of both a training set with 1.04M pairs and a test set with 54.9k pairs. We used
the defined test set for validation. These datasets are the concatenated and shuffled to make
up our training corpus.

• Dream-Coder-7B For the Coder model, Xie et al. (2025) specify explicitly that they use
inclusionAI/Ling-Coder-SFT (Codefuse & Team, 2025) for their SFT training.
We use the same dataset. This dataset consists of 4.48M pairs. We hold out a random 1%
at the beginning to be used for validation.

Preprocessing The preprocessing of these question-answer pairs is executed as follows:

1. Max train/validation size. We first sample 300,000 datapoints to use for training and 500
to use for evaluation.

2. Context and response splitting. All datapoints contain a sequence of user and assistant
messages. We consider the last assistant message to be the response and all other previous
messages to make up the context. We apply the respective models’ chat template to the
messages before tokenization.

3. Filtering the dataset. We conduct dataset filtering on three different attributes of the data:
(1) inputs > 2048 tokens; (2) responses < 5 tokens; (3) any examples with tool-calling
(i.e., using <tool call> and </tool call>). After filtering, we are typically left with ap-
proximately 270,000 context-response pairs. While this varies with our sampling seed, the
total number of tokens in our training set is often just under 200 million. These 200 million
tokens consist of a fifty-fifty split between prompt and response tokens.

4. Padding with <eos> tokens. After finetuning, we want the diffusion model to retain its
ability to decide when to end its generation process. In MDLMs, this is typically done by
predicting <eos> tokens for all the end positions that the model does not want to use. In
order to ensure this is a part of the training process we add nend ∼ Uniform(0, 50) <eos>

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

tokens to the end of each training sample. 3 The amount of padding that is added to the
training set varies for each sample.

5. Partially masking the responses for training. We only apply masks to the response
tokens during the training process. This is performed in the following way: First, as Algo-
rithm 1 describes, a mask probability value t ∼ Uniform(bl, bh) is sampled. This value t is
then used as the masking probability: a fraction t of the response tokens are masked for the
loss calculation. Arriola et al. (2024) found that sampling extremely low/high t can lead to
high variance in the gradient norms, making training quite difficult. For this reason, we use
a clipped noise schedule of (bl, bh) = (0.2, 0.8). The masks are sampled uniquely for each
sample.

SM-feedback parameter initialization As mentioned in Section 3.1, we introduced a mapping
from the entropy to the amount of feedback:

λl(pl
t−1) = ωs · σ

(
ωa

(
−H(pl

t−1)− ωb

))
. (5)

These parameters: ωa, ωb and ωs are learnable during the training process. We ensure that the scale
value, s, is initialized close to 0 at the start (slightly larger due to the sigmoid reparameterization
discussed in Appendix B.1. This ensures that the model only adds SM-feedback if it learns that
this is optimal via the finetuning process. For the steepness and center of the sigmoid, we conduct
a small statistical analysis of the expected entropy distribution. Although the theoretical range of
−H(pl

t−1) is [− log(|V|), 0], in practice we observed that 95% of values were above LB ≈ −1.5.
For this reason, we initialize the center of the sigmoid at b = LB/2 and choose a = −10/LB.
Effectively, this normalizes the negative entropy to be between [0, 1] before applying a sigmoid of
a′ = 10, b′ = 0.5. We found that the learning rate for the hyperparameters needed to be set much
higher than for the DoRA adaptor in order for them to be able to traverse the entire range of options.
The rate was set to ηsm =1e-2 for the training process.

3It is not documented exactly how Dream performs this step, but for LLaDa, the authors describe always
training with 2048 tokens—padding all responses until this point. Unfortunately, since these tokens must be
considered in the loss, a large amount of these tokens can very much dilute the loss calculation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C MORE RESULTS AND ABLATIONS

C.1 LANGUAGE MODELING: OWT VALIDATION PERPLEXITY

In this appendix, we benchmark the validation perplexity of SM against state-of-the-art methods.
We note that, in contrast to standard baselines, SM necessitates two model passes for perplexity
evaluation. As demonstrated in Table 4, our method achieves superior performance compared to all
other diffusion models in the iso-update regime. Furthermore, even under the stricter iso-compute
constraint, SM outperforms MDLM and SEDD and remains competitive with GIDD+.

Table 4: Validation perplexity on OWT. †Results for AR and SEDD were taken from (Sahoo et al.,
2025).

Gradient updates Forward passes Training tokens PPL

AR† 0.5M 0.5M 262B 17.54
SEDD† (Lou et al., 2024) 1M 1M 262B ≤ 24.10
MDLM† (Sahoo et al., 2024) 1M 1M 262B ≤ 23.21
GIDD+ (Rütte et al., 2025) 1M 1M 262B ≤ 22.29
Our MDLM+SM (iso-compute) 0.5M 1M 131B ≤ 22.36
Our MDLM+SM (iso-update) 1M 2M 262B ≤ 21.47

C.2 LANGUAGE MODELING: GENERATIVE PERPLEXITY AND ENTROPY

This section analyzes the generative perplexity and the entropy observed during unconstrained gen-
eration. Table 5 shows the generative perplexity and the entropy when training MDLM with SM
from scratch. The reported generative perplexity is repeated from Table 1 to facilitate comparison.
As shown, our SM maintains an entropy on par with the binary masking baseline. For ReMDM
unmasking, SM shows its lowest entropy at the 1/2 NFE budget (5.234 and 5.217 for iso-compute
and iso-update, respectively). While still being higher than binary masking entropy (5.209), this in-
dicates a highly low-diversity output, which likely explains the observed degradation in the MAUVE
score, despite the simultaneously low generative perplexity (11.40 and 10.85). This suggests that
the ReMDM unmasking process might require specific hyperparameter tuning to balance diversity
with human-like text generation (MAUVE).

Table 6 and Table 7 respectively show the generative perplexity and entropy for the continuation of
pretraining. Here, too, SM consistently improves the generative perplexity while maintaining the
entropy.

Table 5: Generative perplexity (↓) and entropy (↑) with pretraining from scratch. We perform un-
constrained generation of L = 1024 tokens using MDLM (Sahoo et al., 2024) with binary masking
or our SM. Evaluations are tabulated by varying NFE budgets. For unmasking, we use either the
standard or the more recent ReMDM (Wang et al., 2025); the highest scores are bolded. Gain shows
the performance improvement between the SM and the baseline MDLM.

Gradient Forward Generative Perplexity ↓ Entropy ↑
Unmasking Feedback updates passes 1/8 1/4 1/2 1/1 1/8 1/4 1/2 1/1

Standard

Binary 1M 1M 60.02 54.95 52.36 50.46 5.508 5.482 5.464 5.450
Our SM (iso-compute) 0.5M 1M 41.08 31.97 27.36 24.63 5.496 5.448 5.409 5.374

Gain -18.93 -22.98 -24.99 -25.83
Our SM (iso-update) 1M 2M 39.61 30.74 26.12 23.53 5.488 5.438 5.398 5.357

Gain -20.41 -24.21 -26.23 -26.93

ReMDM

Binary 1M 1M 42.53 31.05 21.75 28.62 5.424 5.336 5.209 5.368
Our SM (iso-compute) 0.5M 1M 29.90 18.08 11.40 17.29 5.424 5.334 5.234 5.349

Gain -12.63 -12.97 -10.35 -11.33
Our SM (iso-update) 1M 2M 29.62 17.58 10.85 16.72 5.416 5.323 5.217 5.338

Gain -12.91 -13.48 -10.90 -11.90

AR (T = 1024) 12.1 5.22

Data 14.8 5.44

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 6: Generative perplexity (↓) with pretraining continuation. We perform unconstrained gener-
ation of L = 1024 tokens using MDLM (Sahoo et al., 2024) with binary masking or our SM. For
unmasking, we use either standard or ReMDM (Wang et al., 2025); the highest scores are bolded.
Gain shows the performance improvement between the SM and the binary MDLM with pretraining
continuation.

Pretraining Number of function evaluations (NFEs)

Unmasking Feedback steps 1/8 1/4 1/2 1/1

Standard

Binary 1M 60.02 54.95 52.36 50.46
Binary 1M+100k 59.99(±0.68) 54.71(±0.55) 52.15(±0.69) 50.63(±0.72)

Our SM (iso-compute) 1M+50k 51.10(±0.89) 43.25(±0.80) 39.44(±0.74) 37.46(±0.80)

Gain -8.89 -11.46 -12.71 -13.18
Our SM (iso-update) 1M+100k 50.99(±0.41) 42.75(±0.39) 38.56(±0.43) 35.81(±1.24)

Gain -9.00 -11.97 -13.59 -14.82

ReMDM

Binary 1M 42.53 31.05 21.75 28.62
Binary 1M+100k 42.85(±0.68) 31.07(±0.39) 21.74(±0.38) 28.65(±0.33)

Our SM (iso-compute) 1M+50k 39.61(±0.87) 26.29(±0.73) 17.65(±0.47) 22.47(±0.36)

Gain -3.24 -4.78 -4.08 -6.18
Our SM (iso-update) 1M+100k 39.52(±0.33) 25.93(±0.22) 17.23(±0.16) 22.10(±0.21)

Gain -3.33 -5.14 -4.51 -6.54

Table 7: Entropy (↑) with pretraining continuation. We perform unconstrained generation of L =
1024 tokens using MDLM (Sahoo et al., 2024) with binary masking or our SM. For unmasking, we
use either standard or ReMDM (Wang et al., 2025).

Pretraining Number of function evaluations (NFEs)

Unmasking Feedback steps 1/8 1/4 1/2 1/1

Standard

Binary 1M 5.508 5.482 5.464 5.450
Binary 1M+100k 5.503(±0.005) 5.477(±0.006) 5.458(±0.005) 5.447(±0.007)

Our SM (iso-compute) 1M+50k 5.534(±0.004) 5.503(±0.004) 5.480(±0.003) 5.467(±0.007)

Our SM (iso-update) 1M+100k 5.542(±0.003) 5.509(±0.003) 5.485(±0.004) 5.453(±0.036)

ReMDM

Binary 1M 5.424 5.336 5.209 5.368
Binary 1M+100k 5.423(±0.007) 5.333(±0.007) 5.200(±0.005) 5.361(±0.005)

Our SM (iso-compute) 1M+50k 5.476(±0.006) 5.396(±0.008) 5.302(±0.005) 5.410(±0.004)

Our SM (iso-update) 1M+100k 5.482(±0.005) 5.404(±0.004) 5.312(±0.003) 5.416(±0.005)

C.3 LANGUAGE MODELING: TRAINING SHARE, TOP-K, SOFTMAX, AND GRADIENT
UPDATES

This appendix ablates the SM training probability (psm) and the top-k value in the language mod-
eling experiments. Recall that k is the number of predicted tokens—generated from the previous
step—that will be combined with the mask token. We start with a default configuration of psm = 0.8
and k = 3 and vary each parameter separately. As shown in Figure 5a, increasing the SM training
probability from 0.5 to 0.8 improves the performance. This is likely due to the model learning to
leverage continuous feedback more effectively, as a higher probability means it is exposed to the
soft-masking mechanism more frequently during training. Increasing the SM training probability to
1 is detrimental, as the model loses its ability to handle binary masking, which is essential for the
initial decoding steps.

Figure 5b shows that the perplexity improves when increasing k from 1 to 5, with only a marginal
gain observed between k = 3 and k = 5. Beyond the top-k study, we investigated an alternative
SM mechanism using a trainable softmax temperature. This method calculates probabilities using a
learned temperature applied across the entire vocabulary, V , letting the model scale the range of its
own feedback. In Figure 5b, we denote this ablation k = |V| to signify that it considers the entire
vocabulary. As shown, this method can slightly improve the perplexity. Crucially, the softmax
mechanism is differentiable (in contrast to the non-differentiable top-k selection), which allows for
the backpropagation of gradients to the first model pass. However, we did not observe any further
improvements in perplexity when applying the gradients on both forward passes (see the “k = |V|
(two updates)”).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Overall, we decided to use the top-k = 3 option as the final configuration. The softmax approach,
while theoretically interesting, comes with increased compute and memory demands (due to storing
|V|-dimensional vectors) and did not show a conclusive benefit in downstream coding performance
(see Appendix C.8).

1.00 1.01 1.02 1.03 1.04 1.05
Training Step 1e6

21.75

22.00

22.25

22.50

22.75

23.00

23.25

Va
lid

at
io

n
Pe

rp
le

xi
ty

 (P
PL

) psm = 0.5
psm = 0.8
psm = 1.0

(a) SM training share

1.00 1.01 1.02 1.03 1.04 1.05
Training Step 1e6

21.5

22.0

22.5

23.0

Va
lid

at
io

n
Pe

rp
le

xi
ty

 (P
PL

) k = 1
k = 3
k = 5
k = | |
k = | | (two updates)

(b) SM feedback and gradient updates

Figure 5: Ablation study language modeling on OWT. Default SM parameters are psm = 0.8 and
k = 3.

C.4 LANGUAGE MODELING: INFERENCE SPEED

This appendix analyzes the inference time for both SM and binary masking when unconditionally
generating samples using L = 1024 diffusion steps on an NVIDIA A100 GPU. We use the inference
script provided by ReMDM (Wang et al., 2025). The setup uses ancillary sampling, where the back-
bone’s forward pass is not called if the predictive logits have not changed in the previous iteration
(i.e., caching). SM is configured with k = 3. We measure the time using Python’s cProfile.

Figure 6 shows that SM yields a small overhead of 12.5% (22.26 s vs. 19.78 s). One can see that
checking the activation change (‘torch.allclose‘) yields a major overhead in both configurations.
Diving a bit deeper, one can notice that the MDLM with SM calls the backbone more often than
binary masking (651 vs. 636 calls). This is likely because the more detailed input representation
from SM causes the state to change more frequently, resulting in fewer cache hits. Besides, SM
slightly increases the complexity on two fronts. First, computing the SM distribution requires a total
of 1.61 s (0.00248 s per call), which is dominated by the top-k computation. Moreover, the sparse
embedding (a weighted sum of k+1 tokens) is slightly more complex than the standard embedding
(a single token lookup), increasing the per-call time for the backbone by 1.7% (from 0.01728 s to
0.01757 s per call). In summary, the 2.48 s total overhead from SM is primarily composed of the
1.61 s for the SM calculation, with the remaining time due to a 1.7% increase in per-call backbone
cost and a 2.4% increase in the total number of backbone calls. Despite the small overhead, the
generation quality is significantly increased, as can be seen in Table 2.

BM SM0

5

10

15

20

Cu
m

ul
at

iv
e

Ti
m

e
(s

)

1.91s 2.24s

10.99s (636 calls) 11.44s (651 calls)

6.76s (1024 calls) 6.84s (1024 calls)

1.61s (650 calls)
Total: 19.66s

Total: 22.13s
Function Component

Overhead (Other)
Backbone
torch.allclose
Soft-masking

Figure 6: Cumulative time for unconditionally generating L=1024 tokens on an NVIDIA A100 GPU
using standard unmasking.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.5 LANGUAGE MODELING: SM VISUALIZATION

This appendix provides further insight into SM’s decoding dynamics. As an illustrative example,
we analyze an unconstrained generation trajectory of L = 8 tokens over T = 8 steps. Note that
we use a standard sampling schedule without caching or confidence-based unmasking heuristics.
As shown in Figure 7, SM’s confidence (indicated by color intensity) generally increases over the
denoising steps. However, high SM confidence does not strictly dictate the final outcome: the top-1
predicted token within the SM evolves over time, and the final sampled token can differ from the
highly confident SM prediction of the previous step (e.g., the transition from ”search” to ”word” at
t = 3 for the second token).

t=8 the the the the the the find the

t=7 find find find find search to find out

t=6 search search search search search to find their

t=5 search search search search search to find their

t=4 search search search search search to find their

t=3 search word search engine search to find their

t=2 search word search word search to find their

t=1 search word search word search to find their

t=0 search word search word search to find their
0.0

0.2

0.4

0.6

0.8

1.0

SM
 confidence

Figure 7: Unconstrained generation trajectory of L = 8 tokens over T = 8 steps using an MDLM
with Soft-Masking (trained from scratch, iso-compute, 500k steps). Green-shaded cells indicate
masked tokens where SM is active; color intensity corresponds to the SM confidence, with darker
green indicating higher certainty. The text inside these cells displays the current top-1 predicted
token. Bold, unshaded text represents tokens that have been unmasked (sampled) and fixed.

C.6 MATHEMATICAL REASONING

We also perform experiments on mathematical reasoning tasks GSM8k (Cobbe et al., 2021) and
Math-500 (Lightman et al., 2024). These evaluations are shown in Table 8. Both evaluations were
performed with lm-evaluation-harness in a zero-shot setting. The max generation length
for GSM8k was 256, and for Math-500 it was set to 512. These values were the same as the default
ones used by Dream-7B in their original evaluation scripts. Since the MATH tasks are more difficult,
the model often needs more generation space to come to the final answer.

C.7 CODING: ISO-COMPUTE MODELS

Table 9 shows SM’s performance in the iso-compute training setup. Note that in this more restricted
setup, the model does only see half of the data, as there is no data repetition in finetuning. While the
variance across seeds increased slightly, we still observe consistent gains with SM, primarily in low
NFE budgets.

C.8 CODING: TOP-k AND TRAINABLE SOFTMAX TEMPERATURE

We also perform ablation tests on k. For these tests, we finetune four models, each with the exact
same configuration, but with one key exception: we train each of these models with a different
k-value ∈ [1, 3, 5, 10]. We use the same seed for all models to ensure the same training data and
initial setup.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 8: Accuracy (%) on math tasks. Evaluations are displayed under varying computational NFE
budgets. We finetune the models with 5 seeds and report the mean accuracy (± standard deviation).
SM is configured with k=3. Gain shows the comparison between the SM model and the finetuned
baseline.

Dream-7B

NFE
budget Feedback FT

steps GSM8k Math-500

1/4

Binary - 57.8 14.2
Binary 33.5k 59.5(±1.1) 17.3(±1.2)

Our SM 33.5k 62.3(±2.3) 19.8(±2.1)

Gain +2.8 +2.5

1/2

Binary - 76.0 36.6
Binary 33.5k 76.5(±1.6) 36.3(±0.8)

Our SM 33.5k 79.4(±0.5) 38.8(±1.8)

Gain +2.9 +2.5

1/1

Binary - 82.0 45.6
Binary 33.5k 82.9(±1.0) 42.7(±1.4)

Our SM 33.5k 84.0(±0.7) 41.4(±1.2)

Gain +1.1 -1.3

Table 9: Accuracy (%) on coding tasks. SM has been finetuned in the iso-compute training setting.
Evaluations are tabulated by varying NFE budgets. We finetune the models with 5 seeds and report
the mean accuracy (± standard deviation). SM is configured with k=1. Gain shows the comparison
between the SM model and the finetuned baseline. The best performing model is marked in bold.

Dream-Coder-7B (instruct) Dream-7B (instruct)

NFE
budget Feedback FT

steps HumanEval HumanEval+ MBPP MBPP+ HumanEval HumanEval+ MBPP MBPP+

1/4

Binary - 25.0 25.0 27.4 29.4 18.9 17.1 26.6 30.2
Binary 33.5k 28.5(±1.3) 27.7(±1.8) 25.9(±1.5) 24.6(±1.7) 19.0(±1.7) 15.9(±2.8) 27.0(±1.6) 29.2(±1.5)

Our SM 16.75k 30.4(±1.9) 29.0(±1.3) 27.8(±1.9) 28.8(±3.7) 24.8(±5.7) 22.4(±4.7) 28.2(±1.9) 36.1(±2.0)

Gain +1.9 +1.3 +1.9 +4.3 +5.8 +6.5 +1.2 +6.9

1/2

Binary - 54.9 50.6 51.6 51.3 31.1 29.3 42.8 45.8
Binary 33.5k 53.8(±1.4) 49.3(±1.6) 49.8(±0.9) 53.2(±1.5) 33.0(±3.0) 29.5(±3.4) 43.1(±0.4) 39.6(±2.7)

Our SM 16.75k 59.4(±2.7) 54.3(±1.9) 49.8(±0.5) 55.2(±1.7) 38.5(±2.7) 33.9(±2.8) 44.3(±2.4) 53.6(±2.8)

Gain +5.6 +5.0 0.0 +2.1 +5.5 +4.4 +1.2 +14.0

1/1

Binary - 75.0 69.5 65.8 70.4 57.9 53.0 57.8 63.5
Binary 33.5k 75.7(±1.7) 68.9(±2.0) 65.6(±0.8) 68.1(±1.1) 59.5(±1.8) 53.0(±1.0) 58.3(±0.1) 62.8(±0.7)

Our SM 16.75k 75.9(±1.4) 68.5(±0.7) 66.6(±1.2) 68.6(±1.2) 58.0(±2.9) 50.7(±3.3) 57.8(±1.2) 62.2(±0.8)

Gain +0.2 -0.4 +1.0 +0.5 -1.5 -2.3 -0.5 -0.6

We also train a fifth model with a trainable softmax temperature. This method uses probabilities
calculated with a learned temperature instead of using the top-k predicted tokens, letting the model
scale the range of it’s own feedback. In the results table, we call this ablation k = |V |
The results given in Table 10 illustrate a degrading performance with higher k values, with k = 1
and k = 3 having the highest average performance. However, all k ablations perform better than
both of our baselines on average. This further illustrates the success of our proposed method.

C.9 CODING: TIME-DEPENDENT MASKING

We explored three methods of time-dependent (TD) feedback. By time-dependence, we mean scal-
ing the amount of SM feedback as a function of the point in the decoding process (i.e. t). The basic
assumption here is that, the model may benefit from having more or less feedback at different steps
in the diffusion process. For the following, let t = T, ..., 1 be our current denoising step, with T

being the first step in the reverse process. Let g(p) = ωs · σ
(
ωa

(
−H(pl

t−1)−ωb

))
be the default

(non-time-dependent) defined in equation 3.

1. No TD. In this adaptation, we apply no time-dependent feedback modification. SM is
applied exactly as described above.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Binary feedback SM feedback with top-k

No FT 33.5 FT steps 33.5k FT steps

Task NFE
budget - - k = 1 k = 3 k = 5 k = 10 k = |V|

1/4 18.9 17.7 25.6 23.8 24.4 20.1 25.0
Humaneval 1/2 31.1 33.5 35.4 36.0 35.4 34.1 34.1

1/1 57.9 57.3 60.4 56.1 60.4 63.4 58.5

1/4 26.6 27.2 32.8 31.4 27.8 27.6 27.2
MBPP 1/2 42.8 43.6 49.6 48.0 45.4 45.6 44.4

1/1 57.8 58.4 56.2 57.6 57.2 56.8 57.8

1/4 57.8 60.0 63.3 62.9 63.3 60.9 62.3
GSM8k 1/2 76.0 78.7 80.3 79.8 80.9 81.7 78.9

1/1 82.0 83.5 82.9 84.6 84.2 83.6 84.0

1/4 14.2 18.6 21.8 22.0 20.6 19.2 20.2
Math-500 1/2 36.6 37.0 35.4 41.4 40.4 39.0 37.2

1/1 45.6 42.0 38.4 41.2 43.2 43.2 44.4

Avg. All 45.6 46.5 48.5 48.7 48.6 47.9 47.8

Table 10: Comparison of different finetuned (FT) models, each trained with a different k value.
The k = |V| ablation is trained and evaluated with a learnable softmax temperature. Evaluations
are performed on all three computational budgets and four math and coding evaluation tasks. The
binary baselines are also included for comparison. We see that k = 1, 3 and 5 perform best, with
degrading performance at higher k values. The best performing model is highlighted in bold, and
the second best is underlined.

2. Stepwise TD feedback function. This time-dependent feedback defines a threshold value
0 ≤ t′ ≤ T . At the threshold, the model switches between SM and Binary as follows:

Binary→SM stepwise TD function: λl(pl
t−1) = g(p) · 1(t≤t′)

SM→Binary stepwise TD function: λl(pl
t−1) = g(p) · 1(t≥t′)

3. Linear TD feedback function. For the last formulation, we add a linear time-dependence
to the feedback magnitude. Again, this entails a model switch from SM to Binary, or vice
versa. The switch happens with a linear transition function:

Binary→SM linear TD function: λl(pl
t−1) =

(
1− t

T

)
[g(p)]

SM→Binary linear TD function: λl(pl
t−1) =

(
t

T

)
[g(p)]

Note that these expressions are written this way because, in the reverse process, the time index t
decreases from T → 1. Although we did not explicitly finetune the models to incorporate external
time-dependence (TD) in the feedback function, we perform ablation studies on the TD during
inference.

C.9.1 EARLY VS. LATE STAGE SM IMPACT

We first look at a simple comparison of whether SM is more beneficial at the early or late stages
of denoising. To test this, we use the stepwise feedback function: Specifically, we compare the
SM→Binary and the Binary→SM stepwise TD functions. We define each with thresholds set such
that 80% of denoising steps use SM and the remaining 20% use Binary:

1. Binary→SM stepwise TD feedback with threshold t′ = 0.8: SM only during the last
80% of the denoising steps.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

2. SM→Binary stepwise TD feedback with threshold t′ = 0.2: SM only during the first
80% of the denoising steps.

The results given in Table 11 evaluate both approaches, comparing them with both binary baselines.
We can clearly see that ablation (2) performs significantly better than ablation (1), suggesting that
SM is necessary during the early denoising steps.

Binary feedback SM feedback TD

No FT 33.5 FT steps 33.5k FT steps

Task - - Binary→SM SM→Binary

Humaneval 18.9 19.0(±1.7) 17.4(±0.9) 24.8(±1.1)

MBPP 26.6 27.0(±1.6) 25.2(±1.3) 30.9(±0.5)

GSM8k 57.8 59.5(±1.1) 59.3(±1.1) 61.6(±2.5)

Math-500 14.2 17.3(±1.2) 18.2(±0.8) 20.2(±1.9)

Avg. 29.4 31.4 30.0 34.4

Table 11: Comparison of whether SM is more beneficial at the early or later stages of the denoising
process. Both ablations Binary→SM and SM→Binary involve a denoising process in which 80%
of the steps are with SM and the remaining 20% are with binary masking. We find that placing the
SM steps at the beginning of denoising results in a much greater performance boost. These ablations
are compared with our fully binary baselines. The two ablation columns are the mean performance
of the finetuned SM models with k=3 and a stepwise time-dependence. For each task, the best
performing model is highlighted in bold. These evaluations are performed at an NFE budget of 1/4.

C.9.2 WHEN IS SM MOST BENEFICIAL?

After confirming that SM is necessary during the early denoising steps, we can start looking at
the exact steps of the denoising where SM is more beneficial. To further understand this time-
dependence, we compare five forms of our SM→Binary TD feedback: (1) no time-dependence
(TD); (2) linear SM→Binary TD; (3)-(5) SM→Binary stepwise TD feedback with thresholds of
t′ = 0.2, t′ = 0.5, and t′ = 0.8.

The results are given in Table 12. We tabulate with the mean of the finetuned binary models to show
that all given TD ablations of SM still perform better than the binary feedback.

Binary feedback SM feedback with top-k

No FT 33.5 FT steps 33.5k FT steps

Task No TD No TD No TD Linear t′ = 0.2 t′ = 0.5 t′ = 0.8

Humaneval 18.9 19.0(±1.7) 24.8(±1.1) 22.4(±1.2) 24.8(±1.1) 24.8(±1.1) 24.8(±1.1)

MBPP 26.6 27.0(±1.6) 30.8(±0.5) 28.4(±1.0) 30.9(±0.5) 30.7(±0.5) 30.6(±0.6)

GSM8k 57.8 59.5(±1.1) 62.3(±2.3) 61.6(±0.8) 61.6(±2.5) 61.8(±2.2) 59.8(±1.9)

Math-500 14.2 17.3(±1.2) 19.8(±2.1) 20.4(±1.4) 20.2(±1.9) 19.8(±1.4) 18.2(±1.8)

Avg. 29.4 31.4 34.4 33.2 34.4 34.3 33.3

Table 12: Comparison of varying forms of TD. All TD functions transition from SM→Binary
with different processes. These ablations are compared with our binary baselines. All SM abla-
tion columns are the mean performance of the finetuned SM models with k=3 and the associated
TD. For each task, the best performing model is highlighted in bold.

C.10 CODING: LEARNED SM-FEEDBACK PARAMETERS

As we discussed in Section 3.1, we add the SM-feedback parameters: SM-scaling = ωs, SM-
offset = ωb, and SM-steepness = ωa to the computation graph, allowing the optimizer to train these
parameters. We also add the softmax temperature for our k = |V| ablation (Section C.8). The

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

progression of these parameters throughout the full training of our SM-FT models is illustrated in
Figure 8. We find that the learned scale is much lower than in the language modeling. This is likely
due to the absence of time conditioning. Since the model has no other cues telling it at what stage it
is at in the decoding and/or which tokens are actually masked, it relies on the existence of the mask
tokens for this information.

Number of Training Steps
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tr
an

sp
ar

en
cy

 S
ca

le

s

Number of Training Steps
7

6

5

4

3

2

1

Tr
an

sp
ar

en
cy

 O
ffs

et

b

0 5000 10000 15000 20000 25000 30000 35000
Number of Training Steps

5

6

7

8

9

10

Tr
an

sp
ar

en
cy

 S
te

ep
ne

ss

a

0 5000 10000 15000 20000 25000 30000 35000
Number of Training Steps

0.2

0.4

0.6

0.8

1.0

So
ftm

ax
 Te

m
pe

ra
tu

re

k=1 k=3 k=5 k=10 tunable temperature (k = |V|)

Figure 8: Plots of all four tunable hyperparameters over all of my SM-FT runs and ablations. We
show the evolution of the SM-scale (top-left), the SM-offset (top-right), the SM-steepness (bottom-
left), and the tunable softmax temperature (bottom-right) (for the k = |V | ablation described in
Section C.8).

30

	Introduction
	Background: Masked Diffusion Language Models
	MDLM Modeling
	MDLMs in Practice

	Soft-Masked Diffusion Language Models
	Soft-Masking (SM)
	Learning the SM Feedback
	SM as an Interpolation Between Absorption and Uniform Diffusion

	Experiments
	Language Modeling
	Code Generation

	Related Works
	Conclusion
	blueInference with SM
	Experimental setup
	Language Modeling
	Code Generation

	More Results and Ablations
	blueLanguage Modeling: OWT Validation Perplexity
	blueLanguage Modeling: Generative Perplexity and Entropy
	Language Modeling: Training Share, Top-k, Softmax, and Gradient Updates
	blueLanguage Modeling: Inference Speed
	blueLanguage Modeling: SM Visualization
	Mathematical Reasoning
	blueCoding: Iso-Compute Models
	Coding: Top-k And Trainable Softmax Temperature
	Coding: Time-dependent Masking
	Early vs. Late Stage SM Impact
	When Is SM Most Beneficial?

	Coding: Learned SM-feedback Parameters

