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ABSTRACT

Spoken language understanding (SLU) requires a model to analyze input acoustic
signals to understand its linguistic content and make predictions. To boost the
models’ performance, various pre-training methods have been proposed to utilize
large-scale unlabeled text and speech data. However, the inherent disparities be-
tween the two modalities necessitate a mutual analysis. In this paper, we propose
a novel semi-supervised learning method, AlignNet, to jointly pre-train the speech
and language modules. Besides a self-supervised masked language modeling of
the two individual modules, AlignNet aligns representations from paired speech
and transcripts in a shared latent semantic space. Thus, during fine-tuning, the
speech module alone can produce representations carrying both acoustic informa-
tion and contextual semantic knowledge. Experimental results verify the effec-
tiveness of our approach on various SLU tasks. For example, AlignNet improves
the previous state-of-the-art accuracy on the Spoken SQuAD dataset by 6.2%.

1 INTRODUCTION

Spoken language understanding (SLU) tackles the problem of comprehending audio signals and
making predictions related to the content. SLU has been widely employed in various areas such
as intent understanding (Tur & De Mori, 2011; Bhargava et al., 2013; Ravuri & Stolcke, 2015;
Lugosch et al., 2019), question answering (Lee et al., 2018; Chuang et al., 2020) and sentiment
analysis (Zadeh et al., 2018). Early approaches leverage a two-step pipeline: use automatic speech
recognition (ASR) to transcribe input audio into text, and then employ language understanding mod-
els to produce results. However, this cascaded architecture has several drawbacks. First, the tran-
scription produced by the ASR module often contains errors, which adversely affects the prediction
accuracy. Second, even if the transcription is perfect, the rich prosodic information (e.g., tempo,
pitch, intonation) is inevitably lost after ASR. In comparison, humans often leverage these infor-
mation to better understand and disambiguate the content. Therefore, there has been a rising trend
of end-to-end approaches to retain information from audio signals to carry out the understanding
task (Serdyuk et al., 2018; Chen et al., 2018; Haghani et al., 2018).

While end-to-end SLU methods are effective, they often suffer from a shortage of labeled training
data, especially when the target task is in a novel domain. One solution is to leverage self-supervised
training as is done in pre-trained language models. BERT (Devlin et al., 2019), GPT (Radford et al.,
2018) and RoBERTa (Liu et al., 2019) are first pre-trained on large-scale unannotated text in a self-
supervised fashion to learn a high-quality representation before being fine-tuned on downstream
tasks with a modest amount of labeled data. Borrowing this idea, several pre-training methods
have been proposed for acoustic input, e.g., wav2vec (Schneider et al., 2019; Baevski et al., 2020),
contrastive predictive coding (Oord et al., 2018; Rivière et al., 2020), and autoregressive predictive
coding (Chung et al., 2019; 2020; Ling et al., 2020), to capture contextual representation from
unlabeled speech data. Nevertheless, these methods only focus on acoustic data during pre-training.
As a result, the produced embeddings may not be optimal for the language understanding task.

To solve these problems, we propose a novel speech-languaget joint pre-training framework, Align-
Net. AlignNet contains a speech module and a language module for multi-modal understanding. The
speech module is a transformer architecture trained from scratch and the language module is initial-
ized from BERT. Both modules leverage large-scale unannotated data for pre-training via masked
language modeling. In the speech module, each frame is seen as a token and is replaced with zero
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vector with a certain probability. For each masked frame, we minimize the L1-distance between the
generated representation and the original frame.

Then, to make the speech module aware of the contextual information extracted from the language
module, we design an alignment loss to align the representations from both modules in a shared
latent semantic space. In detail, we propose two alignment methods, i.e. sequence-level and token-
level, to leverage a small amount of paired speech and transcripts and minimize the disparity between
the audio representation from the speech module and the text representation from the language
module. In this way, the speech representation will carry not only the acoustic information but also
the contextual knowledge from the text. After this alignment, when text input is absent during fine-
tuning, the speech module alone can produce representations that bridge the speech input and the
language understanding output.

We conduct extensive evaluations on several downstream SLU tasks, including Fluent Speech Com-
mands for intent detection, Switchboard for dialog act classification, CMU-MOSEI for spoken sen-
timent analysis, and Spoken SQuAD for spoken question answering. AlignNet achieves superior
results in all datasets. For example, AlignNet improves the previous state-of-the-art accuracy on the
Spoken SQuAD dataset by 6.2%. Furthermore, we show that AlignNet can perform well even given
a tiny portion of the labeled training data in downstream tasks.

2 RELATED WORK

Spoken language understanding In recent years, due to its flexibility and effectiveness, end-to-
end spoken language understanding (SLU) has been proposed and applied to various tasks (Qian
et al., 2017; Serdyuk et al., 2018; Lugosch et al., 2019). For instance, Qian et al. (2017) uses an
auto-encoder to initialize the SLU model. Lugosch et al. (2019) pre-trains the model to recognize
words and phonemes, and then fine-tunes it on downstream tasks. Chen et al. (2018) pre-trains the
model to categorize graphemes, and the logits are fed into the classifier. In most of these approaches,
the model pre-training requires labeled speech data, e.g., word or phonemes corresponding to audio
signals. As a result, the massive unlabeled speech data cannot be utilized by these models.

Self-supervised pre-training Pre-trained models have achieved great success in both language
and speech domains. In language, BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019),
UniLM (Dong et al., 2019) and BART (Lewis et al., 2020) have been successfully applied in natural
language inference (Zhang et al., 2020b), question answering (Zhu et al., 2018) and summariza-
tion (Zhu et al., 2019). These pre-trained models leverage self-supervised learning tasks such as
masked language modeling (MLM), next sentence prediction, and de-noising autoencoder.

In speech, wav2vec (Schneider et al., 2019) leverages contrastive learning to produce contextual
embeddings for audio input; vq-wav2vec (Baevski et al., 2020) further learns to discretize audio
input to enables more efficient MLM training with Transformer (Vaswani et al., 2017). Pre-trained
speech models have been applied in automatic speech recognition (ASR) (Ling et al., 2020; Chung
& Glass, 2020) and phoneme recognition (Song et al., 2020).

Nevertheless, an SLU model must incorporate both acoustic and language understanding capabilities
to project speech signals to semantic outputs. Thus, a pre-trained model for SLU needs to address
tasks beyond a single modality.

Speech and text joint pre-training Recently, SLU applications have prompted joint pre-training
on both speech and text data. SpeechBERT (Chuang et al., 2020) applies MLM to pairs of audio
input and transcripts. However, compared to our work, there are several crucial differences. First,
SpeechBERT contains a separate phonetic-semantic embedding module to produce paired audio
data, which requires pre-training and may generate errors. Second, both the pre-training and fine-
tuning phases of SpeechBERT adopt input of both speech and text signals. However, many SLU
datasets only contain speech input, which does not align with SpeechBERT. In comparison, our
model aligns the speech module with the language understanding module during pre-training, and
only needs speech input for downstream tasks.

Denisov & Vu (2020) proposes to align speech embeddings with language embeddings, in a method
similar to ours. However, there are several key differences. Firstly, Denisov & Vu (2020) employs
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the encoder of a pre-trained ASR model, which already requires plentiful of annotated speech to
obtain. Our model conducts self-supervised learning for the speech module based on unlabeled
audio inputs. Secondly, in addition to sentence embedding alignment, we propose a token-level
alignment, which is suitable for token-level downstream tasks. Thirdly, our model uses a much
smaller speech corpus for alignment (10 hours) than Denisov & Vu (2020) (1,453 hours), yet still
outperforms it by 4.6% in the downstream dialog act classification task.

3 METHOD

In this section we introduce AlignNet, a model for learning joint contextual representation of speech
and language. The model consists of a speech module and a language module that share a similar
architecture learning algorithm. Both modules are first pre-trained with unannotated speech or text
data. Then, we leverage an alignment task with a small amount of paired speech and transcript
data to align the representations from both modules in a shared latent semantic space so that the
information learned by the language module is transferred to the speech module. After pre-training,
the language module is discarded and only the speech module is used in downstream tasks. Below
we formally describe the two modules (§3.1 and § 3.2), the alignment loss (§3.3), and the training
procedure (§3.4). Figure 1 provides an overview of AlignNet.

3.1 SPEECH MODULE

The goal of this module is to learn a representation that contains useful acoustic information about
speech utterances such as their phonetic content and speaker characteristics.

Formally, the input to the speech module consists of n audio features based on 80-dimensional log
Mel spectrograms, {x1, ...,xn}. The input is fed into the Transformer architecture to produce output
embeddings {s1, ..., sn}.
To boost its capacity for contextual understanding, we use the idea of masked language model-
ing (MLM) (Devlin et al., 2019; Liu et al., 2020; Wang et al., 2020). Specifically, each audio
feature xi is replaced with a zero vector with a probability of 15%. The corresponding output si is
trained to be close to the original feature xi.

Furthermore, according to SpecAugment (Park et al., 2019), the input features {xi} can be seen
as comprising two dimensions: time, i.e., the subscript i, and channel, i.e., the elements in each
xi. While conventional MLM masks certain timepoints, the input signals can also be masked in
the channel dimension. In other words, for each 1 ≤ j ≤ d, where xi ∈ Rd, x1,j , ...,xn,j are
masked and set to zero vectors with a probability of 15%. This channel masking is combined with
temporal masking to reinforce the model’s capability to utilize contextual information from both
time and channel, and reduce the impact of co-adaptation between features. So the loss function for
the speech module is:

Lsp =
∑

xi=1,2,...,n

‖xi − si‖1 (1)

3.2 LANGUAGE MODULE

The language module aims to offer contextual understanding for text input. Given token embeddings
{y1, ...,ym}, the module produces contextual representations {t1, ..., tm}.
We employ the BERT-base model (Devlin et al., 2019) to initialize the language module. In order to
adapt the model to speech domain, we adapt the language model using the MLM task on transcripts
from LibriSpeech. The corresponding cross-entropy loss function is denoted by Ltext.

3.3 ALIGNING SPEECH AND LANGUAGE REPRESENTATIONS

The input to most SLU tasks consists of only audio signals, but the model is required to conduct
semantic understanding, which can be best handled when textual information is present. Therefore,
we propose to align the pre-trained speech and language representations in a shared semantic latent
space.
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Figure 1: Architecture of AlignNet. The speech module and language module conduct self-
supervised learning via masked language modeling. The two modules are then aligned using paired
audio and text data with sequence-level alignment. After pre-training, only the speech module is
used in downstream tasks.

Suppose an audio input {xi}ni=1 comes with its transcript {yj}mj=1. We first prepend both inputs
with a special token [CLS], which has learnable embeddings represented by x0 and y0 respectively.
The speech and language modules separately produce the output representations {s0, ..., sn} and
{t0, ..., tm}. We then propose two methods to align the embeddings from the modules: sequence-
level and token-level alignment.

Sequence-level alignment. As the special [CLS] token can be seen as a representation of the whole
input sequence, we minimize the distance between the representation of [CLS] in speech input and
that of [CLS] in text input:

Lseq = ‖s0 − t0‖1 (2)

After pre-training, the output embedding of [CLS] in the speech module will be close to its corre-
sponding text embedding in the language module, even when the transcript is absent in downstream
tasks. Thus, this alignment can help with sequence-level SLU tasks to predict the property of the
whole audio input, e.g., intent classification.
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Figure 2: Token-level alignment between speech and language modules.

Token-level alignment. To achieve a finer level of alignment, each audio feature should be com-
pared with its corresponding text token. Although forced alignment (Gorman et al., 2011) can
establish this correspondence between audio signals and individual words, it is very laborious to
acquire such labeling. Therefore, we propose to automatically align audio features to textual tokens.

Inspired by BERTScore (Zhang et al., 2020a), for each output text embedding tj , we compute its
cosine similarity with each output audio embedding si, and select the audio feature with the highest
similarity.

4



Under review as a conference paper at ICLR 2021

The alignment then maximizes the sum of these maximum similarities over all tokens, weighted by
each token’s inverse document frequency (idf) to reduce the impact of common words:

Ltok = −
∑m

j=1 idf(tj)maxi cossim(si, tj)∑m
j=1 idf(tj)

(3)

The token-level alignment is illustrated in Figure 2. It can help with token-level SLU tasks to predict
the category of various segments of audio input, e.g., extractive spoken question answering.

3.4 TRAINING PROCEDURE

We use the train-clean-360 subset of the LibriSpeech corpus (Panayotov et al., 2015) to pre-
train the speech module, i.e., minimizing Lsp. This subset contains 360 hours of read speech pro-
duced by 921 speakers. We use 80-dimensional log Mel spectrograms and normalize them to zero
mean and unit variance per speaker as input acoustic features, i.e., xt ∈ R80.

We then randomly sample 10 hours of transcripts to pre-train the language module, i.e., minimizing
Ltext. Then, the corresponding 10 hours of audio is paired with these transcripts for the alignment
task, i.e., minimizing Lseq or Ltok.

During fine-tuning, only the speech module is used in downstream SLU tasks.

4 EXPERIMENTAL SETUP

4.1 BASELINES

We include a number of strong baselines from recent literature for each downstream task (Lugosch
et al., 2019; Duran & Battle, 2018; Ghosal et al., 2018; Chuang et al., 2020). We also compare with
another speech-language joint pre-training framework (Denisov & Vu, 2020).

To verify the effectiveness of our proposed framework, we experiment with the following variants
of our model, including whether to pre-train the model, whether to use the language module and
which alignment task to apply.

1. AlignNet-Scratch: AlignNet without pre-training, i.e., the speech module is trained from
scratch on downstream tasks.

2. AlignNet-Speech: AlignNet pre-trained without the language module.
3. AlignNet-Seq: AlignNet with sequence-level alignment, but language module is not up-

dated with MLM.
4. AlignNet-Seq-MLM: AlignNet with sequence-level alignment, and language module is

updated with MLM.
5. AlignNet-Tok: AlignNet with token-level alignment, but language module is not updated

with MLM.
6. AlignNet-Tok-MLM: AlignNet with token-level alignment, and language module is up-

dated with MLM.

The speech module of AlignNet is a 3-layer Transformer encoder where each layer has a hidden size
of 768 and 12 self-attention heads. The language module has the same configuration as BERTBASE

and its parameters are initialized from the pre-trained BERTBASE parameters released by Devlin
et al. (2019).

4.2 DOWNSTREAM SLU TASKS

We evaluate our model on four different types of SLU applications: intent detection, dialog act
classification, spoken sentiment analysis, and spoken question answering. The first three belong to
multi-class classification tasks, and the last one is a span prediction problem, which will be described
in more details below. Table 1 summarizes the used dataset for each application. For all datasets,
we use 80-dimensional log Mel spectrograms as input acoustic features as in the pre-training stage.
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Table 1: Summary of SLU datasets. For the rows of Train, Validation, and Test, the numbers indicate
the number of utterances in the split.

Task Intent
detection

Dialog act
classification

Spoken sentiment
analysis

Spoken question
answering

Dataset FSC SwBD CMU-MOSEI Spoken SQuAD
Num. of classes 31 42 7 -
Train 23,132 97,756 16,216 35,111
Validation 3,118 8,591 1,835 2,000
Test 3,793 2,507 4,625 5,351

Intent detection We use the Fluent Speech Commands corpus (FSC) (Lugosch et al., 2019) for
intent detection, where the goal is to correctly predict the intent of an input utterance. In this dataset,
each utterance is annotated with three slots: action, object, and location, where each slot can take
one of multiple values. The combination of slot values is defined as the intent of the utterance, and
there are 31 unique intents in total. In this work we follow the original paper to formulate intent
detection as a simple 31-class classification task.

Dialog act classification We use the NTX-format Switchboard corpus (SwDA) (Calhoun et al.,
2010), a dialog corpus of 2-speaker conversations. The goal is to correctly classify an input utterance
into one of the 42 dialog acts.

Spoken sentiment analysis We use the CMU-MOSEI dataset (Zadeh et al., 2018), where each
utterance is annotated for a sentiment score on a [−3, 3] Likert scale: [-3: highly negative, -2:
negative, -1: weakly negative, 0: neutral, +1: weakly positive, +2: positive, +3: highly positive].
We treat the task as a 7-class classification problem. And we only use audio signals in the input data.

For the above three applications, during fine-tuning, an MLP network with one hidden layer of 512
units is appended on top of the speech module. It converts the output representation of [CLS] for
class prediction. Both the pre-trained speech module and the randomly initialized MLP are fine-
tuned on the training set for 10 epochs with a batch size of 64 and a fixed learning rate of 3e-4. We
compute classification accuracy after each training epoch and pick the best-performing one to report
results on the test set.

Spoken question answering We use the Spoken SQuAD dataset (Li et al., 2018), which is aug-
mented1 from SQuAD (Rajpurkar et al., 2016) for spoken question answering. The model is given
an article in the form of speech and a question in the form of text. The goal is to predict a time
span in the spoken article that answers the question. In other words, the model outputs an audio
segment extracted from spoken article as the answer. The model is evaluated by Audio Overlapping
Score (AOS) (Li et al., 2018): the more overlap between the predicted span and the ground-truth
answer span, the higher the score will be.

During fine-tuning, given a spoken article and a question in the text form, the pre-trained speech
module extracts audio representations of the article and pass them to a randomly initialized 3-layer
Transformer encoder along with the tokenized textual question as input. The Transformer then uses
the self-attention mechanism to implicitly align elements of the input audio and textual features. For
each time step of the audio input, the Transformer is trained to predict whether this is the start of the
span with a simple logistic regression classifier. A separate classifier is used for predicting the end
of the span.

5 RESULTS AND ANALYSES

5.1 MAIN RESULTS

Table 2 shows the performance of models on all four downstream tasks. Each number from our
model is an average over 3 runs. Based on the results, we make the following observations.

1Li et al. (2018) used Google text-to-speech to generate the spoken version of the articles in SQuAD.
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Table 2: Results on all downstream datasets. All numbers of our models are average of 3 runs. The
metric is classification accuracy for FSC, SwBD and CMU-MOSEI. The metric for Spoken SQuAD
is Audio Overlapping Score (AOS).

Model FSC SwBD CMU-MOSEI Spoken SQuAD
AlignNet-Scratch 97.6 65.8 68.8 30.4
AlignNet-Speech 99.5 67.5 69.0 57.7
AlignNet-Seq 99.5 74.6 72.5 62.7
AlignNet-Seq-MLM 99.5 76.3 74.7 65.9
AlignNet-Tok 99.2 71.2 70.4 63.8
AlignNet-Tok-MLM 99.2 72.7 71.2 58.0
AlignNet-Seq-MLM 1-hour 99.5 75.8 65.3 65.3
Lugosch et al. (2019) 98.8 - - -
Duran & Battle (2018) - 75.5 - -
Ghosal et al. (2018) - - 75.9 -
Chuang et al. (2020) - - - 59.7
Denisov & Vu (2020) 100.0 71.7 - -

Firstly, compared with AlignNet-Scratch, all pre-trained models achieve superior results, especially
more than 30% gain on Spoken SQuAD, proving the effectiveness of pre-training.

Secondly, the inclusion of language module and the alignment task during pre-training is very ben-
eficial. For instance, on CMU-MOSEI dataset, AlignNet-Seq-MLM outperforms AlignNet-Speech
by 5.7%, and it outperforms several baseline systems from recent literature. We argue that as SLU
tasks require the model to interpret acoustic signals and their semantic meaning, the language mod-
ule and alignment task will guide the speech module towards a mutual understanding of both modal-
ities.

Thirdly, comparing AlignNet-Seq against AlignNet-Tok, we find that the sequence-level alignment
outperforms token-level alignment on the first three sequence classification tasks, while token-level
alignment achieves higher accuracy on Spoken SQuAD, a token classification task. It shows that a
closer resemblance between the pre-training goal and the property of downstream task will lead to
better performance.

Fourthly, updating the language module using MLM during pre-training is helpful. Although the
language module has been initialized with BERT, adaptation to the speech domain can help with
semantic understanding in the downstream task.

Finally, we experimented with a version of AlignNet which uses only 1 hour of transcribed speech
sampled from Librispeech, AlignNet-Seq-MLM 1-hour. It achieves comparable results with the best
variant AlignNet-Seq-MLM: same accuracy on FSC, 0.5% less on SwBD and 0.6% less on Spoken
SQuAD. This shows that with a small amount of labeled speech data, our pre-training framework
can achieve good results on downstream tasks.

5.2 ROBUSTNESS TO SIZE OF TRAINING DATA

As human labeling process is time-consuming and labor-intensive, the amount of labeled training
data for downstream tasks is often small and insufficient. In this section, we show that with effective
pre-training, the model will be less dependent on the amount of downstream labeled data.

We randomly sample 50%, 10%, 5%, and 1% of the training data in the downstream tasks, and
evaluate the performance of different variants of AlignNet when fine-tuned on the sampled data.

Table 3 shows the performance on all four downstream tasks with varying training data sizes. We
observe that among the variants, AlignNet-Seq-MLM is least sensitive to training data sizes. For
instance, in FSC, with only 10% of the training data, its accuracy only drops 0.4 points. In compari-
son, both AlignNet-Scratch and AlignNet-Speech drops about 10 points. And the gaps are in general
larger when the size of training data further shrinks. Therefore, our proposed joint pre-training of
speech and language modules can help the model quickly adapt to downstream tasks given a modest
amount of training data.
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Table 3: Performance on downstream tasks with varying training data sizes.

FSC
Model 100% 50% 10% 5% 1%
AlignNet-Scratch 97.6 95.1 86.8 25.4 2.7
AlignNet-Speech 99.5 99.0 90.4 52.7 34.0
AlignNet-Seq-MLM 99.5 99.5 99.1 63.8 45.7

SwBD
AlignNet-Scratch 65.8 65.3 59.8 45.9 31.6
AlignNet-Speech 67.5 66.5 63.6 46.7 33.7
AlignNet-Seq-MLM 76.3 70.7 66.9 53.2 38.6

MOSEI
AlignNet-Scratch 68.8 66.3 50.7 32.6 15.4
AlignNet-Speech 69.0 67.5 56.6 37.3 20.5
AlignNet-Seq-MLM 74.7 72.9 64.1 44.3 23.0

Spoken SQuAD
AlignNet-Scratch 30.4 27.9 22.3 15.9 9.8
AlignNet-Speech 57.7 55.0 51.2 46.5 32.4
AlignNet-Seq-MLM 65.9 63.8 60.1 50.3 37.9

6 CONCLUSIONS

Spoken language understanding (SLU) tasks require an understanding of the input audio signal and
its underlying semantics. In this paper, we presented a novel semi-supervised joint pre-training
framework, AlignNet, to carry out both speech and language understanding tasks during pre-
training. Besides a self-supervised training on the speech and language modules, we propose two
methods to align the semantic representations from both modules using a modest amount of labeled
speech data. The speech module can quickly adapt to downstream tasks and achieve superior results
on various SLU datasets including intent detection, dialog act classification, spoken sentiment anal-
ysis and spoken question answering. This joint pre-training also makes the model less sensitive to
the amount of labeled training data in downstream domains.

For future work, we plan to integrate automatic speech recognition (ASR) and natural language
generation (NLG) into our framework to achieve good results on spoken language generation tasks.
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