Under review as a conference paper at ICLR 2026

DIAGNOSING FAILURE ROOT CAUSES IN PLATFORM-
ORCHESTRATED AGENTIC SYSTEMS: DATASET, TAX-
ONOMY, AND BENCHMARK

Anonymous authors
Paper under double-blind review

ABSTRACT

Agentic systems consisting of multiple LLM-driven agents coordinating through
tools and structured interactions, are increasingly deployed for complex reasoning
and problem-solving tasks. At the same time, emerging low-code and template-
based agent development platforms (e.g., Dify) enable users to rapidly build and
orchestrate agentic systems, which we refer to as platform-orchestrated agentic
systems. However, these systems are also fragile and it remains unclear how to
systematically identify their potential failure root cause. This paper presents a
study of root cause identification of these platform-orchestrated agentic systems. To
support this initiative, we construct a dataset AgentFail containing 307 failure logs
from ten agentic systems, each with fine-grained annotations linking failures to their
root causes. We additionally utilize counterfactual reasoning-based repair strategy
to ensure the reliability of the annotation. Building on the dataset, we develop a
taxonomy that characterizes failure root causes and analyze their distribution across
different platforms and task domains. Furthermore, we introduce a benchmark that
leverages LLMs for automatically identifying root causes, in which we also utilize
the proposed taxonomy as guidance for LLMs. Results show that the taxonomy
can largely improve the performance, thereby confirming its utility. Nevertheless,
the accuracy of root cause identification reaches at most 33.6%, which indicates
that this task still remains challenging. In light of these results, we also provide
actionable guidelines for building such agentic systems. In summary, this paper
provides a reliable dataset of failure root cause for platform-orchestrated agentic
systems, corresponding taxonomy and benchmark, which serves as a foundation
for advancing the development of more reliable agentic systems.

1 INTRODUCTION

Large Language Models (LLMs) have recently shown remarkable capabilities in reasoning, planning,
and knowledge-intensive tasks, which promotes their widely adoption across diverse application
domains [Chen et al.|(2023). Building on these advances, agentic systems powered by LLMs are
gaining increasing attention, as they enable multiple specialized agents to collaborate toward complex
goals. Such agentic systems have been applied to software development, information retrieval and
research assistance, where the coordination of agents often outperforms single-agent solutions.

To further lower the barrier to building such systems, a new wave of low-code agentic Al develop-
ment platforms, such as Dify Dify Contributors| (2023), Coze Coze Contributors| (2023), n8n [n8n
Contributors|(2020) and AutoGen |Wu et al.|(2023a), has emerged. These platforms provide intuitive
workflow editors, pre-configured tool integrations, and flexible orchestration mechanisms, allowing
users to rapidly prototype and deploy multi-agent solutions without extensive programming expertise.

Although these low-code and template-based tools have significantly lowered the bar for building
agentic systems, the inherent fragility of agents and the errors introduced by the workflow and
platform make these built systems prone to failure in practice. However, pointing out the root cause
of failures is challenging because the systems often involve a large number of interconnected nodes
with complex dependencies, which makes root cause localization inherently difficult.

Under review as a conference paper at ICLR 2026

Recent research has begun to explore failure attribution in multi-agent systems. Zhang et al.| (2025d)
proposed Who&When dataset with annotated responsible agent and failure step and benchmarks for
automated attribution. Methods like AgenTracer Zhang et al.[(2025a) attempted to identify responsible
agents or actions using spectrum analysis. ETO |Song et al.| (2024) improved the performance of
LLM agents in complex tasks by enabling them to learn from failed explorations. These efforts
highlight the importance of understanding failure mechanisms, but they largely target traditional
algorithm-generated (e.g., AG2 Wang et al.|(2024)) or hand-crafted agentic systems (e.g., CAMEL |Li
et al.[(2023)), rather than the emerging platform-orchestrated agentic systems which enables the rapid
construction and coordination of multiple agents on a platform. In addition, prior work on failure
attribution effectively identifies where a failure occurs (e.g., a specific agent). Yet they do not know
why it occurs (i.e., the cause of the occurrence), e.g., a poor prompt design or a workflow deadlock.
These deeper understanding is the basis for the follow-up failure analysis, repair, and enhancement.

To bridge this gap, we present an empirical study of root cause identification in platform-orchestrated
agentic systems, which focus on systematically analyzing why failures arise. Specifically, our
contributions are threefold: (i) Datase - We construct 307 annotated failure data obtained from two
representative platforms with multi-round expert annotation and reliable expert consensus. Each data
instance contains the query content, the workflow and configuration of the corresponding system,
the execution failure logs, and the annotated root cause of failure. Additionally, we draw on the
idea of counterfactual reasoning and use targeted repair experiments to ensure the reliability of the
annotations. (ii) Failure Root Cause Taxonomy — We construct a fine-grained taxonomy of agent-,
workflow-, and platform-level failures, grounded in analysis of failure traces. Furthermore, we
quantitatively analyze failure distributions across platforms and tasks, providing comparative insights
into failure patterns from different perspectives. (iii) Benchmark - We conduct benchmark experiments
on multiple LLMs (e.g, gpt —40) for assessing the ability of automated failure root cause diagnosis,
and results show that incorporating our taxonomy into LLM prompts significantly improves their
accuracy in identifying root causes. Nevertheless, the maximum accuracy of root cause identification
is 33.6%, which implies the challenge of this task. Finally, based on our insights, we provide practical
guidelines for developers to construct more robust agentic systems on platform, ensuring that our
study not only deepens understanding but also supports real-world platform practices.

2 BACKGROUND

2.1 AGENTIC AI DEVELOPMENT PLATFORM

Modern agentic Al development platforms (e.g., Dify, Coze, n8n) expose agentic system construction
through a node-based paradigm, where each node corresponds to a functional unit. By connecting
nodes, users can define complex multi-agent system that combine reasoning, control, and external
interactions. The node types are summarized as follows, the detailed description of the nodes can be
found in the Appendix[A.2} 1) Start and Termination Nodes; 2) LLM and Agent Nodes; 3) Knowledge
Nodes; 4) Logic and Control Nodes; 5) Code and Template Nodes; 6) Tool and Integration Nodes.
These integration nodes extend the platform’s capability beyond built-in components, enabling
workflows to interact with external services, databases, or custom tools.

Together, these nodes provide support for the following functions: 1) Reasoning and task execution; 2)
Knowledge search; 3) Dynamic orchestration; 4) Data transformation and management; 5) External
tool integration; This modular design allows practitioners to flexibly compose workflows that combine
autonomous reasoning, structured control, and tool use, lowering the barrier to building multi-agent
systems while maintaining extensibility.

2.2 FAILURE DEFINITION

2.2.1 TASK FAILURE DETERMINATION

Since we would like to collect failure trajectories of agentic systems, we first need to determine
whether the current execution has deviated from expected behavior. In our setting, the execution
of system interrupts is directly regarded as a failure. For the concluded executions, we adopt the
following two evaluation strategies for different types of tasks:

'Repo URL: https://anonymous.4open.science/r/ICLR26-27B2/

Under review as a conference paper at ICLR 2026

Ground Truth Comparison. For tasks with deterministic ground truth or validation mechanism (e.g.,
code generation), we directly compare the system outputs against the provided ground truth. One
execution is considered successful if the output either passes test-based verification (e.g., functional
correctness in code execution) or exactly matches the reference solution.

Multi-LLM Judge. For tasks lacking deterministic ground truth (e.g., task planning, deep research),
we adopt LLM-as-a-judge|Gu et al.|(2024) technique. Specifically, we use multiple independent LLMs
as evaluators, each tasked with assessing whether the system output satisfied the task requirements.
Then, a consensus voting strategy is applied, where an output was marked as correct if a majority of
LLM judges agreed on its validity. Example prompt we uses is in Appendix [A.4]

2.2.2 FAILURE LOCALIZATION

Following previous work |Zhang et al.| (2025d)), we denote the outcome of a task trajectory 7 by a
binary variable ¢(7), where ¢(7) = 1 indicates failure and ¢(7) = 0 indicates success. Failure or
success of the trajectory is determined in Section

To capture the failure root cause, we firstly need to find the decisive error made by agents. We
suppose that agent ¢ makes a wrong action a; at step ¢ in a failed trajectory 7. Therefore, the error
can be represented as F (i, ¢). Then, we construct a modified trajectory by replacing a; with a correct
action a; while keeping prior steps unchanged and the following steps are adjusted according to the
new correct action. If this intervention changes the trajectory outcome from failure to success, we
believe that the error a; at step ¢ is decisive. Formally, the decisive error indicator is defined as:

1, ifé(r) =1and p(rF01) =0,
0, otherwise.

Apiy(T) = { (nH

Api4)(T) = 1 means fixing agent i’s error at time ¢ changes the trajectory from fail to success.
Since multiple decisive mistakes may exist, we follow the earliest-in-time principle, i.e., selecting the
first decisive error as the root of system failure:

E(i*,t") = arg E(irg)lie%mt, where C(7) = {E(i,t) | Apy(T) = 1} 2)

In this study, we will use this principle to identify the corresponding root cause of system failure.
However, identifying the root cause is not a simple process, so we focus on analyzing, summarizing,
and validating these root causes of failures.

3 THE AGENTFAIL DATASET

We collect systems execution data from two representative agentic Al development platforms, Dify
and Coze, which provide the capabilities of visual workflow composition and tool integration. The
dataset AgentFail contains 307 failure logs from ten platform-orchestrated agentic systems in total,
with five from each platform. Each instance in the dataset includes four elements: (1) Query, a query
obtained from the real test case; (2) Failure log: the full conversational trace of a system failing to
complete the task. (3) System workflow and configuration: including the node orchestration structure
and the information of each node, like agent’s name, agent’s prompt, code, tool configuration. (4)
Annotations: the taxonomy labels and explanation of why the failure took place.

3.1 SYSTEM SELECTION

The agentic systems span a variety of task categories, including software development, information
insight, task planning, and question & answering. Both platform-provided templates and user-defined
systems we select from the platforms are included to ensure coverage of typical cases. To ensure
diversity, we consider not only the task types but also the structural design of systems, covering five
common categories: serial, parallel, branching, looping, and hybrid structures, whose details can be
found in the Appendix [A.3] This choice enables our analysis to cover diversified failure modes that
are specific to both task semantics and orchestration patterns.

Under review as a conference paper at ICLR 2026

3.2 FAILURE LOG COLLECTION

Failure logs analyzed in this study are obtained from two sources: (1) open-source community
contributions, where users had publicly shared. The example can be found in the Appendix [A.G
From these reports, we extract both the user input and the corresponding execution results to construct
failure cases; and (2) our own controlled runs, in which we execute public datasets (e.g., HumanEval
Chen et al.| (2021)), TravelPlanner Xie et al.| (2024)) or hand-crafted datasets based on the task,
1,387 test data in total, on corresponding agentic system and systematically record the traces. For
hand-crafted datasets (denoted as Hand-crafted-platform name-Task name), we carefully design the
construction criteria to ensure the representativeness and diversity of the inputs, which can be found
in the Appendix[A.5] For each run, success or failure is determined by the criteria which is mentioned
in Section[2.2] Finally, we collect 307 failure logs in total and these combined sources ensure that our
dataset captured both naturally occurring failures and reproducible benchmark failures. The detailed
stats of AgentFail are listed in Table

Table 1: Dataset Information. For test data sources with a large scale, we randomly select a subset of
100 samples to form the test set. We use the format Hand-crafted-Platform Name-Task
Name to name the test data created by ourselves. The failure logs come from our run or community.

q Failure Log
Platform Task Structure Test Data Source Test Data size (Run + Community)

Code Generation Looping HumanEval 163 23 (21+2)
Program Repair Looping SWE-bench 100 62 (62+0)
Dify Product QA Assistant Branching Hand-crafted-Dify-QA 100 18 (17+1)
Travel Assistant Parallel TravelPlanner 180 32 31+1)
Deep Research Hybrid ninja-x-deepreasearch 182 27 (26+1)
Product QA Assistant Hybrid Hand-crafted-Coze-QA 100 37 (34+3)
Travel Assistant Parallel TravelPlanner 180 31 (28+3)
Coze Market Research Assistant Serial Hand-crafted-Dify-Market 100 30 (29+1)
Deep Research Serial ninja-x-deepreasearch 182 27 (25+2)
Industry Analysis Parallel ~ Hand-crafted-Dify-Industry 100 20 (20+0)

Sum 1,387 \ 307 (293+14)

3.3 FAILURE ROOT CAUSE ANNOTATION

To systematically identify the root causes of failures, we adopt Grounded Theory (GT) annotation
method |Glaser & Strauss| (1968)), which is a qualitative research method that directly constructs
theories from empirical data, to identify root cause patterns.

Independent Annotation. Three annotators with expertise in agentic systems independently ex-
amined system execution traces, where each annotator manually identifies the decisive errors and
corresponding root cause based on the expert knowledge and understanding of failure logs. Addition-
ally, each expert is instructed to separate their annotations into two categories: (i) cases in which they
were fully confident about the correctness of the identified failure, and (ii) cases where they had any
degree of uncertainty. The detailed information of this process is in Appendix

Consensus Building. Then, annotators focus specifically on the cases marked as uncertain in the
first step. These instances are jointly reviewed, and through collaborative discussion, agreement is
reached on the final labels.

Cross Validation. Finally, we adopt a cross-validation procedure. Each expert reviews the annotations
made by others to assess the consistency of labeling standards. If any discrepancies are identified,
the annotators engage in further discussion and, when necessary, re-annotate the data together until
consensus is achieved. By incorporating multiple perspectives and enforcing agreement among
annotators, this process enhances the reliability of the final annotations.

To assess the accuracy of the annotations, we calculate inter-annotator agreement using Cohen’s k,
which changes from the initial 0.85 to the final 1.0. This indicates substantial agreement and validates
that our GT-inspired procedure yielded reliable and reproducible attributions.

3.4 RELIABILITY OF ANNOTATION

To further validate the correctness of our taxonomy, we conduct targeted repair experiments based
on the failure localization definition (Section|2.2.2)) and counterfactual reasoning. The rationale is

Under review as a conference paper at ICLR 2026

that if applying the repair method for a specific failure root cause D converts the case from failure
to success, the original labeling is correct. Our expert team design repair plans for these failure
root causes grounded in their domain expertise and understanding of the system. Further details are
provided in the Appendix [A.T0] We sample top half of failures based on occurrence frequency for
verification, which can ensure the rationality of the experiment while reducing costs.

Figure[I] presents the confusion matrix of repair rates:

rows correspond to the annotated failure labels, and Repair

columns correspond to the actual repairs applied. As 5 2.4% 153% 7% 4% 18.2% 5.6% 3%

shown in the figure, the diagonal values are con- N -
0-12.5% RS 3.5% 2.2% 12.7% 4.1% 3.9% 2.8%

sistently the highest (e.g., 90.1% for D1 (response
formatting error), 95.6% for D2 (response content
deviation), 96.3% for D5 (language or encoding de-

5-10.8% 4.9% 12.8% 4.6% 52% 3.4% 2.7%

60
£-55% 3.6% 7.4%3.3% 5.4% 4.2% 3.5%

Label
Percentage

fect)), indicating that repairs aligned with our anno- 8 72% 41% 29% 6.3% SRR
tations are the most effective. This result provides < I e 14_5% .
strong evidence for the accuracy and reliability of

our annotations. We also observe off-diagonal effects g e e 15'8%13'6% [*
which cannot be overlooked. For example, repairing - G | 2O | DD | A0 | A3 i “%

D3 (knowledge or reasoning limitation) sometimes oL o2 O3 04 B 05 07 o6

solves the failures labeled with D1 (response format-
ting error). This suggests that certain failure types
share underlying dependencies or that one fix can
alleviate multiple error pathways. Nevertheless, the
clear dominance of diagonal entries demonstrates
that our annotation captures the failure root causes in
most cases, thereby validating the reliability of our
taxonomy.

Figure 1: Confusion matrix of repair rates.
Rows correspond to annotated failure root
cause labels, and columns denote the applied
repair. Higher diagonal values indicate that
repairs aligned with annotations are most ef-
fective.

4 FAILURE ROOT CAUSE TAXONOMY

4.1 TAXONOMY

To systematically analyze the failure cases observed in platform-orchestrated agentic systems, we
construct a three-level failure root cause taxonomy, as shown in Figure [2] This taxonomy is derived
from iterative annotation of system execution traces and reflects the unique challenges posed by agent
design, workflow orchestration, and platform environments. It enables fine-grained identification of
failures to specific components, thereby facilitating diagnosis and repair. Agent-level failures capture
failures that occur within a single agent, primarily due to limitations of the underlying language
model or its interaction with local resources; Workflow-level failures arise from coordination or
communication among multiple agents, often linked to workflow orchestration structures; Platform-
level failures are attributable to the underlying platform or runtime environment.

4.2 RoOOT CAUSE DISTRIBUTION

To better understand the characteristics of the failures, we conduct a statistical analysis of the failure
root causes from several perspectives.

Overall Distribution. Firstly, we count the occurrences of each root cause, as shown in Figure
[3al Overall, we observe that agent-level failures dominate the dataset. Particularly, knowledge and
reasoning limitations (F1.4) and poor prompt design (F1.5) are the most frequent categories, with more
than fifty instances each. Other frequent categories include response format error (F1.2) and response
content deviations (F1.3), reflecting the central role of LLM response quality in agentic systems. In
contrast, workflow-level failures occur less frequently but still present important bottlenecks. Among
these, missing input validation (F2.1) and unreasonable node dependency (F2.2) appear most often,
indicating that lack of verification and orchestration design are common sources of error. Categories
such as loops and deadlocks (2.3) or improper task decomposition (F2.5) are comparatively rare,
yet they represent severe structural flaws when they do occur. Finally, platform failures account
for a smaller proportion of failures. Both network and resource fluctuations (F3.1) and service
unavailability (F3.2) are observed, though less frequently than agent- and workflow-level failures.

Under review as a conference paper at ICLR 2026

— F1.1 Tool or Action Planning Error incorrect tool selection or unreasonable action ordering

)
4’[F1.2 Response Format Error] invalid or unparsable outputs
v[F1.3 Response Content Deviation] ignoring prompt constraints, off-topic answers, or redundant outputs
a{ Aiz:‘lz':::el]—4—[F1.4 Knowledge or Reasoning Limitation] missing knowledge, insufficient reasoning, or false conclusions
-[F1.5 Poor Prompt Design] lack of explicit output format, ambiguous roles, or missing examples
4—[F1.6 Language or Encoding Issue] failures caused by symbols, emojis, or incompatible character encodings
2 > F1.7 Tool Invocation or KB Retrieval Error | failures of internal retrieval or API calls within the agent
gﬁ a[F2.1 Missing Input Verification] absence of necessary checks on variable presence, format, or type
§ a[F2.2 Unreasonable Node Dependency] downstream nodes depending on unavailable data
E a[F2.3 Loops and Deadlocks] cyclic invocations among agents causing infinite execution
£ Wm:;fillc;re's |]fa[F2.4 Faulty Conditional Judgment) misrouted paths due to incorrect upstream branching
a[F2.5 Improper Task Decomposition] duplication or conflict in results due to parallelization
o F2.6 Context Conflict) misaligned conversation history or intermediate results
)

4>[F2.7 Cross-agent tool or interface mismatch| incompatible data formats or structures that prevent downstream parsing

F3.1 Network and Resource Fluctuation | insufficient bandwidth, latency spikes, or inadequate computational resources

F3.2 Service Unavailability]instubi/ity of model services, APIs, or platform-level runtime environments

Figure 2: Failure Root Cause Taxonomy.

Root Cause Distribution Across Platforms. Secondly, we investigate differences in root cause
distributions across platforms, as shown in Figure[3a] Among them, the darker three colors correspond
to Dify, while the lighter three colors represent Coze. Overall, the two platforms exhibit broadly
similar root cause distributions, with both dominated by agent-level issues (Types F1.x). However, a
notable divergence appears in Type F2.2 (unreasonable dependencies), which occurs more frequently
on Coze than on Dify. This discrepancy is largely attributable to two very long serial workflows
on the Coze platform, each connecting multiple agents (market research assistant and deep search),
whose complex dependency chains increase the likelihood of such failures. Apart from this case, the
proportions of other workflow- and platform-level failures remain largely consistent across platforms,
suggesting that the reliability challenges are platform-independent in most respects, with only certain
workflow design mechanisms contributing to platform-specific variations.

Root Cause Distribution Across Tasks. Finally, we observe the difference in root cause distribution
from the perspective of system tasks. For clarity, we categorize the ten systems into four groups:
software development (code repair, code generation), task planning (travel assistant), Question &
Answering, and information insight (deep research, industry analysis, marketing research). This
categorization allows us to examine whether different application domains and system objectives
are associated with distinctive failure patterns. The radar chart[3breveals that different tasks exhibit
distinct failure root cause modes. For software development, the most frequent failures arise from
knowledge or reasoning limitations and prompt design issues, reflecting the heavy reliance on
LLMs to generate and validate code. Question answering tasks, in contrast, are more prone to
response format errors and tool invocation/retrieval errors, since these tasks often require precise data
formatting and tool usage. Task planning tasks show a higher prevalence of language or encoding
problems and unreasonable node dependencies, highlighting their sensitivity to control flow and

— Software Development
Tool/Action Question & Answering
Planning Error Response Format ~ —— Task Planning

Service Unavailability — . Error — Information Insight

Network and Resource

Fluctuation, \Response Content Deviation

60
55 Coze / \
52 0 /
Cross-agent Tool or \
50 a7 fr— Dify e aaton/ \\&nowledge/Reasonmg Limitation
23 [\
4 23 \
@ ° 20 Context Conflict| Prompt Design Defect
E ‘ |
2 30 28
© 10 Improper Task / Language or Encoding Defect
20 Decomposition '\ /
15 15 Y7
13 \ /
B, 2 11 11 10 Faulty Conditional\\ _~Tool Invocation or KB Retrieval Error
10 7 16 s 6 123 s s Judgment e
a G 3 N Loops and Deadlock ™" Missing Input Validation
0 1 Unreasonable
11 12 1.3 1.4 15 1.6 1.7 21 22 2.3 24 25 2.6 2.7 3.1 32 Node Dependency
Failure Types « e .
(b) Statistics of failure root cause per category
(a) Statistics of failure root cause per category. across tasks.

Figure 3: Failure root cause distribution analysis from two perspectives: (a) overall distribution &
across platforms and (b) across tasks.

Under review as a conference paper at ICLR 2026

Table 2: Impact of different failure root causes on system execution results. The values represent the
average failure rate of agentic systems by injecting each failure root cause.

Failure Root Cause | Execution Termination Suboptimal Quality | Sum

Agent-level Failures

F1.1 Tool or action planning error 32.5% 47.2% 79.7%
F1.2 Response formatting error 78.3% 11.2% 89.5%
F1.3 Response content deviation 14.6% 68.1% 82.7%
F1.4 Knowledge or reasoning limitation 2.1% 72.5% 74.6%
F1.5 Prompt design defect 5.3% 84.8% 90.1%
F1.6 Language or encoding defect 66.7% 14.9% 81.6%
F1.7 Tool invocation or KB retrieval error 72.4% 12.5% 84.9%
Workflow-level Failures
F2.1 Missing input validation 51.2% 21.8% 73.0%
F2.2 Unreasonable node dependency 67.9% 9.4% 77.3%
F2.3 Loops and deadlock 65.4% 6.7% 72.1%
F2.4 Faulty conditional judgment 41.8% 29.6% 71.4%
F2.5 Improper task decomposition 18.2% 50.5% 68.7%
F2.6 Context conflict 11.7% 55.9% 67.6%
F2.7 Cross-agent tool or interface mismatch 76.2% 10.3% 86.5%
Platform-level Failures
F3.1 Network and resource fluctuation 84.9% 4.7% 89.6%
F3.2 Service unavailability 88.1% 3.2% 90.3%

dependency management. Meanwhile, information insight tasks, which typically involve multi-step
reasoning and synthesis, are dominated by response content deviations and reasoning limitations,
suggesting that subtle semantic errors accumulate throughout long reasoning chains.

4.3 IMPACT OF FAILURES

We investigate the extent to which individual failure root cause affect the overall performance of
these agentic systems. We systematically inject one failure at a time according to the taxonomy
introduced in Section[4.1] Each injected failure corresponds to a controlled modification, such as
altering prompts, introducing incorrect conditional logic, or disabling input validation, while keeping
all other components unchanged. By comparing the failure rates before and after failure injection, we
quantify the performance degradation attributable to each failure root cause. This design allows us to
identify the causal impact of individual failure root cause on workflow performance.

Since task failures may occur in different ways, and the potential impacts caused by their subsequent
propagation are difficult to quantify, we categorize the outcomes of failures into two types and adopt
the task failure rate as an objective metric to evaluate their impact, as described in Section[2.2.1] 1)
Execution Failure: The execution is interrupted and cannot be completed; 2) Suboptimal Quality:
The execution completes, but the quality of results does not meet expectations.

We count the number of occurrences of each failure root cause type in the two result categories to
reflect the actual impact of the root cause on the system, as shown in Table[2] At the agent level, failure
root causes like knowledge or reasoning limitations (F1.4) and prompt design defects (F1.5) tend to
yield suboptimal outputs rather than outright failures, since the system can still execute the workflow
but produces incomplete or low-quality answers. In contrast, response formatting (F1.2), language
encoding errors (F1.6), or tool invocation failures (F1.7) directly disrupt the communication between
components, often leading to execution termination. For workflow level, failure root causes such
as loops and deadlocks (F2.3) or cross-agent interface mismatches (F2.7) often break the execution
entirely, leading to very high termination rates. In contrast, improper task decomposition (F2.5)
or context conflict (F2.6) typically allow the system to finish execution but impair the coherence
and quality of intermediate results, resulting in suboptimal outputs. These differences suggest that
structural problems in execution logic tend to cause termination, whereas coordination problems
primarily degrade solution quality. At platform level, both failure root causes lead to high rates of
execution failure. This indicates that once platform-level problems occur, they are more destructive
compared to other failures, often leading to task termination rather than suboptimal quality.

Under review as a conference paper at ICLR 2026

Overall, the results reveal varying severity across failure categories: workflow- and platform-level
failures often cause execution termination, while agent-level failures more often yield suboptimal
quality. This distinction underscores the importance of tailoring failure root cause mitigation strategies
according to the specific level at which the failure root cause arises.

5 AGENTFAIL BENCHMARK

Manual root cause identification is labor-intensive, motivating us to explore automated root
cause identification with LLMs (gpt-4o0, LLaMA-3.1-70B, DeepSeek—-R1, QWEN3-32B,
GEMINI-2.5-PRO,CLAUDE-SONNET-4), which covers open-source, closed-source model, rea-
soning model. Our goal is to examine whether our proposed taxonomy can assist LLMs in this
process. We prompt LLMs to identify the root cause of failures under two settings: (1) without taxon-
omy, where LLMs rely solely on their own understanding of errors, and (2) with taxonomy, where
the taxonomy and definitions are explicitly provided as guidance. By comparing the identification
accuracy across these two settings, we can assess the extent to the taxonomy enhances the LLM’s
ability to diagnose the failure root cause.

Since failure logs are often long texts containing information from a large number of nodes, we adopt
three different settings to evaluate their ability of identifying root causes, following the previous work
Zhang et al.|(2025d): (1) All-at-once: The LLM is given the query together with the full failure
log and tasked with identifying the root cause of failure. (2) Step-by-step: Given a query and a
step-by-step failure log, the LLM inspects each segment for the root cause. If identified, the process
stops and returns it; otherwise, the next segment is examined. (3) Binary search: This method adopts
a divide-and-conquer strategy: given the full log, the LLM judges whether the root cause lies in the
first or second half, then recursively inspects the chosen half until the cause is identified. The three
algorithms are detailed in Appendix

Table 3: Performance comparison on AgentFail.

Models Without Taxonomy With Taxonomy
All-at-once Step-by-step Binary Search | All-at-once Step-by-step Binary Search

gpt-4o 9.6% 11.5% 9.8% 27.4% 31.2% 28.3%
GEMINI-2.5-PRO 9.8% 11.0% 10.2% 24.1% 25.0% 24.4%
CLAUDE-SONNET-4 11.7% 12.0% 11.7% 30.2% 31.4% 30.7%
LLaMA-3.1 8.3% 8.9% 8.4% 24.6% 27.7% 25.6%
QWEN-32B 8.3% 8.5% 8.3% 24.4% 25.0% 24.8%
DeepSeek-R1 12.1% 13.0% 12.4% 30.0% 33.6% 31.4%

We show that providing the taxonomy itself facilitates root cause identification. Without the taxon-
omy, LLMs achieve only around 8.3%—-13.0% accuracy in root cause identification. Incorporating
the taxonomy substantially boosts performance to about 24.1%—-33.6%, representing an absolute
improvement of roughly 15-20 percentage points across models. This is because the taxonomy
supplies LLMs with a structured guide to understand failures more reliably. We also observe that
reasoning model like DeepSeek-R1 shows a slight edge, thanks to their ability to gradually break
down problems. Despite this improvement, the peak accuracy remains at 33.6%, highlighting the
inherent difficulty and challenging nature of automated root cause identification. The key challenge
is that failure logs often contain long and complex contexts, where errors propagate through multiple
nodes of the workflow. While LLMs may correctly flag errors at later stages, they struggle to trace
back to the triggering node and the fundamental cause.

6 DISCUSSION

In light of the above experimental findings, we summarize the following actionable guidelines to help
improve the reliability of platform-orchestrated agentic systems.

Clear role specification and modular prompt design can mitigate planning errors and response
misalignments, two of the most frequent failure root cause categories we observed (related with F1.3
Response content deviation, F1.5 Prompt design defect).

Explicit input and output validation should be incorporated into nodes to prevent cascading errors
from malformed data (related with F1.2 Response formatting error, F2.1 Missing input validation).

Under review as a conference paper at ICLR 2026

Comprehensive checks or fallback mechanisms, such as secondary validation agents or alternative
tool paths, help solve the problems at the local level before they propagate across the workflow
(related with F2.4 faculty conditional judgment). Sometimes, such comprehensive checks may
introduce additional overhead, which requires a balance between robustness and efficiency.

Progressive workflow design, which starts with simple serial or parallel flows and gradually intro-
duces complex patterns. It can help build more robust systems (related with F2.2 unreasonable node
dependency, F2.3 loops and deadlock).

7 RELATED WORK

7.1 LLM MULTI-AGENT SYSTEMS

Contemporary LLM-based multi-agent systems can be broadly categorized by their degree of au-
tomation: (i) Hand-crafted systems, where the entire configuration (e.g., backbone LLMs, prompting
strategies, and communication protocols) is explicitly specified, as exemplified by AutoGen Wu et al.
(2023b), Camel [Li et al.| (2023)), and ChatDev |Qian et al.|(2024). (ii) Partially-automated systems,
which automate specific components: for instance, AutoAgents |Chen et al.| (2024), LLMSelector
Chen et al|(2025)), and MasRouter |Yue et al.|(2025)) assign agent roles automatically; DsPy [Khattab
et al.| (2024) and TextGrad Yuksekgonul et al.| (2025) optimize prompt design; GPTSwarm |Zhuge
et al.| and G-Designer |Zhang et al.| (2025b)) adaptively construct inter-agent topologies. (iii) Fully
automated systems, where all modules are automatically designed and evolved |Hu et al.| (2025));
Zhang et al.|(2025c); Wu et al.| (2025)); Nie et al.| (2025). The systems studied in this paper, which are
built on low-code platforms primarily fall into the first category of hand-crafted systems. However,
they represent a distinct subclass defined by visual, template-driven configuration rather than pure
code, which introduces unique challenges in design, debugging, and repair.

7.2 FAILURE IDENTIFICATION FOR AGENTIC SYSTEMS

With the increasing complexity of multi-agent systems (characterized by multiple agents Wang
et al.| (20235)), tool integration [Shen et al.[(2024), and communication protocols |Marro et al.| (2024))),
widespread errors and structural vulnerabilities have become urgent issues. [Zhang et al.| (2025d)
proposed the Who&When dataset, which contains failure logs from LLM MAS, annotated with the
responsible agent and step, and evaluated automatic attribution methods. |Ge et al.| (2025) proposed a
spectrum-based approach to estimate each agent’s “suspiciousness” via trajectory replay and spectral
analysis. [Cemri et al.| (2025) proposed the MAST taxonomy, showing that failures in LLM MAS
often arise from specification flaws, inter-agent misalignment, and weak verification. [Zhang et al.
(2025a)) developed AgenTracer and the TracerTraj dataset to enable fine-grained error diagnosis
through counterfactual replay and reinforcement learning. However, existing methods mainly focus
on locating the step where a failure occurs but fall short of diagnosing the failure root cause, such
as a bad prompt, incorrect task decomposition, or a logical deadlock. Our work addresses this gap
by arguing that a clear taxonomy of root causes is prerequisite to moving from superficial failure
localization to a deeper understanding of system failures.

8 CONCLUSION

In this work, we present AgentFail, a dataset of 307 annotated failure logs from platform-orchestrated
agentic systems, and ensure the reliability of root cause annotation through counterfactual repair
experiments. Building on this dataset, we propose a fine-grained taxonomy of agent-, workflow-,
and platform-level failure root causes, and show that while agent-level failures dominate, workflow
dependencies also introduce substantial risks, particularly in long serial structures. Furthermore, we
benchmark the proposed taxonomy by integrating it into automatic root cause identification with
LLMs, demonstrating that it can promote automated diagnosis of the root causes. Overall, our study
not only advances the empirical understanding of failure root causes in agentic systems, but also
provides actionable insights and benchmarks that support the development of more robust and reliable
agentic systems.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive information. All failure
logs used in our dataset were generated from controlled executions of platform-orchestrated agentic
systems or open-source platforms. The dataset contains only synthetic task inputs, system outputs,
and annotations produced by domain experts, ensuring that no personally identifiable or confidential
information is included.

Overall, this work aims to promote reliability in the development of agentic systems by offering
resources for diagnosing and understanding their failure modes, thereby contributing to safer and
more reliable deployment.

REPRODUCIBILITY STATEMENT

We will release all the dataset and code used in our work. These resources enable other researchers to
replicate our results and extend our study.

REFERENCES

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
systems fail? arXiv preprint arXiv:2503.13657, 2025.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Borje F. Karlsson, Jie Fu, and
Yemin Shi. Autoagents: A framework for automatic agent generation, 2024. URL https
//arxiv.org/abs/2309.17288.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Matei Zaharia, James Zou, and Ion
Stoica. Optimizing model selection for compound ai systems, 2025. URL https://arxiv,
org/abs/2502.14815.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors, 2023. URL https://arxiv.org/abs/2308.10848,

Coze Contributors. Coze: An ai agent development platform. https://www.coze.com, 2023.
Accessed: 2025-09-20.

Dify Contributors. Dify: Empowering ai application development. https://dify.ail 2023.
Accessed: 2025-09-20.

Yu Ge, Linna Xie, Zhong Li, Yu Pei, and Tian Zhang. Who is introducing the failure? automatically
attributing failures of multi-agent systems via spectrum analysis, 2025. URL https://arxiv,
org/abs/2509.13782.

B. Glaser and A. L. Strauss. The discovery of grounded theory: Strategy for qualitative research.
Nursing Research, 17(4):377-380, 1968.

10

https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2502.14815
https://arxiv.org/abs/2502.14815
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2308.10848
https://www.coze.com
https://dify.ai
https://arxiv.org/abs/2509.13782
https://arxiv.org/abs/2509.13782

Under review as a conference paper at ICLR 2026

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594,
2024.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems, 2025. URL https
//arxiv.org/abs/2408.08435.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into
self-improving pipelines. 2024.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for “mind” exploration of large language model society. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Samuele Marro, Emanuele La Malfa, Jesse Wright, Guohao Li, Nigel Shadbolt, Michael Wooldridge,
and Philip Torr. A scalable communication protocol for networks of large language models, 2024.
URLhttps://arxiv.org/abs/2410.11905.

n8n Contributors. n8n: Open-source workflow automation tool. https://n8n.io, 2020. Ac-
cessed: 2025-09-20.

Fan Nie, Lan Feng, Haotian Ye, Weixin Liang, Pan Lu, Huaxiu Yao, Alexandre Alahi, and James
Zou. Weak-for-strong: Training weak meta-agent to harness strong executors, 2025. URL
https://arxiv.org/abs/2504.04785.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev:
Communicative agents for software development, 2024. URL https://arxiv.org/abs/
2307.07924.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming Yan, Xiaojun Quan, Hehong Chen, Ji Zhang,
and Fei Huang. Small llms are weak tool learners: A multi-llm agent, 2024. URL https:
//arxiv.org/abs/2401.07324.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for 1lm agents, 2024. URL https://arxiv.org/
abs/2403.02502.

Chi Wang, Qingyun Wu, and the AG2 Community. Ag2: Open-source agentos for ai agents, 2024.
URL https://github.com/ag2ai/ag2. Available at https://docs.ag2.ai/.

Junlin Wang, Roy Xie, Shang Zhu, Jue Wang, Ben Athiwaratkun, Bhuwan Dhingra, Shuaiwen Leon
Song, Ce Zhang, and James Zou. Improving model alignment through collective intelligence of
open-source 1lms, 2025. URL https://arxiv.org/abs/2505.03059.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023a.
URL https://arxiv.org/abs/2308.08155.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023b.
URLhttps://arxiv.org/abs/2308.08155.

Shirley Wu, Parth Sarthi, Shiyu Zhao, Aaron Lee, Herumb Shandilya, Adrian Mladenic Grobelnik,
Nurendra Choudhary, Eddie Huang, Karthik Subbian, Linjun Zhang, Diyi Yang, James Zou, and
Jure Leskovec. Optimas: Optimizing compound ai systems with globally aligned local rewards.
arXiv preprint arXiv:2507.03041, 2025.

11

https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2410.11905
https://n8n.io
https://arxiv.org/abs/2504.04785
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2401.07324
https://arxiv.org/abs/2401.07324
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2403.02502
https://github.com/ag2ai/ag2
https://arxiv.org/abs/2505.03059
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155

Under review as a conference paper at ICLR 2026

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents, 2024. URL
https://arxiv.orqg/abs/2402.01622.

Yanwei Yue, Guibin Zhang, Boyang Liu, Guancheng Wan, Kun Wang, Dawei Cheng, and Yiyan Qi.
Masrouter: Learning to route llms for multi-agent systems, 2025. URL https://arxiv.org/
abs/2502.11133.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin,
and James Zou. Optimizing generative ai by backpropagating language model feedback. Nature,
639:609-616, 2025.

Guibin Zhang, Junhao Wang, Junjie Chen, Wangchunshu Zhou, Kun Wang, and Shuicheng Yan.
Agentracer: Who is inducing failure in the llm agentic systems?, 2025a. URL https://arxivl
org/abs/2509.03312.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies
via graph neural networks, 2025b. URL https://arxiv.org/abs/2410.11782,

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. Aflow: Automating agentic workflow generation, 2025c. URL https://arxiv.org/
abs/2410.10762.

Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li,
Chi Wang, Huazheng Wang, Yiran Chen, et al. Which agent causes task failures and when? on
automated failure attribution of llm multi-agent systems. arXiv preprint arXiv:2505.00212, 2025d.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we used LLMs solely as a writing assist tool, specifically for grammar
checking and minor language refinement. The models were not involved in research ideation,
experiment design, analysis, or substantive writing. The authors take full responsibility for all
content.

A.2 BACKGROUND

The detailed description of the node element are as follows:

1) Start: The Start node is a preset node that is required for each workflow application, which
provides the necessary initial information for subsequent workflow nodes and the normal flow of the
application, such as the content entered by the application user and the uploaded files.

2) End: Define the final output of a workflow end. Each workflow requires at least one end node after
full execution to output the final result of full execution. The end node is the process termination
node, and no other nodes can be added later. If a conditional fork occurs in the process, multiple end
nodes need to be defined. The end node needs to declare one or more output variables, which can
refer to the output variables of any upstream node.

3) Answer: You can freely define the format of your reply in the text editor, including customizing
a fixed piece of text, using the output variables in the prelude as the reply content, or combining
custom text with variables. You can add nodes at any time to stream content to the conversation reply,
support WYSIWYG configuration mode, and support graphic mixing, such as: Output the LLM node
reply, Output generates images, Output plain text.

12

https://arxiv.org/abs/2402.01622
https://arxiv.org/abs/2502.11133
https://arxiv.org/abs/2502.11133
https://arxiv.org/abs/2509.03312
https://arxiv.org/abs/2509.03312
https://arxiv.org/abs/2410.11782
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2410.10762

Under review as a conference paper at ICLR 2026

4) LLM: The ability to invoke large language models to process information (natural language,
uploaded files, or images) entered by users in the Start node to provide effective response information.

5) Knowledge retrieval: Retrieve text content related to user issues from the knowledge base and use
it as the context of downstream LLM nodes.

6) Question Classifier: By defining classification descriptions, problem classifiers can use LLMs to
infer matching classifications based on user input and output classification results, providing more
accurate information to downstream nodes.

7) IF/ELSE: Split the workflow process into multiple branches based on If/else/elif criteria.

8) Code: Code nodes support running Python / NodeJS code to perform data transformations in
workflows. It streamlines your workflow and is suitable for Arithmetic, JSON transform, text
processing, and more. This node greatly enhances developer flexibility, allowing them to embed
custom Python or Javascript scripts in their workflows and manipulate variables in ways that preset
nodes cannot. By configuring the options, you can specify the required input and output variables
and write the appropriate execution code.

9) Template: Allows flexibility for data transformation, text processing, and more with the help of
Jinja2’s Python templating language.

10) Variable Aggregator: Aggregate the variables of multiple branches into a single variable to
achieve unified configuration of downstream nodes. The variable aggregation node (original variable
assignment node) is a key node in the workflow, responsible for integrating the output results of
different branches, ensuring that no matter which branch is executed, its results can be referenced and
accessed through a unified variable. This is useful in the case of multi-branching, which allows you
to map variables with the same effect in different branches to one output variable, avoiding duplicate
definitions by downstream nodes.

11) Parameter Extractor: Leverage LL.Ms to reason from natural language and extract structured
parameters for back-up tool calls or HTTP requests. The Dify workflow provides a rich selection of
tools, most of which have structured parameters as inputs, and the parameter extractor can convert
the user’s natural language into parameters that the tool can recognize for easy tool calling. Some
nodes in the workflow have specific data format input requirements, such as the input requirements
of iteration nodes in array format, and the parameter extractor can easily realize the conversion of
structured parameters.

12) Iteration: Performing the same operation steps on elements in the array in turn until all results are
output, which can be understood as a task batch processor. Iteration nodes are usually used with array
variables. For example, in the long-text translation iteration node, if you input everything into the
LLM node, you may reach the single conversation limit. Upstream nodes can first split long texts
into multiple fragments and perform batch translation of each fragment with iteration nodes to avoid
reaching the message limit of LLM single conversation.

13) HTTP Request: Allows server requests to be sent over the HTTP protocol, which is suitable for
obtaining external data, webhooks, generating images, downloading files, etc. It allows you to send
customized HTTP requests to specified network addresses, enabling interconnection with various
external services. This node supports common HTTP request methods, such as GET, POST and so
on.

14) Tools: Tools nodes can provide powerful third-party capability support for workflows in three
types: Built-in tools, Dify first-party tools, may require authorization before using the tool. Custom
tools, tools that are imported or configured via the OpenAPI/Swagger standard format. If the built-in
tools don’t meet your needs, you can create a custom tool in the Dify menu navigation —Tools.
Workflows, where you can orchestrate a more complex workflow and publish it as a tool. For more
information, refer to the tool configuration instructions.

15) Variavle Assigner: The Variable Assignment node is used to assign variables to writable variables,
and the following writable variables are supported: Converation variables and cyclic variables.

16) Loop: Loop nodes are used to execute recurring tasks that depend on the results of the previous
round until the exit conditions are met or the maximum number of loops is reached.

13

Under review as a conference paper at ICLR 2026

A.3 DIFFERENT STRUCTURES

Agentic workflows can be organized under different architectural paradigms, each reflecting a distinct
way of coordinating agents and tools:

1. Serial: Tasks are executed in a sequential manner, where the output of one node serves directly as
the input to the next. This design is simple and interpretable but suffers from error propagation, as
mistakes in early steps cascade downstream.

Figure 4: Example of serial structure.

2. Parallel: Multiple nodes process subtasks simultaneously, and their outputs are later aggregated.
This improves efficiency and robustness but can lead to synchronization issues or inconsistencies in
the merged results.

Figure 5: Example of parallel structure.

3. Branching: The workflow splits into different paths based on conditions or task types. While this
design enables flexibility and specialization, it may suffer from dependency mismatches or logic
errors across branches.

© seon 1 [auesrion cuassier | @ wowocerermieva 11 (@) um 1 @ rerwvoecny

Gain knowledge of after-sales SOPs

gpt-3.5-turbo CHAT

1 35-trbo G0
= OLM (x)text

| @ wowiosererrieva 11 (@) um 1 () repu oimecruy

Retrieve product-related knowledge gpt-3:5-turbo CHA RepLY
LM (text

REPLY DIRECTLY

Figure 6: Example of branching structure.

4. Looping: Certain steps are repeated until a stopping condition is satisfied, enabling refinement and
self-correction. However, this design is prone to infinite loops or redundant computation.

5. Hybrid: Real-world workflows often combine multiple patterns, such as sequential backbones
with parallel or looping substructures. Hybrid designs increase flexibility and expressiveness but also
complicate debugging and error attribution.

A.4 MULTI-LLM JUDGE

In evaluating system executions, we draw inspiration from the LLM-as-a-Judge paradigm, where large
language models are employed to assess the correctness of outputs in the absence of deterministic
ground truth. To mitigate potential bias from relying on a single model, we further adopted a
multi-LLM judging strategy, using several independent models to provide parallel assessments.

14

Under review as a conference paper at ICLR 2026

BEGIN ' 1 (@) prosuem DisasseMBLY | 1 () PARAMETER EXTRACTION . | 1 @ aear
gpt-4-turbo 14 © o CsubtaskRet [
1 @ merate '
(- X 1 @D PARSING OBJECTS ' 1 (@) suBTASK PROCESSING '
T T T S —
gpt4-turbo <1 o

CsubtaskRet SUPPLEMENT.

| @) Anauze e Resuirs

| @) AccrecaTe AnswERs 1 | (@) renyomecny

© gptdo-204-08-.. 7 @

0 @ rsownc L@ | @ vamssis assicnen

@ orso o FunconCaling® AL
answer

@ e anauss | @ rvauze suvmary

gok21212 deepzeck st

Figure 8: Example of hybrid structure.

The final decision was derived through majority voting across models. Specifically, we employed
GPT-40, Claude 3.7, DeepSeek, and Gemini, selected for their strong reasoning and complementary
capabilities. This ensemble of models ensures greater robustness and helps mitigate systematic biases
inherent to any individual model. Example of the prompt we design is as following:

You are a professional industry research evaluator. Please analyze and score the quality of the
assistant’s industry analysis output based on the following dimensions:

Relevance: Does the analysis stay focused on the given industry and research question?

Depth of Analysis: Does it go beyond surface-level description to include trends, drivers, risks, and
opportunities?

Use of Evidence: Does the analysis reference data, examples, or case studies to support its claims?
Actionability: Does it provide insights that can inform business or strategic decisions?

Clarity & Structure: Is the analysis well-structured, logically coherent, and easy to understand?
Completeness: Does the analysis cover all key perspectives (market size, competition, user behavior,
risks, opportunities)?

For each dimension, provide:

A score from 1to 5 (5 = best)

A one-sentence overall evaluation of the research result

Output format example:

Industry: {question}
Assistant's Industry Analysis: {answer}

{{

"Relevance": 4,

"Depth of Analysis": 5,

"Use of Evidence": 3,

"Actionability": 4,

"Clarity & Structure": 5,

"Completeness": 4,

"Score": 25,

"Comment": "A strong analysis with actionable insights, though it could be improved with more
supporting evidence."

i

Figure 9: Example of prompt

15

Under review as a conference paper at ICLR 2026

A.5 TEST DATA CONSTRUCTION

To ensure the diversity and representativeness of the test input set, we systematically construct test
cases based on the following four dimensions:

1) Functional path coverage. Based on the official documentation of the workflow and the node
topology, we identified all the key functional paths. The test input is designed to trigger different con-
ditional branches (for example, in the travel planning assistant, single-destination, multi-destination,
and requests containing invalid destinations are tested respectively) to ensure coverage of the main,
edge, and error handling logic of the workflow.

2) Input mode and complexity. We took into account multiple modalities and complexities of the
input information, including:

Text complexity: From simple keyword queries to complex long texts containing multi-round dialogue
contexts.

Degree of structuring: Test unstructured natural language input against partially structured (such as
lists) or fully structured (such as those conforming to a specific JSON Schema) input.

3) Data Augment. For agentic systems that contain knowledge bases (such as question-answering
assistants), we conduct systematic semantic transformation on the original questions in the knowledge
base to generate test inputs that are semantically equivalent but diverse in expression. This method
not only expands the scale of the test set, but more importantly, assesses the system’s ability to
understand the language diversity in users’ real queries.

The conversion strategies we adopt include:

1) Use pre-trained language models (such as Sentence-BERT) to retrieve synonyms and make
replacements, while changing the active/passive voice or word order of the Sentence (for example,
convert “How long is the battery life of this mobile phone?” to “How long can the battery of this
mobile phone last?

2) To efficiently generate large-scale and high-quality semantic conversion test cases, we have adopted
a LLM as the semantic engine. The specific process is as follows:

» Seed input: Use the original questions in the knowledge base as seeds.

* Instruction-controlled generation: Structured prompts (e.g., “Rephrase this question in three
different styles,” “Simulate novice vs. expert phrasing,” “Embed the question in a dialogue
context”) guided the LLM to produce varied but semantically equivalent queries.

* Automated filtering and deduplication: Generated candidates were clustered and filtered by

embedding similarity to ensure diversity and quality.

A.6 EXAMPLE OF COMMUNITY ISSUE REPORT

Intelligent customer service assistant

16

Under review as a conference paper at ICLR 2026

A.7 ANNOTATION

Figure shows the proportion of uncertain annotations to total annotations during the first round.
Figure [LOb|shows the initial disagreement rates between annotators (note that we make sure to reach
a consensus through a careful discussion and voting process afterwards).

22.6 18.7 N/A

b
g
5
g
K
30 N
s
=27 2| 145 N/A 7.3
< c
8 204 <
e 15.5% 16.3% <
Z15 12.8% T
E g
g1 2 N/A 9.2 12.9
=] i=
54 c
<<
T T T Annotatorl Annotator2 Annotator3
Annotatorl Annotator2 Annotator3
(a) Uncertain annotation percentages. (b) Disagreement rates in voting.

Figure 10: Statistical analysis of the annotation process: (a) The proportion of uncertain annotations to
total annotations during the independent annotation. (b) Initial disagreement rates among annotators
(with final consensus achieved through subsequent discussion and voting).

A.8 ALGORITHM DETAILS

We provide more details on the Step-by-Step and Binary Search root cause identification methods.
We use @ to represent the query provided to the system. L = {ly,ls,...,[,} denotes failure log
consisting of n entries where each entry [; specifies the input and output of one node at time step ¢ in
the system.

Algorithm 1 Step-by-Step

Require: Query @, failure log L = {l1,l2,...,1l,}
Ensure: Root cause R*

1: fori e {1,2,...,n} do

2: Provide @ and {l;,...,[;} to LLM

3 if LLM indicates root cause at step ¢ then
4: return R*

5 end if

6: end for

7: No failure found

A.9 PROMPTS

Prompts of All-at-Once
Prompts of Step-by-step

Prompts of Binary Search

A.10 MANUAL OPTIMIZATION METHODS

* For response formatting errors, we enforced strict JSON output mode at the LLM node and
appended a code-execution node for format validation, with automatic re-prompting upon
failure.

* For response content deviation, we incorporated rule-based or embedding-based semantic
similarity checks, followed by a correction prompt when the deviation exceeded a preset
threshold.

17

Under review as a conference paper at ICLR 2026

Prompt without taxonomy

You are an Al assistant tasked with analyzing an agentic system built on platform conversation
history when solving a real world problem. You should use the following information to identify the
root cause of the failure.

The problem is: {problem}.

The system is : {system description}

Here’s the conversation: {failure log}

Based on this conversation, please predict the following:

The root cause of the failure: {Root Cause}

The reason for your prediction: {Reason}

Prompt with taxonomy

You are an Al assistant tasked with analyzing an agentic system built on platform conversation
history when solving a real world problem. Please refer to the taxonomy | provided.

You should choose one of them as the root cause of failure that you identify.

The problem is: {problem}.

The system is : {system description}

Here’s the conversation: {failure log} and the taxonomy {taxonomy}

Based on this conversation and taxonomy, please predict the following:

The root cause of the failure: {Root Cause}

The reason for your prediction: {Reason}

Prompt without taxonomy

You are an Al assistant tasked with analyzing an agentic system built on platform conversation
history when solving a real world problem. You should use the following information to identify the
root cause of the failure.

The problem is: {problem}.

The system is : {system description}

Here’s the part of conversation history: {failure log}

Based on this conversation, please predict the following:

The root cause of the failure: {Root Cause}

The reason for your prediction: {Reason}

Prompt with taxonomy

You are an Al assistant tasked with analyzing an agentic system built on platform conversation
history when solving a real world problem. Please refer to the taxonomy | provided. You should use
the following information to identify the root cause of the failure.

The problem is: {problem}.

The system is : {system description}

Here’s the part of conversation history: {failure log} and the taxonomy {taxonomy}

Based on this conversation, please predict the following:

The root cause of the failure: {Root Cause}

The reason for your prediction: {Reason}

Prompt without taxonomy

You are an Al assistant tasked with analyzing an agentic system built on platform conversation
history when solving a real world problem. You should use the following information to identify the
root cause of the failure.

The problem is: {problem}.

Review the following conversation range {range description}: {sliced log}.

Based on your analysis, predict whether the error is more likely to be located in the upper or lower
half of the segment. lower half is defined as the range lower half range and upper half is defined as
the range upper half range. Please simply output either ‘upper half’ or ‘lower half’. You should
output the root cause until you think you find it.

Prompt with taxonomy

You are an Al assistant tasked with analyzing an agentic system built on platform conversation
history when solving a real world problem. Please refer to the taxonomy | provided. You should use
the following information to identify the root cause of the failure.

The problem is: {problem}.

Review the following conversation range {range description}: {sliced log}.

Based on your analysis, predict whether the error is more likely to be located in the upper or lower
half of the segment. lower half is defined as the range lower half range and upper half is defined as
the range upper half range. Please simply output either ‘upper half’ or "lower half’. You should not
output anything else. You should output the root cause until you think you find it.

Under review as a conference paper at ICLR 2026

Algorithm 2 Binary Search

Require: Query @, failure log L = {l,l2,...,l,}
Ensure: Root cause R*

1: Initialize low + 1, high < n

2: while low < high do

3:

9:
10:

A

mid — low-ghigh
Extract log segment L' < {ljow, liow+15 - - - s lmid }
Provide @ and L’ to LLM
if LLM indicates root cause in L’ then
high < mid
else
low < mid+1
end if

11: end while
12: R* <+ low
13: return R*

For LLM knowledge or reasoning limitation, we substituted the original model with a more
powerful or domain-adapted LLM.

For prompt design defect, we established a standardized prompt template including roles,
input—output formats, boundary conditions, illustrative examples, and error cases.

For language or encoding defect, we added explicit encoding normalization steps (e.g., UTF-
8 enforcement) and inserted a preprocessing node to unify tokens, scripts, or mathematical
symbols before model consumption.

For missing input validation, we added explicit input checks to ensure required variables,
types, and formats were satisfied.

For unreasonable node dependency, we reconstruct the workflow design to adjust task
allocation and reduce redundancy or conflicts.

For network and resource fluctuations, we augmented LLM nodes with fallback branches
that automatically degrade to backup models when failures are detected.

19

	Introduction
	Background
	Agentic AI Development Platform
	Failure Definition
	Task Failure Determination
	Failure Localization

	The AgentFail Dataset
	System selection
	Failure log collection
	Failure Root Cause Annotation
	Reliability of annotation

	Failure Root Cause Taxonomy
	Taxonomy
	Root Cause Distribution
	Impact of Failures

	AgentFail benchmark
	Discussion
	Related Work
	LLM Multi-Agent Systems
	Failure Identification for agentic systems

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Background
	Different Structures
	Multi-LLM Judge
	Test data construction
	Example of community issue report
	Annotation
	Algorithm Details
	Prompts
	Manual Optimization Methods

