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ABSTRACT

With the emergence of large-scale pre-trained neural networks, methods to adapt
such “foundation” models to data-limited downstream tasks have become a ne-
cessity. Fine-tuning, preference optimization, and transfer learning have all been
successfully employed for these purposes when the target task closely resembles
the source task, but a precise theoretical understanding of “task similarity” is still
lacking. While conventional wisdom suggests that simple measures of similarity
between source and target distributions, such as ϕ-divergences or integral proba-
bility metrics, can directly predict the success of transfer, we prove the surprising
fact that, in general, this is not the case. We adopt, instead, a feature-centric
viewpoint on transfer learning and establish a number of theoretical results that
demonstrate that when the target task is well represented by the feature space of
the pre-trained model, transfer learning outperforms training from scratch. We
study deep linear networks as a minimal model of transfer learning in which we
can analytically characterize the transferability phase diagram as a function of the
target dataset size and the feature space overlap. For this model, we establish rig-
orously that when the feature space overlap between the source and target tasks
is sufficiently strong, both linear transfer and fine-tuning improve performance,
especially in the low data limit. These results build on an emerging understanding
of feature learning dynamics in deep linear networks, and we demonstrate numer-
ically that the rigorous results we derive for the linear case also apply to nonlinear
networks.

1 INTRODUCTION

State of the art neural network models have billions to trillions of parameters and are trained on
datasets of a similar scale. The benefits of dataset scale are manifest in the astounding generaliza-
tion capability of these foundation models (Bahri et al., 2024). For many applications, however,
datasets of the scale used for natural language processing or computer vision are hard, if not im-
possible, to generate. To alleviate the problem of inadequate dataset scale, the representations of a
foundation model seem to provide a useful inductive bias for adaptation to a target task. While they
are now ubiquitous, transfer learning methods lack a solid theoretical foundation or algorithmic de-
sign principles. As such, it remains difficult to predict when—and with which approach—transfer
learning will outperform training on the target task alone. Intuitively, if the source task resembles
the target task, transfer learning should be beneficial. The important question of how to quantify
task relatedness is one that remains unanswered. In this work, we address this question and prove
the surprising fact that discrepancies between source and target data distributions can be misleading
when it comes to transferability. We instead find that the feature space learned during pretraining
is the relevant object for predicting transfer performance, which means that model-agnostic metrics
between tasks are unlikely to successfully predict task overlap. Of course, adopting a feature-centric
viewpoint creates model-specific challenges because unambiguously identifying learned features
remains an outstanding and difficult characterization problem for deep neural networks. For this
reason, in this work we focus on deep linear networks trained with gradient flow, as feature learn-
ing dynamics are well-understood in this setting. We develop an intuitive understanding of linear
transfer and full fine-tuning in this model. In contrast to other recent work, we quantify transfer per-
formance relative to training on the target task alone and precisely identify when transfer learning
leads to improved performance, effectively building a phase diagram for transfer efficiency. Finally,
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we show in numerical experiments that this picture holds qualitatively for nonlinear networks, as
well.

Related Work

Theoretical aspects of transfer learning A number of recent works have studied theoretical as-
pects of transfer learning, focusing on the risk associated with various transfer algorithms. Wu et al.
(2020) use information theory to derive bounds on the risk of transfer learning using a mixture of
source and target data. Shilton et al. (2017) analyze transfer in the context of gaussian process
regression. Tripuraneni et al. (2020) work in a fairly general setting, and derive bounds on the gen-
eralization error of transferred models through a complexity argument, highlighting the importance
of feature diversity among tasks. Aminian et al. (2024) study the transfer learning in highly overpa-
rameterized models, including one hidden layer neural networks, and derive bounds on the excess
risk. Bu et al. (2021) study the excess risk of transferred models optimized with the Gibbs algorithm
and highlight a bias-variance interpretation of the generalization performance. Liu et al. (2019);
Neyshabur et al. (2020) study transfer learning from the perspective of the loss landscape and find
that transferred models often find flatter minima than those trained from scratch. Consistent with
our feature-centric viewpoint, Kumar et al. (2022) show that fine-tuning can distort the pretrained
features, leading to poor out of distribution behavior.

Transfer learning in solvable models Similar to our approach, several theory works have worked
with analytically tractable models to more precisely characterize transfer performance. Lampinen
& Ganguli (2018); Atanasov et al. (2021); Shachaf et al. (2021) also study transfer learning in
deep linear networks, but focus on the generalization error alone, not the transferability relative
to a scratch trained baseline, which obfuscates the conditions for transfer learning to be beneficial.
Gerace et al. (2022) studies transfer learning with small nonlinear networks with data generated from
a “hidden manifold“ (Goldt et al., 2020) and find transfer learning to be effective when tasks are very
similar, and data is scarce, but do not theoretically describe regions of negative transfer. Saglietti
& Zdeborova (2022) studies knowledge distillation in a solvable model, which can be viewed as a
special case of transfer learning. Ingrosso et al. (2024) study transfer learning in a model similar to
ours using the replica method and similarly conclude that a feature-based metric for task similarity
is predictive of transfer performance.

Feature learning The notion of feature learning is central to our results. While the rich, feature
learning regime is often heuristically defined as the opposite of the neural tangent regime (Jacot
et al., 2018), a precise definition is still lacking. Nevertheless, there has been an explosion of interest
in understanding dynamics in these two regimes of neural network optimization Woodworth et al.
(2020); Atanasov et al. (2021); Yang & Hu (2021); Kunin et al. (2024); Yun et al. (2021); Chizat
(2020) focus on the role of initialization, learning rate, and implicit bias in feature learning. Petrini
et al. (2022) highlights the potential for overfitting when training in the feature learning regime.

Our contributions

• We develop an analytically solvable model of transfer learning that captures training dy-
namics, implicit bias, and generalization error in deep linear networks, which creates a
powerful platform for evaluating transfer learning algorithms.

• Within this model, we analytically compute a “phase diagram” that illustrates how transfer
learning performs relative to training from scratch on a given task.

• We prove that simple diagnostics, such as distributional measures of source-target distance
are insufficient for predicting the success of transfer learning and advance the idea that task
similarity should be measured in the space of task features instead.

• We also compute the transfer phase diagram for nonlinear neural networks and show that
the same picture applies to the reproducing kernel Hilbert space (RKHS) associated with
the nonlinear features of the pre-trained network.
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2 GENERAL THEORETICAL SETTING

We begin by introducing the general theoretical framework under which we study transfer learning.
We consider source and target regression tasks defined by probability distributions ps(x, y) and
pt(x, y) over inputs x ∈ Rd and labels y ∈ R. We focus on label shift, in which ps(x, y) =
p(x)ps(y | x) and pt(x, y) = p(x)pt(y | x) for the same input distribution p(x). The labels are
generated from noisy samples of source and target functions ys = f∗s (x) + ϵs and yt = f∗t (x) + ϵt
where f∗s (x), f

∗
t (x) ∈ L2(p(x)) and ϵs, ϵt ∼ N (0, σ2). During pretraining, we train a model with

parameters Θ = (c,θ) of the form

f(x;Θ) =

m∑
i=1

ciϕi(x;θ) (1)

on the source task using a mean squared loss. Note that the features ϕ(x,θ) are left general and
could for example represent final hidden activations of a deep neural network. After pretraining, the
model is transferred by training a subset of the parameters Θ′ ⊂ Θ on the target task, while leaving
Θ −Θ′ at their pretrained values. To model the modern setting for transfer learning, in which the
number of data points in the source task far exceeds those in the target task, we train the source task
on the population distribution and the target task on a finite dataset D of n independent samples.

Ls(Θ) =
1

2
Eps(x,y)[(f(x,Θ)− y)2] (2)

Lt(Θ
′) =

1

2
Êpt(x,y)[(f(x,Θ)− y)2] (3)

where Êp(h(x, y)) =
1
n

∑n
i=1 h(xi, yi) is the expectation over the empirical distribution of D. We

focus on two widely employed transfer methods, linear transfer and fine-tuning. In linear transfer,
the pretrained features ϕ(x,θ) are frozen and only the output weights c are trained on the target
task. In fine-tuning, the entire set of parameters Θ are trained from the pretrained initialization on
the target task. To optimize the loss functions (2) and (3), we use gradient flow,

dΘi

dt
= −∇Θi

L(Θ), (4)

where we have set the learning rate equal to unity for the purpose of analysis. To assess the perfor-
mance of transfer learning we compare the performance of the transferred model to a scratch-trained
model with the same architecture (1) trained only on the target task from a random initialization. We
introduce the transferability to quantify this relationship:

T = ED(Rsc −Rtx) (5)

where ED is the expectation over iid draws of the training set and Rtx and Rsc are the generalization
errors of the transferred model and scratch trained model, respectively, where the generalization
error (or population risk) is given by,

R = Ep(x)[(f(x,Θ)− f∗(x)2]. (6)

We consider transfer learning successful when T > 0, i.e., when the expected generalization of
transfer learning outperforms training from scratch on the target task. We refer to the situation
T < 0 as negative transfer, since pretraining leads to degradation of the generalization error.

2.1 DATASET SIMILARITY IS NOT PREDICTIVE OF TRANSFER EFFICIENCY

The common wisdom in transfer learning is that related tasks should transfer effectively to one an-
other. However, a standard and mathematically precise definition of task relatedness is currently
lacking. One reasonable notion of task relatedness is to compare the source and target data dis-
tributions ps and pt using a discrepancy measure between probability distributions, for example
an integral probability metric (IPM) or a ϕ-divergence Sriperumbudur et al. (2009). While ϕ-
divergences like the Kullback-Leibler divergence are well-known, they are often hard to compute
for high-dimensional distributions. Wu et al. (2020); Nguyen et al. (2021) suggest that these kinds
of measures will correlate with transfer performance, as measured by generalization error on the
target task. However, we argue that a meaningful measure of transfer performance must compare
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to a scratch trained baseline, not target task performance alone. IPMs, such as the Wasserstein-
1 Distance, Dudley Metric, and Kernel Mean Discrepency, are bona fide metrics on the space of
probability distributions and are of theoretical importance in optimal transport, statistics, and proba-
bility theory. Using ideas from optimal transport, (Alvarez-Melis & Fusi, 2020) attempt to correlate
transfer performance with the Wasserstein distance. While it may seem that closeness of task dis-
tributions should correlate with transfer performance, we show that this is not necessarily the case.
In particular, we select a member of each family and prove that, within our model, one can achieve
positive transfer (T > 0) with distributions that are arbitrarily far apart. Two functions representable
with the same features can be “far apart”. We formalize this notion with the following theorem.
Assumption 2.1. We assume f ∈ L2(Rd, p) and for each x ∈ Rd we define the random variable
y : Rd → R through the relation y = f(x) + ϵ with ϵ ∼ N (0, σ2). Let pf (x, y) denote the joint
probability density of x and y. We assume Φ ⊂ L2(p) is a linear subspace with orthonormal basis
{ϕi}Mi=1 and M may be infinite.
Theorem 2.2. Assume 2.1. Then for any f ∈ Φ, and any δ > 0 there exists g ∈ Φ such that

γβ(pf , pg) ≥ δ

where γβ(p, p′) is the Dudley Metric. Similarly, for any f ∈ Φ, and any δ > 0 there exists g ∈ Φ
such that

DKL(pf∥pg) ≥ δ

where DKL(pf∥pg) is the Kullback Leibler divergence.

We prove this theorem in Appendix B.1. We note that this theorem also holds for any IPM over a
function class that is larger than the class of Bounded Lipschitz functions. In particular, the theorem
holds for the Monge-Kantorovich (W1) metric, since any function that satisfies ∥f∥BL ≤ 1 also
satisfies ∥f∥L ≤ 1.

Theorem 2.2 demonstrates that for a given source distribution, one can always find a target distribu-
tion generated from the same feature space that is arbitrarily distant with respect to these metrics,
perhaps creating the illusion that transfer is likely to fail. However, even when the distance is large,
if the source and target functions lie in the same feature space and pretraining creates a basis for this
space, transfer to the target task will be positive, since only the output weights need to be relearned
in the target task. We show this is indeed the case for deep linear networks in the following section.

3 DEEP LINEAR NETWORKS: AN EXACTLY SOLVABLE MODEL

As an analytically solvable model of transfer learning we consider a deep linear network with L
layers

f(x) = xTW1W2 . . .WL (7)
where Wl ∈ Rdl−1×dl for l ∈ [1, 2, . . . L − 1] and WL ∈ RdL−1×1. For notational convenience
we have renamed c in (1) as WL and for simplicity we set d0 = d1 = · · · = dL−1 = d, the
dimension of the data. The parameter matrices are initialized as Wl(0) = αW̄l where α ∈ R. The
matrices Wl(0) additionally satisfy (19), which is a technical assumption that generalizes common
initialization schemes such as He initialization Yun et al. (2021); He et al. (2015). Since transfer
learning relies on learning features in the source task, we initialize the network in the feature learning
regime α→ 0. In the following, we assume:
Assumption 3.1. Assume that the input data x ∈ Rd is normally distributed and that each dataset
D consists of n pairs {(xi, yi)}ni=1 sampled iid from pt with Gaussian label noise of variance σ2.

Assumption 3.2. We assume that the source and target functions are each linear functions in
L2(Rd, p); equivalently, f∗s (x) = βT

s x, f∗t (x) = βT
t x with ∥βs∥22 = ∥βt∥22.

To control the level of source-target task similarity, we fix the angle θ between the ground truth
source and target functions so that βT

s βt = cos θ. The source and target loss functions are given
by (2) and (3). When training over the empirical loss, it is convenient to work in vector notation
Lt({Wl≤L}) = 1

2n∥yt −XW1W2 . . .WL∥22 where X ∈ Rn×d and y ∈ Rn. We study this model
in the high dimensional limit in which γ = n/d remains constant as n, d→ ∞.

Linear networks have the advantage of analytic tractability, but we note that the representation ca-
pacity of these models is limited to affine transformations. Furthermore, the expressiveness of the
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model is independent of the number of layers. As a result, this model may fail to capture aspects
of transfer learning that depend strongly on depth separation Telgarsky (2016); Daniely (2017) or
other nonlinear phenomena. However, overparameterized linear models, recapitulate many phenom-
ena observed in deep learning, including double descent Nakkiran et al. (2021); Belkin et al. (2019),
scaling laws Bahri et al. (2024), feature learning Vyas et al. (2024); Atanasov et al. (2021) and, as
we show, the impact of feature learning on transfer efficiency.

3.1 PRETRAINED MODELS REPRESENT SOURCE FEATURES

To describe transfer efficiency in this setup, we need to understand the function that the model im-
plements after training on the source task. We can describe the network in function space by tracking
the evolution of β(t) = W1W2 . . .WL under gradient flow, such that the network function at any
point in the optimization is f(x; t) = β(t)Tx. The following Lemma establishes that pretraining
perfectly learns the source task in the large source data limit.

Lemma 3.3. Under gradient flow (4) on the population risk objective (2) with initialization satisfy-
ing (19), limt→∞ β(t) = βs

We prove Lemma 3.3 in Appendix B.2. While this result establishes recovery of the ground truth on
the source task, it does not describe the feature space of the pretrained model, which is relevant for
transferability. To this end, following Yun et al. (2021), we show that in the feature learning regime
α→ 0, the hidden features of the model sparsify to those present in the source task.

Theorem 3.4 (Yun et al). Let the columns of Φ = W1W2 · · ·WL−1 denote the hidden features of
the model. After pretraining

lim
α→0

lim
t→∞

Φ = βsv
T
L−1

for some vector vL−1.

We prove Theorem 3.4 in Appendix B.3. Theorem 3.4 demonstrates that after pretraining in the
feature learning regime, the d-dimensional feature space of the model parsimoniously represents
the ground truth function in a single, rank-one component. We refer to this phenomenon as feature
sparsification, which is a hallmark of the feature learning regime, and has important consequences
for transferability, particularly in the linear setting Section 3.3.

3.2 SCRATCH TRAINED MODELS REPRESENT MINIMUM NORM SOLUTIONS

For the empirical training objective 3, there are multiple zero training error solutions when the model
is overparameterized γ < 1. As noted in Yun et al. (2021) and Atanasov et al. (2021), there is an
implicit bias of gradient flow to the minimum norm solution when α→ 0

Theorem 3.5 ( (Yun et al., 2021)). Under gradient flow on the empirical risk minimization objective
(3) with initialization satisfying (19), limα→0 limt→∞ β(t) = β̂, where β̂ is the minimum norm
solution to the linear least squares problem

β̂ = argmin
β

1

2n
∥yt −Xβ∥22 = X+yt

We prove Theorem 3.5 in Appendix B.4. Knowing the final predictor of the empirical training also
allows us to compute the generalization error of the scratch trained model

Theorem 3.6. Under gradient flow on the empirical objective (3), in the high dimensional limit the
expectation of the final generalization error over training data is

EDR =

{
(1−γ)2+γσ2

1−γ γ < 1
σ2

γ−1 γ > 1
(8)

Theorem (3.6) is a known result for linear regression (Hastie et al., 2022; Canatar et al., 2021; Belkin
et al., 2019; Advani & Ganguli, 2016; Mel & Ganguli, 2021; Bartlett et al., 2020), but we provide
a proof based on random projections and random matrix theory in Section B.5. This expression
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exhibits double descent behavior: in the overparameterized regime, the generalization error first de-
creases, then becomes infinite as γ → 1, while in the underparameterized regime, the generalization
error monotonically decreases with increasing γ. As we will see in Section 3.3, this double descent
behavior leads to two distinct regions in the transferability phase diagram. The fact that scratch-
trained performance can be arbitrarily bad is a result of the implicit regularization of gradient flow
on this model. This effect can be eliminated by appropriately regularizing the scratch-trained model
with weight decay. In the interest of analytic tractability we do not include regularization when
training from scratch, but we explore its effects in simulation in Appendix E Fig. 5

3.3 LINEAR TRANSFER

The simplest transfer learning method is known as linear transfer, in which only the final layer
weights of the pretrained network are trained on the target task. In particular, {Wl}l≤L−1 are fixed
after pretraining and ŴL solves the linear regression problem with features Φ = XW1 . . .WL−1.

ŴL = argmin
ŴL∈Rd

1

2n
∥ΦWL − yt∥22 (9)

When there are multiple solutions to the optimization problem (9), we choose the solution with
minimum norm. We characterize the generalization error of linear transfer in the following theorem.
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Figure 1: Linear transferability phase diagram. We pretrain a linear network (7) with L = 2
and d = 500 to produce labels from linear source function y = βT

s x + ϵ using the population loss
(2). We then retrain the final layer weights on a sample of n = γd points (xi, yi = βT

t xi + ϵi)
where βT

s βt = cos θ and ϵi ∼ N (0, σ = 0.2), and compare its generalization error to that of a
model trained from scratch on the target dataset. (a) The theoretical transferability surface (11) as a
function of target dataset size γ and task overlap θ. Light blue lines indicate the boundary between
positive and negative transfer. (b) Top-down view of Fig. 1(a) shaded by sign of transferability. Red
regions indicate negative transfer T < 0, blue region indicates positive transfer T > 0. (c) Slices
of the transferability surface (11) for constant θ. Solid lines represent theoretical values, circles are
points from experiments. Error bars represent the standard deviation over 20 draws of the target set.

Theorem 3.7. Under Assumptions 3.1 and 3.2, and assuming the source-target overlap is θ, the
expected generalization error of the linearly transferred model is an explicit function of θ, the label
noise σ, and the dataset size n:

EDRlt = sin2 θ +
σ2 + sin2 θ

n− 2
. (10)

We prove Theorem 3.7 in Appendix B.6. The structure of the result in Theorem 3.7 merits some
discussion. After pretraining in the feature learning regime α→ 0, the feature space of the network
has sparsified so that it can only express functions along βs (Theorem 3.4). Since the features of the
network cannot change in linear transfer, the main contribution to the generalization error is sin2 θ,
which can be viewed as the norm of the projection of the target function into the space orthogonal
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to the features spanned by the pretrained network. This is an irreducible error that is the best case
risk given that the features cannot change. The second term comes from the finiteness of the training
set. Since linear transfer learns from a finite sample of training points, minimizing the training error
can effectively “overfit the noise” and the learned function distorts away from the ground truth.
Luckily, since the pretrained feature space has sparsified, the effect of finite sampling and additive
label noise decays as ∼ 1/n, effectively filtering out the d-dimensional noise by projecting it onto
a single vector. Compare this to the generalization of the scratch trained network (8). There, the
features of the equivalent linear regression problem, X , have support over all d-dimensions, so
there is no irreducible error term. The expressivity, however, comes at a cost. Each dimension of the
regression vector is vulnerable to noise in the training data, and the projection of the target function
onto the feature space is strongly distorted due to finite sampling (i.e. ∼ γ). We can precisely
analyze this trade off by comparing (8) and (10). In the limit n, d→ ∞, the transferability (5) is

Tlt =
{

(1−γ)2+γσ2

1−γ − sin2 θ γ < 1
σ2

γ−1 − sin2 θ γ > 1
(11)

which is plotted in Fig. 1(a). From (11) we can identify the regions of negative transfer for this
model, which are shaded in red in Fig. 1(b). In the underparameterized regime (γ > 1), there is
negative transfer for all γ − 1 > σ2

sin2 θ
. In words, at fixed γ and σ, i.e., fixing the number of data

points and label noise, as the norm of the out-of-subspace component increases, transfer efficiency
degrades.

In the overparameterized regime (γ < 1), negative transfer only occurs when σ < 1.This can be
viewed as a condition on the signal-to-noise ratio of the target data: SNR = ∥βt∥22/σ2 = 1/σ2.
When SNR < 1, scratch training can never recover the underlying vector βt and pretraining is
always beneficial. When SNR > 1, negative transfer occurs when θ ∈ (arccos(1 − σ), π/2) and
γ ∈ (γ+, γ−) where γ± = 1

2 [(1+cos2 θ−σ2)±
√
(1 + cos2 θ − σ2)2 − 4 cos2 θ]. In the noiseless

case σ → 0, this expression simplifies to θ ∈ (0, π/2), cos2 θ < γ < 1 (see Appendix E Fig. 7).
This condition requires that there is more data than the there is target function power in the direction
learned during pretraining. As σ increases, the region of negative transfer shrinks, since the noise
corrupts the scratch trained accuracy. Finally we mention that the two regions of negative transfer
in Fig. 1 are separated by positive transfer that persists even when θ = π/2. We dub this effect
anomalous positive transfer, since the pretrained features are completely orthogonal to those in the
target, yet transferability is still positive. In this regime, transfer is positive soley because of the
disproportionately large amount of data in the source task, not because pretraining learned useful
features for the downstream task. By comparing the transferred model to a regularized scratch-
trained model, we can eliminate this effect, which we show in simulation in Appendix E Fig. 5. In
Appendix E Fig. 4 we demonstrate that the dataset based discrepency measures of Section 2.1 are
indeed misleading: neither DKL, nor W1 are negatively correlated with increased transferability.

3.3.1 RIDGE REGULARIZATION CANNOT FIX NEGATIVE TRANSFER

In the previous section, the network sparsified to features that incompletely described the target
function, leading to negative transfer given sufficient target data. A common approach to mitigate
this kind of multicollinearity in linear regression is to add an ℓ2 penalty to the regression objective
(9) so that

ŴL = argmin
ŴL∈Rd

1

2n
∥ΦWL − yt∥22 +

λ

2
∥WL∥22. (12)

In the following theorem, which we prove in Appendix B.7, we show that the generalization error
for regularized linear transfer is a strictly increasing function of the ridge parameter λ, leading to a
larger region of negative transfer for any λ > 0 (Fig. 6).
Theorem 3.8. Under Assumptions 3.1 and 3.2, and assuming the source-target overlap is θ, the
expected generalization error of the ridge linear transfer model over the training data is

lim
n→∞

EDRλ
lt = 1− (1 + 2λ)

(1 + λ)2
cos2 θ (13)

Ridge regression attenuates the power of the predictor in all directions of the data, including the
direction parallel to the signal. Due to sparisification of Theorem 3.4, ℓ2 regularization is non-

7
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optimal and hence regularization impairs generalization by attenuating useful features, i.e., those
with θ < π/2.

3.4 FINE-TUNING

Another common transfer learning strategy is fine-tuning, in which all model parameters are trained
on the target task from the pre-trained initialization. For general nonlinear models, analyzing the
limit points of gradient flow from arbitrary initialization is a notoriously difficult task. For the deep
linear model however, we can solve for the expected generalization error of fine-tuning exactly.
Theorem 3.9. Under Assumptions 3.1 and 3.2, and assuming the source-target overlap is θ, the
expected generalization error of the fine-tuned model over the training data is:

EDRft =

{
EDRsc + (1− γ)(1− 2 cos θ) γ ≤ 1

EDRsc γ > 1
(14)

where EDRsc is the expected generalization error of the scratch trained model

Theorem 3.9 is proven in Appendix B.8. Theorem 3.9 yields an expression for the fine-tuning
transferability, which is plotted in Fig. 2(a):

Tft =
{
(γ − 1)(1− 2 cos θ) γ ≤ 1

0 γ > 1
(15)
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Figure 2: Fine-tuning transferability surface Using the same transfer setup as in Fig. 1 we fine
tune all of the weights on the target dataset starting from the pretrained weight initialization. (a) The
theoretical transferability surface (15) as a function of target dataset size γ and task overlap θ. The
light blue line parallel to the γ axis indicates the boundary between positive and negative transfer,
while the one parallel to the θ axis indicates the boundary for zero transferability. (b) Top-down
view of Fig. 2(a) shaded by sign of transferability. Red region indicates negative transfer T < 0,
blue region indicates positive transfer T > 0. The white region indicates no transfer benefit T = 0.
(c) Slices of the transferability surface (15) for constant θ. Solid lines represent theoretical values,
circles are points from experiments. Error bars represent the standard deviation over 20 draws of the
target set.

When the model is underparameterized γ > 1, there is a unique global minimum in the space of
β = W1W2 · · ·WL. Since gradient flow converges to a global minimum, (Theorem 3.5), fine
tuning loses the memory of the pretrained initialization leading to zero transferability (white region
in Fig. 2(b)). When the network is overparameterized, however, there is a subspace of global
minima. We show in the Section B.8 that the pretrained initialization induces an implicit bias of
gradient flow away from the minimum norm solution. For θ < π/3, the pretrained features are
beneficial, leading to positive transfer. For θ > π/3, however, the pretrained features bias the
network too strongly toward the source task, leading to negative transfer.
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4 STUDENT-TEACHER RELU NETWORKS
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Figure 3: Linear transfer in two-layer ReLU networks We train a two layer ReLU network with
m = 1000 neurons on a teacher with m∗ = 100 neurons and d = 100 dimensional gaussian data,
according to the ablated transfer setup (16), (17). For these experiments, we set the label noise
σ = 0. (a) Gram matrix from the kernel of the pretrained model (b) Gram matrix from the kernel
of the ground truth source function f∗s (x). The two gram matrices are nearly indistinguishable
suggesting that the kernel sparsifies to the represent features in the source task. (c) Generalization
error of the scratch trained model as a function of dataset size n, fit to a power law (d) Norm
of out-of-RKHS component of target function ∥P⊥f∗t (x)∥2L2

, normalized by target function norm
∥f∗t (x)∥2L2

as a function of excess target features µ. (e) Heat map of transferability as a function
of excess target features µ and dataset size n. We normalize the transferability by variance in the
target data. Gray circles represent the point of negative transfer predicted by our theory. Results are
averaged over 100 realizations of the data and 10 realizations of random draws of the teacher.

In the following, we demonstrate that many of the results from our analytically solvable model also
hold, qualitatively, in the more complicated setting of linear transfer with nonlinear networks. In
particular, we choose a model of the form f(x) = 1

m

∑m
i=1 ciσ(w

T
i x) where σ(y) = max{0, y}

is the ReLU activation. We scale the model by 1/m to place the network in the mean field, feature
learning regime (Chizat et al., 2019; Mei et al., 2018; Rotskoff & Vanden-Eijnden, 2022). As in
the deep linear model, we choose source and target functions that are representable by the network.
That is, we study this model in the student teacher setting. To vary the level of feature space overlap
between the source and target functions, we define a network of m∗ neurons for the target task, and
generate the source network by ablating a fraction µ of the hidden neurons form the target. More
precisely, let A be a uniformly random subset of the index set {1, 2, · · ·m∗} with |A| = µm∗. Then

f∗s (x) =
1

(1− µ)m∗

∑
i∈Ac

c∗i σ(w
∗T
i x) (16)

f∗t (x) =
1

m∗

m∗∑
i=1

c∗i σ(w
∗T
i x) (17)

Thus the source has µm∗ fewer hidden features than the target task, and so the fraction µ controls
the degree of discrepancy between source and target feature spaces. In essence when µ = 0 the
source and target spaces are identical. However, as µ increases, an increasing fraction of new target
features, that were not present in pre-training, must be learned. We constrain the hidden features
in the model, source, and target to the d-dimensional unit sphere wi,w

∗
i ∈ Sd−1. As in the deep

linear model, we choose x ∼ N (0, Id), train the source task on the population loss, which can be
computed exactly for this model, and the target task on a finite sample of n data points.
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Previous work (Rotskoff & Vanden-Eijnden, 2022; Mei et al., 2018; Chizat, 2020) has shown that
in the overparameterized setting m ≫ m∗, gradient flow will converge to a global minimizer of
the population loss, so that limm→∞ limt→∞ f(x) = f∗s (x), which establishes that the trained
network builds a representation of f∗s (x) in the mean field limit. This does not necessarily mean
that all of the hidden neurons of the model converge to those of the teacher, since any superfluous
weight directions can be eliminated by setting the corresponding output weight to zero. However, we
demonstrate empirically in Fig. 3(a)-(b) that this relationship is preserved at the level of the model’s
kernel, so that k(x,x′) = 1

m

∑m
i=1 σ(w

T
i x)σ(w

T
i x

′) ≈ 1
(1−µ)m∗

∑
i∈Ac σ(w∗T

i x)σ(w∗T
i x′).

This observation is analogous to Theorem 3.4: training in the feature learning regime causes the
model’s features to sparsify to those present in the target function.

Now, linear transfer in this model can be formulated as a kernel interpolation problem with this
kernel. The generalization error of kernel interpolation can be separated into an n-dependent com-
ponent, and an irreducible error term which corresponds to the norm of the projection of the target
function into the subspace of L2(p) orthogonal to the RKHS defined by the kernel:

EDRlt = C(n) + ∥P⊥f∗t (x)∥2L2
. (18)

As expected, the norm of this projection increases monotonically with µ as shown in Fig. 3(d). We
show how to compute this projection in Appendix C. In the deep linear setting, ∥P⊥f∗t (x)∥2L2

=

sin2 θ, and C(n) ∼ 1/n. While the asymptotic, typical generalization error of kernel regression
has been studied in (Canatar et al., 2021), for the purposes of estimating the generalization error of
the transferred model, we assume here that this generalization error is dominated by this irreducible
term for the large n target dataset sizes we consider, just as we showed for the deep linear model.

However, an expression for the generalization error of the scratch-trained model is also needed to
derive the transferability. We are not aware of a theory of generalization error for infinite width
nonlinear networks trained on a finite data in the mean field regime. Intriguingly, however, we
demonstrate empirically (Fig. 3(c)) that the generalization error obeys a power law Rsc ∼ An−ν

with ν = 1.18. By setting our theoretically predicted generalization error of our transferred model
∥P⊥f∗t (x)∥2L2

equal to the empirically observed scaling law An−ν for our scratch-trained model,
we can approximately identify the point of negative transfer in n for any given µ (gray circles in
Fig. 3(e)). It is clear from Fig. 3(e) that this heuristic for finding the boundary between positive
and negative transfer becomes more accurate as the number of target points becomes large, since the
n-dependent component of the kernel regression generalization error goes to zero in this limit. The
phase diagram in Fig. 3 for noiseless ReLU networks resembles the phase diagram for linear transfer
with deep linear networks in the noiseless setting with σ = 0 (Appendix E Fig.7. 8). Overall, this
demonstrates that we are able to predict the phase boundary between positive and negative transfer
in the ReLU case, using our conceptual understanding in the deep linear case.

5 CONCLUSION

In this paper, we highlight the importance of thinking about transfer learning in the context of the
feature space of the pretrained model. In particular, we show that certain Integral Probability Metrics
and ϕ-divergences can be misleading when it comes to predicting transfer learning performance
using the datasets alone. We then rigorously identify the number of data points necessary for transfer
learning to outperform scratch training as a function of feature space overlap in deep linear networks.
Finally, we demonstrate that our understanding of linear transfer carries over to shallow nonlinear
networks as well. One of our primary findings is that transferability is inherited from the learned
features of the pretraining task. In the rich training regime, this can lead to an inability for the
pretrained model to transfer to tasks outside the source feature space. On the other hand, a model
trained in the lazy regime is unlikely to outperfrom scratch training, since features are not updated
in this limit. This suggests that models trained somewhere along the lazy-to-rich hierarchy may be
more flexible in their transfer capabilities. In Appendix E Fig. 9 we generate a sweep of nonlinear
models trained with varying degrees of feature learning on the source task and show that we can
eliminate negative transfer if the pretrained model lies optimally between the lazy and rich regimes.
These experiments demonstrate that regularizing pretrained models to avoid feature sparsification in
the source task is a promising direction for improving transfer learning capabilities.
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A INITIALIZATION ASSUMPTION

Following Yun et al. (2021) we place the following constraint on the initialization for some λ > 0.

W̄ T
l W̄l − W̄l+1W̄

T
l+1 ≽ λI (19)

To our knowledge, this is the most general assumption on the weight initializations in the litera-
ture that leads to the implicit biases that are crucial for our analysis. This initialization scheme
generalizes that in Wu et al. (2019); Atanasov et al. (2021).

B PROOFS

B.1 PROOF OF THEOREM 2.2

We begin by recalling the definition of the Dudley Metric

γβ(p, q) = sup
∥h∥BL≤1

|Eph− Eqh| (20)

∥h∥BL =∥h∥L+∥h∥∞ (21)

By conditioning pf (x, y) and pg(x, y) on x, we can write

γβ(pf , pg) = sup
∥h∥BL≤1

∣∣∣∣ 1√
2πσ2

∫ [
h(x, y)e

−(y−f(x))2

2σ2 − h(x, y)e
−(y−g(x))2

2σ2

]
p(x)dxdy

∣∣∣∣ (22)

≥
∣∣∣∣ 1√

2πσ2

∫ [
cos(y)

2
e

−(y−f(x))2

2σ2 − cos(y)

2
e

−(y−g(x))2

2σ2

]
p(x)dxdy

∣∣∣∣ (23)

=

∣∣∣∣∣e−σ2/2

2

∫
[cos(f(x))− cos(g(x))] p(x)dx

∣∣∣∣∣ (24)

≥ e−σ2/2

2

∫ [
f(x)2 + g(x)2

]
p(x)dx (25)

(26)
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The first inequality follows from the fact that ∥ cos(y)
2 ∥BL = 1, and the second follows from the

identity cos(x) + x2 ≥ cos(z) − z2 for any x, z ∈ R. We can expand f in the orthonormal basis
{ϕi}Mi=1 as f =

∑M
i=1 αiϕi, so that∫
f(x)2p(x)dx =

∑
i,j

αiαj

∫
p(x)ϕi(x)ϕj(x)dx =

∑
i

α2
i (27)

Since, f ∈ L2(p), the sum on right hand side of Eq. (27) converges to some a <∞. We can choose

g =

√∣∣∣ 2δeσ2/2−a
a

∣∣∣∑M
i=1 αiϕi which completes the first half of the proof. To prove the result about

the KL divergence, can directly calculate DKL(pf∥pg)

DKL(pf∥pg) =
1√
2πσ2

∫
p(x)e−

(y−f(x))2

2σ2

[
(y − g(x))2

2σ2
− (y − f(x))2

2σ2

]
dxdy (28)

=
1√
2πσ2

∫
p(x)e−

(y−f(x))2

2σ2
[
g(x)2 − f(x)2 − 2yg(x) + 2yf(x)

]
dxdy (29)

=
1

2σ2

[
∥f∥2L2

+ ∥g∥2L2
− 2⟨f, g⟩

]
(30)

=
1

2σ2
∥f − g∥2L2(p)

(31)

For any δ > 0 we can choose g = −αf with α > σδ1/2

∥f∥L2(p)
which completes the proof.

B.2 PROOF OF LEMMA 3.3

We proceed by bounding the dynamics of the loss by an exponentially decaying dynamics, proving
convergence to a global minimum. Then we show that the value of β at a global minimum is unique.
To begin, note that the matrix

Dl = W T
l Wl −Wl+1W

T
l+1 (32)

is an invariance of the gradient flow dynamics, so that D(t) = D(0) = α2(W̄ T
l W̄l − W̄l+1W̄

T
l+1)

for all time (Atanasov et al., 2021; Kunin et al., 2024; Yun et al., 2021). Let r = (W1W2 . . .WL−
βs) and note that

L̇ =

L∑
l=1

⟨∇lL, Ẇl⟩ (33)

= −
L∑

l=1

∥∇lL∥2F (34)

≤ ∥∇LL∥2F (35)

= −∥W T
L−1 . . .W

T
1 r∥22 (36)

≤ −2σ2
min(W

T
L−1 . . .W

T
1 )L (37)

(38)

where σmin(W
T
L−1 . . .W

T
1 ) is the smallest singular value of W T

L−1 . . .W
T
1 . To proceed we bound

σmin(W
T
L−1 . . .W

T
1 ) away from zero by showing that WL−1 . . .W1W

T
1 . . .W T

L−1 is positive def-
inite

W T
L−1 . . .W

T
1 W1 . . .WL−1 = W T

L−1 . . .W
T
2 (W2W

T
2 +D1)W2 . . .WL−1 (39)

≽ W T
L−1 . . .W

T
3 (W T

2 W2)
2W3 . . .WL−1 (40)

...

≽ (W T
L−1WL−1)

L−1 (41)

= (WLW
T
L +DL)

L−1 (42)

≽ (α2λ)L−1 (43)
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where we have used the conservation law (32) and the initialization assumption (19). We now have

L̇ ≤ −2(α2λ)L−1L (44)

=⇒ L(t) = L(0)e−2(α2λ)L−1t (45)
=⇒ lim

t→∞
L(t) = 0 (46)

Since the loss converges to zero, limt→∞ W1W2 . . .WL = limt→∞ β = βs, which is unique.
Note that while this solution is unique in function space, it is degenerate in parameter space.

B.3 PROOF OF THEOREM 3.4

To prove the feature space sparsification, we rely on the following Lemma, which is proven in (Yun
et al., 2021) (see Section H.2). So that this work is self-contained, we include the proof here.

Lemma B.1. Under gradient flow on the population objective (2) or the empirical objective (3),

Wl = σl(t)ul(t)vl(t) +O(α2) (47)

for all time. Furthermore
lim
α→0

lim
t→∞

(ul+1(t)
Tvl(t))

2 = 1 (48)

Proof. To prove Lemma B.1 we bound the difference ∥Wl∥2F − ∥Wl∥2op which is equal to the
norm of the subleading singular vectors of Wl and show that this bound is proportional to α2. The
argument here follows that in (Yun et al. (2021)). Taking the trace of both sides in (32) we have

∥Wl∥2F − ∥Wl+1∥2F = α2(∥W̄l∥2F − ∥W̄l+1∥2F ) (49)

L−1∑
k=l

∥Wk∥2F − ∥Wk+1∥2F = α2
L−1∑
k=l

(∥W̄k∥2F − ∥W̄k+1∥2F ) (50)

∥Wl∥2F − ∥WL∥2F = α2(∥W̄l∥2F − ∥W̄L∥2F ) (51)

Let ul,vl be the top left and right singular vectors of Wl. To bound the maximum singular value of
Wl we have

∥Wl∥2op = vT
l W

T
l Wlvl ≥ uT

l+1W
T
l Wlul+1 (52)

= uT
l+1(Dl +W T

l+1Wl+1)ul+1 (53)

= ∥Wl+1∥2op + α2uT
l+1(W̄

T
l W̄l − W̄l+1W̄

T
l+1)ul+1 (54)

≥ ∥Wl+1∥2op + α2(∥W̄l+1∥2op − ∥W̄l∥2op) (55)

Summing this inequality from l to L− 1 we have

∥Wl∥2op ≥ ∥W̄L∥2op + α2(∥W̄L∥2op − ∥W̄l∥2op) (56)

Combining (50) and (56) we have

∥Wl∥2F − ∥Wl∥2op ≤ α2(∥W̄l∥2F − ∥W̄L∥2F + ∥W̄l∥2op − ∥W̄L∥2op) (57)

This shows all of the parameter matrices are approximately rank one with corrections upper bounded
by O(α2), proving the first claim. To show the alignment of adjacent singular vectors we again take
advantage of the invariant quantity (32)

vT
l Wl+1W

T
l+1vl = vT

l W
T
l Wlvl − vT

l Dlvl (58)

≥ s2l − α2∥W̄ T
l W̄l − W̄l+1W̄

T
l+1∥2op (59)

we also derive the following upper bound on (59)

vT
l Wl+1W

T
l+1vl = vT

l (s
2
l+1ul+1ul+1TWl+1W

T
l+1 − s2l+1ul+1ul+1T )vl (60)

≤ s2l+1(v
T
l ul+1)

2 + ∥Wl+1∥2F − ∥Wl+1∥2F (61)
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combining these two bounds

s2l ≤ s2l+1(v
T
l ul+1)

2 + α2∥W̄ T
l W̄l − W̄l+1W̄

T
l+1∥2op + ∥Wl+1∥2F − ∥Wl+1∥2F (62)

≤ s2l+1(v
T
l ul+1)

2 + α2∥W̄ T
l W̄l − W̄l+1W̄

T
l+1∥2op + α2(∥W̄l∥2F − ∥W̄L∥2F + ∥W̄l∥2op − ∥W̄L∥2op)

(63)

where we have used the result derived in the previous proof for the second inequality. Finally, we
derive an upper bound on this quantity

s2l ≥ uT
l+1W

T
l Wlul+1 (64)

≥ s2l+1 − α2∥W̄ T
l W̄l − W̄l+1W̄

T
l+1∥2op (65)

We can combine the upper and lower bounds and divide by s2l+1 to conclude

(vT
l ul+1)

2 ≥ 1− α2 Cl

s2l+1

(66)

Cl = 2∥W̄ T
l W̄l − W̄l+1W̄

T
l+1∥2op + ∥W̄l∥2F − ∥W̄L∥2F + ∥W̄l∥2op − ∥W̄L∥2op (67)

This proves that adjacent singular vectors align as long as the singular values are bounded away
from zero. To show that this requirement is satisfied at the end of training, note that in the proofs
of Lemma 3.3 and Theorem 3.5 we show that gradient flow converges to a global minimizer of the
loss. Let ŷ = limt→∞ XW1W2 . . .WL denote the final network predictions. Then

∥ŷ∥2
∥X∥op

≤ lim
t→∞

∥W1W2 . . .WL∥2 ≤ lim
t→∞

L∏
l=1

s2l (68)

If d ≥ n, ŷ is just equal to the vector of target outputs which is larger than zero by construction. If
d < n, ŷ is the projection of the targets into the space spanned by the rows of X , which is almost
surely a non-zero vector. This implies that

lim
t→∞

L∏
l=1

s2l > 0 (69)

which implies that the individual singular values are bounded away from zero at the end of training.
In the population training case, the proof is nearly same, replacing ŷ = limt→∞ W1W2 . . .WL =
βs

By Lemma B.1, we have
W1W2 . . .WL−1 = cu1v

T
L−1 (70)

after pretraining, for some c ∈ R. However, from Theorem 3.5 we know that after pretraining

W1 . . .WL−1WL = βs (71)

= cu1(v
T
L1
WL) (72)

= cu1 (73)

where we have used Lemma B.1 in the third equality to eliminate the inner product between the
adjacent singular vectors. The possible factor of −1 can be absorbed into the definition of u1. This
implies

W1W2 . . .WL−1 = βsv
T
L−1 (74)

B.4 PROOF OF THEOREM 3.5

This proof follows Yun et al. (2021) closely but extends their result to the case n > d. We first show
that gradient flow converges to a global minimum of the empirical loss (3). We then show that as
α→ 0, this minimum corresponds to the minimum norm least squares solution.

Part 1: Gradient flow converges to a global minimum
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This proof follows the same logic as the proof for Lemma 3.3. First, we define the residual
vector r = XW1W2 . . .WL − yt. Then we can write the empirical loss as

L =
1

2n
∥r∥22 =

1

2n
(∥r∥∥22 + ∥r⊥∥22) (75)

where r∥ is the component of r in im(X) and r⊥ is the component of r in ker(XT ). Since
XW1W2 . . .WL ∈ im(X), the global minimum of (75) is equal to ∥r⊥∥22. Therefore, to show
that gradient flow converges to a global minimum it is sufficient to show that limt→∞∥r∥(t)∥22 = 0.
Let P∥ and P⊥ be the orthogonal projectors onto im(X) and ker(XT ) respectively, so that L∥ :=

∥r∥∥22 = ∥P∥(XW1W2 . . .WL − yt)∥22 and L⊥ := ∥r⊥∥22 = ∥P⊥(XW1W2 . . .WL − yt)∥22.
Then we have

L̇∥ =

L∑
l=1

⟨∇lL∥, Ẇl⟩ (76)

= −
L∑

l=1

⟨∇lL∥,∇lL⟩ (77)

= −
L∑

l=1

(∥∇lL∥∥2F + ⟨∇lL∥,∇lL⊥⟩) (78)

Taking the gradient of L⊥ we have

∇lL⊥ = W T
l−1 . . .W

T
1 XTP⊥rW

T
L . . .W T

l+1 = 0 (79)

so

L̇∥ = −
L∑

l=1

∥∇lL∥∥2F (80)

≤ −∥∇LL∥∥2F (81)

= −∥W T
L−1 . . .W

T
1 XTP∥r∥22 (82)

≤ −σ2
min(W

T
L−1 . . .W

T
1 )∥XTP∥r∥22 (83)

where σmin(W
T
L−1 . . .W

T
1 ) is the smallest singular value of W T

L−1 . . .W
T
1 . From Eq. (39) - (43)

we can bound this quantity away from zero. Then we have

L̇∥ ≤ −(α2λ)L−1∥XTP∥r∥22 (84)

≤ −2(α2λ)L−1λminL∥ (85)

where λmin is the smallest nonzero eigenvalue of XXT . The solution to the dynamics (85) is
L∥(t) ≤ L∥(0)e

−2(α2λ)L−1λmint, which proves limt→∞∥r∥(t)∥22 = 0. Note that this part of the
theorem holds for any α,n,d, and we take the limit α→ 0 after t→ ∞.

Part 2: as α→ 0, gradient flow finds the minimum norm interpolator

In the case n > d, the least squares problem () is overdetermined so the solution is unique.
That is, the unique solution is trivially the minimum norm solution. In the case n ≤ d, there are
multiple β(t) that yield zero training error. Lemma B.1 shows that the parameter matrices are
approximately rank one at all times and ul+1 and vl align at the end of training as α → 0, which
means that

lim
α→0

lim
t→∞

β(t) = lim
α→0

lim
t→∞

W1W2 . . .WL = cu1 (86)

where c > 0. Next we show that ul ∈ row(X). We can break W1 into two components W ∥
1 and

W⊥
1 where the columns of W ∥

1 are in row(X) and the columns of W⊥
1 are in ker(XT ). The left

hand side of (79) also shows that the gradient of W⊥
1 is zero, which means that this component

remains unchanged under gradient flow dynamics. Therefore we have

∥W⊥
1 (t)∥F = ∥W⊥

1 (0)∥F ≤ α∥W̄1∥F (87)
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which vanishes in the limit α → 0. This implies that u1 ∈ row(X) at all times. The only global
minimizer with this property is the minimum norm solution. As a final comment, we note that this
theorem is also proven in Atanasov et al. (2021) using different techniques.

B.5 PROOF OF THEOREM 3.6

Let β̂ = limt→∞ W1W2 . . .WL. From Theorem 3.5, β̂ = X+y = X+Xβt +X+ϵ. Then the
average generalization error at the end of training can be written

EX,ϵR = EX,ϵ∥βt − β̂∥22 (88)

= 1 + EX,ϵ∥β̂∥22 − 2EX,ϵ⟨β̂,βt⟩ (89)

= 1 + EXβT
t (X

+X)T (X+X)βt + EX,ϵϵ
T (X+)TX+ϵ+ 2EX,ϵϵ

T (X+X)βt (90)

− 2(EXβT
t (X

+X)βt + EX,ϵβ
T
t X

+ϵ) (91)

= 1− EX∥Prow(X)βt∥22 + σ2EX tr((X+)TX+) (92)

where we have used the independence of ϵ and X , as well as the fact that the operator X+X
is the projector onto subspace spanned by the rows of X , Prow(X). Since the entries of the data
matrix X are independent Gaussians, the n-dimensional subspace row(X) is uniformly random in
the Grassmanian manifold Gn,d Vershynin (2018), so Prow(X)βt is a random projection of βt. Then

EX∥Prow(X)βt∥22 = γ (93)

which is a classic result in the theory of random projections (c.f. Vershynin (2018) Lemma 5.3.2).
We now turn to the final term in (92). Let {σl}l≤min(n,d) be the nonzero singular values of the data
matrix X . Then

EX tr((X+)TX+) = EX

min(n,d)∑
l=1

1

σ2
l

(94)

First take the case γ < 1. Then there are n nonzero singular values of X , which are the eigenvalues
of the Wishart matrix C = 1

dXXT and

EX tr((X+)TX+) =
γ

n
EX tr(C−1) (95)

= −γ lim
z→0

1

n
E[tr((zI −C)−1)] (96)

= −γ lim
z→0

gC(z) (97)

In the second line we have introduced the complex variable z, which casts the quantity of interest
as the z → 0 limit of the normalized expected trace of the resolvent of C. In the limit of large n,
this quantity tends to the Stieltjes transform of the Wishart matrix gC(z), which has a closed form
expression (see Potters & Bouchaud (2020) Ch.4 for a proof).

lim
z→0

gC(z) = lim
z→0

z − (1− γ)−
√
z − (1 +

√
γ)2

√
z − (1−√

γ)2

2γz
(98)

= − 1

1− γ
(99)

so EX tr((X+)TX+) = γ
1−γ for γ < 1. In the case γ > 1, there will be d terms in the sum

(94), which are proportional to the eigenvalues of the covariance matrix 1
nX

TX . If we define
n′ = d, d′ = n, γ′ = n′/d′ and X ′ = XT ∈ Rn′×d′

, equations (95) - (97) hold under the
substitution γ → γ′. So EX tr((X+)TX+) = γ′

1−γ′ = 1
γ−1 for γ > 1. Putting everything together

we have

EX,ϵR =

{
(1−γ)2+γσ2

1−γ γ < 1
σ2

γ−1 γ > 1
(100)
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B.6 PROOF OF THEOREM 3.7

Theorem 3.4 implies that the pretrained feature matrix is Φ = (Xβs)v
T
L−1. Since Φ is a rank one

matrix its pseudoinverse is easy to compute

Φ+ =
1

∥Xβs∥22
vL−1(Xβs)

T (101)

The coefficent vector β̂ after linear transfer is

β̂ = W1 . . .WL−1ŴL (102)

= W1 . . .WL−1Φ
+yt (103)

= bβs (104)

where

b =
βT
s X

Tyt

βT
s X

TXβs
(105)

=
βT
s X

TXβt

βT
s X

TXβs
+

βT
s X

T ϵ

βT
s X

TXβs
(106)

As in the proof of Theorem 3.6, we can write the typical generalization error as

EX,ϵRlt = ∥β̂ − βt∥22 (107)

= 1 + EX,ϵb
2 − 2 cos θEX,ϵb (108)

To proceed, we can write βt = cos θβs + sin θν for some vector ν ⊥ βs, and introduce the
independent n−dimensional Gaussian vectors z = Xβs ∼ N (0, In) and w = Xν ∼ N (0, In).
With this change of variables we have

EX,ϵb = Ez,w,ϵb (109)
= cos θ (110)

EX,ϵb
2 = Ez,w,ϵb

2 (111)

= cos2 θ + (sin2 θ + σ2)Ez
1

∥z∥22
(112)

The integral Ez
1

∥z∥2
2

can be solved exactly

Ez
1

∥z∥22
=

1

(2π)n/2

∫ ∞

−∞

e−
∑n

i=1 z2
i /2∑

j=1 z
2
j

dz (113)

=
Sn−1

(2π)n/2

∫ ∞

0

rn−3er
2/2dr (114)

=
Sn−1

4πn/2

∫ ∞

0

e−tt
n
2 −2dt (115)

=
Sn−1

4πn/2
Γ
(n
2
− 1

)
(116)

=
1

n− 2
(117)

which completes the proof.

B.7 PROOF OF THEOREM 3.8

We begin by writing down the solution to the optimization problem (12)

ŴL = (ΦTΦ+ nλId)
−1ΦTyt (118)

As in the proof of Theorem 3.7, we have

Φ = (Xβs)v
T
L−1 (119)

W1W2 . . .WL−1 = βsv
T
L−1 (120)
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Combining these expressions we can solve for the linear function the network implements after
transfer learning with ridge regression

β̂ = W1W2 . . .WL−1ŴL (121)

= βsv
T
L−1(∥Xβs∥22 + nλId)

−1vL−1(Xβs)
Tyt (122)

=

(
(Xβs)

Tyt

∥Xβs∥22 + nλ

)
βs (123)

As in the proof of Theorem 3.7, we write βt = cos θβs + sin θν for some vector ν ⊥ βs, and
introduce the independent n−dimensional Gaussian vectors z = Xβs ∼ N (0, In) and w = Xν ∼
N (0, In). Then we can get the following expression for the generalization error of ridge linear
transfer:

EX,ϵRλ
lt = ∥β̂ − βt∥22 (124)

= 1 + (cos2 θ)I1(n+ 2, λ) + (sin2 θ + σ2)I1(n, λ)− (2 cos2 θ)I2(n, λ) (125)

where we have used spherical coordinates to define the following integrals

I1(m,λ) = Ez

( ∥z∥m−n+2
2

(∥z∥22 + nλ)2

)
=

Sn−1

(2π)n/2

∫ ∞

0

rm+1e−r2/2

(r2 + nλ)2
dr (126)

I2(m,λ) = Ez

(∥z∥m−n+2
2

∥z∥22 + nλ

)
=

Sn−1

(2π)n/2

∫ ∞

0

rm+1e−r2/2

r2 + nλ
dr (127)

We evaluate I1(n, λ), I1(n + 2, λ) and I2(n, λ) for large n. To avoid cluttering the notation, we
ignore the coefficient Sn−1

(2π)n/2 while solving the integral and restore it at the end of the calculation.
Then

I1(n, λ) ∝ 2n/2
∫

un/2e−u

(2u+ nλ)2
du (128)

= n(2n)n/2
∫

tn/2e−nt

(2nt+ nλ)2
dt (129)

= n(2n)n/2
∫
g(t)enf(t)dt (130)

≈ n(2n)n/2

√
2π

n|f ′′(t0)|
g(t0)e

nf(t0) (131)

We have introduced the change of variables u = r2/2 in the first line, t = u/n in the second line,
and finally evaluated the integral for large n using the saddle point method. In the last line, t0 is a
critical point of f(t) = 1

2 log t− t and g(t) = (2nt+ nλ)−2. Differentiating f(t) and setting equal
to zero we find t0 = 1/2. So for large n,

I1(n, λ) ∝
√
πnnn/2e−n/2

(n+ nλ)2
(132)

We can now restore the angular coefficient to the integral

I1(n, λ) =
Sn−1

(2π)n/2

√
πnnn/2e−n/2

(n+ nλ)2
(133)

≈ nπn/2

√
πn

(n
2

)−n/2

en/2
√
πnnn/2e−n/2

(n+ nλ)2
(134)

=
1

n(1 + λ)2
(135)

where we have used Stirling’s approximation in the second line. Therefore, limn→∞ I1(n, λ) = 0.
We stress that although the integral was approximated at the saddle point, the limit n→ ∞ is exact
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since corrections to the saddle point value are subleading in n. Similar calculations yield

I1(n+ 2, λ) =
1

(1 + λ)2
(136)

I2(n, λ) =
1

1 + λ
(137)

for large n. Plugging this into (124), we have

lim
n→∞

EX,ϵRλ
lt = 1− (1 + 2λ)

(1 + λ)2
cos2 θ (138)

This is a strictly increasing function in λ ≥ 0 for any θ ∈ [0, π/2], which implies that the optimal
regularization value is λ∗ = 0.

B.8 PROOF OF THEOREM 3.9

The proof involves slightly tweaking the proof of Theorem 3.5. Since the source trained model
obeyed the initialization assumption (19), the invariant matrix (32) is equal to its value at initializa-
tion before pretraining throughout fine tuning as well. This implies that the first half of the proof of
Theorem (3.5) holds in the fine tuning case and the model will converge to a global minimizer of
the training loss. The invariance throughout fine tuning also implies that (86) holds and that W⊥

1
does not change during fine tuning, and remains fixed at its initial value from pretraining. Therefore,
by the proof of Theorem 3.7, at the beginning of fine tuning, u1 = βs and (I − Prow(X))βs is the
component of u1 that does not evolve. Meanwhile, Prow(X)u1 will evolve to the minimum norm
solution. Combining these results, after fine tuning,

lim
α→0

lim
t→∞

βft(t) = βsc + (I − Prow(X))βs (139)

where βsc is the minimum norm solution. We can now write the expected generalization error
EX,ϵRft = EX,ϵ[∥βt − βft∥22]

= EX,ϵRsc + EX∥(I − Prow(X))βs∥22 − 2EX⟨βt, (I − Prow(X))βs⟩
= EX,ϵRsc +max(0, 1− γ)− 2EX⟨βt, (I − Prow(X))βs⟩
= EX,ϵRsc +max(0, 1− γ)− 2 cos θEX⟨βs, (I − Prow(X))βs⟩
− 2 sin θEX⟨ν, (I − Prow(X))βs⟩
= EX,ϵRsc +max(0, 1− γ)(1− 2 cos θ)− 2EX sin θ⟨ν, (I − Prow(X))βs⟩

where we have used the fact that Prow(X))βs is a random projection as in the proof of Theorem 3.6
and set βt = cos θβs + sin θν for some ν ⊥ βs. The final term is equal to zero for the following
reason. The operator I − Prow(X) is a random projector onto the d − n dimensional subspace
orthogonal to rowX Since the uniform distribution of random subspaces is rotationally invariant,
we can instead fix a particular subspace and average over βs ∼ Uniform(Sd−1). Using rotation
invariance again, we can fix the projection to be along the first d − n coordinates of βs. Then we
have

E⟨ν, (I − Prow(X))βs⟩ =
n−d∑
k=1

νkE(βs)k (140)

= 0 (141)
This completes the proof

C RELU NETWORKS

In this section, we describe how to compute projections into (and out of) the RKHS defined by a one
hidden layer ReLU network. Consider a network f(x) and a target function f∗(x).

f(x) =
1

m

m∑
i=1

ciσ(w
T
i x) (142)

f∗(x) =
1

m∗

m∗∑
i=1

c∗i σ(w
∗T
i x) (143)
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The feature space of the model is span{σ(wT
i x)}i≤m in L2(p). To form projectors into this space

and its orthogonal complement, we introduce the Mercer decomposition. For any positive definite,
symmetric kernel k : X × X → R we can define features through partial evaluation of the kernel,
i.e., ϕ(x) = k(·,x). This kernel also induces a reproducing kernel Hilbert space (RKHS) via the
Moore–Aronszajn theorem, which is defined as the set of all functions that are linear combinations
of these features,

Hk =

{
f
∣∣∣f =

M∑
i=1

αik(·, zi) for some M ∈ N, αi ∈ R, zi ∈ X
}

(144)

The associated norm of a function f ∈ Hk is given by

||f ||2k =

M∑
ij

αik(zi, zj)αj (145)

We can also define the operator Tk : L2(p) → L2(p) with action

Tkf =

∫
dx′p(x′)k(x,x′)f(x′) (146)

The spectral decomposition of this operator, {λ2l , ψl}∞l=1 is known as the Mercer decomposition and
the eigenfunctions form a basis for L2(p). The eigenfunctions ψl(x) satisfy

Tkψl = λlψl (147)

where λl is the associated eigenvalue. The eigenfunctions with non-zero eigenvalue form a basis for
the RKHS Hk. Given a function f =

∑∞
l=1 clψl one can show by direct computation that

||f ||2k =

∞∑
l=1

c2l /λ
2
l (148)

which also demonstrates that functions with support on eigenmodes with zero eigenvalue are not
in the RKHS. If we can construct the Mercer eigenfunctions we can build orthogonal projection
operators into the RKHS and its orthogonal complement. To begin note that for Gaussian data,
p(x) = N (0, Id), we can exactly compute the expected overlap between two ReLU functions in
terms of their weight vectors (Cho & Saul, 2009):

⟨σ(wT
i x)σ(w

T
j x)⟩L2 =

∫
p(x)σ(wT

i x)σ(w
T
j x) (149)

=
1

2π

(√
1− u2ij + u(π − arccosuij)

)
(150)

where uij =
wT

i wj

∥wi∥2∥wj∥2
With this in hand, we can define the following matrices:

Kij =
1

m
⟨σ(wT

i x)σ(w
T
j x)⟩L2

(151)

K∗
ij =

1

m∗
⟨σ(w∗T

i x)σ(w∗T
j x)⟩L2

(152)

K̃ij =
1√
mm∗

⟨σ(wT
i x)σ(w

∗T
j x)⟩L2 (153)

The Mercer eigenfunctions can be constructed by diagonalizing the matrixK. If zl is an eigenvector
of K with eigenvalue λ2l , then

ψl(x) =
1√
mλ2l

m∑
l=1

(zl)iσ(w
T
i x) (154)
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is a Mercer eigenfuction with eigenvalue λ2l , which can be verified by plugging the expression into
the eigenvalue equation (147). Since the feature space is m-dimensional, we know that these m
eigenfunctions span the RKHS. We can now write down expressions for the projections of f∗(x)
into this space and its orthogonal complement

∥P∥f∗(x)∥2L2
=

1

m∗
cT∗ K̃

TK−1K̃c∗ (155)

∥P⊥f∗(x)∥2L2
= ∥f∗∥2L2

− ∥P∥f∗(x)∥2L2
=

1

m∗
cT∗ K∗c∗ −

1

m∗
cT∗ K̃

TK−1K̃c∗ (156)

D EXPERIMENTAL DETAILS

D.1 DEEP LINEAR MODELS

For the experiments in deep linear models, we train a two layer linear network with dimension d =
500. We initialize the weight matrices with random normal weights and scale parameter α = 10−5.
To approximate gradient flow, we use full batch gradient descent with small learning rate η = 10−3.
We train each model for 105 steps or until the training loss reaches 10−6. We perform target training
for 20 instances of the training data and a grid of dataset sizes and values of θ

D.2 RELU NETWORKS

For the experiments in shallow ReLU networks, we use the parameters d = 100, m = 1000,
m∗ = 100. We initialize the weight matrices randomly on the sphere and the output weights are
initialized at 10−7. We approximate gradient flow with full batch gradient descent and learning rate
0.01m and train for 105 iterations or until the loss reaches 10−6. For training with a finite dataset
we use 100 realizations of the training data, and average over 10 random initialization seeds.

E ADDITIONAL FIGURES
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Figure 4: Transferability is not predicted by ϕ-divergences or integral probability metrics We
generate source and target distributions ps, pt according to the setup in Section 3 and plot the trans-
ferability T (5) as a function of (a) the KL divergenceDKL(ps∥pt) and (b) the Wasserstein 1-metric.
The KL divergence can be computed exactly in this setting (see Section B.1). W1 is computed from
finite samples using the algorithm in Sriperumbudur et al. (2009).
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Figure 5: Regularizing scratch training eliminates anomalous positive transfer. Simulated lin-
ear transfer phase diagram for L = 2, σ = 0.2, d = 500 (a) with optimal weight decay in the
scratch training and (b) without. To tune the weight decay hyperparameter, we sweep over a grid
of λwd ∈ [0, 10−4, 10−3, 10−2, 10−1] and choose the model that has the lowest generalization error.
The transfer learning procedure is identical to Fig. 1, only scratch training is altered. In the regu-
larized plot (a), the spike of positive transfer along γ = 1 is eliminated, as the regularized scratch
trained model does not undergo double descent.
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Figure 6: Ridge regularization leads to worse generalization in linear transfer. Linear transfer
generalization error for γ = 0.5 as a function of regularization parameter λ. The generalization
error is a strictly increasing function of λ, which implies that the optimal regularizer is λ∗ = 0.
Solid line is theory (3.8), points are experiments. Error bars represent the standard deviation over
20 realizations of the target dataset.
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Figure 7: Linear transferability, σ = 0 We pretrain a linear network (7) with L = 2 and d = 500
to produce un-noised labels from linear source function y = βT

s x using the population loss (2).
We then retrain the final layer weights on a sample of n = γd points (xi, yi = βT

t xi) where
βT
s βt = cos θ and compare its generalization error to that of a model trained from scratch on the

target dataset. (a) Theoretical transferability surface (5) as a function of the number of data points
γ = n/d and task overlap θ. (b) Top-down view of (a), shaded by sign of transferability. Red
indicates negative transferability T < 0 and blue indicates positive transferability T > ′. Note that
transfer is always negative when γ > 1, since the scratch trained model can perfectly learn the target
task as there is no label noise. (c) Slices of (a) for constant θ. Solid lines are theory, dots are from
numerical experiments. Error bars represent the standard deviation over 20 draws of the training
data.
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Figure 8: Linear transfer σ = 0: theory vs. experiment (a) Identical to Fig. 7(b), but shaded
according to the value of the transferability. (b) Results of numerical simulations with L = 2,
d = 500
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Figure 9: Regularizing pretrained models toward the lazy regime eliminates negative trans-
fer: We train a two layer ReLU network on the transfer learning task defined by (16) and (17) with
µ = 0.9, m = 1000, m∗ = 100, d = 100. During pretraining, we include a regularization term
λ
∑m

i=1∥wi −w
(0)
i ∥22 where w

(0)
i is the random initial value of weight vector wi. This regulariza-

tion prevents the weights of the network from straying far from their intital values. When λ → ∞,
features are not updated and model operates in a lazy regime. We generate a sweep of pretrained
models for λ ∈ [0, 10−4, 10−3, 10−2, 10−1]. We then linearly transfer each of these pretrained
models to the target task and choose the model with the best generalization error (blue). The trans-
ferability degrades with target set size as expected, but the optimally regularized pretrained model
avoids negative transfer, while the fully rich model (pink) transfers poorly for nearly all dataset sizes
considered.
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