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ABSTRACT

We note that most existing approaches for molecular graph generation fail to guar-
antee the intrinsic property of permutation invariance, resulting in unexpected bias
in generative models. In this work, we propose GraphEBM to generate molecu-
lar graphs using energy-based models. In particular, we parameterize the energy
function in a permutation invariant manner, thus making GraphEBM permuta-
tion invariant. We apply Langevin dynamics to train the energy function by ap-
proximately maximizing likelihood and generate samples with low energies. Fur-
thermore, to generate molecules with a desirable property, we propose a simple
yet effective strategy, which pushes down energies with flexible degrees accord-
ing to the properties of corresponding molecules. Finally, we explore the use of
GraphEBM for generating molecules with multiple objectives in a compositional
manner. Comprehensive experimental results on random, goal-directed, and com-
positional generation tasks demonstrate the effectiveness of our proposed method.

1 INTRODUCTION

A fundamental problem in drug discovery and material science is to find novel molecules with
desirable properties. One way is to search in the chemical space based on molecular property pre-
diction (Gilmer et al., 2017; Wu et al., 2018; Yang et al., 2019; Stokes et al., 2020; Wang et al.,
2020). Recently, molecular graph generation has provided an alternative and promising way for this
problem by directly generating desirable molecules, thus circumventing the expensive search of the
chemical space. Despite intensive efforts recently, molecular graph generation remains challenging
since the underlying graphs are discrete, irregular, and permutation invariant to node order.

Existing approaches (Appendix A.1) have achieved promising success by generating molecular
graphs based on various generative methods, including variational autoencoders (VAEs) (Kingma
& Welling, 2013), generative adversarial networks (GANs) (Goodfellow et al., 2014), flow mod-
els (Dinh et al., 2014; Rezende & Mohamed, 2015) and recurrent neural networks (RNNs). How-
ever, as analyzed in Appendix A.1, most of them fail to preserve the intrinsic property of permutation
invariance, which might yield different likelihoods for different permutations of the same graph.

Notably, energy-based models (EBMs) (LeCun et al., 2006) can also be naturally used as generative
models since data points near the underlying data manifold are assigned lower energies than other
data points, which defines an unnormalized probability distribution over the data. Given a data point
x, let Eθ(x) ∈ R be the corresponding energy, where θ denotes the learnable parameters of the
energy function. Then, the energy function defines a data distribution via the Boltzmann distribution
as

pθ(x) =
e−Eθ(x)

Z(θ)
∝ e−Eθ(x), (1)

where Z(θ) =
∫
e−Eθ(x)dx is the normalization constant and usually intractable. Related works on

EBMs are reviewed in Appendix A.2.

In this work, we propose GraphEBM to generate molecular graphs with energy-based models. Since
our parameterized energy function is permutation invariant, we can show that our GraphEBM pre-
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serves the permutation invariance property. We use Langevin dynamics (Welling & Teh, 2011) to
train the energy function by maximizing likelihood approximately and generate samples from the
trained energy function. To our knowledge, our GraphEBM is the first energy-based model that can
generate attributed molecular graphs. Furthermore, in order to generate molecules with a specific
desirable property, we propose a novel, simple, and effective strategy to train our GraphEBM for
goal-directed generation by pushing down energies with flexible degrees according to the property
values of corresponding molecules. Significantly, we show that GraphEBM can generate molecules
with multiple objectives in a compositional manner, which cannot be achieved by any existing meth-
ods. This provides a new and promising way for multi-objective molecule generation. Experimental
results on random, goal-directed, and compositional generation tasks show that our proposed method
is effective.

2 THE PROPOSED GRAPHEBM

In this section, we present GraphEBM by describing the internal structure of the parameterized en-
ergy function (Section 2.1), showing that GraphEBM satisfies the desirable property of permutation
invariance (Section 2.2), and describing the training (Section 2.3) and generation (Section 2.4) pro-
cess of GraphEBM. Then, we introduce our proposed strategy for goal-directed generation based
on GraphEBM (Section 2.5). Finally, we explore the potential of compositional generation using
GraphEBM (Section 2.6).

Molecules can be naturally represented as graphs by considering atoms and bonds as nodes and
edges, respectively. We formally represent a molecular graph as G = (X,A), where X is the node
feature matrix and A is the adjacency tensor. Let k be the number of nodes in the graph. b and c
denote the number of possible types of nodes and edges, respectively. Then we have X ∈ {0, 1}k×b
and X(i,p) = 1 if node i belongs to type p. A ∈ {0, 1}k×k×c and A(i,j,q) = 1 denotes that an edge
with type q exists between node i and node j. Following Madhawa et al. (2019) and Zang & Wang
(2020), we let n denote the maximum number of atoms that a molecule has in a given dataset. We
insert virtual nodes into molecular graphs that have less than n nodes such that the dimensions of
X and A keep the same for all molecules. Also, for any two nodes that are not connected in the
molecule, we add a virtual edge between them. We can consider the virtual node and the virtual
edge as an additional node type and edge type, respectively. Hence, for all molecules in a certain
dataset, X ∈ {0, 1}n×(b+1) and A ∈ {0, 1}n×n×(c+1).

2.1 PARAMETERIZED ENERGY FUNCTION

Following the above notations, the energy function for molecular graphs can be denoted as
Eθ(X,A). Specifically, we model Eθ(X,A) by a graph neural network, where θ denotes parame-
ters in the network. Many deep learning methods on graphs have been proposed and have achieved
great success in many tasks, such as node classification (Kipf & Welling, 2017; Hamilton et al.,
2017; Monti et al., 2017; Veličković et al., 2018; Gao et al., 2018; Xu et al., 2018; Klicpera et al.,
2019; Wu et al., 2019; Liu et al., 2020b; Jin et al., 2020a; Chen et al., 2020; Liu et al., 2020c; Hu
et al., 2020), graph classification (Zhang et al., 2018; Ying et al., 2018; Maron et al., 2018; Xu et al.,
2019; Gao & Ji, 2019; Ma et al., 2019; Yuan & Ji, 2020; You et al., 2020; Gao et al., 2020), and
link prediction (Zhang & Chen, 2018; Cai et al., 2020). In this work, we use a variant of relational
graph convolutional networks (R-GCN) (Schlichtkrull et al., 2018) to learn the node representations
since molecular graphs have categorical edge types. Formally, the layer-wise forward-propagation
is defined as

H`+1 = σ

(
c+1∑
k=1

(
A(:,:,k)H

`W `
k

))
. (2)

A(:,:,k) is the k-th channel of the adjacency tensor. H` ∈ Rn×d` is the node representation matrix at
layer `, where d` denotes the hidden dimension at layer `. W `

k ∈ Rd`×d`+1 represents the trainable
weight matrix for edge type k at layer `. σ(·) denotes a non-linear activation function. The initial
node representation matrix H0 = X . In each layer, message passing is conducted among the nodes
independently for each type of edge. Then, the information is integrated together by a sum operator.
We stack L such layers. Hence, the final node representation matrix is HL ∈ Rn×d, where d is the
hidden dimension. Then, the representation of the whole graph can be derived by a readout function.
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In this work, we use the sum operation to compute the graph-level representation hG as

hG =

n∑
i=1

HL
(i,:) ∈ Rd. (3)

Finally, the scalar energy associated with the molecular graph can be obtained by applying a trans-
formation as

E = hTGW ∈ R, (4)

where W ∈ Rd is the trainable parameters.

2.2 PERMUTATION INVARIANCE

Permutation invariance is an intrinsic and desirable inductive bias for graph modeling. We note
that our proposed GraphEBM satisfies this fundamental property due to our permutation invariant
energy function. Specifically, each layer of our graph neural network in Eq. (2) is permutation
equivariant. In addition, the readout operation in Eq. (3) is permutation invariant. Therefore, our
parameterized energy function is permutation invariant thus satisfying Eθ(X,A) = Eθ(X

π, Aπ),
where π denotes any permutation of node order. For simplicity, we use the superscript π to denote
that the corresponding matrix or tensor is arranged according to the node order given by π. Accord-
ing to Eq. (1), the energy function defines a distribution over data. Specifically, the likelihood is
proportional to the negative exponential of the corresponding energy. Hence, we can further obtain
pθ(X,A) = pθ(X

π, Aπ). Thus, our GraphEBM can preserve permutation invariance by modeling
graphs in a permutation invariant manner.

2.3 TRAINING

Intuitively, a good energy function should assign lower energies to data points that correspond to
real molecular graphs and higher energies to other data points. Hence, a straightforward idea is to
train the parameterized energy function by maximizing the likelihood of real data defined in Eq. (1).
Let pD be the distribution of the real data. We can achieve maximum likelihood by minimizing the
negative log likelihood of real data. Formally,

LML = E(X,A)∼pD [− log pθ (X,A)] , (5)

where − log pθ (X,A) = Eθ(X,A) + logZ(θ) according to Eq. (1). It has been shown (Hinton,
2002; Turner, 2005; Song & Kingma, 2021) that the objective in Eq. (5) has the below gradient:

∇θLML = E(X⊕,A⊕)∼pD
[
∇θEθ(X⊕, A⊕)

]
− E(X�,A�)∼pθ

[
∇θEθ(X�, A�)

]
. (6)

As defined in Eq. (1), pθ is the distribution given by the energy function. Following Du et al. (2020b),
we refer to (X�, A�) as hallucinated samples. Obviously, this gradient pushes down the energies
of positive samples (X⊕, A⊕) and pushes up the energies of hallucinated samples (X�, A�). How-
ever, sampling (X�, A�) from pθ is challenging, since Z(θ) in Eq. (1) is intractable.

To overcome this issue, we follow Du & Mordatch (2019) to sample (X�, A�) from an approx-
imated pθ using Langevin dynamics (Welling & Teh, 2011). Particularly, a sample (X�, A�) is
initialized randomly and refined iteratively by

Xk = Xk−1− λ
2
∇XEθ

(
Xk−1, Ak−1

)
+wk; Ak = Ak−1− λ

2
∇AEθ

(
Xk−1, Ak−1

)
+ηk, (7)

where wk and ηk are added noise sampled from a Gaussian distribution N (0, σ2). k denotes the
iteration step, and λ

2 is the step size. As demonstrated by Welling & Teh (2011), the obtained
samples (Xk, Ak) approach samples from pθ as k → ∞ and λ

2 → 0. In practice, we let K denote
the number of iteration steps of Langevin dynamics and use the resulting sample (XK , AK) as
(X�, A�) in Eq. (6).

We illustrate the training process of our GraphEBM in Figure 1. Since Langevin dynamics is for
continuous data, we model the hallucinated samples by continuous format. For consistency, we can
also use dequantization techniques (Dinh et al., 2016; Kingma & Dhariwal, 2018) to convert the
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Figure 1: The training process of our GraphEBM. The left part and right part illustrate the processes
of obtaining the positive sample and the hallucinated sample, respectively. The middle part shows
the forward and backward propagation of the training process. Green and purple arrows represent
the forward computation of energy value for the positive sample and the hallucinated sample, re-
spectively. The black dashed arrow denotes the gradient backpropagation. In this example, n = 9,
k = 8, b = 4, and c = 3. The annotations of node representation matrices denote the atom types,
including carbon (C), nitrogen (N), oxygen (O), fluorine (F), and virtual atom (?). Note that we
remove hydrogen atoms, which is a common technique in the community. The annotations of adja-
cency tensor indicate the bond types, including single (S), double (D), triple (T), and virtual bond
(?).

discrete positive samples to continuous data by adding uniform noise, as shown in the left part of
Figure 1. The dequantization can be formally expressed as

X ′ = X + tu, u ∼ [0, 1)n×(b+1); A′ = A+ tu, u ∼ [0, 1)n×n×(c+1). (8)

t ∈ [0, 1) is a scaling hyperparameter. We then apply a normalization to the adjacency tensor, which
is a common step in modern graph neural networks (Kipf & Welling, 2017). Formally,

A⊕(:,:,k) = D−1A′(:,:,k), k = 1, · · · , c+ 1, (9)

where D is the diagonal degree matrix in which D(i,i) =
∑
j,k A

′
(i,j,k). We treat the above A⊕ and

X⊕ = X ′ as the input for the energy function. In our case, each element of X⊕ is in [0, 1 + t) and
each element of A⊕ is in [0, 1).

Note that the above dequantization for positive samples is optional. This indicates that we can set
t = 0 and keep the positive data discrete since Langevin dynamics is only required for obtaining
hallucinated samples. Applying dequantization to positive samples can be viewed as a data aug-
mentation technique and we can easily convert the dequantized continuous data back to the original
one-hot discrete data by simply applying the argmax operation.

To keep the same value range as (X⊕, A⊕), the hallucinated sample (X�, A�) is initialized as

X� ∼ [0, 1 + t)n×(b+1), A� ∼ [0, 1)n×n×(c+1). (10)

Then we apply K steps of Langevin dynamics as Eq. (7) to refine the sample, as illustrated in the
right part of Figure 1. After each step of refinement, we clamp the data to guarantee that the values
are still in the desirable ranges.

As demonstrated in Eq. (6), the energies of positive samples are expected to be pushed down and
the energies of hallucinated samples should be pushed up. Hence, to shape the energy function as
expected, our loss function is defined as

Lenergy = Eθ(X
⊕, A⊕)− Eθ(X�, A�). (11)

As shown in the middle part of Figure 1, the gradient backpropagated from Lenergy can update the
parameters θ, thus pushing the energy function Eθ(X,A) to approach our expected shape. Notably,
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the gradient from Lenergy will not be propagated to the energy function used in Langevin dynamics.
We apply parameter sharing to keep the energy function used in Langevin dynamics up-to-date.

To stabilize training, we also apply a regularization technique to the energy magnitudes. Specifically,
we use the same regularization as Du & Mordatch (2019). Formally,

Lreg = Eθ(X
⊕, A⊕)2 + Eθ(X

�, A�)2. (12)

Hence, the total loss function is L = Lenergy + αLreg , where α ∈ R is a hyperparameter.

2.4 GENERATION

Let Eθ?(X,A) denote the trained energy function, where θ? represents the obtained parameters.
Intuitively, if an energy function is well-shaped, the configurations with low energies should corre-
spond to desirable molecular graphs. Hence, the generation process is to generate molecules based
on the configurations (X,A) that yield low energies.

An overview of the generation process is given in Figure 5 in Appendix B. The steps are as follows.
First, we initialize a data point as in Eq. (10) and then apply K steps of Langevin dynamics as in
Eq. (7) to obtain data points that have low energy. We denote the obtained configuration as (X?, A?).
Second, since molecular graphs are undirected, we make the adjacency tensor to be symmetric by
using A?+A?T as the new adjacency tensor. Third, we convert the continuous data to discrete ones
by applying the argmax operation in the dimensions of atom types and bond types. Finally, we use
validity correction introduced by Zang & Wang (2020) to refine the corresponding molecule so that
the valency constraint is satisfied.

2.5 GOAL-DIRECTED GENERATION

For drug discovery and material design, we also need to generate molecules with desirable chem-
ical properties. This task is termed as goal-directed generation. As noted in Appendix C, it is
not straightforward to apply existing strageties to our GraphEBM for goal-directed generation. To
generate molecules with desirable chemical properties, we propose a novel, simple, and effective
strategy to achieve goal-directed generation based on our GraphEBM. Our basic idea is to push
down energies with flexible degrees according to the property values of corresponding molecules. If
a molecule has a higher value of desirable property, we push down the corresponding energy harder.
Formally, in goal-directed generation, the loss function defined in Eq. (11) becomes

Lenergy = f(y)Eθ(X
⊕, A⊕)− Eθ(X�, A�), (13)

where y ∈ [0, 1] is the normalized property value and f(y) ∈ R determines the degree of the push
down. We use f(y) = 1 + ey in this work. Thus, energies of molecules with higher property
values are pushed down harder. After training, the generation process is the same as described in
Section 2.4. Note that f(y) could also be a learnable function and we leave this as future work.

2.6 COMPOSITIONAL GENERATION

In addition to single property constraints, it is commonly necessary to generate molecules with mul-
tiple property constraints in drug discovery (Jin et al., 2020c). We observe that compositional gen-
eration with EBMs (Hinton, 2002), which has been shown to be effective in the image domain (Du
et al., 2020a), can be naturally applied to generate molecules with multiple constraints based on our
GraphEBM. Thus, we investigate compositional generation in the graph domain.

Suppose we have two energy functions Eθ?1 (X,A) and Eθ?2 (X,A) trained towards two property
goals respectively, as described in Section 2.5. According to Hinton (2002) and Du et al. (2020a),
we can obtain a new energy function by summing the above two energy functions since the product
of probabilities is equivalent to the sum of corresponding energies, according to Eq. (1). Formally,

Eθ?(X,A) = Eθ?1 (X,A) + Eθ?2 (X,A). (14)

Then we can apply the generation process described in Section 2.4 to Eθ?(X,A) to generate
molecules towards multiple objectives in a compositional manner.
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Figure 2: Discovered examples with high QED scores.

3 EXPERIMENTS

We evaluate our proposed method for molecule generation under three settings: random generation,
goal-directed generation, and compositional generation. We consider two widely used molecule
datasets, QM9 (Ramakrishnan et al., 2014) and ZINC250k (Irwin et al., 2012). The details of the
experimental setup for each setting are included in Appendix D. Our implementation is included in
DIG1 (Liu et al., 2021), a library for graph deep learning research.

Figure 3: (a)&(b) Comparison of QED and
plogp distributions between goal-directed gener-
ation and random generation, respectively. (c)
Comparison of distributions on QED and plogp
between compositional generation and random
generation.

Random generation. The results on QM9
and ZINC250k are shown in Table 4 and Ta-
ble 5 respectively in Appendix E. We can ob-
serve that GraphEBM performs competitively
with existing methods, which is significant con-
sidering that the study of EBMs is still in its
early stage and GraphEBM is the first EBM for
molecule generation. Generated samples are
visualized in Figure 6 in Appendix E, which
further demonstrates that GraphEBM can gen-
erate non-trivial molecules.

To better understand the implicit generation
through Langevin dynamics, we visualize this
process for an example in Figure 7 in Ap-
pendix E. We can observe that Langevin dy-
namics effectively refines the random initial-
ized sample to approach a data point that cor-
responds to a realistic molecule.

Goal-directed generation. Figure 3 (a) and
(b) compare the property value distribution be-
tween goal-directed generation and random generation. It can be observed that goal-directed gener-
ation can generate more molecules with a high property value, indicating that our proposed strategy
for goal-directed generation, which aims to assign lower energies to molecules with higher property
values, is effective.

Table 1: Property optimization results.

Method 1st 2nd 3rd 4th
JT-VAE 0.925 0.911 0.910 -
GCPN 0.948 0.947 0.946 -
GraphAF 0.948 0.948 0.947 0.946
MoFlow 0.948 0.948 0.948 0.948

GraphEBM 0.948 0.948 0.948 0.948

The property optimization results are shown in Ta-
ble 1. We observe that GraphEBM can find more novel
molecules with the best QED score (0.948) than baselines.
This strongly demonstrates the effectiveness of our pro-
posed goal-directed generation method. Examples of dis-
covered novel molecules with high QED scores are illus-
trated in Figure 2

For constraint property optimization, as demonstrated in
Table 2, GraphEBM can obtain higher property improvements over JT-VAE, GCPN, and MoFlow
by significant margins. In terms of success rate, our GraphEBM is not as strong as the methods
using reinforcement learning (i.e., GCPN, GraphAF), and achieves results comparable to JT-VAE

1https://github.com/divelab/DIG
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Figure 4: Examples of constraint property optimization. The values above and below arrows denote
the similarity scores and improvements, respectively. The modifications are highlighted with red
rectangles.

and MoFlow. Although GraphAF performs better than GraphEBM, it can be observed from Shi
et al. (2019) that GraphAF learns to improve plogp by simply adding long carbon chains, while
our GraphEBM learns more advanced chemical knowledge. Several examples of constraint prop-
erty optimization are shown in Figure 4. It is interesting that the modifications are interpretable to
some degree. Specifically, in the first example, our model optimizes the plogp score with a remark-
able margin of 18.03 by replacing several carbon atoms with sulfur atoms, which could make the
molecule more soluble in water, thus leading to a larger logP value. Additionally, plogp is highly
related to the number of long cycles and synthetic accessibility. As shown in the second and third
examples, our model improves the synthetic accessibility and reduces the number of long cycles
by removing or breaking them. These facts indicate that our goal-directed generation method can
explore the underlying chemical knowledge related to the corresponding property.

Table 2: Constrained property optimization results. Imp.,
Sim., and Suc. denote Improvement, Similarity, and Success
Rate, respectively.

JT-VAE GCPN GraphEBM
δ Imp. Sim. Suc. Imp. Sim. Suc. Imp. Sim. Suc.
0.0 1.91 0.28 98% 4.20 0.32 100% 5.76 0.08 98%
0.2 1.68 0.33 97% 4.12 0.34 100% 3.97 0.35 92%
0.4 0.84 0.51 84% 2.49 0.47 100% 2.84 0.53 88%
0.6 0.21 0.69 46% 0.79 0.68 100% 1.52 0.68 64%

GraphAF MoFlow GraphEBM
δ Imp. Sim. Suc. Imp. Sim. Suc. Imp. Sim. Suc.
0.0 13.13 0.29 100% 8.61 0.30 99% 15.75 0.01 99%
0.2 11.90 0.33 100% 7.06 0.43 97% 8.40 0.35 94%
0.4 8.21 0.49 100% 4.71 0.61 86% 4.95 0.54 79%
0.6 4.98 0.66 97% 2.10 0.79 58% 3.15 0.67 45%

Compositional generation. The
comparison of the distributions on
QED and plogp between composi-
tional generation and random gener-
ation is illustrated in Figure 3 (c).
We can observe that compositional
generation tends to generate more
molecules with high QED and plogp
scores. Additionally, the distribution
of QED or plogp is similar to the
corresponding distribution obtained
by goal-directed generation towards
a single objective (Figure 3 (a) and
(b)). These facts demonstrate that
our GraphEBM is able to generate
molecules towards multiple objectives in a composition manner, which provides a novel and promis-
ing way for multi-objective generation.

4 CONCLUSION AND OUTLOOK

In this paper, we propose GraphEBM, the first energy-based model for generating molecular graphs
that preserves the intrinsic property of permutation invariance. We propose to flexibly push down
energies for goal-directed generation and explore to generate molecules towards multiple objectives
in a compositional manner, leading to a promising method for multi-objective generation. Experi-
mental results demonstrate that our GraphEBM can generate realistic molecules and the proposals
of goal-directed generation and compositional generation are effective and promising. Since EBMs
have unique advantages and have rarely been explored for graph generation, we hope our exploratory
work would open the door for future research in this area.
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Table 3: Summary and comparison of existing molecular graph generation methods.

Method Generative method Generation process Permutation Compositional
VAE GAN Flow RNN EBM One-shot Sequential invariance generation

GraphVAE (Simonovsky & Komodakis, 2018) X - - - - X - 7 -
DeepGMG (Li et al., 2018) - - - X - - X 7 -
CGVAE (Liu et al., 2018) X - - - - - X 7 -
MolGAN (De Cao & Kipf, 2018) - X - - - X - - -
RVAE (Ma et al., 2018) X - - - - X - 7 -
GCPN (You et al., 2018) - X - - - - X 7 -
JT-VAE (Jin et al., 2018) X - - - - - X 7 -
MolecularRNN (Popova et al., 2019) - - - X - - X 7 -
GraphNVP (Madhawa et al., 2019) - - X - - X - 7 -
Bresson & Laurent (2019) X - - - - X - 7 -
GRF (Honda et al., 2019) - - X - - X - 7 -
GraphAF (Shi et al., 2019) - - X - - - X 7 -
HierVAE (Jin et al., 2020b) X - - - - - X 7 -
MoFlow (Zang & Wang, 2020) - - X - - X - 7 -
GraphCNF (Lippe & Gavves, 2020) - - X - - X - X -

GraphEBM - - - - X X - X X

APPENDIX

A RELATED WORK

A.1 MOLECULAR GRAPH GENERATION

Since molecules can be represented as SMILES strings (Weininger, 1988), early studies generate
molecules based on SMILES strings, such as CVAE (Gómez-Bombarelli et al., 2018), GVAE (Kus-
ner et al., 2017), and SD-VAE (Dai et al., 2018). Recent studies mostly represent and generate
molecules as graphs (Simonovsky & Komodakis, 2018; De Cao & Kipf, 2018; Madhawa et al.,
2019). We can categorize existing molecular graph generation methods based on the underlying
generative methods or the generation processes. Current molecular graph generation approaches
can be grouped into four categories according to their underlying generative models, i.e., VAEs,
GANs, flow models, and RNNs. They can also be classified into two primary types based on their
generation processes; those are, sequential generation and one-shot generation. The sequential pro-
cess generates nodes and edges in a sequential order by adding nodes and edges one by one. The
one-shot process generates all nodes and edges at one time.

To facilitate comparison, we summarize existing methods in Table 3. We can observe that most of
them fail to satisfy an intrinsic property of graphs; that is, permutation invariance. Specifically, a
generative model should yield the same likelihood for different permutations of the same graph. Cur-
rently, permutation invariance remains to be a challenging goal to achieve. The sequential generation
approaches have to choose a specific order of nodes, thus failing to preserve permutation invariance.
Among the one-shot methods, Bresson & Laurent (2019) also use the specific node order given by
the SMILES representation. GraphVAE and RVAE perform an approximate and expensive graph
matching to train the VAE model, and they cannot achieve exact permutation invariance. MolGAN
circumvents this issue by using a likelihood-free method. The recent one-shot flow methods have
the potential to satisfy this property. However, GraphNVP, GRF, and MoFlow cannot preserve this
property since the masking strategies in the coupling layers are sensitive to node order. An exception
is GraphCNF, which achieves permutation invariance by assigning likelihood independent of node
ordering via categorical normalizing flows.

In this work, we propose to develop energy-based models (EBMs) (LeCun et al., 2006) for molecular
graph generation. EBMs are a class of powerful methods for modeling richly structured data, but
their use for graph generation has been under-explored. We show that our method can achieve the
desirable property of permutation invariance. Additionally, our method has the potential to generate
molecules in a compositional manner towards multiple objectives, which cannot be achieved by any
existing methods.
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Figure 5: The generation process of our GraphEBM.

A.2 ENERGY-BASED MODELS

Modeling variables by defining an unnormalized probability density has been explored for
decades Hopfield (1982); Ackley et al. (1985); Cipra (1987); Dayan et al. (1995); Cipra (1987);
Zhu et al. (1998); Hinton (2012). Such methods are known and unified as energy-based models
(EBMs) (LeCun et al., 2006) in machine learning. EBMs capture the dependencies of variables by
assigning a scalar energy to each configuration of the variables with a learnable energy function.
Given a trained EBM, inference is to find the configurations that yield low energies. Training an
EBM aims at obtaining an energy function where observed configurations are associated with lower
energies than unobserved ones.

Currently, EBMs have been used as generative models in multiple domains, including images (Xie
et al., 2015; 2016; Du & Mordatch, 2019; Du et al., 2020a;b), videos (Xie et al., 2017), 3D ob-
jects (Xie et al., 2018), and point sets (Xie et al., 2020).

To date, EBMs have rarely been studied in the graph domain. Liu et al. (2020a) attempt to generate
graphs by building EBMs based on graph neural networks. Niu et al. (2020) model graphs using a
score-based generative model (Song & Ermon, 2019), a method that is similar to EBMs. However,
these two methods can only generate graph structures, and it is not straightforward to use them on
attributed graphs. In this work, we propose GraphEBM to generate attributed molecular graphs using
EBMs. Hence, we consider GraphEBM to be the first energy-based model capable of generating
attributed graphs.

B GENERATION PROCESS OF GRAPHEBM

The generation process of our GraphEBM is illustrated in Figure 5.

C EXISTING GOAL-DIRECTED GENERATION STRATEGIES

There are mainly three approaches in the literature for goal-directed generation. First, this task can
be modeled as a conditional generation problem, where the property value can be utilized as the
condition (Simonovsky & Komodakis, 2018). Second, for methods using the latent space, a pre-
dictor can be applied to learn the property value from the latent representation (Gómez-Bombarelli
et al., 2018). Third, reinforcement learning can be used to optimize the properties of generated
molecules (You et al., 2018). However, it is not straightforward to apply these methods to our
GraphEBM for goal-directed generation since GraphEBM generates molecules implicitly using
Langevin dynamics and no latent space exists. Also, using EBMs for generation that is condi-
tional on continuous conditions is rarely studied by the community. Hence, it remains challenging
to apply EBMs for goal-directed generation.
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D EXPERIMENTAL SETUP

Dataset. QM9 consists of 134k organic molecules and the maximum number of atoms is 9. It
contains 4 atom types and 3 bond types. ZINC250k has 250k drug-like molecules and the maximum
number of atoms is 38. It includes 9 atom types and 3 edge types.

Implementation details. We kekulize molecules and remove their hydrogen atoms using RD-
Kit (Landrum et al., 2006). In our parameterized energy function, we adopt a network of L = 3
layers with hidden dimension d = 64. We use Swish as the activation function. We set α = 1 in
the loss function and the standard variance σ = 0.005 in the gaussian noise. For training, we tune
the following hyperparameters: the scale t of uniform noise ∈ [0, 1], the sample step K of Langevin
dynamics ∈ [30, 300], and the step size λ

2 ∈ [10, 50]. All models are trained for up to 20 epochs
with a learning rate of 0.0001 and a batch size of 128. It is well known that it is difficult to train
EBMs. We follow the techniques adopted in Du & Mordatch (2019) to stabilize the training pro-
cess. Specifically, we add spectral normalization (Miyato et al., 2018) to all layers of the network.
In addition, we clip the gradient used in Langevin dynamics so that its value magnitude can be less
than 0.01. GraphEBM is implemented with PyTorch (Paszke et al., 2017).

Random generation. We evaluate the ability of our proposed GraphEBM to model and generate
molecules. We consider most methods reviewed in Section A.1 as baselines. The following widely
used metrics are adopted. Validity is the percentage of chemically valid molecules among all gener-
ated molecules. Uniqueness denotes the percentage of unique molecules among all valid molecules.
Novelty corresponds to the percentage of generated valid molecules that are not present in the train-
ing set. The metrics are computed on 10, 000 randomly generated molecules. Results averaged over
5 runs are reported.

Goal-directed generation. To empirically show the effectiveness of our goal-directed generation
method proposed in Section 2.5, we train models on ZINC250k accordingly and compare the dis-
tribution of the property score between goal-directed generated molecules and random generated
molecules. We consider two chemical properties, including Quantitative Estimate of Druglikeness
(QED) (Bickerton et al., 2012) and penalized logP (plogp), which is the water-octanol partition
coefficient penalized by the number of long cycles and synthetic accessibility.

We further verify the effectiveness of our proposed goal-directed generation method by perform-
ing molecule optimization, including property optimization and constrained property optimization.
Property optimization aims at generating novel molecules with high QED scores. We directly use
the model trained for goal-directed generation and leverage the molecules in the training set as ini-
tialization for Langevin dynamics, following prior works (Jin et al., 2018; Zang & Wang, 2020). We
report the highest QED scores and the corresponding novel molecules discovered by our method.
For constrained property optimization, given a molecule m, our task is to obtain a new molecule
m′ that has a better desired chemical property with the molecular similarity sim(m,m′) ≥ δ for
some threshold δ. We adopt Tanimoto similarity of Morgan fingerprint (Rogers & Hahn, 2010) to
measure the similarity between molecules. We find that there are two different settings in baselines.
JT-VAE and GCPN choose 800 molecules with the lowest plogp scores in the test set and use them
as initialization, while GraphAF and MoFlow choose from the training set. We report our results on
both of these two settings for extensive comparisons.

Compositional generation. As investigated in Section 2.6, our GraphEBM has the potential to
conduct compositional generation towards multiple objectives. To verify this, we combine the two
energy functions obtained in goal-directed generation experiments, as formulated in Eq. (14). Then
we apply the generation process described in Section 2.4 to the resulting energy function to generate
molecules.

E EXPERIMENTAL RESULTS

The generation performance on QM9 and ZINC250k is given in Table 4 and Table 5. The generated
molecule samples are visualized in Figure 6. The visualization of the implicit generation process of
our GraphEBM is shown in Figure 7.
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Table 4: Generation performance on QM9.
The results of CVAE and GVAE are obtained
from Simonovsky & Komodakis (2018). The
result of MoFlow is obtained by evaluating its
public trained model. All other results are from
their original papers.

Method Validity(%) Uniqueness(%) Novelty(%)

CVAE 10.30 67.50 90.00
GVAE 60.20 9.30 80.90
GraphVAE 55.70 76.00 61.60
RVAE 96.60 - 97.50
MolGAN 98.10 10.40 94.20
GraphNVP 83.10±0.50 99.20±0.30 58.20±1.90
GRF 84.50±0.70 66.00±1.14 58.60±0.82
GraphAF 100.00 94.51 88.83
MoFlow 100.00±0.00 98.53±0.14 96.04±0.10

GraphEBM 100.00±0.00 97.90±0.14 97.01±0.17

Table 5: Generation performance on
ZINC250k. The results of GCPN and JT-
VAE are obtained from Shi et al. (2019). The
result of MoFlow is obtained by evaluating its
public trained model. All other results are from
their original papers.

Method Validity(%) Uniqueness(%) Novelty(%)

GCPN 100.00 99.97 100.00
JT-VAE 100.00 100.00 100.00
MolecularRNN 100.00 99.89 100.00
GraphNVP 42.60±1.60 94.80±0.60 100.00±0.00
GRF 73.40±0.62 53.7±2.13 100.00±0.00
GraphAF 100.00 99.10 100.00
MoFlow 100.00±0.00 99.99±0.01 100.00±0.00

GraphEBM 99.96±0.02 98.79±0.15 100.00±0.00

Figure 6: Visualization of molecules generated by GraphEBM.

Figure 7: Visualization of the implicit generation process of our GraphEBM. The first row denotes
atom matrices and the remaining rows represent fours channels of adjacency tensors, corresponding
to single, double, triple, and virtual bonds. For better visual results, each atom matrix and adjacency
tensor is normalized by dividing by its maximum value.

16


	Introduction
	The Proposed GraphEBM
	Parameterized Energy Function
	Permutation Invariance
	Training
	Generation
	Goal-Directed Generation
	Compositional Generation

	Experiments
	Conclusion and Outlook
	Acknowledgments
	Related Work
	Molecular Graph Generation
	Energy-Based Models

	Generation Process of GraphEBM
	Existing Goal-Directed Generation Strategies
	Experimental Setup
	Experimental Results

