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ABSTRACT

Federated learning (FL) enables multiple clients to train a shared model without
sharing raw data, but gradients can still leak sensitive information through inversion
and membership inference attacks. Differential privacy (DP) mitigates this risk by
clipping gradients and adding calibrated noise, but most DP-FL methods rely on
static noise and clipping schedules. Such rigid designs fail to account for client het-
erogeneity, changing convergence dynamics, and the growth of cumulative privacy
loss. To address these challenges, we propose FEDMAP, a closed-loop framework
for adaptive differential privacy in FL. FEDMAP integrates three components.
First, a client-side MetaNet predicts clipping bounds and noise scales (Ct, σt) from
gradient statistics using a lightweight pretrained BERT-tiny backbone, enabling
effective adaptation across communication rounds. Second, a server-side Rényi DP
accountant tracks heterogeneous privacy costs, computes the global expenditure
εglobal, and broadcasts it as a budget signal that constrains cumulative loss and
guides client adaptation. Third, a global feedback regularization mechanism com-
bines local penalties on per-round privacy cost with global penalties from εglobal,
ensuring alignment between client adaptation and the overall budget. Experiments
show that FEDMAP improves privacy compliance, and offers stronger robustness
against attacks compared with baselines.

1 INTRODUCTION
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Figure 1: Design of FEDMAP Framework.

Federated learning (FL) (McMahan et al., 2017;
Nguyen et al., 2021) allows multiple clients to
collaboratively train a shared model without di-
rectly sharing their local data. This paradigm is
important in domains such as healthcare, speech
processing, and mobile sensing, where raw data
are highly sensitive (Yu et al., 2020; Khan et al.,
2021; Cui et al., 2021). Although FL reduces
data exposure, it does not prevent information
leakage from shared updates. Recent work
shows that adversaries can reconstruct private
data through gradient inversion (Zhu et al., 2019;
Geiping et al., 2020; Yin et al., 2021) or infer
whether samples were used in training through
membership inference attacks (MIA) (Shokri et al., 2017; Bertran et al., 2023; Thaker et al., 2025).
These threats highlight the need for stronger privacy mechanisms in FL.

Differential privacy (DP) (Dwork & Roth, 2014) is a standard approach to protect client data by clip-
ping gradients and adding calibrated noise. DP-SGD (Abadi et al., 2016) and DP-FedAvg (McMahan
et al., 2018) provide formal guarantees by applying fixed clipping bounds and noise scales. However,
static schedules are not well suited for real federated environments. They ignore client heterogeneity,
changing convergence rates, and evolving attack surfaces. As a result, they often trade off model
utility against privacy in an inefficient way. Some recent studies propose adaptive or nonuniform
budget allocation (Li et al., 2022; Kiani et al., 2025), but these approaches are largely heuristic,
centrally managed, and unable to capture real-time dynamics at the client level. Moreover, existing
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methods provide limited control over how cumulative privacy loss evolves, which makes long-term
budget regulation difficult.

To address these challenges, we propose FEDMAP (Federated Meta-driven Adaptive Privacy), a
closed-loop framework for adaptive differential privacy in FL. As shown in Figure 1, FEDMAP
integrates three key components. First, a client-side MetaNet predicts clipping bounds and noise
scales (Ct, σt) from gradient statistics. MetaNet employs a lightweight BERT-tiny backbone with
frozen intermediate layers and is pretrained on synthetic gradient sequences, which equips it with
prior knowledge and improves stability in the early rounds of training. Second, a server-side Rényi
DP accountant accurately tracks heterogeneous privacy costs across rounds and converts them into
user-level (ε, δ) guarantees. The accountant computes the global expenditure εglobal from a lookup
table and broadcasts it as a budget signal that constrains cumulative privacy loss and guides client
adaptation of (Ct, σt) in subsequent rounds. Third, a global feedback regularization mechanism
couples local penalties on per-round privacy cost with global penalties derived from εglobal, ensuring
that client-side adaptation remains aligned with the overall budget. This closed-loop design allows
clients to dynamically calibrate (Ct, σt) according to both their local training dynamics and the
global privacy constraint, thereby improving the utility-privacy trade-off.

Our main contributions in this work are as follows: (1) We propose FEDMAP, a unified framework
for adaptive and client-specific differential privacy in federated learning. (2) We design a MetaNet
module that uses pretrained BERT-tiny with frozen layers to map gradient statistics into clipping
and noise parameters, enabling effective adaptation across communication rounds. (3) We introduce
a global feedback regularization mechanism that integrates client-side penalties with server-side
feedback, forming a closed-loop controller for budget-aware training. (4) We develop a scalable
Rényi DP accountant that supports heterogeneous noise schedules, maintains negligible runtime
overhead, and provides accurate user-level privacy guarantees. (5) We conduct extensive experiments
on standard FL benchmarks, showing that FEDMAP improves model accuracy, convergence stability,
and privacy compliance, and provides stronger protection against gradient inversion and unseen-class
membership inference attacks compared with existing baselines.

2 BACKGROUND AND MOTIVATION

Federated learning is a distributed paradigm where clients {1, . . . , N} train a global model on their
private datasets {Di} and send updates to a central server for aggregation. The objective is:

min
θ
L(θ,D) =

N∑
i=1

|Di|
|D|
Li(θ,Di), (1)

where θ denotes the global model parameters, and D = ∪Ni=1Di is the union of all local datasets. A
widely used method in this setting is FedAvg (McMahan et al., 2017), which combines local training,
client sampling, and model aggregation over multiple communication rounds. To protect privacy,
differential privacy (Dwork & Roth, 2014) is commonly applied. A randomized mechanism M
satisfies (ε, δ)-DP if, for any neighboring datasets D and D′ that differ in one record, and for any
measurable set S, it holds that:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ, (2)
where ε measures the privacy guarantee and δ is the failure probability. A standard method is the
Gaussian mechanism, which releases f(D) +N (0, σ2Id), where the noise scale σ depends on the
function’s ℓ2-sensitivity ∆2f :

σ ≥ ∆2f

ε

√
2 ln

(
1.25

δ

)
. (3)

In FL, local differential privacy (LDP) is enforced by perturbing client updates before transmission.
Methods such as DP-SGD (Abadi et al., 2016) and DP-FedAvg (McMahan et al., 2018) add fixed
noise to clipped gradients. While theoretically sound, static privacy parameters fail to adapt to client
heterogeneity or changing dynamics, often leading to reduced accuracy or weak guarantees.

Recent work has explored dynamic privacy strategies. For example, DPSFL adjusts clipping thresh-
olds over time (Zhang et al., 2024), a time adaptive budget allocation scheme has been intro-
duced (Kiani et al., 2025), and a wavelet based perturbation mechanism distributes noise based on

2
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gradient structure (Ranaweera et al., 2025). These methods show that adaptive strategies improve
the balance between privacy and utility. Another challenge is information leakage from gradients, as
gradient inversion attacks (Zhu et al., 2019; Geiping et al., 2020) reveal that large gradient entries
may expose sensitive features of local data. To mitigate this risk, prior work has studied gradient
clipping and perturbation, showing that targeted noise injection and clipping-aware designs improve
robustness while preserving utility (Fu et al., 2021; Zhang et al., 2022). Beyond gradient inversion,
membership inference attacks pose an additional risk. Classical MIA rely on prediction confidence
to distinguish training from nontraining samples, while recent work shows that quantile-based MIA
remain effective even in the unseen-class setting (Bertran et al., 2023; Thaker et al., 2025). These
findings confirm that FL models face risks from both gradient inversion and membership inference,
motivating the design of adaptive and budget-aware DP mechanisms.

Despite these advances, most existing methods still rely on globally fixed or heuristic privacy
schedules. Such strategies lack flexibility to handle heterogeneous client data, changing convergence
patterns, and evolving attack risks across training. They also do not regulate the cumulative privacy
budget over time, making it difficult to balance model utility with long-term privacy. To overcome
these limitations, we propose FEDMAP.

3 PROPOSED DESIGN OF FEDMAP
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Figure 2: Structure of MetaNet.

This design is a closed-loop framework that consists of
three core components. (i) A client-side MetaNet adap-
tively generates clipping bounds and noise scales. (ii)
A server-side Rényi DP accountant records and updates
the privacy cost in each round. (iii) A global feedback
regularization aligns local adaptation with the global
privacy budget. In each round, the client uses MetaNet
to produce (Ct, σt), applies DP-SGD, and sends the
clipped-and-noised updates together with σt, which is
required for accounting. The server aggregates het-
erogeneous costs through RDP and converts them into
user-level (ε, δ). The resulting εglobal is then broadcast
to the clients participating in the next round of training,
guiding the next choice of (Ct+1, σt+1).

3.1 METANET FOR ADAPTIVE DP CALIBRATION

As shown in Figure 2, the meta-network is the core module of FEDMAP. Its task is to adaptively
generate the clipping bound Ct and the noise scale σt in each training round. Fixed strategies with
static parameters cannot handle heterogeneous data distributions or changing convergence behavior.
They often lead to either a large loss in utility or weak privacy protection. MetaNet addresses this
issue by adjusting privacy parameters in a data-driven and adaptive way, which preserves the balance
between model utility and privacy guarantees.

Gradient Statistics and Input Features. Formally, MetaNet is a lightweight client-side network. It
takes as input a compact feature vector ht ∈ R4, which is derived from four gradient-based statistics:

ht =
(
Dt,∆t,Driftt,VarGradt

)
. (4)

These statistics are defined as:

Dt = Tr
(
Cov{gtk}k∈mini-batch

)
, ∆t = max

k
∥gtk∥2,

Driftt = ∥θt − θt−1∥2, VarGradt =
1

B

B∑
k=1

∥gtk − ḡt∥22.

Here gtk is the gradient of sample k at round t, ḡt is the mini-batch mean gradient, and θt is the local
model parameter. ∆t relates to sensitivity and clipping bias. Dt and VarGradt capture dispersion
that drives stochastic and DP variance. Driftt reflects nonstationarity that affects stable choices of

3
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(Ct, σt). Prior work (Andrew et al., 2021; Fu et al., 2022; Allouah et al., 2025) has confirmed the
effectiveness of such features for adaptive clipping and noise scheduling.

Backbone Design and Pretraining Strategy. Although MetaNet is expressive, it lacks prior
knowledge, which may cause unstable predictions in early training rounds. To address this issue, we
adopt a lightweight BERT-tiny backbone. It consists of two Transformer encoder layers with hidden
size dh = 64 and two attention heads. The model is initialized with pretrained weights and fine-tuned
for the task to capture temporal dynamics. Gradient statistics from consecutive rounds are mapped
into the Transformer input space, and the [CLS] embedding is used to predict (Ct, σt). Following
prior findings in transfer learning (Lee et al., 2019; Grießhaber et al., 2020; Liu et al., 2021), we apply
a frozen-middle-layer strategy. Only the input projection and the output head are updated during
fine-tuning. This reduces computation and enables effective adaptation to privacy dynamics.

To further mitigate cold-start effects, we first fine-tune the model on synthetic sequences of gradient
statistics. Empirical distributions of the four features are estimated from federated training runs on
datasets such as CIFAR-10, FashionMNIST, and SVHN. Synthetic sequences are then generated
by log-normal sampling. Labels for (C, σ) are constructed from predefined feature-to-parameter
mappings. For example, the clipping bound C is set proportional to the empirical mean plus variance
of gradient norms, while the noise scale σ is set proportional to feature variance. We use sequences
of length 5 to train the model. The training objective is the mean squared error:

LMSE = ∥(C, σ)pred − (C, σ)label∥22, (5)

and optimization is done with Adam at learning rate 1× 10−4. Gradient clipping with max-norm
1.0 and early stopping are applied. Only the projection and output layers are updated, while the
Transformer layers remain frozen. This synthetic pretraining equips the model with prior knowledge
and enables reliable predictions in early training. Experiments show that it generalizes well across
datasets and captures the mapping between gradient features and privacy parameters effectively,
which provides empirical stability.

Takeaways 3.1. Each client keeps its own MetaNet instance for personalized (Ct, σt) under hetero-
geneous data. This improves fairness and stability compared with global static schedules. MetaNet is
lightweight and stable. Input dimension is 4, hidden size is 64, depth is 2 (≈ 0.2M parameters). Thus,
inference is lightweight, and latency is within 1ms.

3.2 GLOBAL PRIVACY ACCOUNTING UNDER DYNAMIC NOISE

While client-side MetaNet adaptively calibrates local clipping and noise, rigorous user-level privacy
still requires accurate global accounting across training rounds. In federated learning, each client
contributes partially perturbed (clipped-and-noised) updates, and the overall (ε, δ)-DP guarantee
depends on the cumulative privacy loss over T rounds. Static accountants assume fixed noise and
clipping schedules, which are inconsistent with the adaptive parameters of FEDMAP. To address this,
we adopt a server-side Rényi Differential Privacy (RDP) accountant (Mironov, 2017), extended to
handle non-uniform and dynamically scheduled Gaussian mechanisms.

Per-Round RDP Cost and Global Composition. In each round t, client i selects (C(i)
t , σ

(i)
t ) through

MetaNet, applies DP-SGD locally, and uploads its clipped-and-noised updates together with σ
(i)
t .

The server aggregates these updates and computes the effective sampling rate q = |St|/N , where St

is the set of participating clients. For brevity, we denote q per round; when participation varies, the
expressions hold with q2 replaced by q2t and Tq3 by

∑
t q

3
t .

We parameterize the Gaussian noise as N
(
0, σ2

t I
)
. where σ

(i)
t directly denotes the noise standard

deviation chosen by MetaNet. Thus, the RDP term depends on σt and q, while sensitivity is controlled
by Ct. Following the subsampled Gaussian mechanism (WANG et al., 2020), the per-round Rényi
divergence of order αk is approximated by

ρ
(i)
k (t) =

q2αk

2
(
σ
(i)
t

)2 +O(q3), (6)

where clipping at C(i)
t ensures bounded sensitivity. This generalizes prior work on non-uniform

privacy allocation (Kiani et al., 2025), enabling FEDMAP to handle dynamic noise levels across

4
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heterogeneous clients and rounds. Then, the global privacy cost for client i after T rounds is

ρ
(i),total
k =

T∑
t=1

ρ
(i)
k (t). (7)

Applying the RDP-to-DP conversion,

ε(i) = min
αk

{
ρ
(i),total
k − log δ

αk − 1

}
, (8)

yields a user-level (ε, δ) guarantee. To reduce computational cost, the server maintains a lookup
table of ρk(σ, q) values for a grid of σ and αk, and interpolates at runtime. The global expenditure is
conservatively defined as

εglobal = max
i

ε(i), (9)

which is broadcast to clients. This design supports real-time privacy tracking with negligible cost,
ensuring scalability in large-scale FL deployments.

Global Feedback and Budget Regulation. While server-side RDP accounting provides accurate
retrospective guarantees, proactive regulation of privacy requires coupling global feedback with local
adaptation. To this end, the cumulative privacy expenditure εglobal is periodically broadcast to clients
as a penalty signal. This feedback encourages MetaNet to adjust (Ct, σt) in subsequent rounds,
preventing premature exhaustion of the privacy budget.

For completeness, we record a practical upper bound under bounded σ
(i)
t and q. If σ(i)

t ∈ [σmin, σmax]
and q ≤ qmax, then for any αk > 1,

εglobal ≤ min
αk>1

{
αk

2σ2
min

T∑
t=1

q2 − log δ

αk − 1

}
+O

(
Tq3

)
. (10)

This upper bound highlights that the global privacy cost grows with both the number of rounds
T and the maximum sampling rate qmax. It also shows that smaller noise scales σmin lead to
larger privacy expenditure, while larger αk values provide tighter bounds. Thus, Eq. equation 10
provides a conservative yet interpretable estimate of the worst-case privacy loss, which is useful for
understanding how adaptive schedules interact with global budget constraints.
Takeaways 3.2. The server maintains a lookup table of ρk(σ, q) and interpolates at runtime, enabling
negligible accounting latency in our implementation even with N = 103 clients. In practice, we
discretize σ into 100 bins and αk into {2, 4, 8, 16, 32, 64}, which balances accuracy and speed. The
broadcasted εglobal is a single scalar, adding no noticeable communication overhead.

3.3 PRIVACY LOSS REGULARIZATION WITH GLOBAL FEEDBACK

Local Regularization with Privacy Proxy. In FEDMAP, each client uses MetaNet to predict its
privacy parameters (Ct, σt) for round t, where Ct is the clipping bound and σt is the DP-SGD noise
scale. These parameters directly govern a local proxy of the per-round privacy cost. Regularizing this
proxy is essential to avoid erratic spending and to align client behavior with the global budget. By the
Gaussian mechanism (Dwork & Roth, 2014), the per-round guarantee is approximated as

εt ≈
Ct

σt

√
2 ln(1.25/δ). (11)

In practice, we use the heuristic ε̂t from Eq. equation 11 for client-side regularization. Rigorous
user-level guarantees are always provided by server-side RDP accounting in Sec. 3.2, and ε̂t is never
used as the reported guarantee. To stabilize adaptation, we impose a quadratic penalty that aligns the
predicted (Ct, σt) with a target budget εtarget:

L
(t)
privacy = (ε̂t − εtarget)

2
. (12)

This reduces variance in per-round expenditure and keeps local updates close to the desired operating
point. For any window of length T ′, define the empirical deviation.

γT ′ :=
1

T ′

T ′∑
t=1

∣∣ε̂t − εtarget
∣∣.

5
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Then, by the triangle inequality, we have

T ′(εtarget − γT ′) ≤
T ′∑
t=1

ε̂t ≤ T ′(εtarget + γT ′), (13)

which bounds the average ratio 1
T ′

∑T ′

t=1(Ct/σt) and thus the average 1
T ′

∑T ′

t=1 σ
−2
t . Intuitively, this

inequality shows that the cumulative local expenditure over any window of length T ′ cannot drift
far from the target budget. The deviation is limited by γT ′ , which quantifies the average mismatch
from εtarget. As a result, local penalties keep short-term fluctuations under control, while ensuring
long-term expenditure remains consistent with the global privacy bound in Sec. 3.2.

Global Feedback and Closed-Loop Control. Local constraints alone are insufficient, since cumu-
lative expenditure over T rounds must also respect user-level guarantees. We therefore introduce a
global penalty derived from server-side Rényi DP accounting (Mironov, 2017):

Lglobal = β · εglobal, (14)

where εglobal is the cumulative privacy loss up to the current round (taken as the maximum across
users), and β > 0 controls the strength of global feedback. This term encourages budget-efficient
adaptation and prevents premature exhaustion of the global budget.

The two penalties are combined with the prediction loss to form the overall objective:

Ltotal =
1

|B|
∑
i∈B

Li(θ, xi) + λL
(t)
privacy + Lglobal, (15)

where Li(·) is the task loss for client i, λ balances task utility against local regularization, and
Lglobal provides server-driven feedback. We grid search λ, β ∈ {0.01, 0.05, 0.1, 0.5, 1.0} and select
λ = 0.1, β = 0.1 for all main experiments.

This closed-loop design couples local calibration with global accounting. Clients adaptively tune
(Ct, σt) not only to stabilize per-round expenditure but also to align with the global privacy budget.
Theoretically, this reduces variance in cumulative privacy loss and concentrates it around the target
budget. Practically, FEDMAP learns budget-aware strategies end-to-end, improving the utility-privacy
trade-off under heterogeneous data and enhancing robustness against attacks.
Takeaways 3.3. This scheme resembles a proportional controller: local penalties reduce deviation
from per-round targets, while global penalties prevent premature exhaustion of the long-term budget.
Both penalties require only scalar computations per round and add negligible overhead.

3.4 THEORETICAL ANALYSIS

This section formalizes how the three components of FEDMAP jointly determine the utility-privacy
trade-off. We adopt standard assumptions consistent with prior work (Lian et al., 2018; Nguyen et al.,
2022; Fu et al., 2022; Xiong et al., 2024; Wang et al., 2024):
Assumption 1. Li(·, x) is L-smooth in θ for all i, x. Hence, the global objective L is L-smooth.
Assumption 2. For a mini-batch of size B, per-sample gradients satisfy E∥gtk∥22 ≤ G2. The variance
of the mini-batch gradient noise is bounded by σ2

g/B.

Assumption 3. The client sampling rate is qt = |St|/N ≤ qmax, with qmax ≪ 1.

Under Assumptions 1–3, adaptive DP-SGD with clipping at Ct and Gaussian noise N (0, σ2
t I) yields

the following bounds.
Theorem 1. Under Assumptions 1–3, with ηt ≤ 1/L, we have

1

T

T∑
t=1

E∥∇L(θt)∥22 ≤
2
(
L(θ1)− L⋆

)
TηT

+
2

T

T∑
t=1

(
L∥bt∥22 + Lηt(

σ2
g

B + dσ2
t )
)
, (16)

where bt = E[ 1B
∑B

k=1 clip(g
t
k, Ct)]−∇L(θt).

Theorem 2. If L is µ-strongly convex and η ≤ 1/(2L) is constant, then after T rounds

E[L(θT )− L⋆] ≤ (1− µη)T
(
L(θ0)− L⋆

)
+

ηL

µ
· 1
T

T∑
t=1

(
∥bt∥22 + η

σ2
g

B + dσ2
t

)
. (17)
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The right-hand sides of Theorems 1–2 are dominated per round by two contributions: (i) a clipping
bias term ∥bt(Ct)∥22; and (ii) a variance term from stochastic sampling σ2

g/B and DP noise with
standard deviation σt. Collecting these with their weights L and ηt motivates the following surrogate
for choosing (Ct, σt):

Ut(Ct, σt) := L∥bt(Ct)∥22 + Lηt

(
σ2
g

B + dσ2
t

)
. (18)

Reducing Ut tightens the bounds in Theorems 1–2 by balancing clipping bias, which decreases with
larger Ct, against DP variance, which increases with σ2

t . This connects the feature design in Sec. 3.1
to optimization error, where ∆t reflects clipping bias and Dt and VarGradt capture variance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Models. We evaluate the effectiveness of our defense mechanisms against gradient
inversion attacks using three publicly available datasets, CIFAR-10 (Krizhevsky et al., 2009), Fash-
ionMNIST (Xiao et al., 2017), and SVHN (Yuval, 2011), with a mini-batch size of 4. We use the
same datasets to assess reconstruction quality and resistance to unseen-class membership inference
attacks. CIFAR-10 and SVHN are paired with a randomly initialized ResNet-18 (He et al., 2016),
while FashionMNIST is trained with LeNet (LeCun et al., 1998). To evaluate training dynamics under
privacy protection, we further conduct experiments on these datasets . All datasets are partitioned
across N = 100 clients using a Dirichlet distribution with concentration parameter α, which controls
the degree of statistical heterogeneity. Smaller α values yield more skewed, non-IID data distributions.
Following prior work (Wang et al., 2020; Dai et al., 2022; Cao & Gong, 2022; Oh et al., 2022; Chen
& Chao, 2022), we set α = 0.5 unless otherwise specified.

Training Settings. We follow a standard federated setup with 10 randomly selected clients out of 100
per round. Local training uses a batch size of 64 and SGD optimizer, with dataset specific settings:
three epochs at η = 0.01 for FashionMNIST, eight epochs at η = 0.001 for CIFAR-10, and five
epochs at η = 0.1 for SVHN. To ensure reproducibility, all experiments are performed with a fixed
random seed (42) and executed on NVIDIA RTX 5090 GPUs.

Attack Baselines. We evaluate FEDMAP against two types of privacy attacks. For membership
inference, we adopt Logistic Regression MIA (Shokri et al., 2017), a shadow model based method
that trains a binary classifier on confidence features, and Quantile-MIA (Bertran et al., 2023), a
shadow model free black box attack that leverages quantile regression, which has been shown to be
more effective in the unseen-class setting (Thaker et al., 2025). For gradient inversion, we consider
DLG (Zhu et al., 2019), which reconstructs inputs by minimizing the gradient distance, IG (Geiping
et al., 2020), which maximizes gradient cosine similarity, and GI (Yin et al., 2021), which initializes
from Gaussian noise and iteratively refines reconstructions using gradient and model statistics.

Defense Baselines. To provide a comprehensive comparison, we include two state-of-the-art defenses.
Soteria (Sun et al., 2021) reduces privacy leakage by pruning gradients in fully connected layers
using a sensitivity mask that filters out high-risk components. CENSOR (Zhang et al., 2025) protects
private information by projecting gradients into a subspace orthogonal to the inferred attack space
through Bayesian sampling, thereby mitigating leakage while maintaining model performance.

Evaluation Metrics. We adopt three standard metrics to quantify reconstruction quality and privacy
leakage. Mean Squared Error (MSE) measures pixel-wise differences between original and recon-
structed images; higher values indicate stronger privacy. Peak Signal-to-Noise Ratio (PSNR) quantifies
signal clarity relative to noise; lower values suggest greater distortion and better protection. Structural
Similarity Index Measure (SSIM) evaluates perceptual similarity based on luminance, contrast, and
structure; lower scores reflect reduced visual resemblance and improved privacy. For membership
inference evaluation, we report true positive rates at low false positive regimes: TPR@1%FPR and
TPR@0.1%FPR, which reflect the attack success rate when only a small fraction of non-members are
misclassified. Lower values indicate stronger resilience against MIA.
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Table 1: Defense performance comparison on SVHN dataset under different attacks.
Dataset Defense DLG IG GI

Method MSE ↓ PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑

SV
H

N

None 0.0006 39.29 0.9929 0.0150 34.49 0.8858 0.0074 35.66 0.8986
DP 0.0743 11.43 0.0597 0.0690 11.73 0.1003 0.0695 11.70 0.0739
Soteria 0.0711 11.67 0.0790 0.0647 12.62 0.2363 0.0275 22.21 0.6909
CENSOR 0.0728 11.54 0.0505 0.0740 11.46 0.0999 0.0753 11.44 0.0768
FEDMAP 0.0796 11.24 0.0594 0.0761 11.39 0.1186 0.0786 11.24 0.0622

C
IF

A
R

-1
0 None 0.0091 29.88 0.8633 0.0337 21.70 0.5461 0.0388 17.96 0.4482

DP 0.0679 11.78 0.1060 0.0645 12.06 0.1221 0.0676 11.83 0.0756
Soteria 0.0603 12.59 0.1524 0.0558 12.99 0.1828 0.0419 17.70 0.4606
CENSOR 0.0682 11.82 0.0466 0.0770 11.51 0.1141 0.0665 11.93 0.0783
FEDMAP 0.0755 11.54 0.0483 0.0730 11.57 0.0892 0.0685 11.85 0.0704

FM
N

IS
T None 0.1455 8.45 0.0688 0.1453 8.41 0.0666 0.1694 7.86 0.0653

DP 0.1577 8.09 0.0246 0.1556 8.14 0.0327 0.1653 7.92 0.0390
Soteria 0.1518 8.23 0.0846 0.1412 8.59 0.0869 0.1664 7.87 0.0867
CENSOR 0.1518 8.22 0.0279 0.1537 8.16 0.0287 0.1701 7.75 0.0238
FEDMAP 0.1641 7.90 0.0342 0.1575 8.07 0.0267 0.1709 7.75 0.0415

Table 2: MIA defense performance comparison across different attacks and datasets.
Dataset Defense Logistic Regression MIA Quantile MIA

TPR@1%FPR TPR@0.1%FPR TPR@1%FPR TPR@0.1%FPR

SV
H

N

None 26.50% 15.20% 9.55% 1.67%
DP 20.03% 10.01% 7.11% 0.97%
Soteria 17.89% 8.51% 6.54% 0.53%
CENSOR 17.57% 11.80% 6.26% 1.20%
FEDMAP 13.59% 6.22% 4.65% 0.18%

C
IF

A
R

-1
0 None 1.91% 0.44% 8.65% 2.44%

DP 0.55% 0.11% 7.01% 1.41%
Soteria 0.87% 0.21% 5.20% 1.02%
CENSOR 0.75% 0.23% 6.42% 1.87%
FEDMAP 0.36% 0.06% 5.80% 0.89%

FM
N

IS
T None 20.65% 14.95% 8.06% 0.94%

DP 16.46% 12.48% 2.86% 0.71%
Soteria 18.03% 11.53% 2.15% 0.50%
CENSOR 16.78% 13.02% 2.69% 0.62%
FEDMAP 13.06% 5.08% 1.48% 0.29%

4.2 EXPERIMENTAL RESULTS

Main Results. Table 1 shows the performance of DLG, IG, and GI under different defenses on
SVHN, CIFAR-10, and FashionMNIST. We follow prior work (Zhu et al., 2019; Geiping et al., 2020;
Yin et al., 2021) and evaluate privacy leakage in the first communication round, which is the most
vulnerable stage. This setup provides a strong proxy for worst case exposure. Across all datasets,
unprotected models yield accurate reconstructions with low MSE and high SSIM. Once defenses are
applied, attack success drops sharply. FEDMAP achieves robust protection and is often stronger than
Soteria and CENSOR. For example, on CIFAR-10 with DLG, FEDMAP lowers SSIM to 0.0483
compared to 0.8633 without defense. On SVHN and FashionMNIST, FEDMAP also maintains
competitive MSE and SSIM while suppressing reconstruction fidelity more effectively than standard
DP. While Table 2 reports results on unseen-class MIA, where two classes are excluded from training
and used only as attack targets. Unprotected models show severe leakage, with TPR above 26% on
SVHN. Standard defenses reduce attack accuracy, but FEDMAP provides the most reliable protection.
On CIFAR-10, it lowers TPR@0.1%FPR to 0.06%, and on SVHN to 0.18%, both substantially better
than DP, Soteria, and CENSOR. These results demonstrate that FEDMAP offers adaptive and robust
defense against gradient inversion and unseen-class membership inference, outperforming existing
baselines under strong privacy threats.
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Figure 3: Training loss and test across communication rounds.
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Convergence Evaluation. Figure 3 shows the convergence of different defenses on FashionMNIST
and CIFAR-10. The unprotected model serves as an upper bound. FedMAP converges faster and more
stably than DP, Soteria, and CENSOR. On FashionMNIST, it quickly approaches the non-private
baseline with low loss, while Soteria and DP converge slowly and CENSOR remains unstable. On
CIFAR-10, FedMAP again achieves higher accuracy and lower loss, while the other defenses lag
behind. These results show that FedMAP provides a favorable balance between utility and privacy,
delivering superior convergence and final performance in federated learning.

Original None DP Soteria CENSOR FedMAP

Figure 4: Visual comparison of reconstructed images under the DLG attack.
Qualitative Evaluation. Figure 4 shows reconstructed images under different defenses against the
DLG attack on CIFAR-10. Without protection, the original image can be almost perfectly recovered,
which poses a severe privacy risk. DP and Soteria introduce distortion but still reveal recognizable
structures, showing incomplete protection. CENSOR increases distortion but generates images with
strong noise artifacts. In contrast, FedMAP produces heavily degraded reconstructions with the lowest
SSIM and comparable distortion metrics, where semantic details of the original image are completely
lost. These results show that FedMAP provides the strongest resistance to gradient inversion and
greatly reduces the risk of information leakage.

Table 3: Sensitivity Analysis Results of Hyperparameters λ and β

λ 0.01 0.1 0.5 1.0

acc 0.4655 0.4721 0.4649 0.4632
ε 5.153 4.992 4.973 4.959

β 0.01 0.1 0.5 1.0

acc 0.4693 0.4721 0.4679 0.4633
ε 5.114 4.992 4.982 4.960

Sensitivity to λ and β. Table 3 shows that increasing either λ or β slightly reduces accuracy but
lowers the cumulative privacy loss ε. This confirms their role in balancing utility and privacy. Larger
coefficients give stricter control of privacy leakage at the cost of marginal utility degradation. Smaller
values relax the constraints, improving accuracy but weakening privacy protection.

Table 4: Performance under different client
participation rates C.

C
Fashion-MNIST CIFAR-10 SVHN

acc ϵ acc ϵ acc ϵ

0.1 0.7824 1.04 0.4253 2.19 0.4016 2.23
0.2 0.7940 3.57 0.4435 8.81 0.4813 10.38
0.3 0.8011 7.71 0.4700 19.78 0.4926 27.64

Ablation Study. Table 4 shows that FedMAP main-
tains a favorable balance between accuracy and pri-
vacy loss across different client participation rates
C. On FashionMNIST, increasing C from 0.1 to 0.3
raises accuracy from 0.7824 to 0.8011 with a mod-
erate increase of ϵ, indicating that FedMAP can use
more client updates without sharply degrading pri-
vacy. A similar trend is observed on CIFAR-10 and
SVHN, where accuracy improves steadily as C increases and ϵ grows in a predictable way. These
results show that FedMAP adapts flexibly to varying participation rates while preserving utility and
keeping privacy budgets under control.

5 CONCLUSIONS AND LIMITATIONS

In conclusion, we present FEDMAP, a closed-loop framework for adaptive differential privacy in
federated learning. It integrates three components: a client-side MetaNet that predicts clipping
bounds and noise scales, a server-side Rényi DP accountant that computes the global expenditure
εglobal, and a global feedback regularization mechanism that aligns local adaptation with the overall
budget. Together, these modules enable dynamic calibration of privacy parameters, improve the
utility-privacy trade-off, and enhance robustness against attacks. Nevertheless, FEDMAP relies
on synthetic pretraining for MetaNet, which may limit generalization to real workloads, and its
evaluation focuses on image classification benchmarks. Future work will extend FEDMAP to larger
and more diverse FL settings, and explore stronger theoretical guarantees and online adaptation
strategies to reduce reliance on synthetic pretraining.
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. The main paper provides
detailed descriptions of the proposed algorithm, model architectures, training setup, hyperparameter
configurations, data preprocessing steps, and theoretical results. If the paper is accepted, we will
release the code on GitHub. During the rebuttal phase, if reviewers request to check the relevant code,
we will upload it to an anonymous GitHub repository to facilitate the review process.
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A APPENDIX

A.1 SYSTEM WORKFLOW

The complete workflow of the proposed FEDMAP framework is provided in Algorithm 1. FEDMAP
builds upon the standard FedAvg protocol and incorporates three core components that collectively
support efficient, personalized, and privacy-preserving training.

At the beginning of each round t, the server randomly selects a subset of clients St according to
a predefined sampling ratio p, and broadcasts the current global model θ(0) to the selected clients.
Each client initializes its local model by setting θ

(t)
i ← θ(t−1) and starts the PretrainedBertMetaNet

model if it has not already been initialized. During local training, each client performs E epochs over
its local dataset. For each mini-batch, the client computes the forward loss and the corresponding
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Algorithm 1 FEDMAP Framework

Require: Client set N = {1, ..., N}, sampling ratio p, communication rounds T , local epochs E,
batch size B, Fine-tuned MetaNet model

Ensure: Final global model θ(t)

1: Initialize global model θ(0) and get Ks ← max(p ·N, 1)
2: for t = 1 to T do
3: Randomly select clients St of size Ks

4: Server broadcasts global model θ(t−1) and current penalty ϵglobal to each i ∈ St

5: for all clients i ∈ St in parallel do
6: Set local model θ(t)i ← θ(t−1) and load Fine-tuned MetaNet
7: for e = 1 to E do
8: for each batch b ∈ Di do
9: Compute forward loss ℓi = ℓ(f(θ

(t)
i ;x), y)

10: Perform backward pass to obtain gradients and related statistics
11: Extract gradient-related features and input them into MetaNet
12: Obtain new privacy parameters (C(t)

i , σ
(t)
i ) from MetaNet

13: Clip gradients and inject Gaussian noise to obtain gnoisy

14: Update local model parameters θ(t)i ← θ
(t)
i − η · gnoisy

15: end for
16: end for
17: Upload θ

(t)
i and effective noise scale σ

(t)
i to the server

18: end for
19: Server aggregates updates:

θ(t) ←
∑
i∈St

ni∑
j∈St

nj
θ
(t)
i (20)

20: Server performs RDP privacy accounting using {σ(t)
i , |St|, p}

21: Update cumulative privacy budget: ϵglobal
22: end for

gradient via backpropagation. The current training state, including the gradient diversity, sensitivity
proxy, parameter drift and gradient variance, is passed into the PretrainedBertMetaNet. It then returns
updated privacy parameters (C(t)

i , σ
(t)
i ), which determine the clipping bound and the scale of noise

to be added.

The local gradient is first clipped to ensure bounded sensitivity and then perturbed using the noise
injection strategy. Specifically, Gaussian noise with a standard deviation of σt is injected into
the updated gradients. The estimated privacy cost ϵt is computed from (C

(t)
i , σ

(t)
i ).A privacy-loss

regularization term L
(t)
privacy, augmented with global feedback, is incorporated into the local training

objective to guide PretrainedBertMetaNet toward producing privacy parameters that comply with a
predefined budget.

After completing local updates, each client records the effective noise scale σt applied during DP-SGD
and reports it to the server. The server aggregates the received updates:

θ(t) ←
∑
i∈St

ni∑
j∈St

nj
θ
(t)
i . (19)

Subsequently, the server performs RDP accounting to estimate the cumulative privacy budget up to
the current round t. This cumulative budget is then fed back to the clients participating in the next
round as a penalty signal, guiding MetaNet toward budget-aware parameter adaptation.

A.2 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We disclose that large language models were used solely for text polishing and grammar refinement.
All technical ideas, methods, experiments, and results are entirely the work of the authors, who take
full responsibility for the content of this paper.
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