
Under review as a conference paper at ICLR 2021

RECONNAISSANCE FOR REINFORCEMENT LEARNING
WITH SAFETY CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Practical reinforcement learning problems are often formulated as constrained
Markov decision process (CMDP) problems, in which the agent has to maximize
the expected return while satisfying a set of prescribed safety constraints. In this
study, we consider a situation in which the agent has access to the generative
model which provides us with a next state sample for any given state-action pair,
and propose a model to solve a CMDP problem by decomposing the CMDP into
a pair of MDPs; reconnaissance MDP (R-MDP) and planning MDP (P-MDP).
In R-MDP, we train threat function, the Q-function analogue of danger that can
determine whether a given state-action pair is safe or not. In P-MDP, we train a
reward-seeking policy while using a fixed threat function to determine the safeness
of each action. With the help of generative model, we can efficiently train the
threat function by preferentially sampling rare dangerous events. Once the threat
function for a baseline policy is computed, we can solve other CMDP problems
with different reward and different danger-constraint without the need to re-train the
model. We also present an efficient approximation method for the threat function
that can greatly reduce the difficulty of solving R-MDP. We will demonstrate the
efficacy of our method over classical approaches in benchmark dataset and complex
collision-free navigation tasks.

1 INTRODUCTION

With recent advances in reinforcement learning (RL), it is becoming possible to learn complex
reward-maximizing policy in an increasingly more complex environment (Mnih et al., 2015; Silver
et al., 2016; Andrychowicz et al., 2018; James et al., 2018; Kalashnikov et al., 2018). However, it
is difficult in general to assess whether the policies found by a given RL algorithm is physically
safe when applied to real world situations. This has long been one of the greatest challenges in the
application of reinforcement learning to mission-critical systems. In a popular setup, one assumes a
Markovian system together with a predefined measure of danger, and formulates the problem as a
type of constrained Markov decision process (CMDP) problem. That is, based on the classical RL
notations in which π represents a policy of the agent, we aim to solve

max
π

Eπ[R(h)] s.t. Eπ[D(h)] ≤ c, (1)

where h is a trajectory of state-action pairs, R(h) is the total return that can be obtained by h, and
D(h) is the measure of how dangerous the trajectory h is. To solve this problem, one must monitor
the value of Eπ[D(h)] throughout the training. Methods like (Altman, 1999; Geibel & Wysotzki,
2005; Geibel, 2006; Achiam et al., 2017a; Chow et al., 2018; 2019) uses sampling to approximate
Eπ[D(h)] or its Lyapunov function at every update. However, the sample-based evaluation of the
Eπ[D(h)] is particularly difficult when the system involves “rare" catastrophic accidents, because an
immense number of samples will be required to collect information about the cause of such accident.

This problem can be partially resolved if we can use a generative model to predict the outcome of any
given sequence of actions and initial state. Model Predictive Control (MPC) (Maciejowski, 2002;
Falcone et al., 2007; Wang & Boyd, 2010; Di Cairano et al., 2013; Weiskircher et al., 2017) uses the
philosophy of receding horizon and predicts the future outcome of actions in order to determine what
action the agent should take in the next step. If the future-horizon to consider is sufficiently short
and the dynamics is deterministic, the prediction can often be approximated well by linear dynamics,

1

Under review as a conference paper at ICLR 2021

Original Circuit New Circuit
RP (proposed) DQN with λ=0

crash

(a) (b) (d) (f)RP (proposed) DQN with λ=0MPC (c) (e) MPC

ss s

sss

Figure 1: The trajectories produced by the the policy trained by our proposed method ((a) and (d)),
4-step MPC ((b), (e)), and the policy trained with penalized DQN ((c) and (f)). The trajectories on
circular circuit were produced by the policies trained on the original circuit. S represents the initial
position of the agent. The red marks represents the places at which the agent crashed into the wall.

which can be evaluated instantly. However, because MPC must finish its assessment of the future
before taking every action, its performance is limited by the speed of the predictions. When we
apply MPC to environments with multiple agents and stochastic dynamics, the computational load of
prediction is especially heavy and it can be difficult to finish the prediction in time. MPC requires
this computation for each time-step even if the current state is similar to the ones experienced in the
past. Meanwhile, if the prediction is done for only a short horizon, MPC may suggest a move to a
state leading to a catastrophe.

In an effort to reduce the difficulty in evaluating the safeness of policies, we propose a novel generative
model-based approach that looks for a solution of a CMDP problem by decomposing the CMDP
into a pair of MDPs: a reconnaissance MDP (R-MDP) and planning MDP (P-MDP). The purpose of
R-MDP is to (1) recon the state space using the generative model and (2) train a baseline policy for
the threat function , which is a Q-function analogue of D.

In R-MDP, we use generative model to selectively sample trajectories containing rare dangerous
events, and learn the threat function for the baseline policy in the way of supervised learning. Once
we obtain a good approximation of the threat function for the baseline policy, we can determine
whether a given action is safe at each state or not by just evaluating the threat function. This process
does not involve prediction, which can be computationally demanding. We will theoretically show
that we can increase the set of safe actions by improving the safeness of the baseline policy. In
P-MDP, we train the reward-seeking policy while using the threat function to make sure that unsafe
actions are not chosen. We may say that P-MDP is a version of original MDP in which the agents are
only allowed to select an action from the set of safe policies defined by the threat function. P-MDP
can be solved with standard RL methods like DQN (Mnih et al., 2015). With our framework, the user
is freed from the need of monitoring Eπ[D] throughout the whole training process.

We will also show that our approach enjoys the following useful properties: 1) If we can find a safe
baseline policy from the R-MDP problem, the learning of P-MDP will always be safe. 2) So long
that we define the danger with the same D function, we can re-use the threat function constructed for
one CMDP problem to solve another CMDP problem with a different reward function and different
constraint threshold. 3) When dealing with a problem with multiple sources of danger, we can use a
basic rule of probability to upper-bound the threat functions by a sum of sub-threat functions, with
each summand corresponding to different source of danger each. The property (2) allows us to train
an agent that can safely navigate a circuit irrespective of the course-layout1(d). In this experiment,
we represented the circuit’s wall as a set of point obstacles, and computed the threat functions for
the collision with each obstacle point. The property (3) allows us to find a good reward-seeking
policy for a sophisticated task like safely navigating through a crowd of randomly moving obstacles.
Although our method does not guarantee to find the optimal solution of the CMDP problem, there
has not been any study to date that has succeeded in solving a CMDP in dynamical environments as
high-dimensional as the ones discussed in this study.

2 PROBLEM FORMULATION AND THEORETICAL RESULTS

We assume that the system in consideration is a discrete-time constrained Markov Decision Process
(CMDP) with finite horizon, defined by a tuple (S,A, r, d, P, P0), where S is the set of states, A is
the set of actions, P (s′|s, a) is the density of the state transition probability from s to s′ when the

2

Under review as a conference paper at ICLR 2021

action is a, r(s, a) is the reward obtained by action a at state s, d(s, a) is the non-negative danger
of taking action a at state s, and P0 is the distribution of the initial state. We use π(a|s) to denote
the policy π’s probability of taking an action a at a state s. Finally, let us use 1B to represent the
indicator function of an event B. Now we formally present the optimization problem (1).

arg max
π

Eπ

[∑T−1
t=0 γtr(st, at)

]
, s.t.Eπ

[∑T−1
t=0 βtd(st, at)

]
≤ c, (2)

where c ≥ 0 specifies the safety level, γ, β ∈ [0, 1) are the discount factors, and Eπ[·] denotes the
expectation with respect to π, P and P0. We use plain E to denote the expectation with respect to P0.

2.1 PROPERTIES OF THREAT FUNCTIONS AND SECURE POLICIES

In our formulation, we use the following threat function and danger function as a danger-analogue of
the action-value function and state-value function, respectively.

T η
t (st, at) = Eη

[
T−1∑
k=t

βk−td(sk, ak) | st, at

]
, Dη

t (st) = Eη [T η
t (st, at)] . (3)

We say that a policy η is safe if E[Dη
0 (s0)] ≤ c. Indeed, the set of safe policies is the set of

feasible policies for the CMDP (1). Before we proceed further, we describe several key definitions
and theorems that stem from the definition of the threat function. For now, let us consider a time-
dependent safety threshold xt defined at each time t, and let η be any policy. Let us also use x to
denote (x0, . . . , xT−1). Then the set of (η,x)-secure actions is the set of actions that are deemed
safe by η for the safety threshold x in the sense of the following definition;

Definition 1 ((η,x)-secure actions and (η,x)-secure states). Let Aη,x(s, t) =
{
a; T η

t (s, a) ≤ xt
}

.

Aη,x(s) =
⋂

t∈{0,··· ,T−1}

Aη,x(s, t), Sη,x =
{
s ∈ S;Aη,x(s) 6= ∅

}
. (4)

This (η,x)-secure set of actions Aη,x(s) represents the agent’s freedom in seeking the reward under
the safety protocol created by the policy η. The set of secure actions for an arbitrary η could be empty
for some states. (η,x)-secure states is defined as a set of states for which there is non-empty (η,x)-
secure actions. If we use supp(p) to denote the support of a distribution p, we can use this definition
to define a set of policies that is at least as safe as η. First, let us define the set of distributions,

Fη(s) =

{
p(·);

∫
a

p(a)T η
t (s, a)da ≤ Eη[T η

t (s, a)] ∀t
}
.

Then the following set of policies are at least as safe as η.
Definition 2 (General (η,x)-secure policies).

Πη,x
G = {π; for s ∈ Sη,x, supp(π(·|s)) ⊆ Aη,x(s), otherwise, π(·|s) ∈ Fη(s)}. (5)

Now, we are ready to develop our theory for determining when a given policy is safe. The following
theorem enables us to bound Dπ

t (st) without evaluating the expectation with respect to π.
Theorem 1. For a given policy η and a sequence of safety thresholds x = (x0, . . . , xT−1), let π be a
policy in Πη,x

G . Let us use dTV (p, q) to denote the total variation distance1 between two distributions
p and q. Then for all t ∈ {0, . . . , T − 1}

Dπ
t (st) ≤Dη

t (st) + 2

T−1∑
k=t

βk−txkEπ [zk | st] . (6)

where zt = 1st∈Sη,xdTV (π(·|st), η(·|st)) is a distance measure of the two polices.

The proof of this result uses practically same logic as the one used for Theorem 1 in (Achiam et al.,
2017a). Please see the Appendix for the detail. In practical application, it is more convenient to set
xt = x for all t. If we also bound zt from above by 1, we obtain the following useful result.

1Total variation distance is defined as dTV (p(a), q(a)) = 1
2

∑
a |p(a)− q(a)|.

3

Under review as a conference paper at ICLR 2021

Corollary 2. If E[Dη
0 (s0)] ≤ c , let x = (xηc , . . . , x

η
c) with xηc = 1

2 (c− E[Dη
0 (s0)]) 1−β

1−βT . Then a

policy π is safe if π ∈ Π
η,xηc
G , (i.e., E[Dπ

0 (s0)] ≤ c).

The above corollary provides us a safety guarantee for π when η itself is safe. But in fact, if we look
inside a smaller subset of Πη,x

G , we can guarantee the safety even when η itself may not be safe.

Definition 3 ((η,x)-secure policies). Let greedy-η(a|s) = 1a=arg mina′ T
η
t (s,a′).

Πη,x =
{
π; for s ∈ Sη,x, supp(π(·|s)) ⊆ Aη,x(s), otherwise, π(·|s) = greedy-η(·|s)

}
. (7)

The (η,x)-secure policies Πη,x is indeed a subset of Πη,x
G because greedy-η is just the one-step

policy improvement from η. It turns out that we can construct a pool of absolutely safe policies
explicitly from T η

t (s, a) and c alone even when η itself is not necessarily safe.

Corollary 3. If E[Dgreedy-η
0 (s0)] ≤ c, by setting x = (xηc,g, . . . , x

η
c,g) with xηc,g = 1

2 (c −
E[Dgreedy-η

0 (s0)]) 1−β
1−βT , any policy π ∈ Πη,xηc,g is safe, i.e., E[Dπ

0 (s0)] ≤ c.

This result can be derived using a result similar to Eq.(6) (See Appendix for the detail). In the next
section, we will use Πη,xηc,g to construct a pool of safe policies from which to seek a good and safe
reward-seeking policy. Now, several remarks are in order. First, if we set β = 1, then xηc → 0 as
T → ∞. This is in agreement with the law of large numbers; that is, any accident with positive
probability is bound to happen at some point. Also, note that we have Aη,x(s) ⊆ Aη′,x(s) whenever
T η′

t (s, a) ≤ T η
t (s, a) for any t. Thus, by finding the risk-minimizing η, we can maximize the pool

of safe policies. Whenever we can, we shall therefore look not just for a safe η, but also for the threat
minimizing policy. Finally and most importantly, note that the threshold expression in Corollary
3 is free of π. We can use this result to tackle the CMDP problem by solving two separate MDP
problems. More particularly, in seeking a solution to the CMDP problem we can (i) first look for an η
satisfying E[Dgreedy-η

0 (s0)] ≤ c, and then (ii) look for a safe reward maximizing policy π in Πη . We
will further articulate this procedure in the next section. Hereafter unless otherwise noted, we will
use Πη to denote Πη,xηc,g , and use Sη, Aη(s) to denote Sη,x

η
c,g , Aη,x

η
c,g (s).

3 RECONNAISSANCE-MDP (R-MDP) AND PLANNING-MDP (P-MDP)

In the previous section, we have shown that we can create a pool of safe policies using a baseline safe
policy. Also, by training a policy to minimize the threat, we can find a safe policy that corresponds to
a larger pool of secure policies, and we look within this pool to search for a possibly better reward
seeking policy. This motivates us to solve two types of MDP problem: the one with the aim of
minimizing the threat, and the one with the goal of maximizing the reward.

The purpose of the Reconnaissance MDP (R-MDP) is thus to reconnoiter the system prior to the
reward maximization process and to look for the threat minimization safe policy η∗ that solves

η∗ = arg min
η

Eη

[∑T−1
t=0 βtd(st, at)

]
. (8)

Indeed, solution η∗ of argmin is not unique, up to freedom of the actions on the states unreachable by
any optimal policy η∗. For our ensuing discussions, we will chose η∗ to be a version whose policy on
each unreachable state s∗ is computed by (8) with initial state being s∗. If the problem is of infinite
horizon, η∗ computed from any initial state will be same because of the Markov property.

As a process, R-MDP is same as the original MDP except that we have a danger function in place of a
reward function, and that the goal of the agent in the system is to minimize the danger. The following
is true in general about R-MDP.

Corollary 4. If the set of feasible policies of the original CMDP is nonempty, the optimal R-MDP
policy η∗ is safe. Thus, every policy in Πη∗ is safe.

After we solve the R-MDP, the Planning MDP (P-MDP) searches within Πη∗ for a good reward-
seeking policy π∗. The P-MDP is similar to the original MDP except that the agent is only allowed to

4

Under review as a conference paper at ICLR 2021

take actions from Aη
∗

when s ∈ Sη∗ and that it follows greedy-η∗ at non-secure states s 6∈ Sη∗ .

π∗ = arg max
π∈Πη∗

Eπ

[
T−1∑
t=0

γtr(st, at)

]
. (9)

In implementation, we do not explicitly construct Πη∗ . Instead, we evaluate T η∗

t (s, a) for every
considered state-action pair in P-MDP and make sure that all suggested reward-seeking actions are in
Aη
∗
. Note that, if policy η∗ is safe, every policy in Πη∗ is guaranteed to be safe. More particularly,

in such case, any policy in the entire learning process of the P-MDP is safe. We would refer to the
whole procedure of solving R-MDP and P-MDP as Reconnaissance and Planning (RP) algorithm.
The following table summarizes the algorithm. Naturally, whether this algorthm works in application

Algorithm 1 RP algorithm

1: Obtain the baseline policy η∗ by either solving R-MDP or selecting a heuristic policy
2: Estimate T η∗

t (·, ·)
3: Solve the P-MDP (9) while referring the evaluation of T η∗

t at every considered state-action pair
so that all actions will be chosen from Aη

∗,x (Eq. (7))

depends on how well we can evaluate the threat in R-MDP. However, in many applications, the
set of dangerous events to be avoided can be extremely rare. These rare events make the empirical
approximation Eπ[·] difficult. We resolve this problem by evaluating T η

t (s, a) with the generative
model. With the generative model, we can freely explore the system from any arbitrary initial state,
and evaluate T η

t (s, a) for any (s, a) and η. To facilitate the learning of T η∗

t (s, a), we use the
generative model to preferentially sample the states with relatively high estimated T η∗

t (s, a) more
frequently. We will next introduce a technique to approximate the threat function.

3.1 THREAT DECOMPOSITION AND APPROXIMATE RP ALGORITHM

We will present a useful bound on the threat function that can be used when the danger is be described
in terms of multiple risky events. Suppose that there are N risky events {E1, ..., EN} to consider, and
that the goal is optimize the reward while avoiding any risky event. More formally, let us represent the
indicator function of En by dn(s

(o)
t , s

(n)
t , at) where s(n)

t is the state of the system relevant to En and
s(o) is the state of the system not relevant to any risky events. Let us also assume that the transition
probabilities decompose into p(st+1|st, at) = p(s

(o)
t+1|s

(o)
t , at)

∏N
n=1 p(s

(n)
t+1|s

(n)
t , s

(o)
t , at). If d is

the indicator function of ∪mn=1En, we can formalize this result as follows:

Theorem 5. Let η be a policy that takes action based solely on s(o)
t , and let T η be the threat function

defined for the indicator function of ∪Nn=1En. Then T η
t (st, at) ≤

∑N
n=1 T η,n

t (s
(o)
t , s

(n)
t , at).

This result is especially useful in navigation-like tasks. For example, when En is the collision event
with nth obstable, sn will be the state of nth obstacle, and so will be the aggregate state of the system
that are not related to any obstacles(state of the agent, etc). In such case, each T η,n can be estimated
using the simulator containing just the nth obstable object and the agent. Algorithm 2 is the algorithm
that uses Theorem 5. For other variants of Theorem 5, please see the Appendix. Theorem 5 suggests

Algorithm 2 Approximate RP algorithm

1: Pick a heuristic policy η(o) which depends on s(o) only.
2: Estimate the threat functions T η(o),n

t (·, ·) for all sub R-MDPs.

3: Solve the P-MDP (9) while referring to the evaluation of
∑
n T η(o),n

t at every considered

state-action pair so that all chosen actions will satisfy
∑
n T η(o),n

t ≤ xt.

that that threat function can be treated like risk potential. Wolf & Burdick (2008); Rasekhipour et al.
(2016b); Ji et al. (2016). Risk-potential based methods also work by evaluating the risk of collision
with each obstacle for each location in the environment, and by superimposing the results. However,
most of these works define the risk potential rather heuristically.

5

Under review as a conference paper at ICLR 2021

(a) Map (b) Threat function

10－4 10－3 10－2 10－1 100 101

threat threshold x
0

2

4

6

8

10

Av
er
ag
e
da
ng
er P-MDP withη0

P-MDP withη1
P-MDP withη2
RP
Upper bound

(c) Danger

0 2 4 6 8
Average danger

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag
e
re
w
ar
d

Lagrange multiplier method
P-MDP withη0
P-MDP withη1
P-MDP withη2
RP

(d) Reward vs Danger

Figure 2: (a) Map of FrozenLake8x8-v0. Here the symbols ‘S’, ‘G’, ‘H’ and ‘F’ denote the position
of start, goal, hole to be avoided, and frozen surface, respectively. (b) Heat map of the threat function
of optimal R-MDP baseline policy. The warmer color represents the higher value of the threshold
function at the corresponding position and action. The threshold tends to be higher around the hole.
(c) Average danger suffered by PMDP policies vs safety threshold x. (d) Scatter plot of average
rewards and average dangers obtained with different safety thresholds.

4 EXPERIMENT

We conducted a series of experiments to (i) analyze the nature of the threat function, (ii) the effect of
the choice of the baseline policy η on the performance of P-MDP, and (iii) the sheer efficacy of the
RP algorithm implemented with the threat decomposition approximation. We will also show that we
can re-use the threat function computed for one CMDP to solve another CMDP problem with similar
safety constraint. We will demonstrate the power of our method on high-dimensional problems.

4.1 FROZEN LAKE ENVIRONMENT

We considered an example of the frozen lake environment FrozenLake8x8-v0 in OpenAI Gym where
the agent navigates in the 8 by 8 grid world in Fig. 2 (a). The goal of the agent is to start from ‘S’
and navigate its way through the slippy environment to reach the goal ‘G’ while avoiding the holes
‘H’. Each time on a frozen surface ‘F’, the agent can choose to move in one of the four directions, but
the surface is slippery so the agent’s actual movement may be different from the intended direction.
We first construct the R-MDP as described in Sec 3. The R-MDP is a tabular MDP which can be
solved by value iteration. The threat function of the optimal R-MDP policy is shown in Fig. 2 (b).
The threat values are indeed higher when the agent is closer to the holes. From the threat function
we can see that, there is a safe path from ’S’ to ’G’ following the right most column. But the tricky
part is at positions (6, 8) and (7, 8). On these positions, the only action that can avoid the danger is
’RIGHT’, which is not the best reward-seeking action (’DOWN’).

The P-MDP is again a tabular MDP, and we can solve it by value iteration. In Fig. 2 (c) and (d), we
compare the performance of P-MDP based on the optimal R-MDP policy η∗ against those of the
P-MDPs based on the sub-optimal R-MDP policies. Based on a completely random policy for η0,
we defined η1 = greedy-η0 and η2 = greedy-η1. In other words, both η1, η2 are the outcomes of
applying policy iterations to the random policy. We also plot the reward and danger trade-off using
the Lagrange multiplier method. We can see that, even though η0 is completely random, the P-MDP
constructed from η0 generates safe policies when the threat threshold x is small. When the baseline

6

Under review as a conference paper at ICLR 2021

(a) (b) (c) (d)

x

y

Figure 3: (a) Illustration of Jam task. The light blue circles are obstacles and the yellow circle is the
agent. Three shaded corners are safe-zones. The arrow attached to each object shows its direction
of movement. (b) Heat map of the trained threat function whose value at point (x, y) represent the
threat when the obstacle (light blue) is placed at (x, y) with the same velocity. (c) and (d) are the heat
maps of the sum of the threat functions of all moving obstacles. The heat value at (x, y) is the threat
posed to the agent at (x, y) when it is moving in the direction indicated at the left bottom corner.

policy becomes better, the reward tends to become higher and the danger becomes smaller. At the
same time, the difference becomes small after the second iteration. We see that, two policy iteration
is enough to obtain near-optimal policy for this problem. The upper bound from Theorem 1 is shown
as a dashed curve in Fig. 2 (c) which is in accordance with our theory.

4.2 HIGH-DIMENSIONAL ENVIRONMENTS

For high-dimensional environments, we consider three tasks on 2-D fields. See Fig. 1 and Fig. 3
for visualizations. For Point Gather, the agent’s goal is to collect as many apples as possible while
avoiding bombs. For Circuit, the agent’s goal is to complete one lap around the circuit without
crashing into a wall. The agent can control its movement by regulating its acceleration and steering.
LiDAR sensors are used to compute the distance to obstacles. For Jam, the LiDAR-equipped agent’s
goal is to navigate its way out of a room from the exit located at the top right corner as quickly as
possible without bumping into 8 randomly moving objects. The observation of each environment
consists of 29, 364, 392 real values respectively and an agent needs to deal with stochasticity in Jam.
For further details, please see Appendix F. Before explaining the experimental results, we would
like to note that the total reward changes depending on how much we severely penalizes the agent
for each crash. As a reference, we show the results when imposing heavier penalty on the crash in
Appendix H.

As we discussed earlier, finding the optimal policy of the R-MDP is challenging in high-dimensional
environments. However, since the constraint in these environments is to avoid collision with any
obstacles, we can use the approximation method introduced in Sec 3.1 that uses a set of sub-R-MDPs
containing one obstacle and one agent each. Thus, to guarantee the safety in P-MDP, we only learned
a threat function of a heuristic baseline policy η(o) in a sub-R-MDP with one obstacle. For Circuit
and Jam, we treated wall as a set of immobile obstacles so that we can construct the threat function of
any shape. After about 10 minutes of data collection with the generative model, this threat function
could be learned in less than half an hour without using GPUs. Please see the supplemental material
for more detailed conditions and videos of the agent trained by each method. Fig. 3(c),(d) are the
heat maps for the upper bound of the threat function computed in the way of Theorem 5. The color
of each heat map at pixel z represents

∑
n T η,n

0 (s(z), a), where s(z) represents the state at which
the agent’s current location is z and its velocity and direction is given by the picture located at the
left corner of the heat map. We see that our threat function is playing a role similar to the artificial
potential field (Ge & Cui, 2000; Cetin et al., 2011; Lam et al., 2010). Because our threat function is
computed using all aspects of the agent’s state (acceleration, velocity, location), we can provide more
comprehensive measure of risk compared to other risk metrics such as TTC (Time To Collision) (Lee,
1976) used in smart automobiles that considers only 1D movement.

Fig. 4 plots the average reward and the crash rate against the training iteration for various methods:
(i) classical MPC (exhaustive search), (ii) DQN with Lagrange penalty, and (iii) Constrained Policy
Optimization (CPO) (Achiam et al., 2017a). DQN and CPO are model-free algorithms, while RP and
MPC are generative model-based algorithms. (ii) is essentially the same as the Lagrangian-based
methods like (Geibel & Wysotzki, 2005; Geibel, 2006). The results of DQN can be considered as a
reference of the difficulty of solving CMDP with model-free RL methods. To compute the threat in

7

Under review as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−60

−40

−20

0

20

40

60

Point Gather

Circuit

Jam(c)

(b)

(a)

million steps

cr
as

h
ra

te

million steps

av
er

ag
e

re
w

ar
d

0.0 0.5 1.0 1.5 2.0 2.5 3.0
million steps

0.0

0.2

0.4

0.6

0.8

1.0

cr
as

h
ra

te

Constraint

million steps
cr

as
h

ra
te

million steps

av
er

ag
e

re
w

ar
d

0.0 0.5 1.0 1.5 2.0 2.5 3.0

million steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

av
er

ag
e

re
w

ar
d

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−250

0

250

500

750

1000

1250

1500

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Point Gather

MPC (1step)

DoubleDQN (λ=1)
DoubleDQN (λ=10)
DoubleDQN (λ=50)
approx.RP (x=0.1)
approx.RP (x=0.5)
CPO
MPC (2steps)

Constraint
MPC (3steps)

DoubleDQN (λ=0)
DoubleDQN (λ=20)
DoubleDQN (λ=200)
approx.RP

MPC (5steps)
MPC (4steps)

CPO

Circuit

Jam

Constraint

DoubleDQN (λ=5 5)
DoubleDQN (λ=5 50)
DoubleDQN (λ=5 500)
approx.RP

MPC (3steps)
MPC (2steps)

CPO

Figure 4: Comparison of multiple CMDP methods in terms of rewards (left panels) and crash rate
(right panels) in diffferent environments (a) Point Gather, (b) Circuit and (c) Jam.

MPC, we took the same strategy of threat decomposition as our method G.4 in order to make the
prediction efficient.

The average values and the 90% confidence intervals in the plot were computed over 10 seeds.
The curve plotted for our approx. RP corresponds to the result obtained by a DQN-based P-MDP
solution. The plot does not include the R-MDP phase. As we can see, our method achieves the
highest reward at almost all phases of the training for both Circuit and Jam, while maintaining the
lowest crash rate. Our method is safer than the 3-step MPC for both Jam and Circuit as well, a method
with significantly higher runtime computational cost. For point-gather, RP with x = 0.1 performs
worse in terms of reward than the penarlized DQN and CPO. Although 0.1 is a value that is slightly
larger than the minimum safety threshold that guarantees the safety, our RP with x = 0.1 performs
very conservatively in term of safety. This suggest that the pool of actions allowed for x = 0.1 is
probably still too small. Fortunately, however, we can fine-tune the threshold to increase the pool of
allowed actions for P-MDP without re-learning the threat function. Our RP with x = 0.5 performs
competitively while satisfying the prescribed constraint. That we can fine-tune the threshold without
retraining is a significant advantage of our method over Lagrange-type methods. Also, by the token
of Corollary 3, that our policy is experimentally safe suggests that greedy-η(o) is also safe for the
choice of the baseline policy η(o).

4.3 RECYCLING OF THE THREAT FUNCTION FOR A CMDP IN DIFFERENT ENVIRONMENT

As we mentioned in introduction, we can reuse the threat function for different CMDP tasks with
different goals if their safety constraints are defined similarly. In order to verify this powerful feature
of our algorithm, we conducted two sets of experiments in which we apply a policy learned on one
environment to the tasks on another environment. For the first set of experiments, we trained a safe

8

Under review as a conference paper at ICLR 2021

Environment approx. RP MPC (4steps) DQN (λ=0) DQN (λ=200)
Training env. 1439 (0) 1055 (0.35) 1432 (0.05) 933 (0.4)

Narrowed env. 377 (0) 959 (0.55) -151 (1.0) -145 (0.99)
Circle 130 (0) 351 (0) -189 (1.0) -171 (1.0)

Computation Time (s) 0.5 18.2 0.4 0.4

Table 1: Performance of trained policies on known and unknown Circuit environments. The values in
the table are the obtained rewards, and inside the parenthesis are the probabilities of crashing. Time
stands for the computation time consumed in making 100 action steps. Note that our method never
crashes in this experiment. In this experiment, every crash is penalized by 200pts. See Appendix for
the result with heavier crash penalty.

Environment approx. RP MPC (3steps) DQN (λ=5) DQN (λ=500)
N =3 78.2 (0) 77.5 (0.05) 77.2 (0.04) 4.4 (0.17)

N =8 (training env.) 69.1 (0) 65.3 (0.2) 47.1 (0.38) -1.0 (0.24)
N = 15 33.0 (0.02) 36.6 (0.45) 16.5 (0.66) -16.8 (0.51)

Computation Time (s) 1.2 285 0.4 0.4

Table 2: Performance of trained policies on and known and unknown Jam environments. Values in
the table are reported in the same way as in Table 1. In this experiment, every crash is penalized by
50 pts. Note that we achieve the lowest crashing rate while achieving high score. Our RP stands out
more if the crash is penalized more heavily (See Appendix)

policy for the Circuit task, and evaluated its performance on the environments that are different from
the original circuit used in the training, (1) narrowed circuit with original shape, and (2) differently
shaped circuit with same width. For the second set of experiments, we trained a safe policy for
the Jam task, and tested its performance on other Jam tasks with different numbers of randomly
moving obstacles. Figs. 1 and 2 show the results. For the modified Jam, we have no results for MPC
with more than 3-step prediction since the exhaustive search cannot be completed within reasonable
time-frame. The 4-step MPC requires 18.2secs per each 100 steps for Circuit, and the 3-step MPC
requires 285secs per each 100 steps for the original Jam. We find that, even in varying environments,
the policy obtained by our method can guarantee safety with high probability while seeking high
reward. On the other hand, DQN in new environment is failing both in terms of reward and safety.

5 CONCLUSION

In this study we proposed a method that isolates the safety seeking procedure from reward-seeking
procedure in solving CMDP. Although our method does not guarantee to find the optimal reward-
seeking safe policy, it can perform significantly better than classical methods both in terms of safety
and reward in high-dimensional dynamic environments like Jam. Our method is designed so that
more training in R-MDP will always help increase the search space in P-MDP. Our treatment of
the threat function not only allows us to solve similar problems without the need of re-learning, it
also helps us obtain more comprehensive measure of danger at each state than conventional methods.
Overall, we find that utilizing threat functions is a promising approach to safe RL and further research
on framework may lead to new CMDP methods applicable to complex, real-world environments.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. arXiv
preprint arXiv:1705.10528, 2017a.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization, 2017b.
https://github.com/jachiam/cpo.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999. ISBN
0849303826.

9

https://github.com/jachiam/cpo

Under review as a conference paper at ICLR 2021

dexterousMarcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, and Alex Ray. Learning in-hand
manipulation. arXiv preprint arXiv:1808.00177, 2018.

Christel Baier, Boudewijn Haverkort, Holger Hermanns, and J-P Katoen. Model-checking algorithms
for continuous-time markov chains. IEEE Transactions on software engineering, 29(6):524–541,
2003. ISSN 0098-5589.

Maxime Bouton, Jesper Karlsson, Alireza Nakhaei, Kikuo Fujimura, Mykel J Kochenderfer, and Jana
Tumova. Reinforcement learning with probabilistic guarantees for autonomous driving. arXiv
preprint arXiv:1904.07189, 2019.

Omer Cetin, Sefer Kurnaz, Okyay Kaynak, and Hakan Temeltas. Potential field-based navigation task
for autonomous flight control of unmanned aerial vehicles. International Journal of Automation
and Control, 5(1):1–21, 2011. ISSN 1740-7516.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. In Neural Information Processing Systems 2018,
2018.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Mohammad Ghavamzadeh, and Edgar Duenez-
Guzman. Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

Stefano Di Cairano, Daniele Bernardini, Alberto Bemporad, and Ilya V Kolmanovsky. Stochastic mpc
with learning for driver-predictive vehicle control and its application to hev energy management.
IEEE Transactions on Control Systems Technology, 22(3):1018–1031, 2013. ISSN 1063-6536.

Jerry Ding, Eugene Li, Haomiao Huang, and Claire J Tomlin. Reachability-based synthesis of
feedback policies for motion planning under bounded disturbances. In 2011 IEEE International
Conference on Robotics and Automation, pp. 2160–2165. IEEE. ISBN 1612843859.

Michael Everett, Yu Fan Chen, and Jonathan P. How. Motion planning among dynamic, decision-
making agents with deep reinforcement learning. Intelligent Robots and Systems (IROS), 2018
IEEE/RSJ International Conference on, 2018.

Paolo Falcone, Francesco Borrelli, Jahan Asgari, H Eric Tseng, and Davor Hrovat. A model predictive
control approach for combined braking and steering in autonomous vehicles. In Mediterranean
Conference on Control & Automation, pp. 1–6. IEEE, 2007. ISBN 1424412811.

Shuzhi Sam Ge and Yan Juan Cui. New potential functions for mobile robot path planning. IEEE
Transactions on robotics and automation, 16(5):615–620, 2000. ISSN 1042-296X.

Peter Geibel. Reinforcement learning for mdps with constraints. In European Conference on Machine
Learning, pp. 646–653. Springer, 2006.

Peter Geibel and Fritz Wysotzki. Risk-sensitive reinforcement learning applied to control under
constraints. Journal of Artificial Intelligence Research, 24:81–108, 2005.

Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian
Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-sim:
Data-efficient robotic grasping via randomized-to-canonical adaptation networks. arXiv preprint
arXiv:1812.07252, 2018.

Jie Ji, Amir Khajepour, Wael William Melek, and Yanjun Huang. Path planning and tracking
for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE
Transactions on Vehicular Technology, 66(2):952–964, 2016. ISSN 0018-9545.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, and Vincent Vanhoucke. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293,
2018.

10

Under review as a conference paper at ICLR 2021

Chi-Pang Lam, Chen-Tun Chou, Kuo-Hung Chiang, and Li-Chen Fu. Human-centered robot
navigation—towards a harmoniously human–robot coexisting environment. IEEE Transactions on
Robotics, 27(1):99–112, 2010. ISSN 1552-3098.

David N Lee. A theory of visual control of braking based on information about time-to-collision.
Perception, 5(4):437–459, 1976. doi: 10.1068/p050437.

Wei Liu and Marcelo Jr. Incremental sampling-based algorithm for risk-aware planning under motion
uncertainty. In IEEE International Conference on Robotics and Automation, pp. 2051–2058, 2014.

Jan Marian Maciejowski. Predictive control: with constraints. Pearson education, 2002. ISBN
0201398230.

Megumi Miyashita, Shirou Maruyama, Yasuhiro Fujita, Mitsuru Kusumoto, Tobias Pfeiffer, Eiichi
Matsumoto, Ryosuke Okuta, and Daisuke Okanohara. Toward onboard control system for mobile
robots via deep reinforcement learning. In Proceedings of workshop on machine learning systems
(LearningSys) in the twenty-ninth annual conference on neural information processing systems
(NIPS), 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, and Georg Ostrovski. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015. ISSN 0028-0836.

Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
reinforcement learning has zero duality gap. In Advances in Neural Information Processing
Systems, pp. 7553–7563, 2019.

Yadollah Rasekhipour, Amir Khajepour, Shih-Ken Chen, and Bakhtiar Litkouhi. A potential field-
based model predictive path-planning controller for autonomous road vehicles. IEEE Transactions
on Intelligent Transportation Systems, 18(5):1255–1267, 2016a. ISSN 1524-9050.

Yadollah Rasekhipour, Amir Khajepour, Shih-Ken Chen, and Bakhtiar Litkouhi. A potential field-
based model predictive path-planning controller for autonomous road vehicles. IEEE Transactions
on Intelligent Transportation Systems, 18(5):1255–1267, 2016b. ISSN 1524-9050.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, and Marc Lanctot. Mastering the
game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016. ISSN
0028-0836.

Sean Summers, Maryam Kamgarpour, John Lygeros, and Claire Tomlin. A stochastic reach-avoid
problem with random obstacles. In Proceedings of the 14th international conference on Hybrid
systems: computation and control, pp. 251–260.

Ryo Takei, Haomiao Huang, Jerry Ding, and Claire J Tomlin. Time-optimal multi-stage motion
planning with guaranteed collision avoidance via an open-loop game formulation. In 2012 IEEE
International Conference on Robotics and Automation, pp. 323–329. IEEE. ISBN 1467314056.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation open
source framework for deep learning. In Proceedings of workshop on machine learning systems
(LearningSys) in the twenty-ninth annual conference on neural information processing systems
(NIPS), volume 5, pp. 1–6, 2015.

Eiji Uchibe and Kenji Doya. Constrained reinforcement learning from intrinsic and extrinsic rewards.
In Development and Learning, 2007. ICDL 2007. IEEE 6th International Conference on, pp.
163–168. IEEE, 2007. ISBN 1424411157.

Erwin Walraven and Matthijs TJ Spaan. Column generation algorithms for constrained pomdps.
Journal of artificial intelligence research, 62:489–533, 2018. ISSN 1076-9757.

Yang Wang and Stephen Boyd. Fast model predictive control using online optimization. IEEE
Transactions on control systems technology, 18(2):267–278, 2010. ISSN 1063-6536.

11

Under review as a conference paper at ICLR 2021

Thomas Weiskircher, Qian Wang, and Beshah Ayalew. Predictive guidance and control framework for
(semi-) autonomous vehicles in public traffic. IEEE Transactions on control systems technology,
25(6):2034–2046, 2017. ISSN 1063-6536.

Min Wen, Rüdiger Ehlers, and Ufuk Topcu. Correct-by-synthesis reinforcement learning with
temporal logic constraints. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pp. 4983–4990. IEEE, 2015. ISBN 1479999946.

Michael T Wolf and Joel W Burdick. Artificial potential functions for highway driving with collision
avoidance. In 2008 IEEE International Conference on Robotics and Automation, pp. 3731–3736.
IEEE, 2008. ISBN 1424416469.

Eiichi Yoshida, Claudia Esteves, Igor Belousov, Jean-Paul Laumond, Takeshi Sakaguchi, and
Kazuhito Yokoi. Planning 3-d collision-free dynamic robotic motion through iterative reshaping.
IEEE Transactions on Robotics, 24(5):1186–1198, 2008. ISSN 1552-3098.

APPENDIX

A PROOF OF THEOREM 1

Proof. Let’s first prove the theorem by induction. At t = T , Eq. (6) holds because both sides are
zero. Suppose Eq. (6) holds at t+ 1. Then at time t, the danger value function of π at t satisfies

Dπ
t (st) =Eπ

[
d(st, at) + βDπ

t+1(st+1) | st
]

≤Eπ
[
d(st, at) + β

(
Dη
t+1(st+1) +

T−1∑
k=t+1

βk−t−1xkEπ[zk|st+1]
)
| st
]

=Eπ

[
T η
t (st, at) | st

]
+

T−1∑
k=t+1

βk−txkEπ[zk|st] (10)

The above inequality follows from the induction hypothesis at t+ 1, and the last equality is from the
definition of T η

t and the property of conditional expectation.

Since π ∈ Πη,x
G , when st /∈ Sη,x we know that Eπ

[
T η
t (st, at) | st

]
≤ Eη[T η

t (st, at) | st]. Noting

the fact above and Dη
t (st) = Eη[T η

t (st, at) | st], for the first term in Eq. (10), we have

Eπ
[
T η
t (st, at) | st

]
−Dη

t (st)

≤1st∈Sη,x
∫
at

(π(at|st)− η(at|st))T η
t (st, at)dat

≤1st∈Sη,x
∫
at

|π(at|st)− η(at|st)|T η
t (st, at)dat

≤1st∈Sη,x2TV (π(·|st), η(·|st)) max
a∈supp(π(·|st))

T η
t (st, a)

≤2ztxt (11)

Here the first inequality holds because the term is negative when st /∈ Sη,x. The second inequality is
true by taking the absolute value with fact that T η

t (st, at) ≥ 0. The thirdinequality follows from the
property of the total variation distance. The last inequality is true because of the construction of Πη,x

G .

Now we get

Dπ
t (st) ≤Dη

t (st) + 2ztxt + 2

T−1∑
k=t+1

βk−txkEπ[zk|st]

=Dη
t (st) + 2

T−1∑
k=t

βk−txkEπ[zk|st] (12)

12

Under review as a conference paper at ICLR 2021

which completes the induction step and the proof of Theorem 1.Notice that the logic used here is
essentially same as the one used in the proof of Theorem 1 of (Achiam et al., 2017a). However, our
result is slightly different in that we consider finite time-horizon and we utilize our assumption that
T η
t (s, a) ≤ xt for (η,x)-secure states.

B PROOF OF COROLLARY 3

Proof. First, we will derive a result similar to Theorem 1.

Theorem 2. For a given policy η and a sequence of safety thresholds x = (x0, . . . , xT−1), let π be
a policy in Πη,x. Then for all t ∈ {0, . . . , T − 1},

Dπ
t (st) ≤Dgreedy-η

t (st) + 2

T−1∑
k=t

βk−txkEπ [zgk | st] ,

≤min
a

T η
t (st, a) + 2

T−1∑
k=t

βk−txkEπ [zgk | st] . (13)

where zgt is a distance measure between π and greedy-η given by zgt =
1st∈Sη,xdTV (π(·|st), greedy-η(·|st)).

Let’s prove the theorem by induction. At t = T , Eq. (13) holds because both sides are zero. Suppose
Eq. (13) holds at t+ 1. Then at time t, the danger value function of π at t satisfies

Dπ
t (st) =Eπ

[
d(st, at) + βDπ

t+1(st+1) | st
]

≤Eπ
[
d(st, at) + β

(
Dgreedy-η
t+1 (st+1) + 2

T−1∑
k=t+1

βk−t−1xkEπ[zgk |st+1]
)
| st
]

=Eπ

[
T greedy-η
t (st, at) | st

]
+ 2

T−1∑
k=t+1

βkxkEπ[zgk |st] (14)

The above inequality follows from the induction hypothesis at t+ 1, and the last equality is from the
definition of T greedy-η

t and the property of conditional expectation.

Since π ∈ Πη,x, when st /∈ Sη,x we know that π(·|st) = greedy-η(·|st). Noting the fact above and
Dgreedy-η
t (st) = Egreedy-η[T greedy-η

t (st, at) | st], for the first term in Eq. (14), we have

Eπ
[
T greedy-η
t (st, at) | st

]
−Dgreedy-η

t (st)

=1st∈Sη,x

∫
at

(π(at|st)− greedy-η(at|st))T greedy-η
t (st, at)dat

≤1st∈Sη,x
∫
at

|π(at|st)− greedy-η(at|st)|T greedy-η
t (st, at)dat

≤1st∈Sη,x2TV (π(·|st), greedy-η(·|st)) max
a∈supp(π(·|st))

T greedy-η
t (st, a)

≤1st∈Sη,x2TV (π(·|st), greedy-η(·|st)) max
a∈supp(π(·|st))

T η
t (st, a)

≤2zgt xt (15)

Here the first inequality is true by taking the absolute value with fact that T greedy-η
t (st, at) ≥ 0. The

second inequality follows from the property of the total variation distance. The third inequality holds
because greedy-η is the policy after one step of policy improvement from η, hence T greedy-η

t (st, a) ≤
T η
t (st, a). The last inequality is true because of the construction of Πη,x.

13

Under review as a conference paper at ICLR 2021

Now we get

Dπ
t (st) ≤Dgreedy-η

t (st) + 2ztxt + 2

T−1∑
k=t+1

βk−txkEπ[zgk |st]

=Dgreedy-η
t (st) + 2

T−1∑
k=t

βk−txkEπ[zgk |st]

≤min
a

T η
t (st, a) + 2

T−1∑
k=t

βk−txkEπ [zgk | st] (16)

which completes the induction step and the proof of Theorem 2.

Now using Theorem 2, Corollary 3 follows using the same arguments as Corollary 2.

C PROOF OF THEOREM 5

By the assumption about the transition probability, Eη[dn(s
(o)
k , snk , ak)|st, at] =

Eη[dn(s
(o)
k , snk , ak)|s(o)

t , s
(n)
t , at]. Using this property, the claim of Theorem 5 immediately

follows by applying the union bound d(st, at) ≤
∑N
n=1 d

n(sot , s
n
t , at).

D ANOTHER INTERPRETATION FOR P-MDP

Since we restrict attention to policies in Πη, the P-MDP can be viewed as an MDP defined of the
smaller state space Sη. Namely, we constructed the tuple (Sη, Aη, rηP , P

η
P , P0), whose components

are defined as follows. The function rηP (·|s) is the restriction of the reward r to Aη(s) for all s ∈ Sη .
P ηP is a transition probability function derived from the original state transition probability P such

that, for all s1, s2 ∈ Sη , P ηP (s2|s1, a) = P (s2|s1, a) + P ((s1, a)
(Sη)c−→ s2) where (s1, a)

(Sη)c−→ s2 is
the set of all trajectories from s1 to s2 that (1) take a detour to (Sη)c at least once after taking the
action a at s1, (2) take the action a∗(s′) = arg mina∈A T η(s′, a) for all s′ ∈ (Sη)c, and (3) lead to
s2 without visiting any other states in Sη .

E VALUE ITERATION AND Q-LEARNING FOR P-MDP

When the transition probabilities are available, we can solve the P-MDP using value iteration. The
value iteration for P-MDP can be described by the following algorithm.

Algorithm 3 Value Iteration for P-MDP

1: Input: threat function T η(s, a), transition probabilities P (s′|s, a)
2: Initialize V (s)← 0
3: while before convergence do
4: for each s, a do
5: Q(s, a)←

∑
s′ P (s′|s, a)(r(s, a) + γV (s′))

6: end for
7: for each s ∈ Sη do
8: V (s)← maxa∈Aη(s)Q(s, a)
9: end for

10: for each s /∈ Sη do
11: agreedy-η ← arg mina T η(s, a)
12:
13: V (s)← Q(s, agreedy-η)
14: end for
15: end while

14

Under review as a conference paper at ICLR 2021

When the transition probabilities are not available, we can solve the P-MDP using Q-learning or its
Deep RL versions.

Algorithm 4 Q-learning for P-MDP

1: Input: threat function T η(s, a), learning rate α and a behavior policy π
2: Initialize Q(s, a)
3: while before convergence do
4: sample a transition s, a, s′ by π
5: if s′ ∈ Sη then
6: Qtarget(s, a)← r(s, a) + γmaxa′∈Aη(s′)Q(s′, a′)
7: else
8: agreedy-η ← arg mina′ T

η(s′, a′)
9: Qtarget(s, a)← r(s, a) + γQ(s′, agreedy-η)

10: end if
11: Q(s, a)← (1− α)Q(s, a) + αQtarget(s, a)
12: end while

F ENVIRONMENTS

CIRCUIT

In this task, the agent’s goal is to complete one lap around the circuit without crashing into the wall.
Each state in the system was set to be the tuple of (1) location, (2) velocity, (3) the direction of the
movement, and (4) the raw LiDAR input for each one degree. Thus, the state observation has 364 real
values. The set of actions allowed for the agent was {0.15rad to left, 0.05rad to left, stay course, 0.05
rad to right, 0.15 rad to right } × { 0.02 unit acceleration, no acceleration, 0.02 unit deceleration }
(15 options). At all time, the speed of the agent was truncated at {−0.04, 0.1}. We reward the agent
for the distance of travel along the course in the right direction, which accumulates to 1250pts for
one lap. We also give negative rewards for the stopping and collision at the time step. We penalize
the agent 1pt for stopping, and penalized the agent by 200pts for colliding. We set the length of the
episode to 200 steps, which is the approximate number of steps required to make one lap. In the
computation of each summand in the threat decomposition, we augmented the generated dataset by
flipping the state with respect to x− axis(left-right). The constraint for CMDP was set to 1e-3.

JAM

In this task, the agent’s goal is to navigate its way out of a room from the exit located at the top left
corner without bumping into 8 randomly moving objects. We set three circular safety zones centered
at each corner except for the top left corner, i.e., exit. Any moving obstacle entered into the safety
zone disappear. Without the safety zone, the task seems to be too difficult, i.e., there is a situation
that the agent cannot avoid the collision even if the agent tries his best. We set the safety zone to ease
the problem hoping the probability that the agent can solve the task when employing the optimal
policy becomes reasonably high. The field was 3× 3 square and the radius of the safety zone located
at three corners were set to 0.5. The radius of the agent and moving obstacles were set to 0.1. We
reward the agent for its distance from the exit, and controlled its value so that the accumulated reward
at the goal will be around 85. The agent is given 10 points when it reaches the goal, penalized −0.05
points for stopping the advance, and given 50pts penalty for each collision. Similar to the setting as
in Circuit, the agent is allowed to change direction and acceleration of the movement simultaneously
at each time point. The observation of agent has the information of relative location, relative velocity,
and relative direction of 8 nearest cars in addition to the observation of Circuit. It is composed of
totally 396 real values. The set of actions allowed for the agent is {0.30 rad to left, 0.10 rad to left,
stay course, 0.10 rad to right, 0.30 rad to right } × { 0.02 unit acceleration, no acceleration, 0.02 unit
deceleration }. At all time, the speed of the agent is truncated at {−0.1, 0.1}. Each obstacle in the
environment is allowed to take a random action from {0.15rad to left, 0.05rad to left, stay course,
0.05 rad to right, 0.15 rad to right } × { 0.02 unit acceleration, no acceleration, 0.02 unit deceleration
}. The speed of the environment is truncated at {0, 0.06}. We set the length of each episode to 100

15

Under review as a conference paper at ICLR 2021

steps. In the computation of each summand in the threat decomposition, we augmented the generated
dataset by flipping the state with respect to x− axis(left-right). The constraint for CMDP was set to
0.01.

POINT GATHER

In this task, the goal is to collect as many green apples as possible while avoiding red bombs.
There are 2 apples and 8 bombs in the field. We used the exact same task setting as the one used
in the original paper, and the agent is rewarded 10pts when the agent collected apple. The point
mass agent receives 29-dimensional state and can take two-dimensional continuous actions. For the
implementation of DQN, we discretize each action variable into 9 values. The state variable takes real
values, which include position, velocity, direction, distance to the bomb, and etc. The action variables
determine the direction and the velocity of the agent. As is done in the experiment in (Achiam et al.,
2017a), we set the length of each episode to 15 steps. At every step, our selected baseline policy
randomly chooses a direction from [−14.33, 14.33]degree range with uniform distribution, and move
forward with probability 0.9 and move backward with probability 0.1. After deciding the direction
of the move, the baseline policy prompts the agent to move at at the speed chosen uniformly from
[0, 1]unit range. For the approximation of threat function, we sampled 1e6 trajectories by simualtors,
and we did not bother to the compute average value for each fixed initial state. The constraint for
CMDP was set to 0.1.

G MODEL ARCHITECTURE AND OPTIMIZATION DETAILS

G.1 RP-ALGORITHM

We implement our method on Chainer (Tokui et al., 2015). The code is available in supplementary
material.

LEARNING OF THREAT FUNCTION IN R-MDP

For the Circuit and Jam tasks, the agent must avoid collisions with both moving obstacles and the
wall. For these environments, it is computationally difficult to obtain the best η. Thus, we follow the
approximate RP algorithm by training a threat function for a baseline policy η(o). We used η(o)that
(1) decides the direction of the movement by staying course with probability 0.6, turning right with
probability 0.2 and turning left with probability 0.2, and (2) decides its speed by accelerating with
probability 0.2 and decelerating with probability 0.2. We chose not to train η specifically for this
experiment, because η to be used in the decomposition must not depend on the state of all but one
obstacle, and we could not expect to improve its safety much by training it. The threat function for
the collision with the immobile point is used to avoid collision with the wall, which can be considered
as a set of immobile points. We thus trained two threat functions in total: one corresponding to the
collision with an immobile point, and one corresponding to the collision with a randomly moving
obstacle. Threat function for η(o) can be trained by using generative models starting at various initial
points to collect samples and by conducting supervised learning.

For the threat function for the collision with immobile object, we used a neural network with three
fully connected layers (100-50-15). For the threat function for the collision with moving obstacles,
we used a network with four fully connected layers (500-500-500-15). For the training dataset, we
sampled 100,000 initial state and simulated 10,000 paths of length 5 from each initial state. We train
the network with Adam. The parameter settings for the training of the threat function of immobile
point and of mobile obstacle are (α = 1e− 2, ε = 1e− 2, batchsize = 512, number of epochs = 20),
and (α = 1e− 3, ε = 1e− 2, batchsize = 512, number of epochs = 25), respectively. We used relu as
the activation function for the approximation of all threat functions.

For the Point Gather task, we again use the approximate RP algorithm. The threat function is
estimated by a three-layer (100-100-81) fully connected neural network.

16

Under review as a conference paper at ICLR 2021

SOLVING P-MDP

For the Planning MDP, we use DQN. The network used for the Q-function in P-MDP looks like
Φ(`, s), where ` is the result of applying lider outputs to 1D conv network, s is the combination of
location, velocity and angle, and Φ is a three-layered fully connected network (50-20-15) with tanh
activation functions.

The convolutional layer has 3 output channels with kernel size = 6 and stride = 1, followed by max
pooling with kernel size = 8. In Point Gather, we use fully connected neural network with three layers
(50-50-81). We trained the network with Adam (α = 1e− 3, ε = 1e− 2). We linearly decayed ε for
ε-greedy from 1 to 0.05 over 3M iterations. We used one GPU, with which it took no longer than
about 24 hours to complete 3M iterations.

G.2 DQN WITH LAGRANGE COEFFICIENT

As for the network, we used the same DQN architecture as the one we used in P-MDP. We used tanh
for the activation function. For Lagrange coefficient, we test with three Lagrange coefficients for
each task, {0, 20, 200} for Circuit, {5, 50, 500} for Jam, {1, 10, 50} for Point Gather, respectively.
For the Jam task, the initial Lagrange coefficients are all set to 5 and gradually incremented to the
final values {1, 10, 50} as done in (Miyashita et al., 2018). This heuristic pushes the agent to learn
the goal-oriented policy first, and then learn the collision avoidance.

G.3 CONSTRAINED POLICY OPTIMIZATION

As for CPO, we use the same implementation publicized on Github (Achiam et al., 2017b), i.e., the
policy is a Gaussian policy implemented by a three layer MLP with hidden units 64 and 32 for all
tasks. We used tanh for the activation function.

G.4 MODEL PREDICTIVE CONTROL

We tested MPC with receding horizon ∈ {3, 4, 5} for Circuit, ∈ {2, 3} for Jam and ∈ {1, 2} for Point
Gather. At every step, selected the action with the highest reward among those that were deemed
safe by the prediction. To select the next safe action, we used tree-search on the sequence of actions,
and prematurely pruned branches that were sure to violate the safety condition. Also, for the JAM
experiment, we used the same strategy as our approximate-RP. More particularly, we allowed MPC to
make predictions in a set of environments consisting of one pair of obstacle and ego-object each, and
evaluated the safety by summing the danger values computed from all environments. This was done
in order to reduce the computation time of prediction (which already is large), because the number of
combinatorial cases explodes as we increase the number of obstacle objects.

H PERFORMANCE EVALUATIONS WITH LARGER COLLISION PENALTY ON
CIRCUIT AND JAM

Here we show the score computed with a larger collision penalty on Circuit and Jam tasks to stress
the fact that the performance will vary arbitrarily depending on how much we put emphasis on the
constraints. In below, the collision penalty is increased to be 1500pts and 500pts instead of the ones
used in Tables1 and 2 where the collision penalties are 200pts and 50pts, respectively.

Environment approx. RP MPC (4steps) DQN (λ=0) DQN (λ=200)
Training env. 1439 (0) 600 (0.35) 1367 (0.05) 413 (0.4)

Narrowed env. 377 (0) 244 (0.55) -1451 (1.0) -1432 (0.99)
Circle 130 (0) 351 (0) -1489 (1.0) -1471 (1.0)

Computation Time (s) 0.5 18.2 0.4 0.4

Table 3: Performance of trained policies on unknown Circuit environments. The values in the table
are the obtained rewards, and inside the parenthesis are the probabilities of crashing. Time stands for
the computation time consumed in making 100 action steps. Note that our method never crashes in
this experiment. In this experiment, every crash is penalized by 1500pts.

17

Under review as a conference paper at ICLR 2021

Environment approx. RP MPC (3steps) DQN (λ=5) DQN (λ=500)
N =3 78.2 (0) 55 (0.05) 59.2 (0.04) -72.1 (0.17)

N =8 (training env.) 69.1 (0) -24.7 (0.2) -123.9 (0.38) -109 (0.24)
N = 15 24.0 (0.02) -165.9 (0.45) -280.5 (0.66) -246.3 (0.51)

Computation Time (s) 1.2 285 0.4 0.4

Table 4: Performance of trained policies on and unknown Jam environments. Values in the table are
reported in the same way as in Table 3. In this experiment, every crash is penalized by 500 pts. Note
that we achieve the lowest crashing rate while achieving high score.

I ADDITIONAL RELATED WORK

As mentioned in the introduction, one classic strategy for safe maximization of the reward is MPC,
which uses a simulator/generator to directly predict the outcome of candidate actions. There are
many applications and variations of this approach (Maciejowski, 2002; Yoshida et al., 2008; Wang &
Boyd, 2010; Di Cairano et al., 2013; Liu & Jr, 2014; Weiskircher et al., 2017; Rasekhipour et al.,
2016b). One straight forward approach for constrained Markov Decision process is to formulate
the objective with Lagrange multiplier. This approach has been used widely in practice, including
(Geibel & Wysotzki, 2005; Geibel, 2006; Uchibe & Doya, 2007; Everett et al., 2018; Walraven &
Spaan, 2018; Paternain et al., 2019) and CPO(Achiam et al., 2017a). CPO is a method that gradually
improves the safe policy by making a local search for a better safe policy in the neighborhood of the
current safe policy. By nature, at each update, CPO has to determine whether a suggested member
in the neighborhood of current safe policy satisfies the safety constraint. In implementation, this
is again done by the evaluation of Lagrange coefficients. Accurate selection of safe policies in
the neighborhood is especially difficult when the danger to be avoided is "rare" and "catastrophic",
because we would need massive number of samples to verify whether a given policy is safe or not.
This is a problem common to all approaches using the Lagrange multipliers, because the optimization
of Lagrange coefficient requires accurate evaluation of the expected danger. Moreover, because each
update is incremental, we have to repeat this process multiple times (usually, several dozens of times
for Point Circle, and several thousands of times for Ant Gather and Humanoid Circle). Lyapunov
based approach (Chow et al., 2018; 2019) are also similar in nature. At each step of the algorithm,
Lyapunov based approach uses safety-margin function ε—a state-dependent measure of how bold
the agent can be while remaining safe– to construct a set of safe policies in the neighborhood of the
baseline policy. For the accurate computation of the margin, one must use the transition probability to
solve a linear programming problem in the space whose dimension equals the number of states in the
system. This computation requires O(|X||A|2(|A|+ 2)) computation time. Especially when dealing
with system with rare dangerous events, the set of policies found this way may still contain unsafe
policies. Reachability analysis is a theory that provides a safety guarantee. However, they built their
theory on more restrictive setting than the one we consider here (Takei et al.; Ding et al.; Summers
et al.; Rasekhipour et al., 2016a). Model-checking is another approach to guarantee the safety. Once
the constraints are represented in the form of temporal logic constraints or computation-tree logic
(Baier et al., 2003; Wen et al., 2015; Bouton et al., 2019), we can ensure the safety by using model
checking systems. However, it is sometimes difficult to express the constraints in such a structured
form. Also, even when we can represent the constraints in the structured form, the computational
cost can be heavy. When the state-action space is large, the computation time required for the
model-checking system can become prohibitively heavy.

18

	Introduction
	Problem formulation and theoretical results
	Properties of threat functions and secure policies

	Reconnaissance-MDP (R-MDP) and Planning-MDP (P-MDP)
	Threat decomposition and approximate RP algorithm

	Experiment
	Frozen Lake Environment
	High-Dimensional Environments
	Recycling of the threat function for a CMDP in different environment

	Conclusion
	Proof of Theorem 1
	Proof of Corollary 3
	Proof of Theorem 5
	Another interpretation for P-MDP
	Value iteration and Q-learning for P-MDP
	Environments
	Model architecture and optimization details
	RP-algorithm
	DQN with Lagrange coefficient
	Constrained Policy Optimization
	Model Predictive Control

	Performance evaluations with larger collision penalty on Circuit and Jam
	Additional related work

