Published as a conference paper at ICLR 2025

SMT: FINE-TUNING LARGE LANGUAGE MODELS
WITH SPARSE MATRICES

Haoze He*!, Juncheng Billy Li*!2, Xuan Jiang®, Heather Miller'->
!Carnegie Mellon University, 2Two Sigma Investments, *University of California, Berkeley
{haozeh, junchenl, heather.miller}@cs.cmu.edu, {xuanjiang}@berkeley.edu

ABSTRACT

Various parameter-efficient fine-tuning (PEFT) methods, including LoRA and its
variants, have gained popularity for reducing computational costs. However, there
is often an accuracy gap between PEFT approaches and full fine-tuning (FT), and
this discrepancy has not yet been systematically explored. In this work, we intro-
duce a method for selecting sparse sub-matrices that aims to minimize the perfor-
mance gap between PEFT vs. full fine-tuning (FT) while also reducing both fine-
tuning computational costs and memory costs. We explored both gradient-based[ﬂ
and activation-based parameter selection methods to identify the most significant
sub-matrices for downstream tasks, updating only these blocks during fine-tuning.
In our experiments, we demonstrated that SMT consistently surpasses other PEFT
baselines (e.g., LoORA and DoRA) in fine-tuning popular large language models
such as LLaMA across a broad spectrum of tasks, while reducing the GPU mem-
ory footprint by 67% compared to FT. We also examine how the performance of
LoRA and DoRA tends to plateau and decline as the number of trainable parame-
ters increases, in contrast, our SMT method does not suffer from such issues.

1 INTRODUCTION

While the inherent generalization capability of Large Language Models (LLMs) is impressive, en-
hancing performance on downstream tasks often still necessitates fine-tuning (Ding et al., 2022;
Chung et al.|2022). However, as the size of these LLMs increases, there is a pressing challenge to
optimize the fine-tuning process for better computational efficiency and memory utilization. For ex-
ample, fine-tuning a pre-trained LLaMA 7B model without CPU ofﬂoadinﬁ requires at least 58 GB
of GPU vVRAM—13.6 GB for trainable parameters, 40 GB for Adam optimizer states and gradients,
and 2 GB for activations. This requirement makes fine-tuning on consumer-level GPUs such as the
NVIDIA RTX 4090 with 24 GB of memory impractical (Zhao et al., [2024)).

To address the prohibitive computational challenges of full parameter fine-tuning, many parameter-
efficient fine-tuning (PEFT) methods have emerged over the past two years. LoRA and its vari-
ants (Hu et al.} 2021} |Zhao et al.l 2024} |Dettmers et al., 2024} |Liu et al., [2024ba; Su et al., [2023;
Wang et al.| |2024bja) reparameterize the full model weight into low-dimensional proxy parameter
through low-rank adaptation method and successfully reduce both the optimizer memory and com-
putational costs. However, even in state-of-the-art (SOTA) PEFT research, results show a notable
performance gap between low-rank reparameterization methods and full parameter tuning across
many datasets (Liu et al., 2024a). Additionally, in this work, we report a less recognized phe-
nomenon: low-rank adaptation methods tend to experience a performance plateau as the parameter
count (rank r) increases.

On the other hand, previous studies have attempted to select a small subset of the parameters to fine
tune through understanding the internal logic of LLMs. Some knowledge editing methods, such as
Constrained fine-tuning (Zhu et al.,2020), ROME (Meng et al.| 2022a)), and MEMIT (Meng et al.,

*Equal Contribution.

"More details about gradient-based parameter selection methods are in Sectionand Appendix

2 Although some libraries such as Deepspeed can move the optimizer memory costs to CPU, it will also slow
down the fine-tuning with extra I/O communication time (Rajbhandari et al., |2020; |/ Aminabadi et al.} 2022).

Published as a conference paper at ICLR 2025

2022b), have shown that LLMs have memory sections located in distinct layers. These memories
could be modified via fine-tuning (Zhu et al.l 2020). These works observed that domain-specific
knowledge can be distributed separately and sparsely among layers. Motivated by these observa-
tions, aiming to narrow the performance gap between PEFT and full fine-tuning, we proposed a
Sparse Matrix Tuning(SMT) approach. We aim to fine-tune the most relevant sparse submatrices
for optimal downstream performance. The gradient-based activation selection method is inspired
by Fisher Information (Sung et al.| 2021), and activation-based selection method is inspired by
AWQ (Lin et al.} 2024) which was previously applied for quantization. After comparing empirical
performance of both GW-selection and AW-selection, we opted for gradient-based selection despite
AW-selection could have saved us the full backward propagation in warm-up steps. (see Section §3)|
for details). Our findings differ from those of (Geva et al.,[2020; [2022)), as our experiments show that
fine-tuning attention mechanisms, particularly the value vectors, is more efficient than fine-tuning
other weight matrices, including MLPs, where (Geva et al.,[2020; |2022) suggest memory is stored.

In our experiments, our Sparse Matrix Tuning (SMT) approach achieves better performance com-
pared to LoRA and DoRA using same amount of trainable parameters. Additionally, SMT narrows
the accuracy gap between full fine-tuning, overcomes the performance plateau of low-rank adapta-
tion PEFT methods, and significantly outperforms LoRA and DoRA while utilizing less than 5% of
trainable parameters. Our experimental results show that SMT consistently outperforms SoTA PEFT
(including LoRA, DoRA, and SpIEL) methods by 2+ points when fine-tuning popular LLMs (e.g.
LLaMA series base modeﬂ) on commonsense reasoning and arithmetic reasoning benchmarks. For
layers without selected sub-matrices, SMT freezes these layers, saving all their backward propaga-
tion computational costs, parameters update computational costs, optimizer memory costs, and acti-
vation memory costs. For layers with selected sub-matrices, SMT reduces the computational costs of
backward propagation and parameter updates, as well as the optimizer and activation memory costs,
to less than 1% of those incurred by standard full tuning. Below are our additional contributions:

* Language Model Anatomy: We investigate the distinct impacts of attention mechanisms
versus MLPs (Multi-Layer Perceptrons) in LLMs. Our findings indicate that fine-tuning the
V vectors is the most effective among the Q, K, and V vectors in attention layers, and that
fine-tuning attention layers is more crucial for downstream performance than MLP layers.

* Large Language Model System Efficiency: The SMT implementation significantly re-
duces the computational costs of backward propagation, parameter updates, optimizer
memory, and activation memory during fine-tuning. Our implementation is open sourceﬂ

2 BACKGROUND AND RELATED WORKS

Existing PEFT methods methods can be grouped into three main categories: addition, reparameter-
ization and specification. The Addition category, which involves adding extra adapters (He et al.,
2021)), increases model size and slows down inference, so it falls outside the scope of this paper.
Reparameterization category: Many works on parameter-efficient fine-tuning (PEFT) (Man-
grulkar et al.| 2022)) have aimed to improve efficiency and performance by only fine-tuning lower-
dimensional adapters of model weights. Notable examples include LoRA (Hu et al.,|2021), DoRA
(Liu et al.| 20244a), QLoRA (Dettmers et al., |2023)), and several other variants (Liu et al., [2024b}
Dettmers et al., 2023; Wang et al., 2024bza). However, the results of these works still indicate a
performance gap between PEFT methods and full fine-tuning (FT). Concurrent research (Biderman
et al.| [2024) empirically demonstrated that such a gap is difficult if not impossible to eliminate, they
also notice the performance saturation issue of LoRA, as we will discuss in Section
Specification category: Beside low-rank adaptation methods, sparsity-inspired approach is a nat-
ural alternative to reduce computational costs and memory footprint by finetuning only a subset
of parameters. Previous works have also explored sparsity-inspired methods in transfer learning,
model pruning, or fine-tuning, including Sparse Increment Fine-Tuning(SIFT) (Song et al., [2023),
SHiRA (Bhardwaj et al.| [2024), Fisher Mask (Sung et al.| [2021), Random Masking (Xu & Zhang|
2024])), Lottery-Ticket SFT (LT-SFT) (Ansell et al., 2021), SpIEL (Ansell et al.| 2024), and Diff-
Pruning (Guo et al., [2020). However, SIFT (Song et al) 2023)), Fisher Mask (Sung et al.| [2021),
random masking |Xu & Zhang| (2024), and LT-SFT (Ansell et al., [2021) still require full backward
propagation to compute all gradients, offering no speed advantage over full fine-tuning (FT). While

3Base model is not yet instruction tuned
*nttps://github.com/HectorHHZ/Sparse_Matrix_Tuning/

https://github.com/HectorHHZ/Sparse_Matrix_Tuning/

Published as a conference paper at ICLR 2025

{1
i
—
o=
b
i

Total N Blocks

Figure 1: Differences between low-rank adaption method LoRA and SMT. The approach on the
left illustrates the adaptation method used in LoRA, while the approach on the right represents the
sub-matrix sparsity method utilized in SMT.

SpIEL (Ansell et al.| [2024) partially reduces the need for backward propagation, its dynamic pa-
rameter selection still necessitates full backward propagation for a significant portion of training
iterations. In LT-SFT (Ansell et al., 2021) and DiffPruning (Guo et al., 2020), the mask is applied
at the layer level, without the option to selectively fine-tune individual parameters within the layer.
Moreover, Sung et al.| (2021)); |Ansell et al.| (2021} 2024); |Guo et al.| (2020) require full fine-tuning
phases and allocate both the model and the optimizer to GPUs, leading to substantial GPU mem-
ory consumption. The memory costs of Fisher Mask (Sung et al.l 2021) are almost the same as the
memory costs of the model parameters since the mask is stored as tensors with the same shape as the
model parameters.(More details about Fisher Mask are in Appendix [B-T). Furthermore, SIFT (Song
et al.l [2023) and SpIEL (Ansell et al.l 2024) map discontinuous memory gradients to continuous
memory addresses, creating a significant time bottleneck. Our work builds on existing strategies,
but unlike previous methods, our matrix sparsity approach directly leverages task-specific gradient
information to automatically adjust within-layer sparsity. This results in better speedup, reduced
computational costs, and greater memory savings, as detailed in Section §3|and Section §4.4]

Suppose we are given a pre-trained auto-regressive language model Pg(y|x) parameterized by
®. Each downstream task is represented by a training dataset of context-target pairs: 2 =
(i, i) i=1.....n» Where both z; and y; are sequences of tokens. Equation H dedicates the LoRA(Hu
et al., |2021) fine-tuning process to maximize the conditional language modeling objective, which
uses a low-rank representation to encode task-specific parameters. Specifically, LoRA freezes the
pre-trained model weights and injects trainable rank decomposition matrices into each layer of the
Transformer architecture. This is formulated as A® = AP(O), where O represents a much smaller-
sized set of parameters with |©| < |®g|. The resulting increment A® can be as small as 0.01% of
the pre-trained weights parameter size |®¢| in gradient updates. This greatly reduces the number of
trainable parameters and the GPU memory requirement while maintaining model performance. E|

[yl

max Z Zlog(Pq>0+Aq>((—))(yt\$7 Y<t)) (1)

z,y)EZ t=1
In our work, our proposed Sparéeyl)\/elatrix Tuning(SMT) uses matrix sparsity as the parameter-
efficient approach. In SMT’s case, reusing Equation([I), the © represents the sub-matrices within the
sparse weight matrices. SMT only fine-tunes sparse sub-matrices © instead of fine-tuning all pre-
trained weights. Fig. [T]illustrates the differences between weight low-rank adaption method LoRA
and our proposed sparse matrices tuning approach SMT. In SMT, we slice the pre-trained weight
into N sub-matrices and only fine-tune selected M sub-matrices. The dimension of sub-matrices is
l x [, the total number of sub-matrices /N in a pre-trained weight is N = % SMT constrains its
update by representing the latter with a sparse gradient matrix AWy, Wy + AW = Wy + AWy,
where the number of fine-tuning sub-matrices m < N.

Since our proposed SMT method focuses on fine-tuning sub-matrices which are most relevant to
downstream tasks’ performance, identifying these sub-matrices is non-trivial. Our findings extend
the observations from LoRA (Hu et al.,|2021)—While low-rank adapters in LoRA are applied to the
Q, K, V, and O vectors, the paper does not address the relative importance of components between
MLP and attention mechanisms, nor does it determine which among Q, K, and V are the most critical
during fine-tuning. In Section § [5] we explore these questions and provide experimental analysis to
address them. Additionally, previous works (Zhu et al., 2020), MEMIT (Meng et al., |2022b), and

>More details about LoRA in Appendix

m % 1

Published as a conference paper at ICLR 2025

(Geva et al.,[2020; 2022) indicated that feed-forward MLP layers of the LLMs are most influential.
However, through our experiment analysis§ we found that fine-tuning attention layers is more
efficient for improving downstream performance than MLP layers.

3 METHODOLOGY

() Linear Weight Matrices ®) _ — © ﬂ T?lble l: The eXperiInentS inVOlVed Full
:H__q:F | az Fine-Tuning, SMT, LoRA, DoRA, and
I a bz, b Vi l SpIEL on 4x A100 40GB GPUs using
d -H: oz _ — § |- data parallel, with a batch size of 16.
I w .
H:_ R (©) / [Communication between the GPU and
[il 4 CPU was facilitated via PCle-G4.
p— — A1]|35; 0 /
Selected sub-Matrix [0] P P LLaMA-7B
| Dnselecwedsubhtaix o T e x PEFT method #Params% Time/s Speedup
Figure 2:' (a) A sparse weight matrix W. The green Full Fine-tuning 100 e Ix
sub-matrices with significant gradients can be updated. SMT 1.26 1668 14.6x
(b) Backward propagation calculation for partial gra- Loxa S Ry
dient for weight matrix w. (c) Computation graph in SpIEL 126 2545 9.6x

auto-differential systems.

Selection phase (warm-up phase): The first step in our method is identifying the most salient
sparse submatrices. We compare two strategies for this: Activation-aware selection (AW-selection)
and Gradient-aware selection (GW-selection). Recent research (Sun et al., [2024) revealed the pres-
ence of massive activations in LLMs. Additionally, AWQ (Lin et al., |2024) found that using ac-
tivation distribution, rather than weight distribution, more effectively identifies key weights, sig-
nificantly reducing quantization errors by protecting these critical weights. A strong alternative
is selecting sparse matrices based on Fisher Information (Sung et al.|[2021) of the weight matrices.
Building on empirical Fisher derivation (see Appendix[B.I|for more details about Fisher information
and how SMT differs with it), we propose GW-selection to identify specific submatrices within the
model’s weight matrices that show the greatest gradient changes during a warm-up phase (Fig. [2]a)
at the beginning of fine-tuning. The GW-Selection warm-up phase lasts fewer than 100 iterations,
varying depending on the dataset. Appendix [B.2]details AW-Selection and Table[§] provides empir-
ical evidence that it significantly underperforms GW-selection. Therefore, for the remainder of this
paper, our SMT method selects sparse submatrices using the GW-selection approach identifying top
2% submatrices (z=0.5ﬂ with greatest gradient changes as critical submatrices.

Efficient fine-tuning phase: After identifying the submatrices for fine-tuning, SMT reduces mem-
ory requirements by freezing most of the weight matrices after the warm-up phase and storing the
sparse weights in a compressed format. By implementing optimizer offloading, the warm-up phase
of SMT doesn’t cost extra GPU memory. After the warm-up stage, we disable offloading, move
optimizers to GPUs, and use the FusedAdam optimizer from the deepspeed library (Aminabadi
et al.| 2022)to speed up fine-tuning.

Advantages of SMT: SMT significantly reduces backward computation costs to z% (z=0.5) of
those in Full Fine-tuning (FT) by calculating gradients for only a subset of the weights during back-
propagation. For linear layers in LLMs, where Z = Wz, the gradients with respect to weight matrix
W and input x can be calculated as Equation (2)):

ol ol
where 0l/0z is the gradient information from backward propagation in (Fig. b,c). Vo f(z) is the
gradient matrix and and « is the activation in the (Fig.[2]b). (Fig.[2b) also illustrates that only partial
backward computations are necessary when we update selected sparse matrices. To calculate the
sub-matrix gradient (highlighted in yellow), it is only necessary to multiply the yellow row in 91/9z
with the yellow column in the activation z. Similarly, to calculate the green sub-matrix gradient, we
only need to multiply the green row in 9l/0z with the green column in activation x. Note that in
backward propagation, we only reduce computation when derivative to gradient matrix w among as
illustrated by the green arrows in (Fig.[2c). but not other necessary computation. (black arrows)

T)

®For LLaMA-7B and LLaMAZ2-7B, when the number of trainable parameter is 33685504, the percent of
trainable parameter in whole model is 33685504/6738411520 ~ 0.5%.

Published as a conference paper at ICLR 2025

Besides, SMT reduces the memory costs of the optimizer gradients to z% (z=0.5). Since SMT
only updates selected sparse sub-matrices, partial gradients are stored to cut the memory costs of
the Adam optimizer to z% (z=0.5). This reduction is crucial because the memory cost of the Adam
optimizer is typically twice the size of the model, which often consumes the majority of GPU RAM.
SMT also reduces the gradient step computation costs to z% since only partial gradient steps are
required.

Furthermore, SMT reduces the activation memory costs for the in forward pass to z% (z=0.5).
Since SMT only computes the partial gradient, it saves the relevant portions of activations X neces-
sary for the gradient calculation as is represented in Equation. 2] In (Fig.[2]b), to calculate the green
and yellow gradients in the gradient matrix, we only need to save the yellow and green columns of
the activation X. It reduces the memory costs for the forward pass of the selected linear layer.

In SMT, all the layers except selected Q, K, and V vectors are frozen during fine-tuning. By do-
ing this, SMT avoids all the weight backward propagation computational costs, parameters update
computational costs, optimizer memory costs, and activation memory costs in frozen layers. The
rationale for fine-tuning only the Q, K, and V vector is detailed in Section @

By applying sparse sub-matrix fine-tuning, SMT can reduce the fine-tuning memory costs of
LLaMA-7B and LLaMA2-7B to less than 20GB and fit the fine-tuning into a 3090 24GB GPU.
We also reduce the computation and achieve faster fine-tuning compared with FT and LoRA/DoRA,
Section § [4.4] provides more details.

Implementation: In SMT, we first sum up gradients from the attention linear layers in every single
warm-up iteration. The summed-up gradient information is used to identify task-specific sparse
blocks. After the warm-up steps, we average the absolute values within the sub-matrices, select the
sub-matrices with the largest value, and save the indices for the selected sub-matrices. In all of our
experiments, we use | X [= 256 x 256 as sub-matrices block size. During the warm up steps,
we can apply offload (Rajbhandari et al.,2020) on memory constraint GPU devices. Since SMT
requires fewer than 100 warm-up steps in our experiments, it does not become a bottleneck during
fine-tuning epochs. SMT updates the model during the warm-up phase to accelerate convergence.
Additionally, SMT implements a custom sparse linear layer to ensure that unselected gradients are
not calculated, saved, and updated (Code Snippet[6)). We replace the selected linear layers with these
customized sparse linear layers.

The custom sparse linear layer applies a specialized sparse linear multiplication function, integrated
into our customized sparse linear layers (Code Snippet [7). This function calculates partial weight
gradients based on the input, weight, and selected weight index. It significantly reduces the com-
putational costs of backward propagation weight gradients to just z% (z=0.5) and minimizes the
memory usage of the returned partial gradients to only z% (z=0.5).

The specialized sparse linear multiplication function rewrites both forward and backward functions.
In the forward pass (Code Snippet[7) of sparse linear multiplication function, we only save selected
activation x using ctx.save_for_backward (), and in the backward pass (Code Snippet BI),
we customize matrix multiplication to calculate the needed partial gradients given partial input and
gradient index (shown in Fig. [2(b)). It is important to note that we do not use Sparse Matrix-
Matrix Multiplication(SPMMﬂbecause we concatenate the selected sparse sub-matrices and formed
am x [x [dense matrix as illustrated in right part of Fig.[l| This would not costs additional time
since memory allocations remain continuous within each sub-matrix. Despite employing matrix
sparsity, we still leverage the advantages of dense matrix multiplication.

Furthermore, SMT gathers sparse matrix but still leverages dense matrix. SMT customizes the
function for gathering trainable parameters. This customized function selectively gathers weight
sub-matrices in the Q, K, and V vector layers and passes them to the Adam optimizer. By continuing
to use the well-designed FusedAdam from the deepspeed library (Aminabadi et al.;, 2022), we
maintain the computational speed of dense matrix weight updates. However, our approach reduces
the gradient memory costs in the optimizer to just z% (z=0.5).

"Sparse Matrix-Matrix Multiplication is significantly slower than General Matrix Multiply. More details in
Appendix[G]

Published as a conference paper at ICLR 2025

4 EXPERIMENTS AND RESULTS

Model Architecture and Dataset: In our experimental setup, we use open-weight LLaMA-7B,
LLaMA-13B, LLaMA2-7B, and LLaMA3-8B models (AI@Metal [2024). In Subsection§ [@.1J§ [4.2]
We perform fine-tuning on the Common Sense Reasoning tasks with 8 sub-tasks, each with a prede-
fined training and testing set. We follow the setting of (Hu et al.| 2023} |Liu et al.|[2024a)) and amalga-
mate the training datasets from all 8 tasks to create the final training dataset commonsense_170k
and conduct evaluations on the individual testing dataset for each task. We calculate an average score
to encapsulate the overall efficacy. In Subsection§ we perform fine-tuning on Math1 0K (Hu
et al., [2023) dataset which includes MultiArith, GSM_8K (Cobbe et al.,[2021), AddSub, AQuA,
SingleEq, SVAMP datasets and evaluate the efficiency on their testsets.

Training Framework and SMT Hyper-parameters: We used the DeepSpeed (Aminabadi et al.,
2022) library for fine-tuning and accelerate (Gugger et all 2022)) library for inference eval-
uation. Both training and fine-tuning are using dtype bfl16. All experiments are fine-tuned for 3
epochs. In all our experiments in Section§ 4] sub-matrices are selected in blocks of size | = 256. We
choose this specific sub-matrix dimension ! because it is the largest common factor of the column
and row sizes of all linear layers in the LLaMA series models, using this dimension for slicing avoids
remainder issues. We freeze all MLP layers and apply SMT only to the Q, K, and V vectors in the
attention mechanism. In Section§5.1] we explain the rationale why we only apply SMT to attention
mechanism instead of MLP. At the end of the gradient warm-up iteration, SMT ranks the average
absolute gradient values within each sub-matrix and selects those with the highest average values.
We determined the sub-matrix selection metric and gradient calculation method through ablation
studies, incorporating metrics used in previous research (Sung et al., 2021). Ablation studies and
the rationale of such selection are explained more in detail in Appendix [B} We apply 100 warm-up
iterations to all SMT experiments on Commonsense dataset and apply 25 warm-up iterations to all
SMT experiments on Math1O0K dataset. The number of warm-up iterations is fine-tuned for each
dataset. Detailed ablation studies on warm-up iterations are provided in Appendix [H]

PEFT Baselines: For state-of-the-art (SOTA) baselines, we choose to include LoRA (Hu et al.,
2021), DoRA (Liu et al. 2024a), and SpIEL (Ansell et al., [2024). LoRA and DoRA fall un-
der the reparameterization category, while SpIEL, like SMT, belongs to the specification cate-
gory. For hyper-parameter settings of LoRA, we follow the instructions suggested by (Bider-
man et al., 2024; Han & Michael; |[Kalajdzievski, 2023} |Shih-yang). The LoRA adapters apply
to Wy, Wi, Wy, Wo, Wyates Wap, and Wigyr. o is determined by 2x rank.

Computational Resources: We conduct our experiments and implement SOTA baselines of
LoRA (Microsoft) and DoRA (Shih-yang) to fine-tune LLaMA-7B and LLaMA2-7B model with
4 NVIDIA A100_40GB GPUs and fine-tune LLaMA-13B and LLaMA3-8B model with 4 NVIDIA
A100_80GB GPUs. Communication between the CPU and GPU is facilitated via PCle-G4 and
communication between GPUs is facilitated via Nvlink-3.

Evaluation Metrics: We evaluate the performance of SMT in terms of computational efficiency
(wall-clock time speedup), memory usage (analysis for memory complexity) in Subsection§ In
this section, we mainly evaluate SMT in terms of popular NLP tasks to test its ability to generalize
to all downstream tasks. In Subsection§ [4.1]§ 4.2] we evaluate the performance of SMT on 8 tasks in
the Commonsense dataset, including BoolQ, PIQA, SIQA, HellaSwag, ARC-e, ARC—c, and
OBOQA, and we calculate an average score to encapsulate the overall efficacy. In Subsection§ [4.3] we
perform fine-tuning on Math1 0K (Hu et al.,2023) dataset which includes Mult iArith, GSM_8K,
AddSub, AQuA, SingleEq, SVAMP datasets and evaluate the efficiency of SMT on their testsets.
Both datasets, Commonsense and Math1 0K, focus on the generalization ability of LLMs across
different sub-tasks, ensuring that our results are robust. All of the experiments are evaluated using
accuracy.

4.1 COMMONSENSE REASONING

We evaluate SMT against the state-of-the-art (SoTA) weight low-rank adapter method includes
LoRA and DoRA. To ensure a fair comparison, we fine-tuned model with SMT following the LoRA
and DoRA configuration. We ensure all the hyper-parameters including batch size, data type, learn-
ing rate, and sequence length are identical to what was reported in LoRA and DoRA (Hu et al.,

Published as a conference paper at ICLR 2025

Table 2: Accuracy comparison of LLaMA 7B, LLaMA 13B, LLaMA?2 7B, and LLaMA3 8B with
various PEFT methods on eight commonsense reasoning datasets. Results of all the baseline meth-
ods on LLaMA 7B, LLaMA 13B, LLaMA2 7B, LLaMA3 8B are taken from (Liu et al., 2024a).
Results of all SMT are obtained using the hyper-parameters described in (Liu et al., |2024a) under
the same settings. Bold texts dedicate the performance of SMT under the same numbers of param-
eters where LoRA, DoRA, and SpIEL achieve the best performance. Blue texts dedicate the best
performance of SMT. Please note that the performance of LoRA, DoRA, and SpIEL under larger
numbers of trainable parameters can be found in Table E}

Model PEFT method #Params% BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG

ChatGPT(175B) - - 73.1 854 685 78.5 66.1 89.8 79.9 748 71.0
LoRA(Best) 0.83 67.5 808 782 83.4 80.4 78.0 62.6 79.1 763

DoRA (Best) 0.84 69.7 834 78.6 87.2 81.0 81.9 66.2 792 784

LLaMA-7B SpIEL(Best) 0.84 677 812 786 84.0 80.2 78.3 62.8 788 765
SMT 0.84 68.7 817 783 91.6 78.8 84.1 68.7 774 787

SMT (Best) 4.91 720 829 807 93.3 82.4 86.1 70.6 83.0 814

Full Fine-tuning 100 699 842 789 92.3 83.3 86.6 72.8 834 814
LoRA(Best) 0.67 72.1 835 80.5 90.5 83.7 82.8 68.3 824 80.5

DoRA (Best) 0.68 724 849 815 92.4 84.2 84.2 69.6 82.8 815

LLaMA-13B SpIEL(Best) 0.68 732 843 814 91.2 84.1 83.1 68.8 82.8 8I.1
SMT 0.68 71.1 84.4 817 93.7 83.2 86.7 73.7 852 824

SMT(Best) 491 726 86.1 819 95.0 86.1 88.2 77.1 87.4 843

LoRA(Best) 0.83 698 799 795 83.6 82.6 79.8 64.7 81.0 776

DoRA(Best) 0.42 720 831 799 89.1 83.0 84.5 71.0 812 80.5

LLaMA2-78 SpIEL(Best) 0.83 705 80.6 808 85.8 83.4 81.2 65.8 81.8 783
SMT 0.84 72.0 838 808 93.3 82.8 86.7 74.0 81.0 818

SMT (Best) 4.91 726 852 820 94.4 85.7 87.8 74.5 85.0 834

Full Fine-tuning 100 728 834 787 92.7 85.5 86.2 74.7 834 822
LoRA(Best) 0.70 70.8 852 799 91.7 84.3 84.2 71.2 79.0 808

LLaMA3-8B DoRA(Best) 0.71 746 893 799 95.5 85.6 90.5 80.4 858 852
SpIEL(Best) 0.70 72.1 83.6 80.0 91.8 85.4 91.2 76.8 80.8 827

SMT 0.71 7577 884 814 96.2 88.2 92.7 83.2 88.6 86.8

SMT(Best)) 3.01 75.1 89.9 824 96.3 88.8 92.6 82.8 89.6 87.2

20215 Liu et al., 2024a). We re-implemented LoRA and DoRA and achieved their best performance
reported in (Liu et al., [2024a)).

Table [2] demonstrates that SMT consistently surpasses baseline methods across LLaMA-7B,
LLaMA13B, LLaMA2-7B, and LLaMA3-8B. Notably, by overcome plateau phenomenon, SMT
further enhances accuracy of DoRA by 3.0%, 2.8%, 2.9%, and 2% on LLaMA-7B, LLaMA-13B,
LLaMA2-7B, and LLaMA3-8B respectively. Notably, LoORA and DoRA will not achieve better per-
formance with larger trainable parameters and exhibit the plateau phenomenon. In Subsection§
we report and demonstrate the plateau issue in LoRA and DoRA and demonstrate SMT overcomes
this issue. Moreover, by fine-tuning less than 5% of all parameters, SMT achieves similar accuracy
performance of full fine-tuning while speedup 14.6x (speedup details in Table [I) and save 99.5%
of optimizer memory(memory bottleneck in fine-tuning, details discussed in Section§ [3).

SMT can also consistently surpass LORA and DoRA under the same number of trainable parame-
ters where LoRA and DoRA achieve the best results, SMT can surpass their performance and also
outstrip ChatGPT—S.S-turb For instance, SMT consistently surpasses DoRA on LLaMA2-7B,
LLaMA3-8B, LLaMA-13B, and LLaMA-7B by 1.3%, 1.6%, 0.9%, and 0.3% respectively, under
their best performance trainable parameter number.

4.2 PLATEAU IN WEIGHT LOW RANK ADAPTION METHODS

In Table we scale up the model size and presents how the performance of LoRA, DoRA, and
SpIEL will be under larger number of trainable parameters. The corresponding visualization is
provided in Fig. [9)in Appendix [E] We reimplement all the experiments of LoRA (Microsoft),
DoRA (Shih-yang), and SpIEL (Ansell et al.) using their official repository and followed their
recommendation of hyper-parameters to achieve best performance under every single trainable pa-
rameter size. We observe that for SpIEL, DoRA, and LoRA models, with some larger ranks, their
performance slightly degrades. However, SMT continues improving its performance when we scale
up the trainable parameter size. When we scale up the trainable parameter size to 4.91%, SMT

8Results of ChatGPT-3.5-turbo are reported in DoRA (Shih-yang)

Published as a conference paper at ICLR 2025

significantly surpass DoRA by 3.8% and 4.9% on LLaMA-7B and LLaMA-2-7B fine-tuned mod-
els. We postulate that such plateau phenomenon of LoRA or DoRA is due to their lossy low-rank
approximation of the full weight information (includes lots of noise), whereas our SMT focuses
on most prominent submatrices (contains less noise) and remains full rank gradient updates for the
selected portion, making SMT performs better. SpIEL selects a fixed ratio of parameters from every
layer. In contrast, SMT selects the most significant parameters, allows a different ratio of trainable
parameters in each layer, and allocates more trainable parameters to more critical layers.

Table 3: Accuracy comparison of LoRA, DoRA, and
SMT under different scaling of trainable parameters on
commonsense datasets. Given certain base model and
PEFT method, we gradually increase the number of train-
able parameters on each line from left to right. On each
line, the best performing model has *.

Method 043 084 126 250 373 491

LoRA 709 763 764 750 753 747
SpIEL 726 774 782" 768 772 764

Table 4: Fine-tuned LLaMA-7B model
performance on Commonsense. AVG
dedicates the average test score of eight
subsets among Commonsense. MLP%
and Attention% presents the percentage
of trainable parameters apply to MLPs
and attention mechanisms respectively.

LLaMA-7B

DoRA 775 784" 760 713 715 716 Model MLP% Attention% AVG

SMT 773 786 792 802 80.8 814° o8 o 767

LoRA 765 716 784 776 713 710 SMT(0.84%) 0.42 0.42 77.3

Lo SpIEL 774 779 792 782 783 788 LLaMA-7B 021 0.63 7738
LLaMA27B 1, RA 80.5* 797 788 776 768 785 0 0.84 787

SMT 81.1 81.8 81.7 822 828 834"

4.3 OTHER DATASET

To ensure our findings above are generalizable, we further examine the performance of SMT un-
der arithmetic reasoning dataset, Math10K (Hu et al., [2023). Math1OK dataset has six subsets
including GSM8k, SingleEqg, SVAMP, MultiArith, AddSub, and AQuA. More details about
Math1OK dataset can be found in Appendix [D] To ensure a fair comparison, we follow the open
source hyper-parameter instruction in (Hu et al.,|2023) to achieve best performance for LoRA and
Dora, and apply the same hyper-parameters to SMT while only fine-tune the learning rate. Table [3]
reports the performance of LoRA, DoRA, and SMT on the Math10K dataseﬂ We can observe that
SMT surpasses the best achievable performance of LoRA and DoRA by 1.3% and 1.1% respectively
using the same amount of trainable parameters. In addition, by scaling up the trainable model size to
1.26%, SMT achieves better performance and surpasses the best performance of LoRA and DoRA
by 2.5% and 2.3% respectively.

Table 5: SMT, LoRA and DoRA reproduction, and experiment results on Mat h10K dataset.
Model PEFT method #Params% GSMS8k SingleEq SVAMP MultiArith AddSub AQuA AVG

LoRA(Best) 0.86 354 83.2 52.1 92.8 83.4 18.6 60.9

LLaMA-7B DoRA (Best) 0.86 352 83.7 51.8 92.8 82.8 202 61.1
SMT 0.86 342 84.6 53.6 91.5 85.8 236 622

SMT (Best) 1.26 35.6 85.3 54.8 93.4 86.8 242 634

4.4 MEMORY AND COMPUTATION SAVING: SMT vSs. LOW-RANK ADAPTION METHODS

SMT is more computational efficient than weight low-rank adaption method when the number
of trainable parameters are the same, weight low rank adaption methods need to maintain addi-
tional adapters, which require additional forward computation. For instance, since LoRA maintains
adapters A and B, and the forward propagation is:

h =Wyx + AW, = Wox + BAx 3)

where the term B Ax requires additional forward propagation calculation, which is cut off in SMT.
Regarding memory costs, since SMT does not require additional low-rank adapters A and B, SMT
can achieve lower memory costs than LoRA and DoRA under the same amount of trainable param-
eters setting. We illustrate this in Fig. [I] Taking the popular LLaMA-13B model as an example,

°In accordance with the special announcement for Math10K (Hu et al.), we include training set evaluation
results from the MultiArith, AddSub, and SingleEq datasets, as well as test set evaluation results from
the GSM8k, SVAMP, and AQuA datasets. AVG denotes the average accuracy across all evaluations.

Published as a conference paper at ICLR 2025

since the model size is approximately 25 GB, if we fine-tune 1% of parameters, SMT can potentially
save 250MB GPU memory compared to LoRA and DoRA. In Table |1} we provide the fine-tuning
time costs for SMT, Full Fine-tuning, LoRA, and DoRA. SMT achieves an 14.6x speedup compared
to Full Fine-tuning and outperforms both LoRA and DoRA. Additionally, compared to SpIEL in the
specification category, SMT is 1.5x faster due to its more efficient selection phase, more flexible
parameter selection, and improved trainable parameter memory management. We conducted time
profiling by averaging the fine-tuning time every 10 iterations over 1000 iterations, following a 500-
iteration warm-up period. Full fine-tuning utilized offload settings to accommodate the LLaMA
model, which employs the Adam optimizer, within 40GB GPUs. SMT offers greater computational
and memory efficiency, though these are secondary benefits compared to its primary focus.

5 FURTHER DISCUSSION

5.1 ATTENTION VERSUS MLP

In order to study what components are more critical for LLM’s downstream performance during
fine-tuning, we conduct ablation studies that compares MLPs vs. attention layers by adjusting the
ratio of their trainable parameters respectively. We apply SMT and fine-tune 0.86% of parameters
on LLaMA-7B using Commonsense dataset. In Table] we present four experiments. In the first
row, all trainable parameters are allocated to MLPs. In the second row, both MLPs and Q, K, V
vectors from attention mechanisms receive 0.43% of trainable parameters. In the third row, 0.62%
of trainable parameters are assigned to Q, K, V vectors from attention mechanisms and 0.21% to
MLPs. In the fourth row, all trainable parameters are dedicated to Q, K, V vectors from attention
mechanisms. To guarantee a fair comparison, all the other hyper-parameters and settings are the
same among these experiments.

In these experiments, allocating Y% of trainable parameters to MLPs or attention mechanisms
means ranking the average absolute gradient values of each sub-matrix within the MLPs or atten-
tion mechanisms and selecting those with the highest average values until the number of parameters
reaches Y%. The results reveal a significant performance gap between the first and fourth rows.
The more trainable parameters we allocate to attention mechanisms, the better the fine-tuned model
performs. When all SMT trainable parameters are applied to attention mechanisms, the model out-
performs the one where all parameters are allocated to MLPs by 2.0%. Our empirical findings
challenge previous assumptions (Zhu et al.| 2020; Meng et al., [2022a} |Geva et al., 2020; 2022) that
the memory sections of large language models are primarily located in feed-forward MLP layers.

5.2 'V VECTOR VERSUS Q, K VECTOR

@ LLama-7B (b) LLama2-7B
—e— QProj —o— Q Proj
—e— K Proj 0.010 —o— K Proi
—e— VProj —e— V Proj
0.008
0.008 -
g g
g 0.006 o
:‘g g 0.006 A
c c
8’ 0.004 g
0.004
= =
0.002 m
N m

0.000

0.000 T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Layers Layers

Figure 3: The magnitude of the gradient for the Q, K, and V vectors at each layer in LLMs.

Based on our observation that fine-tuning attention is more efficient during fine-tuning, in all of
our SMT experiments in Section§ [we only allocate SMT trainable parameters to Q, K, V vectors
from attention mechanisms. We rank the average absolute gradient values of every single sub-matrix
within attention mechanisms and select those with the highest average values until the parameter ra-
tio limit is reached. Counter-intuitively, we observed that the trainable parameters are predominantly
assigned to the V vectors. As shown in Fig.[5] 95.17% of the trainable parameters are automatically

Published as a conference paper at ICLR 2025

assigned to the V vectors by SMT. Fig.[d]indicates that all V vectors have trainable parameters, while
22 out of 32 Q vectors and 21 out of 32 K vectors are completely frozen.

In our ablation experiments, we experimented with assigning all trainable parameters to only K,
or only Q, or only V vectors, and fine-tuned 0.86% of the parameters on LLaMA-7B using the
Commonsense dataset. Table [6] presents four additional experiments where we fine-tuned 0.86%
of the parameters of LLaMA-7B using SMT on the Commonsense dataset. In the first three rows,
all trainable parameters are allocated to the K vectors, Q vectors, and V vector , respectively. In the
fourth row, the trainable parameters are assigned to Q, K, V vectors directly and allocated by SMT
automatically. The trainable parameters are distributed among the K, Q, and V vectors, as detailed
in Fig.[5] with the trainable states of the QKV layers shown in Fig. 4

Figure 4: A visualization of trainable Q, K, V layers when fine-tuning = Q Proj: 2.81%

= K Proj: 2.02%
0.86% trainable parameters on LLaMA-7B. LLaMA-7B has 32 layers of V Proj: 95.17%
MLPs, each contains a Q vector, a K vector, and a V vector. White layers

are frozen and green layers contain trainable parameters.

v L R N N R

N NN NN NN —
gure J: 1Stribution

e LD D SEHCE I UEUUSELL of wainable parameters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
among Q, K, V.

Table 6: K SMT, Q SMT, and V SMT assign all trainable parameters to only K, or only Q, or only
V vectors respectively, and fine-tuned 0.84% of the parameters on LLaMA-7B using the Common-
sense dataset. QKV SMT assign all trainable parameters to QKV vectors and select sub-matrices
automatically.

Model Param location #Params% BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG

K SMT 084 655 791 762 883 732 803 608 680 739
Q SMT 084 657 793 755 882 725 801 596 725 753

LLaMA-TB y oyip 0.84 687 821 781 916 78.8 830 687 772 85
QKYV SMT 084 687 817 783 916 78.8 841 687 774 787

The results show a significant performance gap when comparing the allocation of all trainable pa-
rameters to the V vectors versus the Q and K vectors. Assigning all parameters to the V vectors
outperforms the K vectors by 4.6% and the Q vectors by 3.2%. These observations suggest that
fine-tuning the V vectors is the most efficient compared to Q and K in this process; it also hints that
SMT is able to effectively select sub-matrices containing crucial memory sections.

To provide further insight into the importance of V vectors, we visualized the median magnitude
of the absolute gradients for each vector across layers, as shown in Fig. 3] The results, averaged
over 1000 iterations, are based on two models: LLaMA-7B and LLaMA?2-7B. We observe that the
gradients of the V vectors are significantly larger than those of the Q and K vectors, with the
V vector gradients being up to 10 times greater in most layers. This larger gradient leads to more
substantial updates, making fine-tuning the V vectors more effective.

In Appendix [C] we show that the smaller magnitude of gradient for the Q and K vectors is caused
by the design of scaling in the attention mechanism, where /dj, is not sufficiently large during
pre-training.

6 CONCLUSION

Our empirical results suggest that fine-tuning attention layers are more critical than MLPs for down-
stream performance; V vector is the most influential vector for performance among Q, K, V vectors.
Overall, our SMT method is an appealing alternative to LoRA especially for practitioners with lim-
ited compute resources, since SMT could achieve better accuracy than other SOTA PEFT methods
(LoRA, DoRA and SpIEL) with the same amount of trainable parameter. SMT is also a strong al-
ternative vs. full fine-tuning, since we showed that the gap between SMT and full tuning is very
narrow.

10

Published as a conference paper at ICLR 2025

7 ACKNOWLEDGMENTS

We sincerely thank Sida Wang for her valuable contributions to this project, including developing
and finalizing the implementation methodology, generating critical experimental results that
strengthened our conference presentation, and supporting the open-source release of our codebase.
We also extend our gratitude to Qianou (Christina) Ma, Chenyang Yang, Chen Liu, and Yu (Ivy)
Yang for the suggestion in paper writing and their valuable feedback.

This research used the Bridges-2 at Pittsburgh Supercomputing Center(PSC) and Delta advanced
computing. Pittsburgh Supercomputing Center is supported by National Science Foundation grants
#2138259, #2138286, #2138307, #2137603, and #2138296. The Delta advanced computing is
supported by the National Science Foundation (award OAC 2005572) and the State of Illinois.
Delta is a joint effort of the University of Illinois Urbana-Champaign and its National Center for
Supercomputing Applications.

Though Heather Miller and Juncheng Billy Li are employees of Two Sigma Investments, this work
was performed independently from Two Sigma Investments.

REFERENCES

Al@Meta. Llama 3 model card. 2024. URL hhttps://github.com/meta-1llama/
llama3/blob/main/MODEL_CARD.md.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented scale. In SC22: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1-15. IEEE,
2022.

Alan Ansell, Ivan Vuli¢, Hannah Sterz, Anna Korhonen, and Edoardo M. Ponti. Scaling sparse fine-
tuning to large language models. https://github.com/ducdauge/sft—11m. Accessed:
May 20, 2024.

Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, and Ivan Vuli¢. Composable sparse fine-tuning
for cross-lingual transfer. arXiv preprint arXiv:2110.07560, 2021.

Alan Ansell, Ivan Vuli¢, Hannah Sterz, Anna Korhonen, and Edoardo M Ponti. Scaling sparse
fine-tuning to large language models. arXiv preprint arXiv:2401.16405, 2024.

Kartikeya Bhardwaj, Nilesh Pandey, Sweta Priyadarshi, Viswanath Ganapathy, Shreya Kadambi,
Rafael Esteves, Shubhankar Borse, Paul Whatmough, Risheek Garrepalli, Mart van Baalen, et al.
Sparse high rank adapters. Advances in Neural Information Processing Systems, 37:13685—
13715, 2024.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jen-
nings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and
forgets less. arXiv preprint arXiv:2405.09673, 2024.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: efficient finetuning
of quantized llms (2023). arXiv preprint arXiv:2305.14314, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/ducdauge/sft-llm

Published as a conference paper at ICLR 2025

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Delta tuning: A comprehensive study of parameter
efficient methods for pre-trained language models. arXiv preprint arXiv:2203.06904, 2022.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward
layers build predictions by promoting concepts in the vocabulary space. arXiv preprint
arXiv:2203.14680, 2022.

Nazli Goharian, Ankit Jain, and Qian Sun. Comparative analysis of sparse matrix algorithms for
information retrieval. computer, 2:0—4, 2003.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Man-
grulkar, Marc Sun, and Benjamin Bossan. Accelerate: Training and inference at scale made sim-
ple, efficient and adaptable. https://github.com/huggingface/accelerate, 2022.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463, 2020.

Daniel Han and Michael. Continued pretraining with unsloth. https://unsloth.ai/blog/
contpretraining. Accessed: May 20, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 523533, 2014.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-
ria, and Roy Ka-Wei Lee. Math10k dataset. https://github.com/AGI-Edgerunners/
LLM-Adapters/tree/main?tab=readme-ov-file. Accessed: May 20, 2024.

Zhigiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. arXiv preprint
arXiv:2312.03732, 2023.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for Com-
putational Linguistics, 3:585-597, 2015.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device 1lm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-

Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024a.

12

https://github.com/huggingface/accelerate
https://unsloth.ai/blog/contpretraining
https://unsloth.ai/blog/contpretraining
https://github.com/AGI-Edgerunners/LLM-Adapters/tree/main?tab=readme-ov-file
https://github.com/AGI-Edgerunners/LLM-Adapters/tree/main?tab=readme-ov-file

Published as a conference paper at ICLR 2025

Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and Yvette Graham. Alora: Allocating low-rank
adaptation for fine-tuning large language models. arXiv preprint arXiv:2403.16187, 2024b.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft) 2022.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual asso-
ciations in gpt. Advances in Neural Information Processing Systems, 35:17359-17372, 2022a.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. arXiv preprint arXiv:2210.07229, 2022b.

Microsoft. Lora. https://githubc.com/microsoft/LoRA. Accessed: May 20, 2024.

Carlos Ordonez, Yiqun Zhang, and Wellington Cabrera. The gamma matrix to summarize dense and
sparse data sets for big data analytics. IEEE Transactions on Knowledge and Data Engineering,
28(7):1905-1918, 2016.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve sim-
ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2080-2094, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
https://aclanthology.org/2021.naacl-main.168.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

L. Shih-yang. Dora. https://github.com/nbasyl/DoRA. Accessed: May 20, 2024.

Weixi Song, Zuchao Li, Lefei Zhang, Hai Zhao, and Bo Du. Sparse is enough in fine-tuning pre-
trained large language model. arXiv preprint arXiv:2312.11875, 2023.

Yusheng Su, Chi-Min Chan, Jiali Cheng, Yujia Qin, Yankai Lin, Shengding Hu, Zonghan Yang,
Ning Ding, Xingzhi Sun, Guotong Xie, et al. Exploring the impact of model scaling on parameter-
efficient tuning. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 15062-15078, 2023.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193-24205, 2021.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
arXiv preprint arXiv:2407.05000, 2024a.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Lora-pro: Are low-rank adapters
properly optimized? arXiv preprint arXiv:2407.18242, 2024b.

Jing Xu and Jingzhao Zhang. Random masking finds winning tickets for parameter efficient fine-
tuning. arXiv preprint arXiv:2405.02596, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and
Sanjiv Kumar. Modifying memories in transformer models. arXiv preprint arXiv:2012.00363,
2020.

13

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://githubc.com/microsoft/LoRA
https://aclanthology.org/2021.naacl-main.168
https://github.com/nbasyl/DoRA

Published as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS WITH CODE SNIPPETS

class LinearlLayer_MatrixSparsity(torch.nn.Module):
def __init_ (self, weight, bias=None, index_list = []):
super(LinearLayer_MatrixSparsity, self).__init_ ()
self.weight = weight

self.weight.requires_grad = False
self.bias = bias
self.index_list = index_list

self.selected_weight = torch.empty(len(index_list) * Block_dimension, Block_dimension)
self.selected_weight.requires_grad = True

for i in range(len(index_list)):
index = index_list[i]
self.selected_weight[i * Block_dimension: i * Block_dimension + Block_dimension, :] = \
self.weight.data[index[0] * Block_dimension: index[0] % Block_dimension + Block_dimension, \
index[1] * Block_dimension: index[1] * Block_dimension + Block_dimension]
self.selected_weight = nn.Parameter(self.selected_weight)

self.fn = linearZ.apply

Figure 6: Implementation of customized sparse linear layer.

class linearZ(torch.autograd.Function):
@staticmethod
def forward(ctx, input, selecte eight, matrix_index_list, weight):

input_list = []
for index in matrix_index_list:
input_list.append(input[:, :, index[1]*Block_dimension: index[1]*Block_dimension+Block_dimension])

ctx.listl = input_list
ctx.list2 = matrix_index_list

ctx.save_for_backward(weight)
output = torch.matmul(input, weight.t())

return output

Figure 7: Implementation of customized forward in specialized sparse linear multiplication function.

class linearZ(torch.autograd.Function):
@staticmethod
def backward(ctx, grad_output):

weight, = ctx.saved_tensors

input_list = ctx.listl
matrix_index_list = ctx.list2

grad_weight = torch.empty(len(input_list) * Block_dimension, Block_dimension)
for i in range(len(input_list)):
index = matrix_index_list[il
grad_weight[i % Block_dimension: i * Block_dimension + Block_dimension, :] = torch.sum(torch.matmul(grad_output.permute(@, 2, 1)\
[:, index[0] % Block_dimension: index[0] * Block_dimension + Block_dimension, :1, input_list[i]), dim=0)

grad_input = torch.matmul(grad_output, weight)
return grad_input, grad_weight, None, None

Figure 8: Implementation of customized backward in specialized sparse linear multiplication func-
tion.

14

Published as a conference paper at ICLR 2025

B SUB-MATRICES SELECTION

SMT ranks the average absolute gradient values within each sub-matrix and selects those with the
highest averages. The rationale behind this selection process is to enable SMT to automatically
identify sub-matrices containing memory that is most relevant to downstream tasks. During fine-
tuning, the absolute gradient values can indicate the relevance of a block to these tasks hence it
requires more tuning. By averaging the absolute gradient values within each sub-matrix, we can
determine the importance of the sub-matrix to specific downstream tasks. In Appendix we
further discuss why we calculate the average absolute gradient values, and the differences between
Fisher Information (Sung et al., [2021)) and SMT.

B.1 FISHER INFORMATION VS. SMT

What is True Fisher Mask and why is it crucial? In the context of neural networks, Fisher informa-
tion (Sung et al.,2021)) measures how much each parameter § affects the model’s predictions. It is a
crucial concept used to determine the importance of parameters for the task at hand. The paper uses
Fisher information to identify which parameters to update during training. The Fisher information
matrix Fjy is introduced as follows:

E. [Drcz(po(ylz) || po+s(ylz))] = 87 Fod + O(8%) S

where py(y|x) represents the output distribution of the model, given input = and parameter vector
0. It represents the probability of the model predicting class y given input x; é represents a small
perturbation applied to the parameter vector 6. It represents a slight change in the parameter values;
Fy is the Fisher information matrix, which quantifies how sensitive the model’s predictions are to
changes in each parameter 0; Dx 1. (po(y|) || po+s(y|2)) is The Kullback-Leibler (KL) divergence,
which measures how much the model’s output distribution changes when the parameters are per-
turbed by d; O(63) represents higher-order terms, which become negligible as § — 0. The Fisher
information matrix Fy is further defined as:

Fy = Ea:wp(ac) [Eywpg(y\ac)vé‘ Ingﬁ(y‘x)vﬁ Ingé‘(y|x)T] (5

where E, ., represents The expectation over the input data distribution p(x), which captures how
much variation exists across different inputs; E, ., ,|z) represents the expectation over the output
distribution py (y|z) of the model, given the current parameter values 6 and input x; Vy log pg (y|z)
represents the gradient of the log-likelihood of the model’s output with respect to the parame-
ters 6. This measures how sensitive the model’s predictions are to changes in the parameters.
Vo logpg(y|z) T represents the transpose of the gradient, creating a matrix that measures the cor-
relations between different parameters in terms of their effect on the model’s output. This matrix
captures how much each parameter influences the model’s predictions, and the larger its value, the
more important that parameter is for the task.

What is empirical Fisher Mask and how is it different with true fisher mask? (Sung et al., 2021)
distinguishes between the true Fisher information and an approximation called the empirical Fisher.
In the empirical Fisher approximation, instead of sampling from the model’s output distribution
po(y|z), the known ground truth labels y; are used directly. The empirical Fisher approximation is
defined as:

N
Z Vo log pe (yil:))* 6)

The empirical Fisher can be more computationally efficient because it avoids sampling from the
model’s predicted distribution. It is used in (Sung et al., 2021)) as a heuristic for parameter impor-
tance and is found to perform similarly to the true Fisher in practice. To construct the sparse mask
based on the empirical Fisher, the top-k parameters with the highest Fisher information are selected.
Specifically, the mask selects parameters 6; such that:

15

Published as a conference paper at ICLR 2025

0; € {Hj | F.gj > sort(Fg)[k]} 7

Where k£ is the number of parameters to be updated based on the desired sparsity level, and
sort(Fg)[k] represents the k-th largest Fisher information value. How does Empirical Fisher Mask
Calculated? Fisher information (Sung et al.| [2021)) uses the top-k accumulation of squared gradi-
ent values to identify important parameters, which is mathematically equivalent to our approach of
using the average absolute gradient value in SMT. Fisher information requires a fisher mask, mp,

defined as below: 1 if Fp, > sort(Fg)[k]
mpg; = .
0 otherwise

This mask is applied as: Opaea = Mp © 6.

What is the differences between Fisher Mask and SMT? Fisher information (Sung et al., 2021)
uses the top-k accumulation of squared gradient values to identify important parameters, which is
mathematically equivalent to our GW-Selection approach of using the average absolute gradient
value in SMT as following:

N
Z |V 5 1og py(yilas)| ®)

where [’ smt,f is the SMT calculation of gradient information, using the mean absolute gradient value

for each sub-matrix parameter 6; N is The number of data samples; x; is The ¢-th input data sample;
y; is The ground-truth label corresponding to the i-th input; V4 log p;(y;|x;) is The gradient of the

log-likelihood of the model’s output with respect to the selected sub-matrix parameter 6 for sample
(2, y:). Here, we take the absolute value of this gradient.

Since (Sung et al. [2021)) needs to store the fisher mask, m g, for all parameters, the memory costs
of Fisher Mask are almost the same as the memory costs of the model parameters because the mask
is stored as tensors with the same shape as the model parameters. However, instead of storing mask
with large memory costs, SMT deletes mask by projecting trainable parameters to dense tensors.
This is crucial since the large model size leads to memory bottleneck for GPUs. In addition, to
calculate Fy, Fisher Mask requires full backward propagation and calculate gradient for all param-
eters 6, while SMT only requires part1a1 backward propagation. SMT only needs to calculate the
gradlentF mt.¢ Tor selected parameters 6 within sub-matrix. In every fine-tuning iteration of Fisher
Mask (Sung et al., [2021)), full backward propagation needs to be done. This will lead to signifi-
cant computational costs and slow down the fine-tuning. However, by customizing linear layers and
linear functions, SMT can do partial backward computation and speedup the whole fine-tuning.

Additionally, in Table [/} we further evaluate four different sub-matrix selection methods using gra-
dient information. Our experimental results show that using the average absolute gradient value is
the most effective approach for selective tuning within our SMT framework.

Table 7: SMT experiment results using different sub-matrices evaluation metrics on Common-
Sense dataset. This table aims to perform an ablation study to find which sub-matrices evalua-
tion metrics is the best. All experiments fine-tune 0.84% overall parameters in Q, K, V vectors.
SMT-1 setting: abs().mean() calculation. SMT-2 setting: mean().abs() calculation. SMT-3 setting:
abs().sum(dim=(1, 3)) calculation. SMT-4 setting: sqrt(sum(abs() ** 2, dim=(1, 3))) calculation.
Conclusion: mean().abs() is the best strategy.

Model BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG

SMT-1 66.5 79.6 73.8 86.2 72.8 802 612 70.1 73.80
SMT-2 68.7 81.7 783 91.6 78.8 84.1 68.7 774 178.66
SMT-3 67.2 812 758 86.8 76.2 80.8 62.8 70.8 75.20
SMT-4 682 812 758 87.4 76.2 81.3 632 708 7551

16

Published as a conference paper at ICLR 2025

B.2 AW-SELECTION VS. GW-SELECTION IN SMT

In large language models (LLMs), not all weights contribute equally to the model’s performance. A
small fraction of the weights, referred to as salient weights, are significantly more important. We
propose two salient weights selection methods in warm up phase, AW-Selection and GW-Selection,
and discuss them in this section.

AW-Selection is inspired by AWQ (Lin et al) [2024) which proposes a method to identify these
weights by using the activation distribution of the neural network, instead of just considering the
magnitude of the weights. How we use AW-Selection to select trainable parameters? In the follow-
ing, we explain how AWQ uses the activation information to select these salient weights.

Let us define the forward pass of a single layer in a neural network. Given input activations x and
weight matrix W, the output y is computed as:

y = Wx

Each column of the weight matrix W corresponds to a specific channel or neuron in the network,
and each weight channel interacts with the input activations x to produce the output.

The key insight behind AW-Selection is that weight channels associated with larger activation
magnitudes are more important for the model’s overall performance. These channels process more
important features of the input, and therefore, their corresponding weights need to be selected as
trainable parameters.

The importance of a weight channel W; can be measured by the magnitude of its corresponding
activations. Mathematically, the activation magnitude for channel 7 can be represented as:

Activation Magnitude for channel i = E [||x;]|2]

where x; is the activation corresponding to weight channel W;, and E [||x;||2] denotes the expected
value of the Lo norm of the activations. Intuitively, channels with larger average activations are
more important because they carry more information or contribute more heavily to the output.

To identify the salient weights, the AW-Selection involves the following Salient Weight Selection
Strategy: (1)Measure Activation Magnitude: For each weight channel W;, the corresponding
activation magnitude is measured by calculating the average Lo norm of the activations over a cali-
bration dataset. (2) Rank Channels by Activation Magnitude: Once the activation magnitudes are
computed for all channels, the channels are ranked based on their activation magnitudes. Channels
with higher activation magnitudes are ranked higher. (3)Select Salient Channels: Based on the
ranking, a small fraction of channels (typically 0.1% to 1%) are selected as salient channels. These
are the channels that correspond to the most important features in the model. Since AW-Selection
only requires activations information, the forward propagation is sufficient to gather activations.
Since AW-Selection doesn’t require backward propagation and optimizer, it leads to less computa-
tional costs and memory costs compare to GW-Selection.

Inspired by empirical Fisher derivation (see Appendix [B.T|for more details about Fisher information
and how SMT differs with it), we propose GW-selection to identify specific submatrices within
the model’s weight matrices that show the greatest gradient changes during a warm-up phase at
the beginning of fine-tuning. Since GW-Selection requires full backward propagation, it updates the
base model during the warm-up phase, and identify the salient sub-matrices according to the average
of absolute value of gradients. Mathematical formulations for GW-selection can also be found in

Appendix [B.T]

Further comparisons between fine-tuning results using Activation-aware parameter selection (AW-
Selection) and Gradient-aware parameter selection (GW-Selection) are presented in Table [§] A
significant performance gap can be observed between AW-Selection and GW-Selection in sparsity
fine-tuning. AW-Selection tends to overfit more easily than GW-Selection when fine-tuning the
same number of trainable parameters under identical hyper-parameter settings. Even after ad-
justing the hyper-parameters, AW-Selection still performs substantially worse than GW-Selection.
In Table [} we present the best results for AW-Selection.

17

Published as a conference paper at ICLR 2025

Table 8: Results on fine-tuning LLaMA-7B using gradient-aware parameters selection (GW-
Selection) and activation-aware parameter parameters selection (AW-Selection) on CommonSense
dataset.

Model PEFT method #Params% BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG

GW-Select 0.84 68.7 817 783 91.6 78.8 84.1 68.7 714 787
LLaMA-7B AW-Select 0.84 62.0 495 529 70.8 48.6 54.8 412 4577 532
GW-Select 4.91 720 829 80.7 93.3 82.4 86.1 70.6 83.0 814
AW-Select 4.91 625 504 487 68.8 50.2 56.1 40.8 448 528

More details about AWQ (Lin et al., 2024): Once the salient channels are identified based on
activation magnitude, AWQ proposes a strategy to protect these channels by scaling them. The
following equation (Equation 5 in the AWQ paper) describes how the scaling is performed:

s=s8%, a =argminlL(s%)
[e3

where sx is the average magnitude of the activation (per-channel), and « is a hyperparameter that
controls the balance between protecting the salient and non-salient channels. The objective function
L(s%) minimizes the output difference after applying the scaling, ensuring that the performance
degradation due to weight adjustment is minimized.

The hyperparameter o controls how aggressively the salient channels are protected. When « is
larger, the scaling factor s$; is more aggressive, placing more emphasis on the channels with larger
activations. Conversely, a smaller « results in more balanced protection between salient and non-
salient channels. Similarly, in AW-Selection, « is used to control the percentage of trainable param-
eters. When « is larger, larger percentage of trainable parameters is selected. Conversely, a smaller
« results in smaller number of trainable parameters.

B.3 ABLATION STUDIES ON SUB-MATRICES SELECTION

In table 0] we present experimental results comparing the following selection methods: selects the
top Y% of sub-matrices parameters across all Q, K, V layers; selects the top Y% of sub-matrices
parameters within each Q, K, V layer; and random selection, which selects sub-matrices parameters
randomly within all Q, K, V layers. Our findings show that automatic top Y% parameter selection
across all K, Q, V parameters consistently outperforms the top Y% selection within each Q, K, V
layer and the random selection method.

Table 9: Fine-tuning LLama-7B using SMT on CommonSense dataset. This table aims to perform
an ablation study to find which parameter selection approach is the best. SMT-1: Select the top
0.84% of parameters from all Q, K, V parameters. SMT-2: Select the top 0.84% of parameters in
every layers of Q, K, V vectors. SMT-2: Randomly Select 0.84% of parameters in every layers of
Q, K, V vectors.

Model BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG

SMT-1 68.7 81.7 783 91.6 78.8 84.1 68.7 774 178.66
SMT-2 66.5 80.8 732 85.1 71.4 79.7 588 672 72.83
SMT-3 61.7 748 70.1 82.4 68.4 752 545 645 6895

18

Published as a conference paper at ICLR 2025

C SMALL GRADIENT CAUSED BY SOFTMAX SATURATES

C.1 WHAT CAUSE THE SMALL GRADIENT IN Q/ K VECTORS?

In the context of the scaled dot-product attention mechanism, the softmax function is typically ap-
plied to the scaled dot-product between the query and key matrices, expressed as:

softmax (QKT)
Vi,)’

where Q € R"*9 is the query matrix, ' € R™*% is the key matrix, and d}, is the dimension of
the key vectors. The term QK T € R"*™ represents the matrix of dot products between query and
key vectors. The softmax function is applied along the rows of the scaled matrix:

) ;
Vi

where the elements of S are given by

Qi K;
Vi

with Q; - K; denoting the dot product between the i-th query vector and the j-th key vector.

Sij =

To understand why the gradient of the softmax function with respect to Q and K vectors becomes
small when QKT is large and /d}, is not sufficiently large, we begin by considering the gradient of
the softmax function itself. For a given row 5; of the matrix, the softmax function is defined as:

eSi

Sopes

The gradient of o(.S;) with respect to Sy, is given by:

o(S;) =

9o(Si) _ {U(Sz‘)(l —o(S;) ifi=k,
8Sk *O’(Si)O'(Sk) if ¢ 7£ k.

Now, to compute the gradient with respect to (), we must apply the chain rule. The gradient of the

scaled dot-product S;; = Q\/g with respect to Q); is:

0S5 B ﬁ
0Q; Vdy

Thus, the gradient of the softmax output with respect to J; becomes:

60'(51) o 80’(51)) (’)S”
an - i 851] 8@1 .

Substituting the gradients, we obtain:

do(S;) N K
Qi *ZJ_:”(SO(% () 7=

We now examine the behavior of the gradient when QK T becomes large and +/dj, is not large
enough. If the values of QK " are large, the elements S;; will also be large. As S;; grows, the

19

Published as a conference paper at ICLR 2025

softmax function saturates, meaning that one of the softmax outputs will approach 1, while the
remaining outputs approach 0. In such cases, the gradient of the softmax function becomes very
small because for large S;, the output o(.S;) is close to 1 for the largest element and close to 0 for
all other elements, leading to the following observations:

1. For the largest .S;, the softmax output approaches 1, and the gradient becomes:

9o (Si)
05;

= o(S)(1—o(S;))~1-(1—1) =0.

2. For the smaller S; (where j # 1), the softmax output approaches 0, and the gradient also becomes
very small:

9o (S;)
a5,

=0(8;)-0(S;) = 0.

The small gradient arises because the softmax function compresses a wide range of input val-
ues into a narrow range of output probabilities between 0 and 1. As a result, when one value
dominates the others, the gradients with respect to the input values shrink significantly.

Next, consider the impact of the scaling factor v/dj,. This scaling is introduced to mitigate the effect
of large dot products by dividing the dot products Q; - K; by v/d. However, if v/dj, is not large
QKT

enough, the elements of S = g can still become large, leading to saturation in the softmax

function. As a result, the gradients with respect to () remain small.

In summary, the gradient of the softmax with respect to () becomes small when QK" is large

and /dy, is not large enough due to the saturation of the softmax function. When the scaled dot-
T

product % has large values, the softmax output tends to concentrate around 1 for one element and

near 0 for the others, resulting in near-zero gradients. The scaling factor /d}, alleviates this issue to
some extent, but if dj, is small, the problem of small gradients persists, hindering the optimization
process.

C.2 SCALING /dy,

.
We now demonstrate how increasing /d;. affects the variance of QL\/CT’ and how an increase in
k

variance leads to larger differences between the elements of QK .
Consider the dot-product between query and key vectors @; - K;. Let the elements of () and K be
independent and identically distributed (i.i.d.) random variables with mean 0 and variance o2. The

dot product @; - K; is the sum of dj, independent terms, each of variance 0. Therefore, by the
properties of variance, the variance of @; - K is:

Var(Q; - K;) = dy, - o°.)

Now, when we apply the scaling factor ﬁ, the variance of the scaled dot-product becomes:

K 1 .02
Var(QZ J):~Var(Qi-Kj):dk 7~

Vi, dy, di
Thus, the variance of Q&gj remains constant and independent of dj, which stabilizes the variance

of the scaled dot-products. However, if \/d}, is too small, the variance of the dot-products QK T will
increase. This increase in variance implies that the differences between the elements of QK ' also
become larger, as larger variance leads to more spread-out values, which accentuates the differences
between the individual elements of QK . Consequently, if the differences between the elements of
QK T increase, the softmax function is more likely to saturate, resulting in one element becoming
significantly larger than the others, and thus leading to smaller gradients, as discussed earlier.

20

Published as a conference paper at ICLR 2025

D MATH10K DATASET

MathlOK dataset can evaluate the effectiveness of LLMs on the arithmetic reasoning task.
MathlOK incorporate six subsets including GSM8k, SingleEq, SVAMP, MultiArith,
AddSub, and AQuA.(1) the GSM8K (Cobbe et all [2021)) dataset consists of high quality lin-
guistically diverse grade school math word problems created by human problem writers, (2) the
SVAMP (Patel et al., [2021)) benchmark consists of one-unknown arithmetic word problems for up-
to-4 grade level students by making simple changes to a set of problems from another existing
dataset, (3) the MultiArith (Roy & Roth,|2016) dataset of math word problems requiring multi-
ple reasoning steps and operations, (4) the AddSub (Hosseini et al, [2014) dataset of addition and
subtraction arithmetic word problems, (5) the AQuA (Ling et al, 2017)) dataset of algebraic word
problems with natural language rationales, and (6) the SingleEq (Koncel-Kedziorski et al.l 2015)
dataset of grade-school algebra word problems that map to single equations with varying length;

E PLATEAU ISSUE FOR LORA AND DORA

In Fig. [0} we visualize the performance of LoRA, DoRA, and SMT under different scaling of train-
able parameters on CommonSense dataset.

—@- SMT & LoRA =~ DoRA =%= SpIEL
LLaMA-7B LLaMA2-7B

83 1
80
82 4

8 1 81

% 4 80

Performance
Performance

79
74 4

78 4

72 A

i 2 3 4 5 i 2 3 4
Params (%) Params (%)

Figure 9: Accuracy comparison of LoRA, DoRA, and SMT under different scaling of trainable
parameters on commonsense reasoning datasets.

F MORE DETAILS ABOUT LORA

In Equation. [T} for a pre-trained weight matrix W, LoRA constrains its update by representing the
latter with a low-rank decomposition Wy + AW = W, + BA, where B € R4*" A € R*™", and
the rank < min(d, k).

21

Published as a conference paper at ICLR 2025

G DENSE MATRIX MULTIPLICATION IN SMT OUTPERFORMS SPARSE
MATRIX MULTIPLICATION

In this section, we explain in detail why SMT’s use of dense matrix multiplication with concate-
nated sub-matrices outperforms sparse matrix multiplication, particularly when implemented with
PyTorch’s tensor. sparse format.

G.1 MEMORY OVERHEAD IN SPARSE MATRICES

Sparse matrices often incur significant memory overhead due to the storage of additional indices,
which is not required for dense matrices. Let us consider a concrete example of the LLaMA?2 model,
where the projection matrices (), K, and V' have dimensions 4096 x 4096.

In the case of a dense matrix, all elements are stored directly, resulting in the need to store 4096 x
4096 = 16,777,216 values. However, in a sparse matrix format, if only 5% of the elements are
non-zero, then only 0.05 x 16, 777,216 = 838,861 values need to be stored. Despite this reduction
in stored values, sparse matrices require storing the indices of non-zero elements, which introduces
significant overhead. Specifically, for each non-zero element, two indices (row and column) must
be stored, leading to an additional 2 x 838,861 = 1,677, 722 indices, effectively resulting in sparse
matrices taking up to 5 times more memory than a concatenated dense matrix used in SMT. We
illustrate this in Fig. [I0] and Fig. [T1] In Fig. [I0] we present the code we use to test memory and
Fig.[[T]displays the memory costs for each generated tensor.

The sparse matrix is Tensor3 in Fig. [T1] which contains 12.80M to store 1,677, 722 indices and
3.20M to store 838,861 elements, totaling 16.0 MB. Instead, the dense matrix Tensor1 requires
only 3.20 MB to store the same 838, 861 elements. This dense storage reduces memory usage by a
factor of 5 (16.0 MB / 3.2 MB). Tensor1 is the full dense matrix with size 4096 x 4096.

de

-+

memoryTest():

random_full_tensor is the dense te

dense_tensor i

randon_full_tensor = torch.randn(40%96, 4095).to(DEVICE)
sparse_tensor = torch.zeros(4096, 4096)

dense_tensor = torch.randn(397, 2113)
sparse_tensor[0:397, 0:2113] = dense_tensor
sparse_tensor = sparse_tensor.to_sparse().to(DEVICE)

torch.cuda.empty_cachel()

reporter = MemReporter()
reporter. report()

Figure 10: Implementation of memory costs test.

Element type Size Used MEM
Tensoro (4096, 40896) 64.00M
Tensorl (397, 2113) 3.20M
Tensor3 (2, 838861) 12.80M
Tensor3 (838861,) 3.26M
Total Tensors: 20132650 Used Memory: 83.20M

Figure 11: Memory costs.

By concatenating the selected sparse sub-matrices into a single dense matrix, SMT avoids the need
for index storage, thereby achieving significantly lower memory consumption, especially in GPU-
constrained environments.

22

Published as a conference paper at ICLR 2025

G.2 NONCONTINUOUS MEMORY IN SPARSE MATRICES

GPUs are optimized for dense matrix operations, benefiting from contiguous memory layout and
better parallelization. In dense matrix operations, the data is stored in a continuous block of memory,
ensuring that all elements are accessed in a regular and predictable manner. This leads to fewer cache
misses and higher throughput during computation.

In contrast, sparse matrices inherently involve irregular memory access patterns because accessing
each non-zero element requires retrieving its associated indices. Unlike SMT, which requires only
a single index for a submatrix block and benefits from continuous memory within that block, sparse
matrices must repeatedly resolve indices for individual elements and map them into contiguous
memory. This leads to inefficient memory utilization, lower cache efficiency, and increased latency.

Additionally, sparse matrices often experience load imbalances during parallel computations, as dif-
ferent rows or columns can contain vastly differing numbers of non-zero elements. This imbalance
complicates workload distribution across GPU threads, reducing overall parallel efficiency. SMT
overcomes these issues by leveraging its structured and dense submatrix memory representation,
which minimizes irregular access and ensures higher computational performance. SMT’s approach
of concatenating sparse sub-matrices into dense matrices enables the use of highly optimized dense
matrix multiplication libraries (such as cuBLAS on NVIDIA GPUs), ensuring maximum hardware
utilization and significantly faster computations.

G.3 LACK OF HARDWARE SUPPORT

Modern hardware, especially GPUs, is optimized for dense linear algebra operations using libraries
like cuBLAS (NVIDIA) or MKL (Intel). These libraries implement hardware-specific optimiza-
tions, such as fused multiply-add (FMA) and matrix blocking, to ensure high performance for dense
matrix multiplications.

In contrast, sparse matrix operations, though supported by libraries like cuSPARSE or MKL
SPARSE, suffer from hardware inefficiencies due to the irregular memory access patterns inher-
ent in sparse matrices. These irregularities make it challenging to optimize sparse operations to the
same degree as dense matrix operations, resulting in lower overall performance.

G.4 ALGORITHMIC COMPLEXITY

Sparse matrix multiplication algorithms must handle conditional checks to skip zero elements during
multiplication, adding overhead to the computation. In dense matrix multiplication, all elements are
processed in a straightforward loop without such checks, simplifying the computation.

When sparsity is moderate, the overhead from checking and skipping zero elements in sparse matri-
ces can outweigh the performance gains, making sparse matrix operations less efficient than dense
matrix operations, where every element is multiplied and summed without conditions.

By avoiding the overheads of sparse matrix operations and leveraging the efficiency of dense matrix
multiplication, SMT achieves faster fine-tuning with lower memory usage.

23

Published as a conference paper at ICLR 2025

H WARM UP ITERATIONS

The number of warm-up iterations is determined by running SMT on the Commonsense dataset for
30, 70, 100, 130, and 160 warm-up iterations. We look at the average of the performance across all
tasks, and choose the number of warm-up iterations that has the best overall overage performance, as
shown in the table[I0]below. We conducted similar experiments on the Math-10K dataset, and found
using the same procedure that 30 warm-up iterations leads to the best performance on the Math-10k
dataset of tasks. Notably, although we conducted an ablation study to select the number of iterations
for different datasets, Table shows that performance variance due to the number of warm-up
iterations is minimal. This trend is also observed in the Math-10K dataset in Table [TT] suggesting
that 100 warm-up iterations can generally be applied across most datasets without additional tuning.

Table 10: SMT experiment results using different warm-up iterations on CommonSense dataset.
This table aims to find the best gradient warm-up steps. All experiments are using SMT to fine-tune
3.5% trainable parameters in Q, K, V vectors of LLaMA-7B. SMT-30S: 30 gradient warm-up steps;
SMT-70S: 70 gradient warm-up steps. SMT-100S: 100 gradient warm-up steps. SMT-130S setting:
130 gradient warm-up steps. SMT-160S: 160 gradient warm-up steps.

Model BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG
SMT-30S 69.6 83.1 79.2 92.7 81.5 84.9 69.0 78.6 79.83
SMT-70S 70.1 83.1 794 92.7 81.1 85.4 69.3 80.2 80.16
SMT-100S 71.0 823 80.0 92.9 81.8 86.2 70.4 80.2 80.60
SMT-130S 69.5 826 79.7 92.7 81.7 85.9 69.7 81.6 80.43
SMT-160S 689 824 79.7 93.0 82.4 85.4 70.2 82.0 80.50

Table 11: SMT experiment results using different warm-up iterations on Math-10K dataset. This
table aims to find the best gradient warm-up steps. All experiments are using SMT to fine-tune
0.86% trainable parameters in Q, K, V vectors of LLaMA-7B. SMT-20S: 20 gradient warm-up steps;
SMT-30S: 30 gradient warm-up steps. SMT-50S: 50 gradient warm-up steps. SMT-70S setting: 70
gradient warm-up steps. SMT-100S: 100 gradient warm-up steps.

Model PEFT method #Params% GSMS8k SingleEq SVAMP MultiArith AddSub AQuA AVG

SMT-20S 0.86 34.0 84.2 52.8 91.8 84.8 232 618
SMT-30S 0.86 34.2 84.6 53.6 91.5 85.8 23.6 622
LLaMA-7B SMT-50S 0.86 34.4 83.7 52.8 91.0 85.2 226 61.6
SMT-70S 0.86 33.8 83.8 52.8 91.3 84.4 22.8 615
SMT-100S 0.86 33.6 83.9 53.1 91.3 85.4 22.8 61.7

24

Published as a conference paper at ICLR 2025

I SELECTION FOR SUBMATRIX SIZE

The rational behind 256 x 256 as sub-matrix block size is also under the consideration for general-
ization and trade off between performance and time costs for non-continuous memory projection.

The choice of a 256 x 256 sub-matrix block size is based on generalization and a trade-off between
performance and the time costs of non-continuous memory projection.

From a generalization perspective, we aim to select a block size that is applicable across all layers
in large language models (LLMs). Specifically, in the LLaMA family, the K, Q, V, and O vectors
are designed with sizes such as 4096 x 4096 in LLaMA-7B, LLaMA-2-7B, 4096 x 1024 for K and
V in LLaMA-3-8B, and 5120 x 5120 in LLaMA-13B/LLaMA-2-13B. The MLPs have sizes like
4096 x 11008 in LLaMA-7B/LLaMA-2-7B, 4096 x 14336 in LLaMA-3-8B, and 5120 x 13824 in
LLaMA-13B/LLaMA-2-13B. Among these weight matrices, 256 x 256 is the largest common block
size, as 256 is the greatest common divisor of 1024, 4096, 5120, 11008, 14336, and 13824. This
block size can not only be used in LLaMA models but also in other LLM families such as Mistral
and Phi.

While 256 x 256 is the largest common factor, alternative block sizes such as 128 x 128 and 64 x 64
are also potential candidates. We conducted an experiment, as shown in Tab. to evaluate the
performance of fine-tuned LLMs with different sub-matrix block sizes. The results indicate that
smaller block sizes yield slightly better performance (0.5%), but they introduce additional time
costs due to the memory projection required by SMT.

For non-continuous memory projection, SMT transfers sub-matrices to dense memory, which in-
curs time costs. Sparse matrices are often stored in compressed formats (e.g., Compressed Sparse
Row, Compressed Sparse Column), where only non-zero elements and their indices are stored (Go-
harian et al.| (2003)); |Ordonez et al.| (2016). Smaller block sizes lead to fewer elements per block,
increasing the likelihood of data being scattered across different memory locations, which results
in more frequent memory look-ups and higher overhead when assembling these blocks into a dense
representation. With a block size of 256 x 256, the time costs of memory projection are negligible,
accounting for less than 3% of the total forward pass time. Specifically, for a 256 x 256 block size,
the total forward pass time is 4.9e-05 seconds, and the memory projection time is 1. 6e-06
seconds. In contrast, for 128 x 128 block size and 64 x 64 block size, the memory projection time
increases to 5.4e—-06 seconds (10%), and 1.5e-05 seconds (24%), respectively. While smaller
block sizes provide marginal performance improvements (+0.5 point), they significantly increase
time costs. Therefore, we chose 256 x 256 as the optimal sub-matrix block size. The profiling
results were recorded when fine-tuning 0.84% of LLaMA-7B parameters, in a V vector where 2.1%
parameters were selected. All time profiling results are averaged over 100 iterations, after 100
warm-up iterations.

Table 12: Experiment results for SMT with different sub-matrix block sizes when fine-tuning 0.84%
of LLaMA-7B parameters on the CommonSense dataset. SMT-256: 256 x 256 block size; SMT-
128: 128 x 128 block size; SMT-64: 64 x 64 block size. Other experimental settings are described
in the experimental section of the main paper.

Model BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG

SMT-256 68.7 81.7 783 91.6 78.8 84.1 68.7 774 787
SMT-128 689 823 788 91.8 79.2 845 688 778 79.0
SMT-64 69.2 822 78.0 91.7 79.5 8.3 692 782 792

25

	Introduction
	Background and Related Works
	Methodology
	Experiments and Results
	Commonsense Reasoning
	Plateau in Weight low rank adaption methods
	Other Dataset
	Memory and Computation Saving: SMT vs. Low-rank Adaption Methods

	Further Discussion
	Attention versus MLP
	V Vector Versus Q, K Vector

	Conclusion
	Acknowledgments
	Implementation Details with Code Snippets
	Sub-Matrices Selection
	Fisher Information vs. SMT
	AW-Selection vs. GW-Selection in SMT
	Ablation Studies on Sub-matrices Selection

	Small Gradient Caused by Softmax Saturates
	What Cause the Small Gradient in Q/ K Vectors?
	Scaling dk

	Math10K Dataset
	Plateau Issue for LoRA and DoRA
	More Details about LoRA
	Dense Matrix Multiplication in SMT Outperforms Sparse Matrix Multiplication
	Memory Overhead in Sparse Matrices
	Noncontinuous Memory in Sparse Matrices
	Lack of Hardware Support
	Algorithmic Complexity

	Warm up iterations
	Selection for Submatrix Size

