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Abstract

Large Language Models (LLMs) increasingly operate in multi-turn interactions
where the cost of failure grows with delay, creating a need for turn-level risk
assessment and timely alerts. Existing approaches fall short: process reward
modeling presumes step-wise labels; multi-instance learning (MIL) overlooks
earliness; and early classification of time series (ECTS) neglects the complex
relationship between turn-level events and dialogue-level risk. We propose a
novel approach that integrates MIL and ECTS to deliver controllable early alerts
from weak dialogue-level supervision. A soft-MIL scorer with prefix-conditioned
encodings and monotone pooling produces a non-decreasing prefix risk, while
a reinforcement-learning trigger, conditioned on a control parameter, balances
earliness and accuracy with a single policy that traces the Pareto frontier without
retraining. Empirically, our method improves the earliness—accuracy trade-off on
multi-turn dialogues compared to strong baselines.

1 Introduction

Large language models (LLMs) [Ouyang et al., |2022| Team et al., |2023| Touvron et al., 2023
increasingly operate in multi-turn settings, where success depends not only on the final answer but
on how the interaction unfolds. Despite rapid gains in generation quality, tools for monitoring and
controlling an ongoing dialogue remain limited.

We study early risk detection in multi-turn dialogue: at each turn, estimate risk and decide whether
to trigger an alert. Two high-impact use cases motivate this setting. In task-oriented dialogue, early
signs of likely task failure or user dissatisfaction enable routing, escalation, or clarification before
frustration builds. In interpersonal dialogue, early signs of harmful or unethical conduct enable timely
intervention and triage [Vogt et al.| [2021} |An et al.,|2025]). In both cases it is not enough to know after
the fact whether a dialogue is risky; systems must decide when to alert while the conversation is still
in progress. The same turn-level risk estimates can also support online improvement (e.g., selecting
the lowest-risk candidate reply) and training-time supervision (risk as process feedback), though we
focus on online alerting here.

This problem raises three intertwined challenges. C1: Weak supervision. Labels are usually
available only at the dialogue (bag) level, while decisions are required at the turn (instance) level.
C2: Time-sensitive objectives. Early, correct triggers are valuable but premature alerts degrade user
experience, so the algorithm must calibrate the speed—precision trade-off. C3: Extreme imbalance
and instability. Risky dialogues are rare, and the onset of risk varies widely and can be abrupt, which
destabilizes credit assignment for both the scorer and the trigger.

*Work done during a research internship at Intuit AT Research.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interactions
in Large Language Models.



Process reward modeling (PRM) provides fine-grained, step-level signals instead of supervising
only final outcomes [Lightman et al., 2023} [Zhou et al., 2024], which makes it an appealing lens for
process control in dialogue. However, prior work typically assumes access to step-wise labels—via
annotation [Lightman et al., 2023]] or simulation [Wang et al.| 2023]]—or focuses on single-speaker
reasoning traces where the agent controls the state. In multi-turn dialogue, outcomes depend on
a human partner; step-wise labeling is costly and simulation can be brittle. Recent evidence also
suggests that Monte Carlo labeling can generalize worse than judge-based supervision [Zhang et al.,
2025]). Finally, PRM rarely targets the timing of detection directly, even though utility depends on
how early and reliable the signal arrives.

Multi-instance learning (MIL) learns from bag-level labels to infer instance-level posteriors, matching
the waek supervision regime for dialogues and addressing C1. Yet pure MIL is not sufficient for our
setting: maximizing bag likelihood yields turn-level scores but does not explain when to stop, does
not encode an explicit cost of delay, and offers no stable stopping mechanism under class imbalance
(C2-C3).

Early classification of time series (ECTS) [Renault et al., [2024]] explicitly balance earliness and
correctness for streaming inputs , which aligns well with the online alerting interface (C2). However,
three gaps arise for dialogue risk. First, ECTS often assumes every prefix shares the final label,
while dialogue risk reflects an accumulation of turn-level evidence with potentially abrupt shifts
due to human input—semantics that MIL captures more naturally. Second, generic prefix gating
can oscillate across time, making early decisions unstable. Third, severe class imbalance makes
stop-policy learning fragile, and training separate models to sweep the trade-off is undesirable in
deployment (C2-C3).

We combine MIL and ECTS in a novel way to address the challenges mentioned above. We keep
the separable scorer—trigger design of ECTS while addressing dialogue-specific gaps. The scorer is
trained with soft MIL [Carbonneau et al., 2018|]: each turn is encoded conditioned on its prefix to
handle exogenous, non-stationary human inputs, and a monotone pooling operator (noisy-OR or log-
sum-exp) maps per-turn posteriors to a non-decreasing prefix risk. This preserves the early-decision
interface while supplying instance-level credit assignment (closing the PRM labeling gap), aligning
label semantics with abrupt evidence, and reducing temporal oscillation (C1 and part of C2). On top
of this pooled risk we train a A-conditioned reinforcement-learning trigger that directly optimizes the
earliness—accuracy trade-off; varying A moves the stopping point along the Pareto frontier without
retraining (C2). To cope with imbalance and sparse rewards (C3), we use a two-phase, A-anchored
scheme (pretrain at A=0, then fine-tune for A>0 with KL/value anchoring), an oscillating class-ratio
curriculum (balanced to population mix), and class-specific advantage normalization.

Our contributions are threefold:

1. A general framework for early decisions in multi-turn dialogue that unifies ECTS with soft
MIL to convert dialogue-level labels into calibrated turn-level risks and to act on a monotone
prefix risk with a trainable trigger under exogenous human inputs.

2. A single, controllable policy for alerts: a A-conditioned trigger that provides inference-time
control of the earliness—accuracy trade-off and traces the Pareto frontier without retraining,
supported by analysis under calibrated MIL posteriors.

3. Training procedures for rarity and abruptness, including a two-phase A-anchored schedule
with curriculum and class-specific normalization, improving stability and data efficiency
under extreme imbalance.

2 Method

We propose PARETOMIL, a framework for early risk detection in multi-turn dialogue. We observe a
dialogue D = (1, ...,x) with a binary label y € {0, 1} indicating dialogue risk. At test time the
system processes D online and, at each turn ¢, either waits for more context or flags and terminates.
As illustrated in Figure |1} our method separates (i) learning calibrated, prefix-aware turn scores from
bag-level supervision (Stage 1) from (ii) learning a A-conditioned stopping policy that trades off
earliness and correctness (Stage 2).
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Figure 1: Flowchart of PARETOMIL, a two-stage early risk detection framework. Stage 1 learns
turn-level risk scores with MIL and softmax-weighted aggregation. Stage 2 trains a A-conditioned
policy to flag based on prefix scores, balancing earliness and correctness.

2.1 Stage 1: MIL with Softmax-Weighted Averaging

Turn scoring. Each prefix z1.; is encoded by a frozen text encoder E to produce hy = E(x1.4) €
R¢.
A small MLP gy maps h; to a scalar logit £, € R and a bounded turn score s; € (0,1):
by = 99<ht>7 St = U(ft)~
We reserve h, for encodings and s; for turn-level risk scores.

MIL aggregation. We compute turn weights by a softmax over logits (with temperature 7 > 0),
and predict dialogue risk as a weighted sum of turn scores:

T

exp({¢/T) N

W= ————————, Yy = Wt S¢-
S, exp(li/7) g

This aggregator is nonparametric and emphasizes high-risk turns. As 7 | 0, the softmax becomes
sharper, allowing the model to isolate risk to a few decisive points. This is a soft MIL formulation
because the dialogue-level label is matched to a continuous, differentiable aggregation over all
instance scores, rather than hard-max selection or binary instance labeling.

Loss: focal + sparsity. We combine a dialogue-level focal loss with a sparsity regularizer that
encourages most turn scores to remain near zero:

Efocal(gay; O‘a’Y) = —-ay (1 - y)“/ logg - (1 - Oé) (1 - y) yﬁf log(l - yA)7
T
Esparsity = Zst7
t=1

EStagel = Efocal + /\sp Lsparsily~

Summing turn scores imposes a soft ¢; constraint on total risk mass, encouraging sharp, sparse risk
emergence—more realistic in early-warning scenarios. We train only gg; E(-) is frozen.



2.2 Discussion of the MIL formulation

Softmax-weighted risk is nearly monotonic. Lete; = exp(¢;/7), Z; = 2221 e;, and define the
prefix risk estimate r; = g1.4:

¢
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This prefix prediction admits an incremental update:
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so each 7, is a convex combination of the previous prefix and the new turn score.

Three consequences of Eq. (I):

1. Bounded variation:
I7e — 1] = Yelse — re—1] < v
so prefix risk cannot fluctuate wildly unless ~; is large.

2. One-shot locking: A high-risk spike (large e;) causes v; — 1, pushing r; =~ s; and freezing
future movement.

3. Expected monotonicity after onset: If E[s; | 1..—1] > 7—1, then
Elry | 21:0-1] > 11,

so prefix risk accumulates in expectation.

Softmax-weighted risk is helpful to early risk detection. The smooth, prefix-consistent behavior
of r; defined in Eq. (I)) makes it especially well-suited for triggering under a A-conditioned policy:

» Low variance, few oscillations: 7; evolves by a contractive update, and late low-confidence
turns have diminishing impact. This reduces false positives and prevents unstable back-and-
forth triggering (“flag—unflag” cycles).

Fast and reliable detection: When a high-risk spike appears (¢; large), the corresponding s;
heavily influences r; via large ~;, enabling sharp jumps in the prefix score and fast alerting.

Post-onset stability: After a confident risk moment, future v, becomes small, effectively
“locking in” the risk estimate and avoiding noisy retraction.

Threshold-friendly dynamics: Since r; moves smoothly and rarely reverses after a real onset,
the policy can implement threshold-based decisions (e.g., flag when r; > 7(\)) without
needing complex hysteresis or smoothing.

Controllable trade-off: The policy’s stopping point responds predictably to changes in A:
higher A\ encourages earlier flagging by shifting the threshold lower. The well-behaved r;
makes this trade-off stable and monotonic in practice.

In summary, the softmax MIL model provides not just good instance-level risk estimates, but a
prefix-level signal that accumulates stably and predictably—crucial for training and deploying a
reliable A-conditioned trigger policy.

2.3 Stage 2: \-Conditioned Early Flagging via RL

We adopt a PPO-based actor—critic model with a LSTM encoder that takes as input the prefix-level
risk scores from Stage 1 along with the trade-off parameter . At each time step ¢, the model observes
ot = [s+, A]. The action space is:

A = {wait, flag},

where selecting f1ag terminates the episode.



Reward structure We define rewards to balance earliness and correctness:
+10, ifactionisflagandy =1,
—10, ifactionis flagandy =0,
re =< —A, ifactioniswaitandt <7,

—10, ift =T, flag was never chosen, and y = 1,

+10, ift =T, flag was never chosen, and y = 0.

Network architecture A small feedforward encoder followed by a 1-layer LSTM which encodes
0; = [s¢, \] into the hidden state AT The LSTM hidden state is fed into two separate linear heads:
1. the actor head 7y(a, | hEST™M | X) which outputs action logits 2. the critic head Vi, (hESTM | X)
which outputs the state-value estimates. Both actor and critic are explicitly conditioned on A to enable
inference-time control over the speed—accuracy frontier.

Training We train using a PPO-style loss with GAE, clipping, entropy regularization, and gradient
clipping. We train the A-conditioned in two stages:

1. Imbalance-aware pretraining at A = 0: We oscillate the positive-class fraction across
mini-batches, alternating between low and high values. This exposes the policy early to both
false-alarm and miss regimes and yields a competent pretrained model. After curriculum
pretraining, we fine-tune using the empirical class ratio of the training population to reduce
train—test drift in decision thresholds.

2. A-conditioned fine-tuning with anchoring: Starting from (74,, Vy,) trained at A = 0,
fine-tune with mixed-\ batches (30% at A = 0, 70% sampled from a Beta distribution). To
preserve base behavior, add:

Lacior = Lrpo + 1K1 Liazoy K7 (- | ,0) || 70 (- | -, 0)),
Ecritic = ]E[(R - Vd))z] +nv l{A:O}(Vw('7 0) - Viﬁo('v 0))2

Baseline models For comparison, we train non-A-conditioned policies by applying the same Stage
1 training at a fixed desired A, omitting Stage 2 fine-tuning.

Inference At test time, the Stage 1 prefix aggregator feeds s; at each turn. The Stage 2 policy,
conditioned on a chosen J, issues wait or flag, determining t* < 7. Varying X shifts the halting
point along the earliness—accuracy frontier—using just one policy model without retraining.

3 Experiments

3.1 Dataset

We use the Schema-Guided Dialogue (SGD) dataset [Rastogi et al., 2020], a large-scale benchmark
of over 16k task-oriented dialogues across 16 domains, designed to capture realistic challenges such
as overlapping services and unseen APIs. For supervision, we adopt human satisfaction labels from
the USS dataset [Sun et al.,|2021]], which provides 5-point turn-level and dialogue-level annotations
for a subset of SGD. These labels serve as proxies for user risk, enabling training and evaluation of
early-warning models. Notably, only about 10% of labeled dialogues are flagged as risky, reflecting
the class imbalance typical in real-world settings.

3.2 Baselines and Ablation Study

We compare our method against a range of baselines and ablations to isolate the impact of each
component.

LLM-as-Judge. We prompt a pretrained LLM to assign a risk score to each turn. This approach
relies solely on parametric, static knowledge from pretraining and does not learn from task-specific
data. While such prompting can reflect strong prior intuition, it lacks adaptability and cannot improve
with supervision.



Sentiment Heuristic. As a simple heuristic, we assume that turns with negative sentiment may
correlate with risk—e.g., user complaints or expressions of dissatisfaction. We apply a pretrained
sentiment analysis model to obtain turn-level sentiment scores. This serves as a heuristic baseline
and does not explicitly model risk or its temporal dynamics.

Non-MIL Supervision. An intuitive approach to weak supervision is to train a model to predict the
dialogue-level label given a partial dialogue (prefix) as input. However, this method introduces two
key issues: (1) it may lead to overfitting, since the same dialogue generates many overlapping prefixes
as training examples; and (2) it imposes no structural link between turn-level and dialogue-level
scores, unlike the pooling formulation in MIL. In particular, it does not enforce any monotonicity,
which we find beneficial for early detection.

Non-Learning Trigger. To assess the value of our learned RL-based trigger, we compare against
a deterministic trigger that fires when the pooled risk exceeds a fixed threshold. This non-learning
variant uses the same scoring model but removes the learned policy, allowing us to evaluate the
contribution of trigger learning to overall performance.

Fixed-)\ Trained Trigger. To test the value of using a single A-conditioned trigger, we compare
against a variant that trains a separate RL trigger for each desired \ value. This approach removes
generalization across cost trade-offs, requiring one model per operating point. It allows us to
investigate whether conditioning on A\ within a single policy yields better efficiency and generalization
compared to training multiple fixed-) policies.

4 Results

4.1 Improved Classification via MIL

To assess the impact of multi-instance learning (MIL) on risk detection, we compare our MIL-based
scorer with two baselines: (i) a non-MIL model trained to predict dialogue-level risk from partial
dialogue prefixes, and (ii) an LLM-as-judge baseline, which prompts a large language model (GPT-40)
to provide turn-level risk assessments that are then aggregated into dialogue-level predictions based
on the presence of risky turns.

The non-MIL model treats each prefix as a separate input and directly optimizes for dialogue-level
labels, without modeling any structured connection among scores from the same dialog. In contrast,
MIL explicitly enforces a mapping between turn-level and dialogue-level predictions, enabling it to
aggregate local risk cues into more reliable dialogue-level decisions. The LLM-as-judge approach
bypasses training altogether, but may suffer from inconsistent calibration across prefixes.

As shown in Table|l} the MIL model achieves the best balance of precision and recall, yielding the
highest F1 score (0.731). Compared to the non-MIL baseline (0.649), the improvement is particularly
pronounced in F1, suggesting that MIL better calibrates turn-level scores for downstream triggering.
While the LLM-as-judge baseline achieves very high recall (0.936), its low precision (0.242) leads to
poor F1 (0.384), indicating a tendency to over-flag risk.

Overall, these results highlight that MIL not only surpasses the non-MIL baseline but also provides a
more effective and reliable alternative to prompting-based risk detection via LLMs.

Model Precision Recall F1 Score
MIL 0.673 0.800 0.731
non-MIL 0.541 0.811 0.649

LLM-as-judge 0.242 0.936 0.384

Table 1: Performance comparison of MIL and Non-MIL models and LLM-as-judge for dialogue-level
classification.

4.2 Better Earliness—Accuracy Trade-off

Figure [2] visualizes the trade-off between F1 score and mean decision time (in turns) for our method
(PARETOMIL) compared to a monotone max-pooling baseline. Each point corresponds to a different



configuration: triangles denote our RL-based trigger under different values of \; circles indicate the
pooling baseline at varying thresholds.

PARETOMIL achieves a superior Pareto frontier, dominating the top-left region: it triggers earlier at
the same or higher accuracy. The best PARETOMIL setting reaches an F1 of 0.802—well above the
best pooling variant (0.717)—at similar decision time.

This demonstrates the advantage of optimizing the early-alert trade-off explicitly via reinforcement
learning, rather than relying on static thresholding of risk scores. Furthermore, the smooth interpola-
tion of PARETOMIL across operating points is made possible by conditioning the policy on A\, which
controls the trade-off directly at inference.
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Figure 2: F1 score vs time to decision (average number of turns)

4.3 Benefits of \-Conditioned Triggering

Table [2 compares our A-conditioned policy to a set of RL triggers trained independently for each
fixed A\. Across all tested values, the conditioned policy achieves better F1 scores, despite being
trained jointly. In some cases (e.g., A = 0.1), the gain exceeds 5 points in F1.

We attribute this to three key factors:

1. Shared learning across A values introduces multi-task regularization and improves general-
ization 1997).
2. Goal-conditioned control allows smooth adaptation to new trade-offs at inference, similar to

utility-conditioned RL [Schaul et al.} 2015} Roijers et al., 2013].

3. Anchored KL regularization stabilizes the policy at A=0, reducing divergence during joint
training.

5 Related Work

Process supervision and multi-turn reward models. Process supervision provides fine-grained
feedback at intermediate steps, improving alignment and reasoning over outcome-only supervision



A=0.1 A=0.3 A=0.5 A=0.7
Policy model F1 Turns F1 Turns F1 Turns F1 Turns
Fixed-A Trained Trigger | 0.7353 18.04 | 0.7347 18.26 | 0.3046 1.00 | 0.3046  1.00
PARETOMIL 0.7929 19.18 | 0.7821 17.96 | 0.4885 11.16 | 0.3046  1.00

Table 2: Comparison of PARETOMIL (A-conditioned policy) and fixed-\ policy across different A
values on F1 score and average number of turns to decision.

[Lightman et al.,|2023]]. Recent work highlights the limits of Monte Carlo—derived step labels and
the benefits of judge-based supervision for generalization [Zhang et al.|[2025]]. ArCHer [Zhou et al.|
2024] trains hierarchical multi-turn agents with utterance-level rewards, motivating our focus on
turn-level risk in dialogue as an alternate form of process-level feedback.

Multiple-instance learning for weak supervision. We adopt soft Multiple-Instance Learning
(MIL) to estimate per-turn risk from dialogue-level labels, using differentiable pooling to aggregate
latent instance scores [Carbonneau et al.,|2018| [Ise et al.,|2018]]. Monotone poolers like noisy-OR or
log-sum-exp produce well-behaved prefix posteriors.

Early decision-making and cost-aware stopping. Early Classification of Time Series (ECTS)
formalizes the earliness—accuracy trade-off as a sequential decision problem [Dachraoui et al.l 2015|
Achenchabe et al.| 2021]]. Related work explores multi-objective optimization [[Mori et al.| [2019] and
cost-sensitive stopping using RL [Kim et al., [2022b]. We extend this to dialogue, optimizing when to
trigger alerts based on calibrated risk trajectories.

Dialogue risk and early warning. Prior work studies early detection of user dissatisfaction [See
and Manning}, [2021} |Zhang et al.| 2021]] and interpersonal risk in conversations [Kim et al., 2022a].
Unlike classification-only approaches, we learn both per-turn risk and an adaptive trigger policy for
early, controlled alerts.

6 Conclusion

We presented a framework for early risk detection in multi-turn dialogue, combining soft multi-
instance learning with a controllable early classification trigger. Our approach leverages only
dialogue-level supervision, yet enables turn-level decisions with calibrated, prefix-aware risk scores
and a single policy that flexibly trades earliness for accuracy.

Using the SGD dataset with human satisfaction labels, we demonstrated strong empirical performance.
In particular, our method consistently outperformed baselines during both early and mid stages of
dialogue—where timely intervention is most valuable. Compared to competitive alternatives, our
approach achieves a better earliness—accuracy frontier across multiple datasets, confirming the
practical advantages of structured scoring and single-policy triggering.

Looking forward, this framework may serve as a foundation for broader process-level supervision
tasks, including dynamic response selection, model self-monitoring, and intervention-aware training.
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