
Latent Learning Progress Drives Autonomous Goal
Selection in Human Reinforcement Learning

Gaia Molinaro
University of California, Berkeley
gaiamolinaro@berkeley.edu

Cédric Colas
Massachusetts Institute of Technology

ccolas@mit.edu

Pierre-Yves Oudeyer
Inria Centre at the University of Bordeaux

pierre-yves.oudeyer@inria.fr

Anne G. E. Collins
University of California, Berkeley
annecollins@berkeley.edu

Abstract

Humans are autotelic agents who learn by setting and pursuing their own goals.
However, the precise mechanisms guiding human goal selection remain unclear.
Learning progress, typically measured as the observed change in performance, can
provide a valuable signal for goal selection in both humans and artificial agents.
We hypothesize that human choices of goals may also be driven by latent learning
progress, which humans can estimate through knowledge of their actions and the
environment – even without experiencing immediate changes in performance. To
test this hypothesis, we designed a hierarchical reinforcement learning task in
which human participants (N = 175) repeatedly chose their own goals and learned
goal-conditioned policies. Our behavioral and computational modeling results
confirm the influence of latent learning progress on goal selection and uncover
inter-individual differences, partially mediated by recognition of the environment’s
hierarchical structure. By investigating the role of latent learning progress in
human goal selection, we pave the way for more effective and personalized learning
experiences as well as the advancement of more human-like autotelic machines.

1 Introduction

Animals often spontaneously explore their environment in the absence of immediate extrinsic payoffs
[1–8]. While seemingly wasteful, such intrinsically motivated behavior is argued to adaptively
guide learning and exploration, paying off across developmental and evolutionary timescales [9–
11]. As a result, researchers and engineers started endowing artificial systems with intrinsic reward
signals that aim to reproduce aspects of human curiosity-driven learning [11–17]. A striking aspect
of human intrinsic motivation is autotelic exploration, wherein people self-generate goals, and
reward themselves for achieving them [18–20]. How people decide which goals to pursue is thus an
outstanding issue in the cognitive sciences [21]. Identifying the key variables affecting goal selection
may in turn enable the development of artificial agents that intelligently set their own objectives,
rather than being optimized for predefined ones [22].

Alongside factors such as performance and novelty, learning progress (LP) – the derivative of
performance with respect to time – has proven a useful signal for goal selection, steering both humans
[23, 24] and artificial agents [25–28] away from tasks that are either too simple or too hard. Most
existing approaches approximate LP using past observations (e.g., differences in recent and earlier
performance [23]), such that LP is greatest when performance changes rapidly ([29], but see [30]).
However, there are often situations where no external change is visible, yet some other form of
progress toward the desired outcome is made. Imagine being tasked with identifying the correct
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sequence of numbers to open a combination lock, which you might attempt through trial and error.
Throughout most of this scenario, repeated failures would yield no difference in performance, hence
no empirical learning progress (as typically defined). Nonetheless, provided that the lock has a limited
number of slots and numbers and that you can avoid repeating incorrect combinations, every attempt
is a step toward the solution. Based on this observation, we propose extending the definition of LP to
include a latent variant, distinct from its manifest counterpart in that it relies on an internal model of
the environment and one’s behavior in addition to performance. Following this example, we formulate
latent learning progress (LLP) as a measure of progress an agent infers by leveraging knowledge
about the environment and its interactions with it, e.g., through reasoning. For example, LLP could be
tracking the proportion of hypotheses tested over the entire solution space, thus changing with every
new set of actions taken and dropping upon identifying the correct one. Unlike LP, LLP does not
require observing performance improvements to provide informative signals about progress. At least
in certain settings, LLP could be a more valuable signal for goal selection than the classically defined
LP, as it proactively estimates future progress without waiting for performance improvements.

Here, we hypothesize that LLP is a signal humans use for goal selection, and that it can be considered
separately from LP. Specifically, we test the role of LLP in human goal selection by introducing a
novel learning paradigm with goal choices as the key dependent variable. Several features of this
environment (detailed in Section 3.1) make it possible to distinguish between LP and LLP and test
the latter’s contributions to autotelic exploration in a sample of human participants. Among these,
a hierarchical component is introduced in the learning environment to further target LLP, which
might be sensitive to hierarchy-based inferences leading to sharp changes in the agents’ knowledge
of the environment. These features make our environment suited for probing LLP and testing its
contributions to autotelic exploration in a sample of human participants. By combining behavioral
findings and computational modeling of human decisions in the experiment, we find support for
our hypothesis that LLP captures human goal choices better than standard LP in this hierarchical
reinforcement learning task. We also find inter-individual differences in goal selection strategies,
warranting further studies on the factors underlying such idiosyncrasies. In our discussion of the
results, we argue that adopting the notion of LLP may foster the development of autotelic machines.

2 Related work

Intrinsic motivation The various forms of intrinsic motivation can broadly be classified as either
knowledge-based (KB) or competence-based (CB) [12, 28, 29, 31, 32]. KB intrinsic motivations de-
rive from comparisons between pre-existing and newly acquired information and are well-documented
in the animal world (e.g., [1, 3, 5, 6, 8, 33–37]). In artificial agents, KB signals of novelty, diversity,
or prediction error broaden exploration when provided alongside extrinsic rewards [13, 15, 16, 38, 39]
or even on their own ([11, 14], see [40] for review). However, human curiosity is often driven towards
stimuli of intermediate complexity [7, 41, 42], rather than extremes. Accordingly, some artificial
models aim to maximize an “intermediate” difference between predictions and observations [30, 43].
Intrinsic motivations based on learning progress (LP) can avoid arbitrary cutoffs for what signifies
intermediate complexity. LP is particularly useful as a CB motivation, prompting agents to improve
their performance on self-determined goals [29, 32, 44]. Indeed, humans often find pleasure in
activities whose difficulty matches their abilities [45, 46]. CB intrinsic motivations highlight the
autotelic property of human learning, which is often driven by self-defined objectives. Two concurrent
challenges in cognitive science and artificial intelligence involve identifying the signals people use to
develop their learning curricula [19, 21] and adapting those principles to machines [22].

Goal selection in humans Goals, defined as “a cognitive representation of a future object that the
organism is committed to approach” [47], have long been a key concept in psychology (e.g., [48–51]),
with a rich literature on how various types of goals interact with performance and motivation [52, 53].
In cognitive neuroscience, goals are typically imparted by the experimenter and are not the main focus
of the analyses [54] – though recent work illustrated the impact of goals on core aspects of neural,
cognitive, and behavioral responses ([18, 20, 21, 55–59]; see [19] for review). Nevertheless, among
the principles thought to guide human goal selection is the tendency to choose activities that balance
the expected outcome’s desirability and the probability of attaining it [60]. When free to allocate their
time to various tasks or choosing activities for pure enjoyment, people naturally tend to match the
activity’s level of challenge to their current abilities [45, 46, 61], which might be optimal for learning
[62, 63]. However, most studies fail to provide precise computational details on the mechanisms of

2



goal selection. Although not explicitly addressing goals, two recent experiments attempted to fill this
gap. In particular, [23] tasked participants with repeatedly choosing which of four learning activities
(each with a different difficulty level) to engage with, and found that performance and LP jointly
contribute to activity selection. Similarly, [24] found that people use novelty and LP when exploring
various activities based on their own curiosity. Here, we propose that in deciding which goals to set,
humans may rely not only on manifest signals of performance but also on an internally tracked, latent
form of learning progress.

Goal selection in artificial agents Enabling agents to learn autonomously has been a longstanding
challenge in artificial intelligence and a central tenet of many successes in the field [43, 64–68].
However, most existing models are optimized for a predetermined objective. Overcoming this
limitation, autotelic agents are designed to autonomously select goals and learn to achieve them
[22, 25, 69], begging the question of how to optimally set goals for efficient learning. Even random
goal sampling [70–72] or entropy-maximization objectives [73, 74] present some advantages [75],
but agents can be programmed to adjust their goal selection to currently owned skills and further
benefit from autotelic properties. One such approach involves a two-part adversarial system, wherein
a “teacher” proposes challenging tasks and a “student” learns to maximize performance over them
[44, 76–78]. Algorithmic implementations of LP also help agents avoid wasting time and resources
on objectives that are too far-reaching or even impossible (e.g., due to inherent noise in the system;
[26–28, 79–85]). These approaches calculate LP relative to performance, not considering changes
in the agent’s goal-conditioned competence that might occur latently. Thus, to our knowledge,
LLP-mediated goal selection in artificial agents is an unexplored avenue.

3 Experiment design and modeling approach

3.1 Experimental setup

Most reinforcement learning problems consider a single task to master. Similarly, experimental
psychologists usually instruct participants to pursue a specific objective. By contrast, we developed
an environment in which goal selection was the main dependent variable, enabling us to study key
determinants of goal setting in humans. The experiment was implemented in the Unity game engine
and presented as an interactive online game, in which healthy human participants (N = 175; see
Appendix A for details) played the role of alchemists and could learn to make different potions from
sets of ingredients. Below we refer to potions as “goals” and ingredients as “actions”.

Figure 1: Structure of learning trials and summary of the goal space. (Top) An example trial.
(Bottom) Schematic representation of goals and their characteristics.

The paradigm included training, learning, and testing phases. Learning phase trials (144) were
composed of a goal selection stage, an action selection stage, and a feedback stage (Figure 1, top;
Appendix B). In the goal selection stage, participants viewed colored potions available for selection,
with icons indicating the number of ingredients required and the four different ingredients available to
make them. In the action selection stage, participants chose which ingredients to add to the cauldron.
In the feedback stage, participants received binary feedback as a result of their actions (the empty
flask in the foreground either filled up or remained empty based on whether participants chose the
correct ingredients in order). In the 12 training trials preceding the learning phase, goal selection
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was forced to ensure participants experienced each goal at least twice. In the final testing trials,
participants were prompted to try and make each potion 4 times without feedback.

Potions could either be made of basic ingredients (“simple” and “complex” goals G1-G4) or potions
of different colors (“compound” goals G5-G6) and required either two (simple and compound goals
G1-G2, G5-G6) or four actions to complete (complex goals G3-G4; Figure 1, bottom). Two potions
could be made from either basic ingredients or other potions (potions for G3-G6). One complex goal
(“hierarchical”, G3) was made by combining the ingredients of the two simple potions (G1, G2),
whereas the other complex goal was not (“non-hierarchical”, G4). One complex goal (“hierarchical”,
G5) was made by flasks of the two simple potions (G1, G2), whereas the other complex goal was
not (“non-hierarchical”, G6). Thus, G3 and G4, and G5 and G6, were matched in terms of actions
required to create the corresponding potions but differed in whether knowledge from other potions
could be used to find the corresponding solutions faster. Two additional, simple goals made of the
first two and last two ingredients of G4 were presented to participants in the testing phase (G7 and G8;
Appendix B). Unless otherwise specified, we focus on goals G1-G6, which participants engaged with
in the training and learning phases. Further details about the goal space are provided in Appendix B.
The information displayed in Figure 1 was never shown to participants. The correspondence between
goal identity, color, position on the screen, and solution was pseudo-randomized across participants.

Various features make the experimental design well-suited to study the contributions of LLP to goal
selection by helping decorrelate LP from LLP. First, the correct response was static and signaled
through deterministic feedback. While the standard LP measure only flattens upon repeated subse-
quent attempts, deterministic feedback enables LLP to reach its limit after a single correct response.
Second, the action space is limited and solutions are unique, so negative feedback can be used to
exclude the attempted action sequence from the set of possible solutions. This feature was especially
meaningful for studying LLP, which can be immediately updated following failed attempts with
a novel action sequence. Third, the choice space is vast enough that rewards are sparse early on
in learning, which further decorrelates LP and LLP since LP is 0 until the first successful attempt,
while LLP is updated at the first trial no matter the outcome. Fourth, hierarchical relationships exist
among some, but not all goals. Upon becoming aware of hierarchical relationships, participants could
take shortcuts to identify the correct recipe for the goals involved, leading to sharp changes in LLP
even with small differences in performance. This feature additionally enables us to test for hierarchy
effects on goal selection beyond the indirect effects of hierarchy on learning through LLP.

3.2 Computational modeling

On each trial, participants first selected a goal and then a sequence of actions. Unless otherwise
specified, we only modeled goal selection, conditioning on true participants’ actions within each trial
after goal selection. However, action selection influences performance, LP, and LLP. As in existing
studies [23], we model human goal selection as a multi-arm bandit problem, where the probability of
selecting a goal depends on its subjective value relative to other goals. Multiple factors f may jointly
contribute to the overall subjective value of a goal [23, 24], which is thus calculated as a weighted
sum of the goal’s value relative to each factor Vf times its weight βf . The probability P t(g∗) of
choosing goal g∗ among possible goals G on trial t is obtained through a softmax function over the
goal values (as is standard in the decision-making literature [86]):

P t(g∗) =
exp(

∑
f βf · V t

f (g
∗))∑

g∈G exp(
∑

f βf · V t
f (g))

Subjective goal values are updated as a function of experience through the delta rule [87]:
V t+1
f (g∗) = V t

f (g
∗) + α · δtf (g∗)

where α is a learning rate for value updates and δf is factor-dependent. Models differed in which
factor, or combination of factors, composed the overall goal value. Below we detail the individual
factors we considered.

Performance On each trial, the utility of the selected goal with respect to performance is updated
based on the goal-contingent feedback received on that trial rt (1 for positive feedback, 0 for negative
feedback):

δtperformance(g
∗) = rt − V t

performance(g
∗)

Performance estimates were initialized as V 0
performance(g

∗) = 1
6 where 6 is the number of goals.
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Learning progress Learning progress (LP) was updated through the change in reward prediction
error for the current goal after initializing V 0

LP(g
∗) = 0 (see [24] for a similar approach) . “Reward”,

here refers to the feedback r participants received on each trial. However, note that no external
rewards were delivered for successfully obtaining the desired potion (Appendix C). On each trial,
the reward prediction error was calculated as the difference between the current performance value
estimate and the feedback obtained. The reward prediction error on trial t was compared to the reward
prediction error on the previous trial t− 1:

δtLP(g
∗) = [(rt − V t

performance(g
∗))− (rt−1 − V t−1

performance(g
∗))]− V t

LP(g
∗)

Latent learning progress Goal utilities with respect to latent learning progress (LLP) were updated
based on the difference between the estimate at trial t and the current trial’s LLP:

δtLLP(g
∗) = LLP t

g∗ − V t
LLP(g

∗)

with V 0
LLP(g

∗) = 1. Until the goal was learned (when LLP immediately became 0) subjective
(unobservable) estimates of LLP were approximated as LLP t

g∗ = 1− Naction sequences tested

Npossible action sequences
. The number

of possible action sequences is 12 for 2-action goals and 24 for 4-action goals. The number of action
sequences tested is the sum of unique action sequences the agent has tried up until trial t. A goal
is considered learned when the subject has obtained positive feedback for the current goal at least
once (but see Appendix D for alternative heuristics and approximations). Therefore, this formulation
of LLP captures the size of the space left to explore to find the correct sequence of actions for the
current goal, i.e. the “distance” from the solution. As a result, negative βLLP values indicate a high
willingness to pursue activities one is close to solving. This choice of formulation – rather than its
opposite, i.e. one where high values indicate high levels of progress toward perfect performance –
was made to maintain continuity in the LLP function, which is 0 after a solution is found.

Hierarchy Hierarchical relationships between goals could impact goal selection in at least two
ways. First, indirectly, by enabling inferences about the solution for goals involved in the hierarchy,
thus speeding up exploration and changes in LLP. Second, directly, by acting on biases people might
have for selecting goals that share common structures. To account for the latter, we also included a
hierarchy factor, whose estimates were updated via:

δthierarchy(g
∗) = Hg∗ − V t

hierarchy(g
∗)

with V 0
hierarchy(g

∗) = 0 and H equal to 1 for hierarchical (G3, G5), -1 for non-hierarchical (G4, G6),
and 0 for simple goals (G1, G2; but see Appendix D for an alternative scheme and update rule).

Model space Because performance is a powerful motivator in people’s decisions about time
allocation [23, 45], we include it in all our models. In addition to a performance-only model, we fit
and compared models with additional factors for LP, LLP, hierarchy, and both LLP and hierarchy.
Thus, fit parameters included a shared α across factors and weighting parameters βf for each factor
in the model. Adding a control variable for choice perseveration improved the likelihood of goal
choices but did not affect modeling results (Appendix D), so we removed it to facilitate interpretation.

Model fitting and comparison Models were fit and compared through hierarchical Bayesian
inference (HBI; [88]) based on the likelihood of participants’ goal selection choices [18, 58]. We
compare models through protected exceedance probability (PXP), i.e., the probability that each
model is the most frequently expressed in the studied population after accounting for chance [89],
and average responsibility (R), which captures how well each model explains participants behavior.
Models and parameters for the winning model were recoverable [90] (Appendix E). Simulating
participants’ behavior [91] also required modeling the learning process, which we assumed followed
a reinforcement learning architecture with options [92] (Appendix F).

4 Behavioral results

Given the novelty of our experimental paradigm, it was crucial to validate the environment and gather
intuitions about participants’ behavior. Furthermore, both LP and LLP are influenced by how well
participants learn to achieve each goal. We thus first analyze group-level learning and goal selection
as a function of goals’ difficulty levels and hierarchical structures. We then test the specific role of
LLP in goal selection through computational modeling (Section 5).
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Participants learn successful goal-conditioned policies Learning phase performance was above
chance for each goal (Wilcoxon tests were used in place of parametric t-tests since the data was
not normally distributed according to Shapiro-Wilk tests of normality; chance levels were 0.083 for
2-action and 0.042 for 4-action goals; all average performances ≤ 0.29, all W(174) ≥ 160, all p ≤
0.004; Figure 2A). As expected, performance was higher for 2-action (M = 0.51 ± 0.02) than 4-action
goals (M = 0.33 ± 0.02, W(174) = 1207, p < 0.001, r = 0.51). Similar patterns for goals G1-G6 were
observed in the testing phase, where performance was not contingent on goal selection (Figure 2B).

Hierarchical inference supports learning If individuals recognized hierarchical relationships
during learning, they could use them to draw inferences about the correct recipes for the potions
involved. For instance, upon discovering that G5 could be made from the potions created in G1 and
G2, participants may correctly infer that G3 is achieved by chaining the recipes for G1 and G2 (Figure
1, bottom). Consistent with the hypothesis that at least some participants exploited the environment’s
hierarchical structure, learning performance was higher for hierarchical goals compared to their
non-hierarchical counterparts (complex: hierarchical (G3) M = 0.37 ± 0.02, non-hierarchical (G4)
M = 0.29 ± 0.02, W(174) = 4168.5, p = 0.004, r = 0.16; compound: hierarchical (G5) M = 0.53 ±
0.02, non-hierarchical (G6) M = 0.49 ± 0.02, W(174) = 6036.5, p = 0.032, r = 0.11; Figure 2A).
Similarly, participants took fewer attempts to learn solutions to hierarchical than non-hierarchical
goals (complex: hierarchical (G3) M = 16.66 ± 1.19, non-hierarchical (G4) M = 22.1 ± 1.23, W(120)
= 1884.5, p = 0.009, r = 0.17; compound: hierarchical (G5): M = 11.66 ± 0.58, non-hierarchical (G6)
M = 13.21 ± 0.53, W(155) = 3889.5, p = 0.03, r = 0.12; Figure 2C). However, hierarchy effects were
not present in the testing phase, likely due to ceiling effects (complex: hierarchical (G3) M = 0.56
± 0.03, non-hierarchical (G4) M = 0.52 ± 0.03, W(174) = 1592.5, p = 0.223, r = 0.07; compound:
hierarchical (G5) M = 0.73 ± 0.03, non-hierarchical (G6) M = 0.73 ± 0.03, W(174) = 1158.5, p =
0.765, r = 0.02; Figure 2B).

Goal selection is sensitive to performance and hierarchy In assessing whether difficulty levels
and hierarchy affected participants’ goal selection, we found it displayed opposite patterns to learning
performance (Figure 2D). The average probability of selecting a goal was lower for 2-action (M =
0.15 ± 0.00) than 4-action goals (M = 0.19 ± 0.01; W(174) = 4214, p < 0.001, r = 0.27). Overall,
participants chose the hierarchical (G3; M = 0.18 ± 0.01) less than the non-hierarchical complex
goal (G4; M = 0.21 ± 0.01, W(174) = 5231.5, p = 0.002, r = 0.17). Differences between hierarchical
(G5; M = 0.15 ± 0.01) and non-hierarchical compound goal selection were not significant (G6;
M = 0.16 ± 0.00, W(174) = 6444, p = 0.128, r = 0.08). At the individual level, the greater the

Figure 2: Behavioral and modeling results. (A) Learning performance was above chance and showed
hierarchy effects. (B) Test performance was better than chance, but no significant hierarchy effects
were detected. (C) On average, fewer attempts were needed to learn hierarchical (G3) compared to
non-hierarchical (G4) 4-action goals. (D) Partial hierarchy effects are present in goal selection. The
winning model (triangle markers) reproduces this pattern. (E) Model responsibilities for individual
participants and the overall studied population. (F) Best-fitting parameters (HBI) for the winning
model. Bars and shading indicate the SEM, dots individual participants. *** p < 0.001, ** p < 0.01
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difference in performance between 2-action and 4-action goals, the lower the probability of selecting
a 2-action goal (Spearman’s ρ = -0.35, p < 0.001), and the greater the performance difference between
hierarchical and non-hierarchical goals, the lower the probability of selecting a hierarchical goal
(complex: ρ = -0.68, p < 0.001; compound: ρ = -0.51, < 0.001). These results indicate that goal
selection depends on performance and hierarchical relationships between goals. We next turn to
computational modeling to detail the contributions of performance, hierarchy, LP, and LLP to goal
selection.

5 Modeling results

We that predicted LLP supports human goal selection, thus expecting models relying on this signal to
fit participants’ goal selection data better than models that do not.

Latent learning progress guides goal selection The model with performance and LLP utility
factors was the most strongly represented across participants (PXP = 1; R = 0.63) and replicated
the main goal selection patterns seen in participants’ data (Figure 2E). Some participants were also
well-captured by a model that additionally integrated hierarchy into goal values (R = 0.22). We
note that hierarchy likely plays a more direct role in learning (thereby impacting LLP) than in goal
selection, given that hierarchy effects in goal selection and performance could be recovered after
eliminating hierarchical components from goal selection, but not learning (Appendix G). The model
selecting goals based on performance and LP did not account well for participants’ behavior (R =
0.12). Models with just performance (R = 0.00) or performance and hierarchy factors (R = 0.04)
were marginally represented. The winning model’s best-fitting βperformance and βLLP were on average
negative, suggesting most individuals focused on activities where performance was low – indicating
the solution had yet to be found – and where LLP was low (Figure 2F) – indicating learning potential
was high (Section 5). However, more nuanced patterns and temporal dynamics may exist at the
individual level.

6 Inter-individual differences in learning and goal selection

Several interesting strategies emerged upon inspecting individual behaviors (Figure 3). We first
exemplify them before using a data-driven approach to classify participants according to their
approach to the game, revealing differences in how hierarchy impacts learning and thus goal selection.
Finally, we assess whether LLP supports goal selection across groups.

People express a variety of goal and action selection strategies Many participants repeatedly
selected the same goal – often testing possible solutions in a systematic order (Figure 3A) – only
switching to a new goal after learning the current one (Figure 3A,B). After learning to make all
potions, some participants began alternating goals, as if testing or training their ability to retain
multiple solutions (Figure 3A,B). Although most participants showed interest in learning all goals
(Figure 3A,B), a small subset of individuals preferred setting few objectives, or even a single goal, in
which they excelled (Figure 3C), while disregarding others. Lastly, some participants moved across
goals and ingredients in a seemingly unprincipled manner, presumably because they were confused or
unmotivated (Figure 3D). A subset of the participants seemed to be aware of adopted strategies (see
Appendix H for example verbal reports). We next clustered participants to explore how idiosyncrasies
in learning related to goal selection. Note that participants in Figure 3 were chosen as examples and
do not directly relate to the clustering analyses presented below.

Figure 3: Example behaviors from four participants. (A-D) Chosen action sequence as a function of
trial number (training and learning phases), color-coded by goal and feedback.
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Clustering of individual strategies reveals differences in hierarchical learning We used K-
means clustering [93] to identify 4 groups of participants, where K was determined through the elbow
method (Appendix I). The behavioral metrics used to identify the clusters (e.g., performance and
goal selection entropy and distributions) can be found in Appendix I. To avoid statistical double-
dipping [94], we limit ourselves to qualitative observations on cluster-based behavior. To better
illustrate salient characteristics of each cluster, we also identified “archetypal” participants through
archetypal analysis – a method, often used to profile video game players [95], which detects data
points that can reproduce the original population when linearly recombined [96]. We then matched
each archetypal feature with the best-aligned cluster (Appendix I) and identified the participant closest
to the corresponding archetype as an extreme example of the cluster it belonged to (Figure 4M-P).

Participants in cluster 1 (N = 39) had below-average performance at learning (M = 0.18 ± 0.03) and
testing (M = 0.27 ± 0.06) and favored 2-action goal. They often failed to learn or retain solutions and
switched goals frequently (Figure 4M). In the largest cluster 2 (N = 75; Figure 4B), performance was
excellent at learning (M 0.59 ± 0.0) and testing (M = 0.86 ± 0.03). This group leveraged hierarchical
structures to speed up learning (Figure 4B,F) – which also impacted goal selection. Non-hierarchical
goals were favored (Figure 4J) and often learned later than hierarchical ones (Figure 4N). Cluster 3
participants (N = 53) showed relatively high performance at learning (M = 0.26 ± 0.04) and testing
(M = 0.62 ± 0.06; (Figure 4C), but seemed to struggle with all 4-action goals – performing worse in
them but choosing them more – and took less advantage of hierarchical relationships across goals
(Figure 4G,K,O). Given its small size (N = 8), we invite caution in interpreting the results for cluster
4. However, this group showed an interesting, strong tendency to repeatedly select the same, small
set of goals at which they succeeded (often preferring 2-action goals; Figure 4L,P). As a result, their
performance was excellent in the learning phase, where goals were freely chosen (M = 0.67 ± 0.13,
Figure 4D,L) but dropped in the test phase, where goals were imposed (M = 0.46 ± 0.16).

Despite such distinct patterns of behaviors, LLP was a central component of goal selection in all
clusters (Figure 4Q-T), suggesting LLP is a flexible signal that adapts to idiosyncrasies in people’s
learning while similarly guiding goal selection (but see Appendix G for further discussion of how
learning interacts with goal selection). At the same time, the best-fit parameters of each cluster
captured specific properties of the different groups (Figure 4Q-T insets). The efficient learners of
cluster 2 relied more strongly on LLP (cluster 2 MβLLP = -3.17 ± 0.18, other clusters MβLLP -2.46
± 0.16, Mann-Whitney U(173) = 2696, p = 0.001, r = 0.24) and updated both performance- and
LLP-based goal values faster than other groups (cluster 2 α = 0.73 ± 0.03, cluster 2 α = 0.6 ± 0.03,
U(173) = 4979, p < 0.001, r = 0.28). Cluster 3, which seemed less likely to rely on hierarchy, was
more attuned to performance when selecting goals (cluster 3 Mβperformance = -4.63 ± 0.22, other clusters
Mβperformance = -3.67 ± 0.16, U(173) = 2274, p = 0.002, r = 0.24)). Cluster 1, which lacked precise
strategies, was less sensitive to both performance (cluster 1 Mβperformance = -2.93 ± 0.26, other clusters
Mβperformance -4.25 ± 0.14, U(173) = 3778, p < 0.001, r = 0.31) and LLP (cluster 1 Mβperformance = -1.74 ±
0.16, other clusters Mβperformance -3.06 ± 0.14, U(173) = 3980, p < 0.001, r = 0.36).

7 Discussion

Human behavior is often motivated by self-defined challenges. Despite the centrality of goals in
human learning [19], how people select their own objectives without external guidance or incentives
remains to be specified. Following advances in artificial open-ended skill learning [26–28], learning
progress (LP) has emerged as a useful signal for human goal selection [23, 24]. Here, we introduced
a “latent” form of LP (LLP), which is informed by an agent’s model of the environment and memory
of the actions pursued in it, in addition to the manifest changes in performance tracked by standard
LP. In a purposefully developed hierarchical reinforcement learning task, we find that people’s goal
selection is driven by LLP, calling for an extension of the LP notion to include its latent variants.

Inter-goal relationships in our test environment enabled us to check whether hierarchy additionally
drives goal selection, as intuition suggests (e.g., one might decide to become competent in baking by
first relying on ready-made dough and only later setting the lower-level goal of making dough from
scratch). We find that hierarchy impacts goal selection indirectly by enabling inferences and thus
affecting LLP. That is, participants’ learning is sensitive to hierarchical structures, leading to changes
in LLP which, in turn, affect goal selection. We also gathered partial evidence for a standalone role
of hierarchy in curriculum development, which further studies may address.
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Figure 4: Behavioral and modeling results by cluster (1-4, left to right). (A-D) Learning performance.
(E-H) Probability that each goal was learned over the number of times it was selected. (I-L) Goal
selection probabilities. (M-P) Behavior of each cluster’s closest-matching archetypal participant.
(Q-T) Model responsibilities and best-fitting parameters.

We found marked inter-individual differences in strategies for goal setting and pursuit. However, our
sample was restricted to a relatively homogeneous group of undergraduate university students. Future
studies and computational models may extend participation to a broader subject pool and specifically
address individual differences in goal selection and achievement, as well as their relationship with
demographics and cultural background, cognitive abilities, and psychopathology (cf. [97]), which
might inform personalized teaching strategies and productivity tools. As our knowledge of human
goal setting becomes more precise, however, ethical concerns regarding the use of behavioral sciences
in marketing and management should be addressed, particularly in cases where highly personalized
methods of influence could transform advertising into manipulation.

Elucidating the computational mechanisms driving human goal selection may propel advances in
open-ended machine learning. Our suggestion, wherever relevant, is to incorporate LLP in artificial
autotelic agents’ goal selection. Compared to classic LP, LLP is sensitive to latent changes in
an agent’s abilities – which LP would only be able to capture after repeatedly observing positive
feedback. Using LLP could result in a faster adaptation of the agent’s goal selection, ultimately
speeding up its learning by enabling it to detect progress before receiving the first reward and letting
it proceed to more challenging tasks sooner.

Some limitations of the present study may need to be addressed before other fields can fully benefit
from the results we presented. In our task, people chose goals from a predefined menu of options.
Although this facilitates the study of goal setting, people often invent their own goals by combining
observations and imagination [98]. For simplicity, our modeling focused on goal selection. Future
research, however, should jointly model goal choices and goal-conditioned action selection, since – as
our data suggests – learning participates in complex interactions with the goal selection process. While
we provide a simple and task-specific formalization of LLP, a generalized definition is necessary
to understand the differences between LLP and other intrinsic motivation signals and ease the
implementation of LLP-based goal selection in autotelic machines. By providing initial evidence
for LLP, we hope to inspire the establishment of even more precise signals for goal selection in both
humans and artificial agents.
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Appendix overview

To help the reader, we provide an overview of the contents covered by the ensuing appendices:

A. Participants: Information about the human participants who took part in the experiment.

B. Experimental paradigm details: Detailed information about the protocol and the learning
paradigm’s environment.

C. Experiment instructions: Instructions provided to participants at the start of the experiment.

D. Modeling robustness checks: Supplementary analyses to verify the robustness of our model-
ing results in the face of small modifications to the model designs.

E. Parameter and model recoverability: Results of the parameter and model recoverability
studies.

F. Options reinforcement learning model for simulations: Description of the design and use of
models with a learning component (used for simulations only).

G. The role of hierarchy in learning and goal selection: Results and discussion of some evidence
for a role of hierarchy learning in the context of the present experimental paradigm, and how
it relates to goal selection.

H. Verbal reports of example participants’ strategies: Example verbal reports from participants
about their adopted learning strategies.

I. Clustering methods: Details about the clustering methods.

A Participants

One hundred and seventy-nine participants were recruited through the University of California, Berke-
ley, Research Participation Program pool of participants and received course credit as compensation
for their time. Participants completed the experiment online from their own devices. We excluded
four participants who either responded affirmatively when directly asked whether they took written
notes about the correct recipe for each potion, or mentioned writing down solutions on their phone or
a piece of paper when reporting their strategies in a follow-up questionnaire. Thus, 175 participants
(76% female, age: range = 18-47, M = 21.21 ± 3.75, 94% right-handed) were included in the
final data set. All were native or fluent English speakers with no medical history of brain injury,
mental/psychiatric illness, or drug/alcohol abuse. The Institutional Review Board at the University of
California, Berkeley, approved the study.

B Experimental paradigm details

B.1 Gameplay

The paradigm was divided into training, learning, and testing phases. Each learning phase trial
encompassed a goal selection, an action selection, and a feedback stage. In the goal selection stage,
participants viewed a blackboard depicting six “goal” potions, characterized by their color. Next to
each potion were either two or four empty slots – indicating the number of ingredients required to
make the potion – and illustrations of the four different ingredients available for that potion. Potions
could either be made of basic ingredients (a frog, a bunch of mushrooms, a horseshoe, and a butterfly),
or potions of different colors (e.g., teal, orange, red, and blue-colored potions). Two potions appeared
twice on the left side of the board, as they could be made from either basic ingredients or other potions.
Participants were prompted to select one of the available potions on the left side of the blackboard
with a mouse click (Figure 1). At the beginning of the action selection stage, the blackboard contents
changed to depict the goal potion and either two or four empty slots, which indicated the number of
ingredients required. Four different ingredients appeared on separate shelves on the right side of the
screen. When a participant clicked on an ingredient, it moved from the shelves to a cauldron depicted
in the center of the screen and appeared in the corresponding slot on the blackboard. An empty flask
appeared on the table next to the cauldron for the duration of the action selection stage. Participants
were prompted to select ingredients, one at a time, until all slots were filled (Figure 1, top). During
the feedback stage, the flask either remained empty and shook left and right, signaling failure to make
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the goal potion, or became filled with the same color as the goal potion and wiggled up and down,
signaling that the chosen ingredients were added to the cauldron in the correct order. No points or
otherwise explicit feedback messages were provided.

The learning phase (144 trials) was divided into 6 blocks, at the beginning of which participants were
allowed to take a break if needed. The training phase (12 trials, 2 per goal) served to help participants
get familiar with the game flow and was similar to the learning phase, except that goal selection was
forced. This section comprised 12 trials (two per goal), and was intended to help participants get
familiar with the game flow. The testing phase was similar to the learning phase, except that goal
selection and feedback stages were skipped. Here, participants were instead prompted to make a
given potion without receiving information about whether the selected order and ingredients were
correct. A set of instructions preceded the gameplay (Appendix C). Importantly, participants were
not told to try and learn all the correct mappings between actions and goal achievement. We did not
disburse performance bonuses, nor were there any external incentives for successful goal completion.
Instead, participants were free to explore the goal space as they pleased for a fixed number of trials.

At the end of the experiments, participants completed a short demographics questionnaire and
optionally answered the questions “Did you try to use any strategy while playing the game? If so,
what was it?”, and “Did you notice any structure in the game? If so, what did you notice?”. A subset
of participants were also asked, “Did you have specific aims or objectives while playing? If so, what
were they?”. Participants were also invited to leave written feedback.

B.2 Goal space

The six different goals (potions) available for selection were constructed as illustrated in Figure
1, bottom. While we present them in an orderly fashion to ease readability, participants were not
told about the underlying structure of the set of goals. The relative position on the screen of goals
with different features was pseudorandomized across participants. Below is a description of the six
available goals from the training and learning phases:

• G1: simple goal 1. This potion was made of two basic ingredients.
• G2: simple goal 2. This potion was made of two basic ingredients, none of which were used

to make G1.
• G3: hierarchical complex goal. This potion was made of four basic ingredients, in an order

that reflected the recipe for G1 followed by that for G2. Thus, participants who became
aware of the structure could leverage knowledge of G1 and G2 to learn G3, or vice-versa.

• G4: non-hierarchical complex goal. Like G3, this potion was made of four basic ingredients.
However, the order in which they had to be added to the cauldron did not reflect G1 or G2 in
any way. Thus, learning G1 or G2 did not offer any learning advantage for G4, or vice-versa.

• G5: hierarchical compound goal. This potion had the same color as G3. However, potions of
different colors were available for making G5, as opposed to the basic ingredients available
for G4. The potions required to make G5 correctly were G1 followed by G2. Learning this
potion could, in theory, be used to gain insight into how G3 is made, or vice-versa.

• G6: non-hierarchical compound goal. This potion had the same color as G4 but, similar to
G5, was made of two other potions rather than basic ingredients. These were potions that
were not available as goals, such that learning G6 could not leverage or provide insight into
other potions’ recipes. However, participants could infer that the recipes for the first and
second potions used to make G6 were the first two and last two ingredients used in G4.

Two additional goals were presented to participants in the testing phase:

• G7: simple goal 3. This potion was made of the first two basic ingredients of G4.
• G8: simple goal 4. This potion was made of the last two basic ingredients of G4.

C Experiment instructions

We report the instructions provided to participants verbatim below. Each item corresponds to a screen
presented to participants, who paced their own reading by moving to the next screen upon pressing
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the spacebar key on their keyboard. They were instructed to do so by the message “Press SPACEBAR
to continue” appearing at the bottom of each screen. Wherever applicable, images accompanying
each item are references in the following list.

Figure 5: Images accompanying the experiment instructions.

1. Welcome to our study! Thank you very much for deciding to participate.
2. This experiment requires your full attention. We will only be able to use your data if you

participate fully in the experiment, which should only take about 35 minutes when you are
fully engaged.

3. Before we begin, please maximize your browser window and turn off all notifications
(Facebook, Instagram, texts, etc.) on both your phone and computer.

4. Please do not disengage (for example, by switching tabs in your browser or navigating away
from the task) while you take part in the experiment, including during breaks.

5. If you’re not engaged, your data are not valid and cannot be used for the experiment, and
therefore you may not get credit. Thank you for understanding.

6. In this game, you will play the role of an alchemist and try to make potions from a set of
ingredients.

7. On each trial, you will see a blackboard that shows all the potions you can try to make.
[Figure 5A]

8. Note that this is just an example setup, and things may look slightly different in the actual
game.

9. Each potion is made of either 2 or 4 ingredients. The empty slots next to each potion indicate
how many ingredients that potion requires. [Figure 5B]

10. The images shown on the far right of the blackboard illustrate which ingredients you can
use to try and make each potion. [Figure 5C]

11. In the game, you will first select a potion by clicking on it. [Figure 5D]
12. Once you have chosen a potion to make, you will select one ingredient at a time from the

shelves on the right to try and make it. [Figure 5E]
13. Once you click on an ingredient, it gets added to the cauldron. [Figure 5F]
14. The blackboard will help you keep track of which ingredients you have selected and which

potion you are trying to make. [Figure 5G]
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15. Each ingredient can only be selected once, and the order in which they are added matters.

16. If you select the correct ingredients in the correct order, you will see the empty flask on the
table fill up with the potion you selected. [Figure 5H]

17. If the ingredients were incorrect or not chosen in the right order, the flask will remain empty.
[Figure 5I]

18. After you have clicked on the required number of ingredients, you will get to choose a
potion again. You are welcome to try and make the same potion again or choose a different
one on each trial. [Figure 5J]

19. Some potions can be made in two ways. [Figure 5K]

20. Either by combining basic ingredients: [Figure 5L]

21. Or by combining other potions: [Figure 5M]

22. Things may seem confusing at first, but the game will become clearer as you keep trying!

23. To help you familiarize yourself with the game, for the first few trials the computer will
choose potions for you to make.

24. Are you ready? Press SPACEBAR to begin.

D Modeling robustness checks

We performed several checks to verify our modeling results were robust to small variations in the
adopted methods. To save time and resources in these additional analyses, we compare models
through exceedance probability (XP) rather than the more computationally expensive PXP [89].

D.1 Adding a perseveration term to all models

Since adding a perseveration term can benefit models of human choices [99], we also ran a version of
the model comparison pipeline in which each model included such a feature in the goal valuation
process. The utility Vperseveration grew each time a goal was selected to the extent determined by α.
Adding perseveration to each model did not change the results (winning model XP = 1; R: model with
perseveration only = 0.00, perseveration and performance = 0.00, perseveration, performance, and LP
= 0.12, perseveration, performance, and LLP = 0.70, perseveration, performance, and hierarchy = 0.06,
perseveration, performance, LLP, and hierarchy = 0.17). For simplicity and ease of interpretation, we
thus opted for models without perseveration.

D.2 Using 1 vs. 3 successful attempts to define when a goal is learned

Our implementation of LLP drops to 0 after a participant has learned the solution to a goal, as
(assuming perfect memory) no further learning progress can be made once the solution is found.
Since we did not have access to the true cutoff for when a goal was “learned”, we placed an arbitrary
cutoff after the first time the solution was identified. However, participants may require more than a
single trial to retain a goal’s correct action sequence. Therefore, we also developed models where
LLP dropped to 0 after 3 successful attempts. Using this heuristic instead of the 1 successful
attempt heuristic did not change the results (winning model XP = 1; R: model with performance =
0.03, performance and LP = 0.18, performance and LLP = 0.66, performance and hierarchy = 0.00,
performance, LLP, and hierarchy = 0.13).

D.3 Using a Bayesian cutoff to define when a goal is learned

To test the reliability of a heuristic method to decide after how many trials a goal was “learned” for
the purpose of updating LLP, we also used a Bayesian cutoff to set a more precise threshold. This
was calculated by computing confidence intervals over each subject’s learning curve and determining
the trial at which performance surpassed chance levels with 95% confidence (see [100] for details on
methods). Using the Bayesian threshold for learning did not change the results (winning model XP
= 1; R: model with performance = 0.00, performance and LP = 0.14, performance and LLP = 0.62,
performance and hierarchy = 0.04, performance, LLP, and hierarchy = 0.21).
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D.4 LLP as the proportion of possible solutions tested

Within the specifics of our task, LLP decreased every time a participant chose a new action sequence
for the active goal, eventually reaching 0 once the participant found the solution. This ensured there
were no discontinuities in LLP. However, another intuitive way to model LLP is by incrementing it
every time a participant attempted a new action sequence, until they found the solution:

LLP t
G =

{
Naction sequences tested

Npossible action sequences
if G is not learned

0, otherwise

Since this formulation did not significantly change the results (winning model XP = 1; R: model with
performance = 0.00, performance and LP = 0.19, performance and LLP = 0.59, performance and
hierarchy = 0.36, performance, LLP, and hierarchy = 0.18), we kept the version described earlier,
which was not affected by abrupt discontinuities – thus facilitating interpretation.

D.5 Alternative coding scheme for the hierarchy feature

To update the hierarchy utility of the chosen goal, we used a term H equal to 1 for hierarchical (G3,
G5), -1 for non-hierarchical (G4, G6), and 0 for simple goals (G1, G2). However, hierarchy effects
were more prominent for complex than compound goals (Figure 2). We thus ran the model comparison
pipeline with an alternative coding scheme for H , which was equal to 1 for the hierarchical complex
goal (G3), -1 for the non-hierarchical complex goal (G4), and 0 otherwise (G1, G2, G5, G6). Using
this scheme did not significantly change the results (winning model XP = 0.96; R: model with
performance = 0.02, performance and LP = 0.12, performance and LLP = 0.48, performance and
hierarchy = 0.02, performance, LLP, and hierarchy = 0.36).

D.6 Alternative coding scheme for the hierarchy feature

In our model, the term H was used to learn the utility of each goal with respect to hierarchy over
time through the shared learning parameter α. However, it is also possible that hierarchy information
informs participants’ behavior from their first interaction with each goal. We thus ran the model
comparison pipeline with a learning rate of 1 for H , equivalent to setting hierarchy values to their
coding scheme from the first interaction with a goal. Using this fixed learning rate did not significantly
change the results (winning model XP = 1; R: model with performance = 0.03, performance and
LP = 0.12, performance and LLP = 0.58, performance and hierarchy = 0.00, performance, LLP, and
hierarchy = 0.27).

E Parameter and model recoverability

Before analyzing model parameters from the winning model (one which chose goals based on
performance and LLP signals), we simulated and fit data with known parameters (best-fit parameters
from the Laplacian approximation of HBI) to ensure they could be recovered. We used an options
reinforcement learning model to simulate participants’ learning process (Appendix F). We observed
tight correlations between true and recovered parameters (Figure 6), suggesting the experiment was
sufficiently powered to assess this model [90].

Figure 6: Parameter recovery. Spearman’s correlations between true and recovered parameters for the
winning model.
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To ensure we could compare similar models [90], we tested model recoverability by simulating partic-
ipants’ behavior with each model and the corresponding best-fit parameters (Laplacian approximation
step of HBI). Each participant’s behavior was simulated 3 times to account for random noise. We
again assumed a a reinforcement learning process with options governed the participants’ action
selection. We then performed model comparison (HBI; [88]) to determine whether we could correctly
identify the simulating parameters. The confusion matrices in Figure 7 illustrate this was the case,
although the model with performance-, LLP-, and hierarchy-based goal values was somewhat difficult
to distinguish from the model with performance- and LLP-based values alone.

Figure 7: Confusion matrices for model recovery. (A) Exceedance probabilities for true and recovered
models. (B) Average responsibilities for true and recovered models. Model name abbreviations: Perf
= performance, LP = learning progress, LLP = latent learning progress, Hier = hierarchy.

F Options reinforcement learning model for simulations

In the experiment, participants made two kinds of choices, first picking a goal and then selecting a
sequence of actions to try and achieve it. Since our focus was on the former, we only fit the data
on the goal selection process, gathering information about action selection and feedback (required,
e.g., for the computation of the performance, LP, and LLP features that entered the goal selection
component) directly from the participants’ data. However, simulating goal selection data – e.g., for
parameter recovery (Figure 6), model recovery (Figure 7), and model validation (ensuring the model
captures key aspects of the original data through simulations with the best-fit parameters [90, 91],
Figure 2E) – requires creating a model that also generates data about the learning component. To this
end, we developed models that attempted to learn the correct action sequences in addition to choosing
their own goals. The goal selection component of the various models was described in Section 3.2.
The learning component detailed below was shared across all models.

Each trial begins with a goal selection step (forced, in the training phase, or free, in the learning
phase). Next, the agent decides which actions to pursue. The model’s fundamental architecture is that
of a standard Q-value reinforcement learning model [67], except that policies were goal-conditioned
[70]. The model’s Q-value table has shape NG ×NA ×NS , where NG is the number of possible
goals (6), NI is the number of ingredients available actions for selection at the current timestep, and
NS is the total number of steps required to make the active goal (either two or four; Appendix B).
Any of the four ingredients available for the active goal can be selected at the beginning of each
trial and becomes unavailable once the agent chooses them. The model selects actions via a softmax
policy [86] over the relevant Q-table until all the slots are filled:

P t(a|g∗, h) = exp(βlearn · F (Qt(g∗, a)), h)∑
i exp(βlearn · F (Qt(g∗, ai), h)

where t is the current trial, a is the chosen action; g∗ is the active goal; h is the current trial’s history
(i.e. the actions selected thus far) which, through the filter function F , determines the number of
steps left to complete the trial and the actions the agent can consider taking next; βlearn is the inverse
temperature (the higher the βlearn, the more deterministic the decision).

Once all slots are full the agent receives a binary feedback rt, equal to 1 if the chosen sequence of
actions matched the active goal, and 0 otherwise. The agent then uses this signal to update the value
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of each chosen action through the delta rule [87]. The filter function F serves to address the correct
Q value based on the timestep at which the action to update was chosen:

F (Qt(g∗, a), h) = F (Qt−1(g∗, a), h) + αlearn · (rt − F (Qt−1(g∗, a), h))

where αlearn is the learning rate. This update function reflects the fact that the agent does not
receive partial feedback for correct actions at the right timesteps, and can therefore only identify the
appropriateness of chosen actions if the entire chosen sequence is correct.

The model’s Q table was also subject to forgetting as governed by the variable phi, which gradually
brought back all Q values to the initial value Q0 (0):

Qt(g, a) = Qt−1(g, a) + ϕ · (Q0(g, a)−Qt−1(g, a))∀g ∈ G, a ∈ A

Except for the temporal aspect given by the nature of the environment, the model described until
now is not capable of recognizing hierarchical relationships among goals. To enable it to leverage
hierarchical structures and speed up learning, we endowed the model with the ability to build
“options”, i.e. to create and select sub-sequences of actions as a single chunk [92]. Upon receiving
positive feedback, the model extends the space of possible actions with the chosen sequence of actions,
which can then be considered a viable option whenever the ingredients it requires are available and
the slots to fill are of at least the same length as the option itself. Options are selected and then
updated in the same way atomic actions are. Note that, in reality, participants could also leverage
insights from goals that shared structural similarity without requiring the same atomic actions (e.g.,
compare G3 and G5, Figure 1, bottom). While found that the simpler current model was sufficient to
capture many aspects of the participants’ behavior, future extensions could consider generalization
rules that enable the model to share more abstract knowledge across goals.

The options model was unfittable through HBI methods due to intractable likelihood [101]. To
approximate the learning parameters for each participant (βlearn, αlearn, and ϕ), we fit a simpler
reinforcement learning model (without options), this time through maximum-likelihood methods and
only on action selection date, and used the resulting best-fit learning parameters for simulations. To
account for random noise, we ran 3 iterations per participant when simulating data for validation and
model recovery.

G The role of hierarchy in learning and goal selection

Hierarchical features of the environment could interact with the goal selection process in at least two
ways. First, hierarchy could have a direct role in goal selection, e.g., people might either prefer or
avoid goals that enable them to exploit hierarchical relations. Second, hierarchical structures may
impact individuals’ learning, hence their LLP – which is then used to select goals. The fact that the
winning model for goal selection had an LLP factor, but lacked direct information about the presence
of hierarchical relationships among goals, suggests the latter hypothesis is more likely. However,
we find that hierarchy plays a major role in the learning process, thereby affecting goal selection
indirectly.

To illustrate this, we simulated participants’ data with two models. The first model, used for all other
simulations presented in this article, is a reinforcement learning with options ([92]; Appendix F),
therefore able to exploit hierarchical relationships between simple and complex goals. The second
model is a flat reinforcement learning model, which only has access to atomic actions. Despite the
fact that both models lacked hierarchical factors in the goal selection stage, effects of hierarchy similar
to those of real participants (Figure 2) were found in data simulated with the options reinforcement
learning model (Figure 8A-C). By contrast, removing hierarchical information from the learning
component completely removed hierarchy effects in learning and goal selection (Figure 8D-F). These
results suggest at least some participants generated insights for learning by recognizing hierarchical
relationships in the learning environment, while not necessarily using this information directly
to decide which goals to select. Since the options model was not fittable through HBI methods,
quantitative confirmation of these results awaits formal model comparison through more advanced
model fitting methods [101].
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Figure 8: Simulations with two different learning models. (A-C) Simulated participants’ behavior
from a generating model with options shows hierarchy effects in learning and goal selection. (D-F)
Simulated participants’ behavior from a generating model without options fails to replicate hierarchy
effects.

H Verbal reports of example participants’ strategies

At the end of the experiment, participants were asked questions about the strategies they followed
while playing the online game (Appendix B). Capital letters in the responses transcribed below
correspond to participants in the subplots of Figure 3:

A. “Yes, I tried to find the easiest potion recipes firsts (two ingredients) and only focus on the
recipes one at a time. When I found one, I would move to the next easiest. Eventually, I
knew all of them but needed to engrain them into my memory. I then repeatedly moved from
one recipe to the next practicing. Finally, I began to randomly select potions as a means of
testing and improving my memory.”

B. “I tried using permutation skills I had learned in a class I had taken on discrete math. This
was especially helpful for the potions that required 4 ingredients, where I permuted the
possible solutions into different sets depending on what the first 2 ingredients were. For
example, I would choose a first and second ingredient, which left me with 2 possible
combinations for the remaining 2 ingredients. If neither of those sequences worked, I would
choose a different second ingredient and try the 2 possible sequences that could be made
with this new combination of first and second ingredients. If that again didn’t work, I would
choose the last possible second ingredient. If I was still not successful in finding the correct
sequence, I would try a different first ingredient and attempt this entire process all over
again.”

C. “I used the one that let me win each time.”
D. “No I didn’t use a strategy because I was confused on what to do in the beginning of the

game.”

I Clustering methods

The first step towards separating participants into clusters was engineering features from the raw data
to obtain distinct behavioral signatures. The final subset of features was selected due to its enabling
reliable cluster partitions and the low correlation across features (Figure 9A):

1. P(Correct) at learning: proportion of trials of the learning phase in which the chosen goal
was achieved.

2. P(G in [G1, G2, G5, G6]): proportion of trials in which a 2-action goal was selected.
3. P(G in [G1, G2, G3, G5]): proportion of trials in which a goal involved in hierarchical

relationships was chosen.
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4. S(Goals): entropy of the chosen goals.
5. S(Actions): entropy of the chosen actions.
6. P(Correct) at testing: proportion of trials of the testing phase in which the proposed goal

was achieved (including G7 and G8).

To capture temporal dynamics in participants’ behavior, all features were computed separately for
each of the six blocks of the learning section, except for P(Correct) at testing, which was a single value
per subject since there was a single testing block. As a result, the behavioral features were highly
dimensional. Thus, before performing clustering, we reduced the dimensionality of the features
through principal component analysis (PCA). We identified 11 as the optimal number of principal
components (PCs) through the elbow method over the cumulative explained variance. Plotting the
PC loadings of the original features suggested PCA maintained the structure inherent in the raw
features while enabling a more tractable dimensionality (Figure 9). For example, PC1 seemed to
track performance indicators, PC2 defined action entropy early in learning, and PC3 represented goal
entropy.

Figure 9: PCA feature correlations and loadings. (A) Pearson’s correlations among features used for
PCA. (B) Loadings of the chosen features on the first 3 PCs.

Participants were then clustered through the K-means method [93] over the PCs. However, similar
clusters were obtained through different partitioning methods. The elbow-point heuristic over the
within-cluster sum of squares (WCSS) was used to identify 4 as the optimal number of clusters
(Figure 10A). Plotting combinations of the first three PCs confirmed the presence of four distinct
groups 10B).

We used archetypal analysis – a technique which searches extremal points (“archetypes”) in multidi-
mensional data ([96], software by [102]) – to visualize extreme behaviors and exemplify participants’
strategies in each cluster. The adjusted mutual information between K-means cluster identity and
the closest archetype for each participant was 0.74, confirming much overlap between the two
classification methods (Figure 10C).
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Figure 10: Clustering results. (A) Scree plot showing changes in WCSS as a function of the number
of components used for K-means clustering. (B) Positioning of the identified clusters relative to the
first three PCs. (C) Simplex plot showing archetype contributions to each participant, color-coded
by the participant’s K-means cluster identity and marker-coded by the archetype closest to each
participant.
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properly respected?
Answer: [Yes]
Justification: The authors are the creators of the main assets used in the paper and cite other
resources used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Data collection and analysis methods are sufficiently documented in the main
text.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Details about data collection with human participants are provided in the main
text and the appendices, where the full text of instructions given to participants is reproduced
alongside relevant screenshots.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The experiment did not involve any known risks and was approved by the local
IRB.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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