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Abstract

Action detection in untrimmed video has been a long standing goal in computer vision.

Recently, single-frame annotation has emerged as a promising direction that bridges

the gap between the video-level weak-supervision and costly full supervision. We

tackle the problem of single-frame supervised temporal action localization, where only

one frame is annotated for each action instance in the video. Contextual information

is crucial for recognizing and localizing action instances. However, existing methods

for single-frame action detection still rely on limited isolated features.

In this thesis, we propose the Selective Feature Aggregation module, which (1)

dynamically aggregates the contextual information to strengthen the expressive power

of the perframe features, and (2) utilizes a set of selective functions, which encode a

general prior for selecting neighbors, to guide the feature aggregation. We find that

this module reduces the context confusion and attention collapse when training a

feature aggregator with a very sparse set of labels.

We demonstrate that our proposed module can effectively improve the perfor-

mance over previous methods on three benchmarks: THUMOS’14, GTEA and BEOID.

Concretely, we improve 3.1%, 7.9%, and 2.8% respectively in IoU-averaged mAP over

the baseline SFNet. The benefits are particularly striking on the challenging setting

with an IoU of 0.7, where we improve 10.8% over competitive methods on BEOID.
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Chapter 1

Introduction

Action detection in untrimmed videos has been a long-standing goal in computer vi-

sion. Remarkable progress has been made in fully-supervised settings [16, 10, 42, 35,

49, 4, 11, 39, 41]. However, obtaining precise annotations for temporal action local-

ization is often prohibitively time-consuming. Researchers have resorted to weakly-

supervised learning paradigms to reduce the cost [38, 40, 28, 29, 22].

Single-frame annotation emerges as a promising direction which bridges the gap

between the video-level weak supervision where no temporal information about the

location of action instances is provided, and full supervision where costly per-frame

dense annotations are used. In the single-frame setting, one frame is annotated for

each action instance in a video, providing the information about the action classes

appearing in the video and their approximate location. This annotation strategy

achieves a balance between the lack of enough information and the large annotation

costs for complete supervisions.

With only sparsely pinpointed location information, a more powerful learning

framework is required to infer and complete the missing annotations. One widely-

used framework is to iteratively obtain pseudo labels [20] from a weakly-trained model,

which are used as a complementary signal for further model training. However, stan-
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dard pseudo label methods are designed for i.i.d. data. Directly applying the pseudo

label methods on video frames loses the temporal structure information among the

elements.

Exploiting the temporal contextual information is the key to single-frame super-

vised action detection. A video frame’s context defines a more precise meaning of

the frame, resolves the ambiguity, and contains the consistency, temporal order, and

structure of an action. Existing methods work on the pseudo label space and propose

various post-processing techniques to incorporate temporal contextual priors, such

as consistency, into the pseudo label generation process. For example, anchor-based

expansions and background mining are proposed to use the neighboring frames as the

expansion target to incorporate the temporal smoothness prior [29]. To further im-

pose a stronger contextual prior on the temporal structures of the generated pseudo

labels [18], either a second-phase proposal-based refinement module or an optimal

sequence search with non-maximum suppression [22] is needed. The “pseudo label

with contextual post-processing” paradigm has greatly boosted the performance of

single-frame temporal action localization, but mainly works with the label space and

often needs to heavily rely on heuristic rules and hand-designed systems.

Another paradigm for incorporating the contextual information is to work di-

rectly with the feature space, which contains much richer information. In fact, fea-

ture learning and aggregation methods have been a key driving force in image and

video understanding [48, 8, 1]. Specifically, for temporal action localization, graph

neural networks [50] and transformer-based [33] architectures have been proposed to

encode the long-range dependencies among proposals and frames. However, under the

single-frame weakly supervised learning setting, directly applying the strong feature

aggregators can potentially lead to various issues. Due to the scarcity of supervisions

on the temporal locations, the attention scores learned along the temporal axis tend

to suffer from the collapse phenomenon, where the attention focuses on just a small
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“Baseball pitch”

Attention

Selective function

Attend

Contextualized features

Predict

Figure 1.1: We propose the Selective Feature Aggregation module that selectively
aggregates frame features. The module successfully utilizes temporal contextual in-
formation, leading to performance boosts in single frame-supervised temporal action
localization without complex heuristic-based system designs.

handful of frames. Similar findings are reported in prior work [7, 54]. Simultane-

ously, building a global feature aggregation module can also lead to action-context

confusion [38] in a wider range, where, due to lack of labels, contextual frames and

clips are misclassified as other classes depending on how the context is collected in

aggregation.

In this thesis, we propose the Selective Feature Aggregation module, shown in

Figure 1.1, that utilizes the contextual information in a constrained way along the

temporal axis. The module takes in the isolated frame-level features, dynamically

attends to the relevant elements under the guidance of a selective function, and per-

forms feature aggregation for further classification. We show that this simple module

can work well with a basic pseudo label mining strategy [29] and achieve competitive

performance compared to existing methods.

Concretely, our contributions are:

• We introduce a new Selective Feature Aggregation module, which aggregates
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the information along the temporal axis in a dynamic way under the guidance

of a selective function, providing a base module for the single-frame supervised

temporal action localization.

• We perform a thorough analysis of the proposed module and discuss the insights

on the design and behavior of the feature aggregator under the scarcity of labels.

We find that through adopting a general selective prior, the learned attention

can be regularized to effectively utilize context for action localization.

• We show that our method achieves competitive performance in single frame-

supervised temporal action localization on three benchmark datasets (THU-

MOS’14 [17], GTEA [23] and BEOID [6]) without having to resort to heuristic-

based designs of the label-space post-processing system. Concretely, we achieve

consistent improvements over the baseline framework SF-Net [29]; we perform

especially strongly on the challenging localization setting of IoU 0.7, where we

improve 10.8% over the competitive method by Ju et al. [18] on BEOID.
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Chapter 2

Related Work

2.1 Fully-supervised temporal action localization

In order to perform temporal action localization in videos, a standard fully-supervised

setting utilizes precise annotations on both action boundaries and classes for model

training. Early methods in this setting often adopt a sliding-window based proposal

method [10, 28, 35, 49], where a model is trained to classify proposals at all temporal

scales. To reduce the search space, several paradigms are proposed: (1) bottom-

up based merging methods, where video segments are classified to obtain the action

boundaries [39, 31]; (2) two-stage framework where a proposal generator is learned

for further action classification and boundary refinement [41, 46, 53, 2, 13, 9, 12]; and

(3) end-to-end architectures [4, 5, 11, 46, 47, 33]. Recently, there has been a trend

to adopt strong feature aggregation models to perform action localization, such as

graph convolutional networks [50] or transformers [33]. These methods are designed

to heavily leverage the full supervision, and lack the ability to handle the scarcity of

the labels in weakly supervised settings.
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2.2 Weakly-supervised temporal action localization

Early weakly-supervised settings focus on utilizing video level labels for action de-

tection. STPN [34] uses sparsity constraints to learn the key subset of segments

for action localization. Untrimmednets [44] proposes to learn a selection module for

ranking clips that contribute to the video classification. To model the class-agnostic

information within the videos, DGAM [38] proposes to train the attention model with

both generative and discriminative modules. The classical Expectation Maximization

with Multi-instance Learning framework is also proposed [28] to perform action lo-

calization with video labels. Representation learning methods are also proposed for

this setting [14, 36, 32]. Action Graphs [37] learns the similarity and dissimilarity

between segments through graphs for segment selection. AutoLoc [40] uses an Outer-

Inner-Contrastive loss for a boundary predictor.

Recently, point-level supervision gains attention to serve as a transition step be-

tween full supervision and video-level weak supervision [30, 29], where frame mining

and expansion around the point-level supervision are performed to obtain more in-

formation. Ju et al. [18] proposes to combine the frame-level paradigm and proposal-

level paradim for localization. Lee et al. [22] shows that learning the completeness

of actions can improve the localization performance. We follow the same setting of

point-level supervision and show that building a strong feature aggregation module

can remedy the lack of contextual information without resorting to complex heuristic-

based refinement systems.

2.3 Contextual information for recognition

Utilizing the correct contextual information is crucial for vision tasks. In seman-

tic segmentation and object detection, feature aggregations are used to obtain both

global and fine-grained details [52, 25]. Space-time feature representation learning are
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adopted for video understanding [1, 45, 15]. Recently, transformers are transitioning

to a dominant model for feature aggregations [8, 26, 27]. Instead of relying on the

known structure among elements, full supervision or large amounts of data, we focus

on the feature aggregation method when only a small portion of data is labeled, and

the model needs to handle the unknown temporal structures and the potential context

confusion for feature aggregation.
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Chapter 3

Model

In this section, we first define the problem formulation(Section 3.1), then present

the learning framework for our model (Section 3.2), and finally the proposed feature

aggregation module for temporal action localization (Section 3.3).

3.1 Problem formulation

Denote each input video as V = {It}Tt=1, where It corresponds to the frame at timestep

t and T is the video length.1 There are C action classes to be detected. For every

training video, the labels consist of C sets of Yc ⊆ {1, . . . , T} where t ∈ Yc indicates

that frame t in the video is known to contain the action c. Thus, in our single-frame

label case, |Yc| will correspond to the number of instances of action c in this video.

The ultimate goal is to output on a test video a set of predictions {(ci, tstarti , tendi , si)}i

of class labels ci, time intervals, and confidence scores si, which will then be compared

against full test annotations.

1We use “frame” for simplicity in the text when referring to timestep t; in practice we instead
use 16-frame clips as in [29].
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3.2 Learning and inference framework

We begin by training a model to accurately classify each video frame using the sparse

labels. Following [29], we adopt two output modules in the model: (1) the frame classi-

fication module, and (2) the actionness module. Then, we apply their post-processing

approach to convert these frame-level scores into temporal interval predictions.

Feature extraction

Each video V contains a sequence of frames (I1, ..., IT ). All the frames are passed

through the I3D feature extraction backbone pre-trained on Kinetics [3] to obtain the

sequence of compact feature representation (x1, ...,xT ), xt ∈ RD, where T is the total

number of video frames and D is the dimension for the feature space.

Module 1: frame classification

The frame classification module builds an action classifier for each frame in the video.

Concretely, it contains a simple three-layer perceptron F that takes in the frame

features xt and returns class probabilities pt ∈ [0, 1]C+1:

pt = softmax(F (xt)) (3.1)

This vector includes a background probability pt,0, since not every frame will corre-

spond to one of C action classes.

Since there are no negative labels initially, background mining is performed using

multiple-instance learning. Let Ypos = ∪C
c=1Yc be all the positive labeled frames, for

any class. At every iteration of training, the K frames not in Ypos with the highest

background probability p:,0 become the background label set Y0. K is set following

[29] to be η times the number of positive frames |Ypos|, with η = 7.
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Module 2: actionnness

The second module captures the likelihood of any action appearing in the frame. It

performs a binary classification and outputs a scalar probability score. We follow the

design in [29] and use a function mapping G with two temporal convolution layer and

one linear layer with ReLU as the activation function in between:

a = sigmoid(G([x1; ...;xT ])) (3.2)

where G(·) takes in the temporally concatenated features and produce the actionness

scores a ∈ [0, 1]T simultaneously for every frame in the video.

Video-level score

During training we also compute (and supervise) a video-level classification score.

Concretely, we compute a probability vector p̃ ∈ [0, 1]C+1, where for each class c,

we follow common practice in e.g., [29]: identify the M highest-probability frames

(M = L/8 for video length L) and set p̃c to be the average ptc over those frames.

Then we run a softmax on p̃.

Overall training objective

We define a overall loss function, which aggregates (via a weighted sum) the losses

from the different components:

Lframe = −
C∑
c=0

∑
t∈Yc

log(ptc)∑C
c′=0 1[t ∈ Yc′ ]

(3.3)

Lvideo = − log(p̃0)−
C∑
c=1

|Yc|
|Ypos|

log(p̃c) (3.4)

Lactionnness = −
∑

t∈Ypos

log(at)−
∑
t∈Y0

log(1− at) (3.5)
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Pseudo label mining

One additional implementation detail (only on the THUMOS [17] dataset, as per

[29]) is positive pseudo label mining. This process is performed once after training

the model for about half the total iterations. For each non-background class c, we

start from each positive frame t ∈ Yc and expand within the temporal radius r

while the class probabilities ptc remain high. Concretely, each step of the expansion

increments a counter i, while i < r. Given a hyperparameter ϵ ∈ (0, 1), if pt+i,c > ϵptc

we add t + i to Yc; otherwise, the expansion process terminates. We then repeat in

the backward direction with frames t− i.

Inference

Once the model has been trained, we follow the inference protocol of [29] without any

hyperparameter tuning or multiple proposal generation with non-maximum suppres-

sion. Concretely, we compute the video-level score vector p̃ and consider only the

candidate class(es) c = {1, . . . C} with p̃c > thrv for a preset threshold thrv. For each

of these classes, we compute binary frame-level predictions p′ct = 1[(pct+ γat) > thrf ]

(γ assigns the weight for actionness score and is set following [29]), binarized using

another pre-set threshold thrf , and generate contiguous segments (tstart, tend) from

these predictions. The confidence score associated with the segments are the max

non-binarized frame score (pct + γat) within each segment.

3.3 Selective feature aggregation

The isolated features from each frame lack enough contextual expressive power for the

task. Building upon the isolated features can often lead to noncontinuous predictions

and lack of temporal structures or completeness. To remedy the limited represen-

tation ability on the temporal axis, existing methods heavily rely on the designs in
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Figure 3.1: The schematic figure of our main model. Left side: we extract I3D frame
features from a Kinetics-pretrained backbone [3]. The extracted isolated features are
fed into the Selective Feature Aggregation module to obtain context-aware features.
The selective functions in the module are designed to encode general inductive biases
without accessing the labels for learning. For each frame, a frame module and an
actionness module are used for class-aware and class-agnostic classification, respec-
tively. Right side: details of the Selective Feature Aggregation module, which uses
a selective function to further impose the prior through the attention scores used for
feature aggregation.

processing the pseudo labels, such as refining the point-level prediction through a

second phase module to find the consistent temporal chunk [18], or using complex

optimal sequense search with outer-inner constrastive scoring and non-maximum sup-

pression [22]. Although they work well, these post-processing methods can lead to

arguably cumbersome systems.

To approach the temporal contextual information from an orthogonal angle, an

obvious question to ask is: can we use feature aggregation for stronger temporal

representations in the single frame-supervised setting? We thus propose the Selective

Feature Aggregation module for the single frame setting, which performs a selective

feature aggregation supported by both attention and a selective function along the

temporal axis.

Given the feature set {xt}Tt=1 for a video, we define a transformer-based aggre-

gation module [43]. The module maps the feature to queries (Q), keys (K) and

values (V ), Q,K, V ∈ RT×D′
, where D′ is the hidden dimension used in the trans-
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former head. To aggregate features along the temporal axis, attention is computed

to re-weight the values from each temporal location:

wt = softmax

(
qtK

⊤
√
D′

)
,wt ∈ RT (3.6)

and the refined per-frame feature is aggregated as x′
t =

∑T
m=1wtmvm, where qt,vm ∈

RD′
are the rows in Q and V respectively and wtm is the mth element of wt.

3.3.1 The selective functions

With the the scarcity of the annotations, a global attention-based feature aggregator

will often lead to attention collapse or overfitting, since there is not enough infor-

mation on the temporal locations. To combat those issues, a more general prior,

which encodes the temporal inductive biases but doesn’t rely on the labels, is needed.

We introduce two selective functions to serve this purpose and help regularize the

attention scores in the feature aggregation process.

Local window

A surprisingly effective selective function is a simple window-based step function with

radius d constraining the receptive field: sd(t,m) = 1[|t −m| ≤ d]. The aggregated

feature for frame t is then defined as x′
t =

∑
m sd(t,m)wtmvm. This general prior

encodes the information that local information has a higher chance to be relevant to

frame t than others from a further location, and the information can be gathered in

a parsimonious way. Note that we could also expand the local window methods to

a multi-scale window, where we use multiple feature aggregators with different local

window size to fuse the aggregated features.

13



Frozen feature similarity

Another source that provides the general information of similarities between frames

is the frozen feature pre-trained on the large scale datasets. Without being impacted

by the scarcity of the labels, the frozen feature similarities can directly be used to reg-

ularize the attention on the temporal axis. We calculate the cosine feature similarity:

ŝ(t,m) =
xT
t xm

xtxm
between two frames at timestamp t andm. To incorporate the similar-

ity score into the attentions, we adopt two strategies: addition and product. For the

addition operation, we add the cosine similarity score directly into the pre-softmax

attention score: wt = softmax
(
qtK⊤
√
D′ + ŝ(t)

)
, where ŝ(t) ∈ RT is the vector contain-

ing similarity scores ŝ(t,m) between frame t and frames from all other locations. For

the product operation, we first compute the score sp(t,m) = sign(ŝ(t,m))|ŝ(t,m)|p

with controllable sharpness using power p, then aggregate the contextual features as

x′
t =

∑
m((sp(t,m) + 1)/2)wtmvm.

We find that through using the simple selective functions, either the local window

or the frozen feature similarity, the performance can be boosted significantly, espe-

cially on action-rich datasets where the scarcity of the location information has the

most impact.
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Chapter 4

Experiments

4.1 Setup

Datasets

We evaluate our proposed method on three challenging datasets. (1) THUMOS’14 [17]

contains videos of 20 action classes with 200 validation and 213 test videos. This

dataset is widely used for testing action detection models. We follow the common

setup [29] and use the validation set for training and the test set for testing. (2)

BEOID [6] is a dataset with 58 videos with 30 action classes in total. There are 12.5

action instances for each video on average. We follow the exact video train-test split

set in [29], using 80% as training and 20% as testing. (3) GTEA [23] contains 28

videos of 7 fine-grained daily activities in a kitchen, where 21 videos are used for

training and the rest for testing.

Evaluation metrics

We use the mean average precision (mAPs) under different intersection over union

(IoU) thresholds to evaluate our model. A proposal instance is considered positive

when both the action class is predicted correctly and the temporal IoU threshold
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constraint is satisfied.

Implementation details

For all datasets, we use the Adam optimizer [19] with learning rate 1e-4. Aggregation

modules tested in our experiment all use one round of feature aggregation. When

using the self-attention based modules, the key and value embedding dimensions

D′ = 2048, for feed-forward networks we use 512 hidden units with a 0.3 dropout

rate, and we use 8 heads with 0.3 dropout for the attention. For THUMOS’14, we

train the model for 2000 iterations to obtain the pseudo labels, which are then used

as label augmentation for another 3000 training iterations. For BEOID and GTEA,

we train the model for 800 and 1500 iterations, respectively, without pseudo label

mining. The background mining ratio η is 7 for THUMOS14 and BEOID; there is no

background mining for GTEA. The actionness score weight γ in inference is 1.0.

4.2 Quantitative comparison with prior art

There are four key prior works tackling single-frame supervised action localization:

SF-Net [29] is the framework described in Section 3.2, which uses the isolated frozen

frame features as input to the entire training pipeline. This model provides a clean

and basic testbed for single-frame supervised action detection. We use this model as

our baseline, where our model only differs in the feature aggregation module. We rely

on this model for the in-depth quantitative and qualitative analysis as it is the most

directly comparable work.

The point-level Ju et al. [18] method utilizes both the frame-level and the

proposal-level information to improve the action detection performance. Specifically,

the method first generates frame-level key points, then further refines the key points

using a second phase module to generate a proposal-level output. The model relies
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Datasets Methods
mAP@IoU AVG AVG

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3-0.7 0.1-0.7

THUMOS’14 [17]
SF-Net [29] 71.0 63.4 53.2 40.7 29.3 18.4 9.6 30.2 40.8
Ju et al. [18] 72.8 64.9 58.1 46.4 34.5 21.8 11.9 34.5 44.3

Ours 71.0 64.6 56.5 45.3 33.8 23.4 12.4 34.3 43.9+3.1

BEOID [6]

SF-Net [29] 62.9 - 40.6 - 16.7 - 3.5 - 30.1
Ju et al. [18] 63.2 - 46.8 - 20.9 - 5.8 - 34.9
Li et al. [24] 71.5 - 40.3 - 20.3 - 5.3 - 34.4

Ours 67.1 - 40.9 - 29.1 - 16.6 - 38.0+7.9

GTEA [23]

SF-Net [29] 58.0 - 37.9 - 19.3 - 11.9 - 31.0
Ju et al. [18] 59.7 - 38.3 - 21.9 - 18.1 - 33.7
Li et al. [24] 60.2 - 44.7 - 28.8 - 12.2 - 36.4

Ours 57.2 - 39.7 - 22.8 - 17.9 - 33.8+2.8

Table 4.1: Comparison with the state-of-the-art methods on three datasets (best
result, second best). Our model shows competitive or higher performance across
IOU metrics. Our module is simple, general and applicable for most frameworks. In
the last column, we provide a direct comparison by showing the improvement over
the baseline framework SF-Net [29] after plugging in our module.

on separately training a mapper to differentiably train the proposal component.

Similarly, the Li et al. [24] method works on the label space and proposes to use

heuristics to detect action changes, with the help of an extra loss which enforces mono-

tonicity of predictions to smooth out the inner region and build sharper boundaries.

The method was tested on GTEA and BEOID datasets.

Finally, the very recent ICCV’21 work by Lee et al. [22] obtains impressive results

but utilizes strong dataset-specific priors for frame mining. Note that we adopt the

more general frame mining framework proposed in [29], so the results are not directly

comparable.

The comparison between our method and prior works is summarized in table 4.1.

For each dataset, we report the best numbers obtained through our model variants:

the multi-scale window feature aggregator (with window sizes 10, 30, and 60) for THU-

MOS’14, the local window with size 60 for BEOID and the frozen-feature similarity

with the addition operation for GTEA. On all the datasets, we obtain competitive or

higher performance on average IoUs. Specifically, on THUMOS’14, we achieve mAP

34.3% on IoU averaged between 0.3-0.7 and 43.9% on IoU averaged between 0.1-0.7.

Compared with our baseline method SF-Net [29], we show that simply through adding
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THUMOS’14 BEOID GTEA

Metric
mAP@IoU

AVG
mAP@IoU

AVG
mAP@IoU

AVG
0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

global 70.0 55.1 32.0 10.6 42.4 68.1 40.0 24.0 13.1 35.0 51.2 33.5 20.7 16.5 29.9
local-small 70.1 55.7 33.6 12.2 43.2 67.8 39.3 30.4 13.6 36.5 56.6 38.5 23.0 19.0 33.4
local-med 70.6 56.3 32.8 11.8 43.4 67.1 41.0 29.1 16.6 38.0 57.2 39.7 22.8 17.9 33.6
frozen-prod 68.6 54.5 33.7 12.6 43.0 70.9 40.7 25.5 12.6 36.4 58.5 38.0 22.2 16.3 33.2
frozen-add 68.0 54.6 32.9 12.6 42.4 71.4 36.0 23.7 10.0 34.5 56.8 38.8 24.3 17.1 33.8

Table 4.2: The ablation studies on various designs of selective functions on THU-
MOS’14, BEOID and GTEA. The AVG score is computed across all IoUs from 0.1
to 0.7. For the global feature aggregation, we use 700, 200, and 60 for THUMOS’14,
BEOID, and GTEA, respectively. Two variants of local windows are tested. The
local-small indicates a compact range and is set as 5, 7, and 5; the local-medium
attempts to expand the small range and is set as 30, 60 and 20, respectively for the
datasets from left to right.

our proposed simple feature aggregation module, the performance is boosted 3.1% on

THUMOS’14 (from 40.8% to 43.9% mAP over IoUs 0.1-0.7 ), 7.9% on BEOID (from

30.1% to 38.0%) and 2.8% on GTEA (from 31.0% to 33.8%). Especially, on the

challenging localization setting of IoU 0.7, our method outperforms the strong recent

model of Ju et al. [18] by 2.8% on THUMOS’14 and 10.8% on BEOID respectively,

and is only 0.2% behind on GTEA despite not using a second-phase refinement system

on the predictions.

4.3 Ablation studies

We conduct ablation studies on the two key components of our proposed method: the

contextual features and the selective functions.

Contextual features

In table 4.3 we compare the baseline model, SF-Net [29] (which uses the isolated

features for each frame), the mean-pooled features (which simply averages the frame

features within a local window rather than using the learning attention weights),

and our selective feature aggregation module. We keep window sizes the same for

mean-pool and selective attention for a fair comparison. We find it interesting that,

18



Feature-agg
mAP@IoU AVG

0.1 0.3 0.5 0.7
THUMOS’14

isolated 71.0 53.2 29.3 9.6 40.8
mean-pool 66.8 53.2 32.7 12.0 41.6

selective+attn 71.0 56.5 33.8 12.4 43.9
BEOID

isolated 62.9 40.6 16.7 3.5 30.1
mean-pool 63.4 32.9 21.4 11.3 30.9

selective+attn 67.1 40.9 29.1 16.6 38.0
GTEA

isolated 58.0 37.9 19.3 11.9 31.0
mean-pool 47.62 28.5 11.15 7.6 23.2

selective+attn 57.2 39.7 22.8 17.9 33.8

Table 4.3: We compare: the isolated feature, mean-pooled feature, and selective
feature aggregation. All variants are based-on the SF-Net framework, and the isolated
feature corresponds to the SF-Net [29] baseline.

on THUMOS’14 and BEOID, the mean-pooled feature without location-specific in-

formation can already improve the results by 0.8%, indicating the importance of

the contextual information. With our proposed module with selective functions and

dynamic attention, the results can be improved by 3.1%, 7.9% and 2.8% over iso-

lated features, and 2.3%, 7.1% and 10.6% over the mean-pooled features on the three

datasets.

Selective functions

We show that having an effective general prior to perform selective neighbor feature

aggregations can further improve the performance of our model. Summarized in

table 4.2, we compare our selective function designs under all three datasets.

We first analyze our intuition that the local information tends to have a higher

chance to be relevant compared to far-away frames. As a comparison, we extend the

window size to global ones which have much larger aggregation receptive fields. For

local window sizes, we consider small and medium-size windows to analyze the impact

of selective functions. We find that the performance drops by 1.0%, 3.0%, and 3.7%

when a global-size window is used. It’s also interesting that, for the local window
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Figure 4.1: Attention matrix visualization between video frames (every row corre-
sponds to the attention vector wt computed for frame t over all other video frames).
Figures from left to right: global attention matrix, local attention matrix with window
size 30, and zoomed-in attention matrix of 1st to 13th frame from a ”BaseballPitch”
video in THUMOS14. Darker color indicates larger attention weights. The black box
indicates the zoomed-in region. The orange rectangles show the ground truth action
frames.

selective functions, even with a small window size, such as 5 or 7, the model can still

outperform the global-window aggregation, indicating that learning on the necessary

information has a less chance to lead to overfitting on the training frames.

For the frozen feature similarity selective functions, we compare the results from

the addition function and the product function. We find that, similar to local win-

dows, the frozen features can also provide a general prior to regularize the feature

aggregation and lead to a performance boost, compared to either the isolated fea-

tures [29] or the global feature aggregators. Results are summarize din the last two

rows of table 4.2.

4.4 Qualitative Analysis

In this section, we provide additional qualitative analysis on the model’s behavior.
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GT

SF-Net

Ours

Figure 4.2: Qualitative comparison with SF-Net on THUMOS’14. The red box
around the video frame indicates either false positive or false negative frames mis-
classified by SF-Net but is correctly predicted by our method. The result from our
method is more accurate and contiguous on the temporal axis.

Collapsed attention

We visualize the attention scores learned from a global feature aggregation module

and a local window-constrained feature aggregation module in figure 4.1. With global

attention module, we find that only a small set of frames (and always the same

frames) are selected for feature aggregation, potentially due to that the target labels

only contain very sparse information. If we constrain the model’s attention using the

simple local window prior, the model can learn to exploit more diverse features from

various locations for prediction, preventing the model from overfitting on a small set

of frames. We also visualize the zoomed-in attention scores with the key frames in

figure 4.1, showing that our model attends to the relevant keys frames for feature

aggregations.

Prediction results analysis

We visualize the prediction results of our model with the Selective Feature Aggrega-

tion module, and find that our model tends to make predictions with more temporal

consistency, compared to baseline [29], shown in figure 4.2. We also find that our

method tends to produce more accurate predictions under the same recall, for ex-
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Figure 4.3: For every class, we take the N highest-scoring detections returned by our
model and SF-Net [29], where N is the number of ground truth instances for this
class. We perform error analysis by assigning each detection to one of four categories:
(1) correct, where the detection matches a ground truth action instance with IoU>0.7
and has a higher score than any other competing detection; (2) localization, where
the detection matches a ground truth action instance but only with IoU>0.3; (3)
duplicate, where the detection matches a ground truth instance with IoU>0.3 but
there is already a higher-scoring detection matched to this action instance; and (4)
incorrect, which is all other detections. We note that we have cut the number of
duplicate detections in half compared to SF-Net, which is consistent with our intuition
in figure 4.2.

ample, on video-level classification, our method improves 2.5% (83.5% vs. 81%) in

precision while maintaining the same recall (98%) as SF-Net. We analyze the pre-

dicted detections in figure 4.3, and find that our method has less duplicate predictions,

indicating that more contiguous predictions are generated, which is consistent with

our observation in figure 4.2.

4.5 Model performance under the same budget

Annotation costs are the key bottleneck of video-related applications. To demonstrate

the cost-effectiveness of our method, we compare it with the state-of-the-art models

under the same annotation budgets. According to Ma et al. [29], the labeling time

required for video-level, single-frame, and full annotations on a single GTEA video

is 45, 50, and 300 seconds. Following the estimate of the time budgets, we instead

benchmark all the models on the THUMOS’14 dataset, which is much larger than

GTEA and BEOID.
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Specifically, we need 200, 180, and 30 videos for training for weakly-supervised,

single-frame supervised, and fully-supervised methods. In the fully supervised case,

we increase the number of videos to 42 to ensure that there are at least 2 videos

per action class. Similarly, for the single-frame supervised setting, to conduct a fair

comparison and maintain the class-wise distribution, we removed one video from

each class to obtain the 180 videos for training. We use the original test video set for

testing.

The results are summarized in table 4.4, we find that our method, under the same

fixed budget for annotation, achieves the best performance compared to the pre-

vious fully-supervised, video-level supervised, and single-frame supervised methods,

achieving 42.9% on the test set.

Supervision #videos Method AVG mAP
Full 42 PGCN∗[50] 39.5

Single frame 180 SF-Net[29] 40.2
Video-level 200 CoLA[51] 40.9
Single frame 180 Ours 42.9

Table 4.4: AVG(0.1-0.7) mAP on THUMOS14 under a fixed human labeling budget;
#videos indicates the corresponding number of training videos. ∗Note the PGCN
method uses class-agnostic temporal proposals that have been trained using the full
training set.
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Chapter 5

Conclusion

In this thesis, we presents a new Selective Feature Aggregation module in the single

frame-supervised setting, which dynamically computes the attention over frames un-

der the guidance of a selective function to produce contextualized features for each

frame. We find that the contextualized features can improve the performance over the

baseline by a large margin, and that the selective functions can effectively regularize

the attention to avoid the collapse issue. The proposed module is simple, effective

and applicable to various single frame-supervised action detection frameworks.

24



Appendix A

Video Sequence Sorting

A.1 Video Sequence Sorting

Aggregation & Task Frame Accuracy Video Accuracy
isolated & binary 67.3 68.7
selective & binary 68.6+1.3 70.3+1.6

isolated & six-way 16.5 16.9
selective & six-way 17.4+0.9 16.6−0.3

Table A.1: Frame-level accuracy and video-level accuracy comparison between base-
line isolated features and selectively aggregated features, on two-frame sorting task,
binary classification, and three-frame sorting task, six-way classification.

Task Overview

Another motivation for our selective feature aggregation method comes from our ob-

servation that frozen extracted features perform poorly on the video sequence sorting

task. The frozen features, extracted from pretrained network on task of video recog-

nition, lack fined-grained spatio-temporal details to perform well on video sequence

sorting task. The video sequence sorting task requires the model to output the correct

video sequence order given a randomly shuffled video sequence [21]. Features need

to contain enough fine-grained spatial-temporal details in order to correctly sort the
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video sequence.

Model

We follow the model architecture of Order Prediction Network [21] and experiment

on two classification tasks: sorting two-frame sequences, a binary (2!) classification

task, and sorting three-frame (3!) sequences, a six-way classification task.

Train Data

We prepare the training data from THUMOS14. For each video in training dataset

and for each frame that has single-frame label, we randomly shuffle the video frame

sequence around that labeled frame. For two-frame sorting task, we take the labeled

frame and one of its neighboring frame. For three-frame sorting task, we take the

labeled frame, one backward neighboring frame and one forward neighboring frame.

The reason for including the labeled frame in every shuffled sample is to make sure

that every sample contains at least one discriminative action frame. We also take

stride with size two when taking the neighboring frames around the labeled frame,

in order to prevent the frames in the sequence from being too similar to each other.

Intuitively, if the frames in the sequence are indistinguishable from each other, it will

be very hard to sort them.

Experiments

We train Order Prediction Network [21] on 150 training videos and report frame-level

accuracy and video-level accuracy on 50 testing videos. The frame-level accuracy is

percentage of correctly predicted sequence of all testing sequences. The video-level

accuracy is computed by first calculating the frame-level accuracy of each test video

and then taking the average across all videos. Table A.1 presents the experiment

results.
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Neither isolated or aggregated features on three-frame sorting task are much bet-

ter than random guess (16.6%), which may suggest the lack of fine-grained details of

the frozen extracted features. Our selectively aggregated features generally improves

upon the baseline isolated features on both two-frame and three-frame sorting tasks.

However, the improvement is not very significant. We hypothesize that selectively ag-

gregating features does help but aggregating already coarse features does not achieve

the level of spatio-temporal granularity required by the sorting tasks.
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